]>
cvs.zerfleddert.de Git - proxmark3-svn/blob - common/lfdemod.c
d3c2a01c96cc8d9c96bf9a5629487db4d5f0322b
1 //-----------------------------------------------------------------------------
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
14 uint8_t justNoise(uint8_t *BitStream
, size_t size
)
16 static const uint8_t THRESHOLD
= 123;
17 //test samples are not just noise
18 uint8_t justNoise1
= 1;
19 for(size_t idx
=0; idx
< size
&& justNoise1
;idx
++){
20 justNoise1
= BitStream
[idx
] < THRESHOLD
;
26 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
27 int getHiLo(uint8_t *BitStream
, size_t size
, int *high
, int *low
, uint8_t fuzzHi
, uint8_t fuzzLo
)
31 // get high and low thresholds
32 for (size_t i
=0; i
< size
; i
++){
33 if (BitStream
[i
] > *high
) *high
= BitStream
[i
];
34 if (BitStream
[i
] < *low
) *low
= BitStream
[i
];
36 if (*high
< 123) return -1; // just noise
37 *high
= (int)(((*high
-128)*(((float)fuzzHi
)/100))+128);
38 *low
= (int)(((*low
-128)*(((float)fuzzLo
)/100))+128);
43 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
44 // returns 1 if passed
45 uint8_t parityTest(uint32_t bits
, uint8_t bitLen
, uint8_t pType
)
48 for (uint8_t i
= 0; i
< bitLen
; i
++){
49 ans
^= ((bits
>> i
) & 1);
51 //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
52 return (ans
== pType
);
56 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
57 uint8_t preambleSearch(uint8_t *BitStream
, uint8_t *preamble
, size_t pLen
, size_t *size
, size_t *startIdx
)
60 for (int idx
=0; idx
< *size
- pLen
; idx
++){
61 if (memcmp(BitStream
+idx
, preamble
, pLen
) == 0){
68 *size
= idx
- *startIdx
;
77 //takes 1s and 0s and searches for EM410x format - output EM ID
78 uint8_t Em410xDecode(uint8_t *BitStream
, size_t *size
, size_t *startIdx
, uint32_t *hi
, uint64_t *lo
)
80 //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
81 // otherwise could be a void with no arguments
84 if (BitStream
[1]>1){ //allow only 1s and 0s
85 // PrintAndLog("no data found");
88 // 111111111 bit pattern represent start of frame
89 // include 0 in front to help get start pos
90 uint8_t preamble
[] = {0,1,1,1,1,1,1,1,1,1};
92 uint32_t parityBits
= 0;
96 errChk
= preambleSearch(BitStream
, preamble
, sizeof(preamble
), size
, startIdx
);
97 if (errChk
== 0 || *size
< 64) return 0;
98 if (*size
> 64) FmtLen
= 22;
99 *startIdx
+= 1; //get rid of 0 from preamble
101 for (i
=0; i
<FmtLen
; i
++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
102 parityBits
= bytebits_to_byte(BitStream
+(i
*5)+idx
,5);
103 //check even parity - quit if failed
104 if (parityTest(parityBits
, 5, 0) == 0) return 0;
105 //set uint64 with ID from BitStream
106 for (uint8_t ii
=0; ii
<4; ii
++){
107 *hi
= (*hi
<< 1) | (*lo
>> 63);
108 *lo
= (*lo
<< 1) | (BitStream
[(i
*5)+ii
+idx
]);
111 if (errChk
!= 0) return 1;
112 //skip last 5 bit parity test for simplicity.
118 //takes 3 arguments - clock, invert, maxErr as integers
119 //attempts to demodulate ask while decoding manchester
120 //prints binary found and saves in graphbuffer for further commands
121 int askmandemod(uint8_t *BinStream
, size_t *size
, int *clk
, int *invert
, int maxErr
)
124 int start
= DetectASKClock(BinStream
, *size
, clk
, 20); //clock default
125 if (*clk
==0 || start
< 0) return -3;
126 if (*invert
!= 1) *invert
=0;
127 uint8_t initLoopMax
= 255;
128 if (initLoopMax
> *size
) initLoopMax
= *size
;
129 // Detect high and lows
130 // 25% fuzz in case highs and lows aren't clipped [marshmellow]
132 if (getHiLo(BinStream
, initLoopMax
, &high
, &low
, 75, 75) < 1) return -2; //just noise
134 // PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
135 int lastBit
= 0; //set first clock check
136 uint16_t bitnum
= 0; //output counter
137 uint8_t tol
= 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
138 if (*clk
<= 32) tol
=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
140 //if 0 errors allowed then only try first 2 clock cycles as we want a low tolerance
141 if (!maxErr
) initLoopMax
= *clk
* 2;
142 uint16_t errCnt
= 0, MaxBits
= 512;
143 uint16_t bestStart
= start
;
144 uint16_t bestErrCnt
= 0;
145 // PrintAndLog("DEBUG - lastbit - %d",lastBit);
146 // if best start position not already found by detect clock then
147 if (start
<= 0 || start
> initLoopMax
){
148 bestErrCnt
= maxErr
+1;
149 // loop to find first wave that works
150 for (iii
=0; iii
< initLoopMax
; ++iii
){
152 if (BinStream
[iii
] < high
&& BinStream
[iii
] > low
) continue;
154 lastBit
= iii
- *clk
;
155 // loop through to see if this start location works
156 for (i
= iii
; i
< *size
; ++i
) {
157 if ((i
-lastBit
) > (*clk
-tol
) && (BinStream
[i
] >= high
|| BinStream
[i
] <= low
)) {
159 } else if ((i
-lastBit
) > (*clk
+tol
)) {
163 if ((i
-iii
) > (MaxBits
* *clk
) || errCnt
> maxErr
) break; //got plenty of bits or too many errors
165 //we got more than 64 good bits and not all errors
166 if ((((i
-iii
)/ *clk
) > (64)) && (errCnt
<=maxErr
)) {
168 if (!errCnt
|| errCnt
< bestErrCnt
){
169 bestStart
= iii
; //set this as new best run
171 if (!errCnt
) break; //great read - finish
177 if (bestErrCnt
> maxErr
){
182 //best run is good enough set to best run and set overwrite BinStream
183 lastBit
= bestStart
- *clk
;
185 for (i
= bestStart
; i
< *size
; ++i
) {
186 if ((BinStream
[i
] >= high
) && ((i
-lastBit
) > (*clk
-tol
))){
187 //high found and we are expecting a bar
189 BinStream
[bitnum
++] = *invert
;
190 } else if ((BinStream
[i
] <= low
) && ((i
-lastBit
) > (*clk
-tol
))){
191 //low found and we are expecting a bar
193 BinStream
[bitnum
++] = *invert
^ 1;
194 } else if ((i
-lastBit
)>(*clk
+tol
)){
195 //should have hit a high or low based on clock!!
196 //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
198 BinStream
[bitnum
++] = 77;
201 lastBit
+= *clk
;//skip over error
203 if (bitnum
>= MaxBits
) break;
210 //encode binary data into binary manchester
211 int ManchesterEncode(uint8_t *BitStream
, size_t size
)
213 size_t modIdx
=20000, i
=0;
214 if (size
>modIdx
) return -1;
215 for (size_t idx
=0; idx
< size
; idx
++){
216 BitStream
[idx
+modIdx
++] = BitStream
[idx
];
217 BitStream
[idx
+modIdx
++] = BitStream
[idx
]^1;
219 for (; i
<(size
*2); i
++){
220 BitStream
[i
] = BitStream
[i
+20000];
226 //take 10 and 01 and manchester decode
227 //run through 2 times and take least errCnt
228 int manrawdecode(uint8_t * BitStream
, size_t *size
)
230 uint16_t bitnum
=0, MaxBits
= 512, errCnt
= 0;
232 uint16_t bestErr
= 1000, bestRun
= 0;
233 if (size
== 0) return -1;
234 for (ii
=0;ii
<2;++ii
){
235 for (i
=ii
; i
<*size
-2; i
+=2)
236 if (BitStream
[i
]==BitStream
[i
+1])
246 for (i
=bestRun
; i
< *size
-2; i
+=2){
247 if(BitStream
[i
] == 1 && (BitStream
[i
+1] == 0)){
248 BitStream
[bitnum
++]=0;
249 } else if((BitStream
[i
] == 0) && BitStream
[i
+1] == 1){
250 BitStream
[bitnum
++]=1;
252 BitStream
[bitnum
++]=77;
254 if(bitnum
>MaxBits
) break;
262 //take 01 or 10 = 1 and 11 or 00 = 0
263 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
264 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
265 int BiphaseRawDecode(uint8_t *BitStream
, size_t *size
, int offset
, int invert
)
270 uint16_t MaxBits
=512;
271 //if not enough samples - error
272 if (*size
< 51) return -1;
273 //check for phase change faults - skip one sample if faulty
274 uint8_t offsetA
= 1, offsetB
= 1;
276 if (BitStream
[i
+1]==BitStream
[i
+2]) offsetA
=0;
277 if (BitStream
[i
+2]==BitStream
[i
+3]) offsetB
=0;
279 if (!offsetA
&& offsetB
) offset
++;
280 for (i
=offset
; i
<*size
-3; i
+=2){
281 //check for phase error
282 if (BitStream
[i
+1]==BitStream
[i
+2]) {
283 BitStream
[bitnum
++]=77;
286 if((BitStream
[i
]==1 && BitStream
[i
+1]==0) || (BitStream
[i
]==0 && BitStream
[i
+1]==1)){
287 BitStream
[bitnum
++]=1^invert
;
288 } else if((BitStream
[i
]==0 && BitStream
[i
+1]==0) || (BitStream
[i
]==1 && BitStream
[i
+1]==1)){
289 BitStream
[bitnum
++]=invert
;
291 BitStream
[bitnum
++]=77;
294 if(bitnum
>MaxBits
) break;
301 void askAmp(uint8_t *BitStream
, size_t size
)
305 for(size_t i
= 1; i
<size
; i
++){
306 if (BitStream
[i
]-BitStream
[i
-1]>=30) //large jump up
308 else if(BitStream
[i
]-BitStream
[i
-1]<=-20) //large jump down
311 shiftedVal
=BitStream
[i
]+shift
;
315 else if (shiftedVal
<0)
317 BitStream
[i
-1] = shiftedVal
;
322 // demodulates strong heavily clipped samples
323 int cleanAskRawDemod(uint8_t *BinStream
, size_t *size
, int clk
, int invert
, int high
, int low
)
325 size_t bitCnt
=0, smplCnt
=0, errCnt
=0;
326 uint8_t waveHigh
= 0;
327 //PrintAndLog("clk: %d", clk);
328 for (size_t i
=0; i
< *size
; i
++){
329 if (BinStream
[i
] >= high
&& waveHigh
){
331 } else if (BinStream
[i
] <= low
&& !waveHigh
){
333 } else { //transition
334 if ((BinStream
[i
] >= high
&& !waveHigh
) || (BinStream
[i
] <= low
&& waveHigh
)){
335 if (smplCnt
> clk
-(clk
/4)-1) { //full clock
336 if (smplCnt
> clk
+ (clk
/4)+1) { //too many samples
338 BinStream
[bitCnt
++]=77;
339 } else if (waveHigh
) {
340 BinStream
[bitCnt
++] = invert
;
341 BinStream
[bitCnt
++] = invert
;
342 } else if (!waveHigh
) {
343 BinStream
[bitCnt
++] = invert
^ 1;
344 BinStream
[bitCnt
++] = invert
^ 1;
348 } else if (smplCnt
> (clk
/2) - (clk
/4)-1) {
350 BinStream
[bitCnt
++] = invert
;
351 } else if (!waveHigh
) {
352 BinStream
[bitCnt
++] = invert
^ 1;
356 } else if (!bitCnt
) {
358 waveHigh
= (BinStream
[i
] >= high
);
362 //transition bit oops
364 } else { //haven't hit new high or new low yet
374 //takes 3 arguments - clock, invert and maxErr as integers
375 //attempts to demodulate ask only
376 int askrawdemod(uint8_t *BinStream
, size_t *size
, int *clk
, int *invert
, int maxErr
, uint8_t amp
)
378 if (*size
==0) return -1;
379 int start
= DetectASKClock(BinStream
, *size
, clk
, 20); //clock default
380 if (*clk
==0 || start
< 0) return -1;
381 if (*invert
!= 1) *invert
= 0;
382 if (amp
==1) askAmp(BinStream
, *size
);
384 uint8_t initLoopMax
= 255;
385 if (initLoopMax
> *size
) initLoopMax
=*size
;
386 // Detect high and lows
387 //25% clip in case highs and lows aren't clipped [marshmellow]
389 if (getHiLo(BinStream
, initLoopMax
, &high
, &low
, 75, 75) < 1)
390 return -1; //just noise
392 // if clean clipped waves detected run alternate demod
393 if (DetectCleanAskWave(BinStream
, *size
, high
, low
))
394 return cleanAskRawDemod(BinStream
, size
, *clk
, *invert
, high
, low
);
396 int lastBit
= 0; //set first clock check - can go negative
398 size_t errCnt
= 0, bitnum
= 0; //output counter
400 size_t bestStart
= start
, bestErrCnt
= 0; //(*size/1000);
401 size_t MaxBits
= 1024;
403 //if 0 errors allowed then only try first 2 clock cycles as we want a low tolerance
404 if (!maxErr
) initLoopMax
= *clk
* 2;
405 //if best start not already found by detectclock
406 if (start
<= 0 || start
> initLoopMax
){
407 bestErrCnt
= maxErr
+1;
408 //PrintAndLog("DEBUG - lastbit - %d",lastBit);
409 //loop to find first wave that works
410 for (iii
=0; iii
< initLoopMax
; ++iii
){
411 if ((BinStream
[iii
] >= high
) || (BinStream
[iii
] <= low
)){
412 lastBit
= iii
- *clk
;
413 //loop through to see if this start location works
414 for (i
= iii
; i
< *size
; ++i
) {
415 if (i
-lastBit
> *clk
&& (BinStream
[i
] >= high
|| BinStream
[i
] <= low
)){
418 } else if (i
-lastBit
> (*clk
/2) && midBit
== 0) {
420 } else if ((i
-lastBit
) > *clk
) {
421 //should have hit a high or low based on clock!!
422 //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
424 lastBit
+= *clk
;//skip over until hit too many errors
428 if ((i
-iii
)>(MaxBits
* *clk
)) break; //got enough bits
430 //we got more than 64 good bits and not all errors
431 if ((((i
-iii
)/ *clk
) > 64) && (errCnt
<=maxErr
)) {
436 break; //great read - finish
438 if (errCnt
<bestErrCnt
){ //set this as new best run
447 if (bestErrCnt
> maxErr
){
452 //best run is good enough - set to best run and overwrite BinStream
453 lastBit
= bestStart
- *clk
- 1;
456 for (i
= bestStart
; i
< *size
; ++i
) {
457 if (i
- lastBit
> *clk
){
458 if (BinStream
[i
] >= high
) {
459 BinStream
[bitnum
++] = *invert
;
460 } else if (BinStream
[i
] <= low
) {
461 BinStream
[bitnum
++] = *invert
^ 1;
464 BinStream
[bitnum
++]=77;
470 } else if (i
-lastBit
> (*clk
/2) && midBit
== 0){
471 if (BinStream
[i
] >= high
) {
472 BinStream
[bitnum
++] = *invert
;
473 } else if (BinStream
[i
] <= low
) {
474 BinStream
[bitnum
++] = *invert
^ 1;
477 BinStream
[bitnum
] = BinStream
[bitnum
-1];
482 if (bitnum
>= MaxBits
) break;
488 // demod gProxIIDemod
489 // error returns as -x
490 // success returns start position in BitStream
491 // BitStream must contain previously askrawdemod and biphasedemoded data
492 int gProxII_Demod(uint8_t BitStream
[], size_t *size
)
495 uint8_t preamble
[] = {1,1,1,1,1,0};
497 uint8_t errChk
= preambleSearch(BitStream
, preamble
, sizeof(preamble
), size
, &startIdx
);
498 if (errChk
== 0) return -3; //preamble not found
499 if (*size
!= 96) return -2; //should have found 96 bits
500 //check first 6 spacer bits to verify format
501 if (!BitStream
[startIdx
+5] && !BitStream
[startIdx
+10] && !BitStream
[startIdx
+15] && !BitStream
[startIdx
+20] && !BitStream
[startIdx
+25] && !BitStream
[startIdx
+30]){
502 //confirmed proper separator bits found
503 //return start position
504 return (int) startIdx
;
509 //translate wave to 11111100000 (1 for each short wave 0 for each long wave)
510 size_t fsk_wave_demod(uint8_t * dest
, size_t size
, uint8_t fchigh
, uint8_t fclow
)
512 size_t last_transition
= 0;
515 if (fchigh
==0) fchigh
=10;
516 if (fclow
==0) fclow
=8;
517 //set the threshold close to 0 (graph) or 128 std to avoid static
518 uint8_t threshold_value
= 123;
520 // sync to first lo-hi transition, and threshold
522 // Need to threshold first sample
524 if(dest
[0] < threshold_value
) dest
[0] = 0;
528 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
529 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
530 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
531 for(idx
= 1; idx
< size
; idx
++) {
532 // threshold current value
534 if (dest
[idx
] < threshold_value
) dest
[idx
] = 0;
537 // Check for 0->1 transition
538 if (dest
[idx
-1] < dest
[idx
]) { // 0 -> 1 transition
539 if ((idx
-last_transition
)<(fclow
-2)){ //0-5 = garbage noise
540 //do nothing with extra garbage
541 } else if ((idx
-last_transition
) < (fchigh
-1)) { //6-8 = 8 waves
543 } else if ((idx
-last_transition
) > (fchigh
+1) && !numBits
) { //12 + and first bit = garbage
544 //do nothing with beginning garbage
545 } else { //9+ = 10 waves
548 last_transition
= idx
;
551 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
554 //translate 11111100000 to 10
555 size_t aggregate_bits(uint8_t *dest
, size_t size
, uint8_t rfLen
,
556 uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
558 uint8_t lastval
=dest
[0];
562 uint16_t lowWaves
= ((rfLen
*100/fclow
)); // (((float)(rfLen))/((float)fclow));
563 uint16_t highWaves
= ((rfLen
*100/fchigh
)); // (((float)(rfLen))/((float)fchigh));
564 for( idx
=1; idx
< size
; idx
++) {
566 if (dest
[idx
]==lastval
) continue;
568 //if lastval was 1, we have a 1->0 crossing
569 if (dest
[idx
-1]==1) {
570 if (!numBits
&& n
< lowWaves
/100) {
575 n
= (size_t)((((n
*1000)/lowWaves
)+5)/10);
576 } else {// 0->1 crossing
577 //test first bitsample too small
578 if (!numBits
&& n
< highWaves
/100) {
583 n
= (((n
*1000)/highWaves
)+5)/10;
587 memset(dest
+numBits
, dest
[idx
-1]^invert
, n
);
592 // if valid extra bits at the end were all the same frequency - add them in
593 if (n
> highWaves
/100) {
594 if (dest
[idx
-2]==1) {
595 n
=(((n
*1000)/lowWaves
)+5)/10;
597 n
=(((n
*1000)/highWaves
)+5)/10;
599 memset(dest
+numBits
, dest
[idx
-1]^invert
, n
);
604 //by marshmellow (from holiman's base)
605 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
606 int fskdemod(uint8_t *dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
609 size
= fsk_wave_demod(dest
, size
, fchigh
, fclow
);
610 size
= aggregate_bits(dest
, size
, rfLen
, invert
, fchigh
, fclow
);
614 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
615 int HIDdemodFSK(uint8_t *dest
, size_t *size
, uint32_t *hi2
, uint32_t *hi
, uint32_t *lo
)
617 if (justNoise(dest
, *size
)) return -1;
619 size_t numStart
=0, size2
=*size
, startIdx
=0;
621 *size
= fskdemod(dest
, size2
,50,1,10,8); //fsk2a
622 if (*size
< 96*2) return -2;
623 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
624 uint8_t preamble
[] = {0,0,0,1,1,1,0,1};
625 // find bitstring in array
626 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
627 if (errChk
== 0) return -3; //preamble not found
629 numStart
= startIdx
+ sizeof(preamble
);
630 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
631 for (size_t idx
= numStart
; (idx
-numStart
) < *size
- sizeof(preamble
); idx
+=2){
632 if (dest
[idx
] == dest
[idx
+1]){
633 return -4; //not manchester data
635 *hi2
= (*hi2
<<1)|(*hi
>>31);
636 *hi
= (*hi
<<1)|(*lo
>>31);
637 //Then, shift in a 0 or one into low
638 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
643 return (int)startIdx
;
646 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
647 int ParadoxdemodFSK(uint8_t *dest
, size_t *size
, uint32_t *hi2
, uint32_t *hi
, uint32_t *lo
)
649 if (justNoise(dest
, *size
)) return -1;
651 size_t numStart
=0, size2
=*size
, startIdx
=0;
653 *size
= fskdemod(dest
, size2
,50,1,10,8); //fsk2a
654 if (*size
< 96) return -2;
656 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
657 uint8_t preamble
[] = {0,0,0,0,1,1,1,1};
659 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
660 if (errChk
== 0) return -3; //preamble not found
662 numStart
= startIdx
+ sizeof(preamble
);
663 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
664 for (size_t idx
= numStart
; (idx
-numStart
) < *size
- sizeof(preamble
); idx
+=2){
665 if (dest
[idx
] == dest
[idx
+1])
666 return -4; //not manchester data
667 *hi2
= (*hi2
<<1)|(*hi
>>31);
668 *hi
= (*hi
<<1)|(*lo
>>31);
669 //Then, shift in a 0 or one into low
670 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
675 return (int)startIdx
;
678 uint32_t bytebits_to_byte(uint8_t* src
, size_t numbits
)
681 for(int i
= 0 ; i
< numbits
; i
++)
683 num
= (num
<< 1) | (*src
);
689 int IOdemodFSK(uint8_t *dest
, size_t size
)
691 if (justNoise(dest
, size
)) return -1;
692 //make sure buffer has data
693 if (size
< 66*64) return -2;
695 size
= fskdemod(dest
, size
, 64, 1, 10, 8); // FSK2a RF/64
696 if (size
< 65) return -3; //did we get a good demod?
698 //0 10 20 30 40 50 60
700 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
701 //-----------------------------------------------------------------------------
702 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
704 //XSF(version)facility:codeone+codetwo
707 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,1};
708 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), &size
, &startIdx
);
709 if (errChk
== 0) return -4; //preamble not found
711 if (!dest
[startIdx
+8] && dest
[startIdx
+17]==1 && dest
[startIdx
+26]==1 && dest
[startIdx
+35]==1 && dest
[startIdx
+44]==1 && dest
[startIdx
+53]==1){
712 //confirmed proper separator bits found
713 //return start position
714 return (int) startIdx
;
720 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
721 // Parity Type (1 for odd 0 for even), and binary Length (length to run)
722 size_t removeParity(uint8_t *BitStream
, size_t startIdx
, uint8_t pLen
, uint8_t pType
, size_t bLen
)
724 uint32_t parityWd
= 0;
725 size_t j
= 0, bitCnt
= 0;
726 for (int word
= 0; word
< (bLen
); word
+=pLen
){
727 for (int bit
=0; bit
< pLen
; bit
++){
728 parityWd
= (parityWd
<< 1) | BitStream
[startIdx
+word
+bit
];
729 BitStream
[j
++] = (BitStream
[startIdx
+word
+bit
]);
732 // if parity fails then return 0
733 if (parityTest(parityWd
, pLen
, pType
) == 0) return -1;
737 // if we got here then all the parities passed
738 //return ID start index and size
743 // FSK Demod then try to locate an AWID ID
744 int AWIDdemodFSK(uint8_t *dest
, size_t *size
)
746 //make sure buffer has enough data
747 if (*size
< 96*50) return -1;
749 if (justNoise(dest
, *size
)) return -2;
752 *size
= fskdemod(dest
, *size
, 50, 1, 10, 8); // fsk2a RF/50
753 if (*size
< 96) return -3; //did we get a good demod?
755 uint8_t preamble
[] = {0,0,0,0,0,0,0,1};
757 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
758 if (errChk
== 0) return -4; //preamble not found
759 if (*size
!= 96) return -5;
760 return (int)startIdx
;
764 // FSK Demod then try to locate an Farpointe Data (pyramid) ID
765 int PyramiddemodFSK(uint8_t *dest
, size_t *size
)
767 //make sure buffer has data
768 if (*size
< 128*50) return -5;
770 //test samples are not just noise
771 if (justNoise(dest
, *size
)) return -1;
774 *size
= fskdemod(dest
, *size
, 50, 1, 10, 8); // fsk2a RF/50
775 if (*size
< 128) return -2; //did we get a good demod?
777 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
779 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
780 if (errChk
== 0) return -4; //preamble not found
781 if (*size
!= 128) return -3;
782 return (int)startIdx
;
786 uint8_t DetectCleanAskWave(uint8_t dest
[], size_t size
, int high
, int low
)
790 size_t loopEnd
= 572;
791 if (loopEnd
> size
) loopEnd
= size
;
792 for (size_t i
=60; i
<loopEnd
; i
++){
793 if (dest
[i
]>low
&& dest
[i
]<high
)
799 if (cntPeaks
> 300) return 1;
805 // to help detect clocks on heavily clipped samples
806 // based on counts between zero crossings
807 int DetectStrongAskClock(uint8_t dest
[], size_t size
)
809 int clk
[]={0,8,16,32,40,50,64,100,128};
815 for (;idx
< size
; idx
++){
820 if (highCnt
!= 0) highCnt2
= highCnt
;
822 } else if (cnt
> highCnt2
) {
829 } else if (dest
[idx
] <= 128){
833 if (highCnt
!= 0) highCnt2
= highCnt
;
835 } else if (cnt
> highCnt2
) {
845 for (idx
=8; idx
>0; idx
--){
847 if (clk
[idx
] >= highCnt
- tol
&& clk
[idx
] <= highCnt
+ tol
)
849 if (clk
[idx
] >= highCnt2
- tol
&& clk
[idx
] <= highCnt2
+ tol
)
856 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
857 // maybe somehow adjust peak trimming value based on samples to fix?
858 // return start index of best starting position for that clock and return clock (by reference)
859 int DetectASKClock(uint8_t dest
[], size_t size
, int *clock
, int maxErr
)
862 uint8_t clk
[]={8,16,32,40,50,64,100,128,255};
863 uint8_t loopCnt
= 255; //don't need to loop through entire array...
864 if (size
<= loopCnt
) return -1; //not enough samples
865 //if we already have a valid clock quit
868 if (clk
[i
] == *clock
) return 0;
870 //get high and low peak
872 if (getHiLo(dest
, loopCnt
, &peak
, &low
, 75, 75) < 1) return -1;
874 //test for large clean peaks
875 if (DetectCleanAskWave(dest
, size
, peak
, low
)==1){
876 int ans
= DetectStrongAskClock(dest
, size
);
885 uint8_t clkCnt
, tol
= 0;
886 uint16_t bestErr
[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
887 uint8_t bestStart
[]={0,0,0,0,0,0,0,0,0};
889 size_t arrLoc
, loopEnd
;
890 //test each valid clock from smallest to greatest to see which lines up
891 for(clkCnt
=0; clkCnt
< 8; clkCnt
++){
892 if (clk
[clkCnt
] == 32){
897 if (!maxErr
) loopCnt
=clk
[clkCnt
]*2;
898 bestErr
[clkCnt
]=1000;
899 //try lining up the peaks by moving starting point (try first 256)
900 for (ii
=0; ii
< loopCnt
; ii
++){
901 if (dest
[ii
] < peak
&& dest
[ii
] > low
) continue;
904 // now that we have the first one lined up test rest of wave array
905 loopEnd
= ((size
-ii
-tol
) / clk
[clkCnt
]) - 1;
906 for (i
=0; i
< loopEnd
; ++i
){
907 arrLoc
= ii
+ (i
* clk
[clkCnt
]);
908 if (dest
[arrLoc
] >= peak
|| dest
[arrLoc
] <= low
){
909 }else if (dest
[arrLoc
-tol
] >= peak
|| dest
[arrLoc
-tol
] <= low
){
910 }else if (dest
[arrLoc
+tol
] >= peak
|| dest
[arrLoc
+tol
] <= low
){
911 }else{ //error no peak detected
915 //if we found no errors then we can stop here
916 // this is correct one - return this clock
917 //PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i);
918 if(errCnt
==0 && clkCnt
<6) {
919 *clock
= clk
[clkCnt
];
922 //if we found errors see if it is lowest so far and save it as best run
923 if(errCnt
<bestErr
[clkCnt
]){
924 bestErr
[clkCnt
]=errCnt
;
925 bestStart
[clkCnt
]=ii
;
931 for (iii
=0; iii
<8; ++iii
){
932 if (bestErr
[iii
] < bestErr
[best
]){
933 if (bestErr
[iii
] == 0) bestErr
[iii
]=1;
934 // current best bit to error ratio vs new bit to error ratio
935 if ( (size
/clk
[best
])/bestErr
[best
] < (size
/clk
[iii
])/bestErr
[iii
] ){
940 if (bestErr
[best
] > maxErr
) return -1;
942 return bestStart
[best
];
946 //detect psk clock by reading each phase shift
947 // a phase shift is determined by measuring the sample length of each wave
948 int DetectPSKClock(uint8_t dest
[], size_t size
, int clock
)
950 uint8_t clk
[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
951 uint16_t loopCnt
= 4096; //don't need to loop through entire array...
952 if (size
== 0) return 0;
953 if (size
<loopCnt
) loopCnt
= size
;
955 //if we already have a valid clock quit
958 if (clk
[i
] == clock
) return clock
;
960 size_t waveStart
=0, waveEnd
=0, firstFullWave
=0, lastClkBit
=0;
961 uint8_t clkCnt
, fc
=0, fullWaveLen
=0, tol
=1;
962 uint16_t peakcnt
=0, errCnt
=0, waveLenCnt
=0;
963 uint16_t bestErr
[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
964 uint16_t peaksdet
[]={0,0,0,0,0,0,0,0,0};
965 fc
= countFC(dest
, size
, 0);
966 if (fc
!=2 && fc
!=4 && fc
!=8) return -1;
967 //PrintAndLog("DEBUG: FC: %d",fc);
969 //find first full wave
970 for (i
=0; i
<loopCnt
; i
++){
971 if (dest
[i
] < dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
972 if (waveStart
== 0) {
974 //PrintAndLog("DEBUG: waveStart: %d",waveStart);
977 //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
978 waveLenCnt
= waveEnd
-waveStart
;
979 if (waveLenCnt
> fc
){
980 firstFullWave
= waveStart
;
981 fullWaveLen
=waveLenCnt
;
988 //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
990 //test each valid clock from greatest to smallest to see which lines up
991 for(clkCnt
=7; clkCnt
>= 1 ; clkCnt
--){
992 lastClkBit
= firstFullWave
; //set end of wave as clock align
996 //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
998 for (i
= firstFullWave
+fullWaveLen
-1; i
< loopCnt
-2; i
++){
999 //top edge of wave = start of new wave
1000 if (dest
[i
] < dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
1001 if (waveStart
== 0) {
1006 waveLenCnt
= waveEnd
-waveStart
;
1007 if (waveLenCnt
> fc
){
1008 //if this wave is a phase shift
1009 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc);
1010 if (i
+1 >= lastClkBit
+ clk
[clkCnt
] - tol
){ //should be a clock bit
1012 lastClkBit
+=clk
[clkCnt
];
1013 } else if (i
<lastClkBit
+8){
1014 //noise after a phase shift - ignore
1015 } else { //phase shift before supposed to based on clock
1018 } else if (i
+1 > lastClkBit
+ clk
[clkCnt
] + tol
+ fc
){
1019 lastClkBit
+=clk
[clkCnt
]; //no phase shift but clock bit
1028 if (errCnt
<= bestErr
[clkCnt
]) bestErr
[clkCnt
]=errCnt
;
1029 if (peakcnt
> peaksdet
[clkCnt
]) peaksdet
[clkCnt
]=peakcnt
;
1031 //all tested with errors
1032 //return the highest clk with the most peaks found
1034 for (i
=7; i
>=1; i
--){
1035 if (peaksdet
[i
] > peaksdet
[best
]) {
1038 //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
1044 //detect nrz clock by reading #peaks vs no peaks(or errors)
1045 int DetectNRZClock(uint8_t dest
[], size_t size
, int clock
)
1048 uint8_t clk
[]={8,16,32,40,50,64,100,128,255};
1049 size_t loopCnt
= 4096; //don't need to loop through entire array...
1050 if (size
== 0) return 0;
1051 if (size
<loopCnt
) loopCnt
= size
;
1053 //if we already have a valid clock quit
1055 if (clk
[i
] == clock
) return clock
;
1057 //get high and low peak
1059 if (getHiLo(dest
, loopCnt
, &peak
, &low
, 75, 75) < 1) return 0;
1061 //PrintAndLog("DEBUG: peak: %d, low: %d",peak,low);
1066 uint16_t peaksdet
[]={0,0,0,0,0,0,0,0};
1068 //test for large clipped waves
1069 for (i
=0; i
<loopCnt
; i
++){
1070 if (dest
[i
] >= peak
|| dest
[i
] <= low
){
1073 if (peakcnt
>0 && maxPeak
< peakcnt
){
1080 //test each valid clock from smallest to greatest to see which lines up
1081 for(clkCnt
=0; clkCnt
< 8; ++clkCnt
){
1082 //ignore clocks smaller than largest peak
1083 if (clk
[clkCnt
]<maxPeak
) continue;
1085 //try lining up the peaks by moving starting point (try first 256)
1086 for (ii
=0; ii
< loopCnt
; ++ii
){
1087 if ((dest
[ii
] >= peak
) || (dest
[ii
] <= low
)){
1089 // now that we have the first one lined up test rest of wave array
1090 for (i
=0; i
< ((int)((size
-ii
-tol
)/clk
[clkCnt
])-1); ++i
){
1091 if (dest
[ii
+(i
*clk
[clkCnt
])]>=peak
|| dest
[ii
+(i
*clk
[clkCnt
])]<=low
){
1095 if(peakcnt
>peaksdet
[clkCnt
]) {
1096 peaksdet
[clkCnt
]=peakcnt
;
1103 for (iii
=7; iii
> 0; iii
--){
1104 if (peaksdet
[iii
] > peaksdet
[best
]){
1107 //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
1113 // convert psk1 demod to psk2 demod
1114 // only transition waves are 1s
1115 void psk1TOpsk2(uint8_t *BitStream
, size_t size
)
1118 uint8_t lastBit
=BitStream
[0];
1119 for (; i
<size
; i
++){
1120 if (BitStream
[i
]==77){
1122 } else if (lastBit
!=BitStream
[i
]){
1123 lastBit
=BitStream
[i
];
1133 // convert psk2 demod to psk1 demod
1134 // from only transition waves are 1s to phase shifts change bit
1135 void psk2TOpsk1(uint8_t *BitStream
, size_t size
)
1138 for (size_t i
=0; i
<size
; i
++){
1139 if (BitStream
[i
]==1){
1147 // redesigned by marshmellow adjusted from existing decode functions
1148 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1149 int indala26decode(uint8_t *bitStream
, size_t *size
, uint8_t *invert
)
1151 //26 bit 40134 format (don't know other formats)
1153 int long_wait
=29;//29 leading zeros in format
1159 // Finding the start of a UID
1160 for (start
= 0; start
<= *size
- 250; start
++) {
1161 first
= bitStream
[start
];
1162 for (i
= start
; i
< start
+ long_wait
; i
++) {
1163 if (bitStream
[i
] != first
) {
1167 if (i
== (start
+ long_wait
)) {
1171 if (start
== *size
- 250 + 1) {
1172 // did not find start sequence
1175 // Inverting signal if needed
1177 for (i
= start
; i
< *size
; i
++) {
1178 bitStream
[i
] = !bitStream
[i
];
1184 //found start once now test length by finding next one
1185 for (ii
=start
+29; ii
<= *size
- 250; ii
++) {
1186 first2
= bitStream
[ii
];
1187 for (iii
= ii
; iii
< ii
+ long_wait
; iii
++) {
1188 if (bitStream
[iii
] != first2
) {
1192 if (iii
== (ii
+ long_wait
)) {
1196 if (ii
== *size
- 250 + 1){
1197 // did not find second start sequence
1204 for (ii
= 0; ii
< bitCnt
; ii
++) {
1205 bitStream
[ii
] = bitStream
[i
++];
1211 // by marshmellow - demodulate NRZ wave (both similar enough)
1212 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1213 // there probably is a much simpler way to do this....
1214 int nrzRawDemod(uint8_t *dest
, size_t *size
, int *clk
, int *invert
, int maxErr
)
1216 if (justNoise(dest
, *size
)) return -1;
1217 *clk
= DetectNRZClock(dest
, *size
, *clk
);
1218 if (*clk
==0) return -2;
1219 size_t i
, gLen
= 4096;
1220 if (gLen
>*size
) gLen
= *size
;
1222 if (getHiLo(dest
, gLen
, &high
, &low
, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
1223 int lastBit
= 0; //set first clock check
1224 size_t iii
= 0, bitnum
= 0; //bitnum counter
1225 uint16_t errCnt
= 0, MaxBits
= 1000;
1226 size_t bestErrCnt
= maxErr
+1;
1227 size_t bestPeakCnt
= 0, bestPeakStart
= 0;
1228 uint8_t bestFirstPeakHigh
=0, firstPeakHigh
=0, curBit
=0, bitHigh
=0, errBitHigh
=0;
1229 uint8_t tol
= 1; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
1231 uint8_t ignoreWindow
=4;
1232 uint8_t ignoreCnt
=ignoreWindow
; //in case of noise near peak
1233 //loop to find first wave that works - align to clock
1234 for (iii
=0; iii
< gLen
; ++iii
){
1235 if ((dest
[iii
]>=high
) || (dest
[iii
]<=low
)){
1236 if (dest
[iii
]>=high
) firstPeakHigh
=1;
1237 else firstPeakHigh
=0;
1241 //loop through to see if this start location works
1242 for (i
= iii
; i
< *size
; ++i
) {
1243 // if we are at a clock bit
1244 if ((i
>= lastBit
+ *clk
- tol
) && (i
<= lastBit
+ *clk
+ tol
)) {
1246 if (dest
[i
] >= high
|| dest
[i
] <= low
) {
1250 ignoreCnt
= ignoreWindow
;
1252 } else if (i
== lastBit
+ *clk
+ tol
) {
1255 //else if no bars found
1256 } else if (dest
[i
] < high
&& dest
[i
] > low
){
1259 if (errBitHigh
==1) errCnt
++;
1264 } else if ((dest
[i
]>=high
|| dest
[i
]<=low
) && (bitHigh
==0)) {
1265 //error bar found no clock...
1268 if (((i
-iii
) / *clk
)>=MaxBits
) break;
1270 //we got more than 64 good bits and not all errors
1271 if (((i
-iii
) / *clk
) > 64 && (errCnt
<= (maxErr
))) {
1272 //possible good read
1273 if (!errCnt
|| peakCnt
> bestPeakCnt
){
1274 bestFirstPeakHigh
=firstPeakHigh
;
1275 bestErrCnt
= errCnt
;
1276 bestPeakCnt
= peakCnt
;
1277 bestPeakStart
= iii
;
1278 if (!errCnt
) break; //great read - finish
1283 //PrintAndLog("DEBUG: bestErrCnt: %d, maxErr: %d, bestStart: %d, bestPeakCnt: %d, bestPeakStart: %d",bestErrCnt,maxErr,bestStart,bestPeakCnt,bestPeakStart);
1284 if (bestErrCnt
> maxErr
) return bestErrCnt
;
1286 //best run is good enough set to best run and set overwrite BinStream
1287 lastBit
= bestPeakStart
- *clk
;
1288 memset(dest
, bestFirstPeakHigh
^1, bestPeakStart
/ *clk
);
1289 bitnum
+= (bestPeakStart
/ *clk
);
1290 for (i
= bestPeakStart
; i
< *size
; ++i
) {
1291 // if expecting a clock bit
1292 if ((i
>= lastBit
+ *clk
- tol
) && (i
<= lastBit
+ *clk
+ tol
)) {
1294 if (dest
[i
] >= high
|| dest
[i
] <= low
) {
1298 ignoreCnt
= ignoreWindow
;
1300 if (dest
[i
] >= high
) curBit
^= 1;
1301 dest
[bitnum
++] = curBit
;
1303 //else no bars found in clock area
1304 } else if (i
== lastBit
+ *clk
+ tol
) {
1305 dest
[bitnum
++] = curBit
;
1308 //else if no bars found
1309 } else if (dest
[i
] < high
&& dest
[i
] > low
){
1310 if (ignoreCnt
== 0){
1312 if (errBitHigh
== 1){
1313 dest
[bitnum
++] = 77;
1320 } else if ((dest
[i
] >= high
|| dest
[i
] <= low
) && (bitHigh
== 0)) {
1321 //error bar found no clock...
1324 if (bitnum
>= MaxBits
) break;
1331 //detects the bit clock for FSK given the high and low Field Clocks
1332 uint8_t detectFSKClk(uint8_t *BitStream
, size_t size
, uint8_t fcHigh
, uint8_t fcLow
)
1334 uint8_t clk
[] = {8,16,32,40,50,64,100,128,0};
1335 uint16_t rfLens
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1336 uint8_t rfCnts
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1337 uint8_t rfLensFnd
= 0;
1338 uint8_t lastFCcnt
= 0;
1339 uint16_t fcCounter
= 0;
1340 uint16_t rfCounter
= 0;
1341 uint8_t firstBitFnd
= 0;
1343 if (size
== 0) return 0;
1345 uint8_t fcTol
= (uint8_t)(0.5+(float)(fcHigh
-fcLow
)/2);
1350 //PrintAndLog("DEBUG: fcTol: %d",fcTol);
1351 // prime i to first up transition
1352 for (i
= 1; i
< size
-1; i
++)
1353 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
]>=BitStream
[i
+1])
1356 for (; i
< size
-1; i
++){
1360 if (BitStream
[i
] <= BitStream
[i
-1] || BitStream
[i
] < BitStream
[i
+1])
1363 // if we got less than the small fc + tolerance then set it to the small fc
1364 if (fcCounter
< fcLow
+fcTol
)
1366 else //set it to the large fc
1369 //look for bit clock (rf/xx)
1370 if ((fcCounter
< lastFCcnt
|| fcCounter
> lastFCcnt
)){
1371 //not the same size as the last wave - start of new bit sequence
1372 if (firstBitFnd
> 1){ //skip first wave change - probably not a complete bit
1373 for (int ii
=0; ii
<15; ii
++){
1374 if (rfLens
[ii
] == rfCounter
){
1380 if (rfCounter
> 0 && rfLensFnd
< 15){
1381 //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1382 rfCnts
[rfLensFnd
]++;
1383 rfLens
[rfLensFnd
++] = rfCounter
;
1389 lastFCcnt
=fcCounter
;
1393 uint8_t rfHighest
=15, rfHighest2
=15, rfHighest3
=15;
1395 for (i
=0; i
<15; i
++){
1396 //PrintAndLog("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]);
1397 //get highest 2 RF values (might need to get more values to compare or compare all?)
1398 if (rfCnts
[i
]>rfCnts
[rfHighest
]){
1399 rfHighest3
=rfHighest2
;
1400 rfHighest2
=rfHighest
;
1402 } else if(rfCnts
[i
]>rfCnts
[rfHighest2
]){
1403 rfHighest3
=rfHighest2
;
1405 } else if(rfCnts
[i
]>rfCnts
[rfHighest3
]){
1409 // set allowed clock remainder tolerance to be 1 large field clock length+1
1410 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1411 uint8_t tol1
= fcHigh
+1;
1413 //PrintAndLog("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
1415 // loop to find the highest clock that has a remainder less than the tolerance
1416 // compare samples counted divided by
1418 for (; ii
>=0; ii
--){
1419 if (rfLens
[rfHighest
] % clk
[ii
] < tol1
|| rfLens
[rfHighest
] % clk
[ii
] > clk
[ii
]-tol1
){
1420 if (rfLens
[rfHighest2
] % clk
[ii
] < tol1
|| rfLens
[rfHighest2
] % clk
[ii
] > clk
[ii
]-tol1
){
1421 if (rfLens
[rfHighest3
] % clk
[ii
] < tol1
|| rfLens
[rfHighest3
] % clk
[ii
] > clk
[ii
]-tol1
){
1428 if (ii
<0) return 0; // oops we went too far
1434 //countFC is to detect the field clock lengths.
1435 //counts and returns the 2 most common wave lengths
1436 //mainly used for FSK field clock detection
1437 uint16_t countFC(uint8_t *BitStream
, size_t size
, uint8_t fskAdj
)
1439 uint8_t fcLens
[] = {0,0,0,0,0,0,0,0,0,0};
1440 uint16_t fcCnts
[] = {0,0,0,0,0,0,0,0,0,0};
1441 uint8_t fcLensFnd
= 0;
1442 uint8_t lastFCcnt
=0;
1443 uint8_t fcCounter
= 0;
1445 if (size
== 0) return 0;
1447 // prime i to first up transition
1448 for (i
= 1; i
< size
-1; i
++)
1449 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1])
1452 for (; i
< size
-1; i
++){
1453 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1]){
1454 // new up transition
1457 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1458 if (lastFCcnt
==5 && fcCounter
==9) fcCounter
--;
1459 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1460 if ((fcCounter
==9) || fcCounter
==4) fcCounter
++;
1461 // save last field clock count (fc/xx)
1462 lastFCcnt
= fcCounter
;
1464 // find which fcLens to save it to:
1465 for (int ii
=0; ii
<10; ii
++){
1466 if (fcLens
[ii
]==fcCounter
){
1472 if (fcCounter
>0 && fcLensFnd
<10){
1474 fcCnts
[fcLensFnd
]++;
1475 fcLens
[fcLensFnd
++]=fcCounter
;
1484 uint8_t best1
=9, best2
=9, best3
=9;
1486 // go through fclens and find which ones are bigest 2
1487 for (i
=0; i
<10; i
++){
1488 // PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d",fcLens[i],fcCnts[i],errCnt);
1489 // get the 3 best FC values
1490 if (fcCnts
[i
]>maxCnt1
) {
1495 } else if(fcCnts
[i
]>fcCnts
[best2
]){
1498 } else if(fcCnts
[i
]>fcCnts
[best3
]){
1502 uint8_t fcH
=0, fcL
=0;
1503 if (fcLens
[best1
]>fcLens
[best2
]){
1511 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1513 uint16_t fcs
= (((uint16_t)fcH
)<<8) | fcL
;
1514 // PrintAndLog("DEBUG: Best %d best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]);
1515 if (fskAdj
) return fcs
;
1516 return fcLens
[best1
];
1519 //by marshmellow - demodulate PSK1 wave
1520 //uses wave lengths (# Samples)
1521 int pskRawDemod(uint8_t dest
[], size_t *size
, int *clock
, int *invert
)
1523 if (size
== 0) return -1;
1524 uint16_t loopCnt
= 4096; //don't need to loop through entire array...
1525 if (*size
<loopCnt
) loopCnt
= *size
;
1527 uint8_t curPhase
= *invert
;
1528 size_t i
, waveStart
=1, waveEnd
=0, firstFullWave
=0, lastClkBit
=0;
1529 uint8_t fc
=0, fullWaveLen
=0, tol
=1;
1530 uint16_t errCnt
=0, waveLenCnt
=0;
1531 fc
= countFC(dest
, *size
, 0);
1532 if (fc
!=2 && fc
!=4 && fc
!=8) return -1;
1533 //PrintAndLog("DEBUG: FC: %d",fc);
1534 *clock
= DetectPSKClock(dest
, *size
, *clock
);
1535 if (*clock
== 0) return -1;
1536 int avgWaveVal
=0, lastAvgWaveVal
=0;
1537 //find first phase shift
1538 for (i
=0; i
<loopCnt
; i
++){
1539 if (dest
[i
]+fc
< dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
1541 //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
1542 waveLenCnt
= waveEnd
-waveStart
;
1543 if (waveLenCnt
> fc
&& waveStart
> fc
){ //not first peak and is a large wave
1544 lastAvgWaveVal
= avgWaveVal
/(waveLenCnt
);
1545 firstFullWave
= waveStart
;
1546 fullWaveLen
=waveLenCnt
;
1547 //if average wave value is > graph 0 then it is an up wave or a 1
1548 if (lastAvgWaveVal
> 123) curPhase
^= 1; //fudge graph 0 a little 123 vs 128
1554 avgWaveVal
+= dest
[i
+2];
1556 //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
1557 lastClkBit
= firstFullWave
; //set start of wave as clock align
1558 //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
1562 memset(dest
, curPhase
^1, firstFullWave
/ *clock
);
1563 numBits
+= (firstFullWave
/ *clock
);
1564 dest
[numBits
++] = curPhase
; //set first read bit
1565 for (i
= firstFullWave
+ fullWaveLen
- 1; i
< *size
-3; i
++){
1566 //top edge of wave = start of new wave
1567 if (dest
[i
]+fc
< dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
1568 if (waveStart
== 0) {
1571 avgWaveVal
= dest
[i
+1];
1574 waveLenCnt
= waveEnd
-waveStart
;
1575 lastAvgWaveVal
= avgWaveVal
/waveLenCnt
;
1576 if (waveLenCnt
> fc
){
1577 //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1578 //this wave is a phase shift
1579 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1580 if (i
+1 >= lastClkBit
+ *clock
- tol
){ //should be a clock bit
1582 dest
[numBits
++] = curPhase
;
1583 lastClkBit
+= *clock
;
1584 } else if (i
< lastClkBit
+10+fc
){
1585 //noise after a phase shift - ignore
1586 } else { //phase shift before supposed to based on clock
1588 dest
[numBits
++] = 77;
1590 } else if (i
+1 > lastClkBit
+ *clock
+ tol
+ fc
){
1591 lastClkBit
+= *clock
; //no phase shift but clock bit
1592 dest
[numBits
++] = curPhase
;
1598 avgWaveVal
+= dest
[i
+1];