1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
30 #define abs(x) ( ((x)<0) ? -(x) : (x) )
32 //=============================================================================
33 // A buffer where we can queue things up to be sent through the FPGA, for
34 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
35 // is the order in which they go out on the wire.
36 //=============================================================================
38 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
39 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
42 struct common_area common_area
__attribute__((section(".commonarea")));
44 void BufferClear(void)
46 memset(BigBuf
,0,sizeof(BigBuf
));
47 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf
));
50 void ToSendReset(void)
56 void ToSendStuffBit(int b
)
60 ToSend
[ToSendMax
] = 0;
65 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
70 if(ToSendMax
>= sizeof(ToSend
)) {
72 DbpString("ToSendStuffBit overflowed!");
76 //=============================================================================
77 // Debug print functions, to go out over USB, to the usual PC-side client.
78 //=============================================================================
80 void DbpString(char *str
)
82 byte_t len
= strlen(str
);
83 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
87 void DbpIntegers(int x1
, int x2
, int x3
)
89 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
93 void Dbprintf(const char *fmt
, ...) {
94 // should probably limit size here; oh well, let's just use a big buffer
95 char output_string
[128];
99 kvsprintf(fmt
, output_string
, 10, ap
);
102 DbpString(output_string
);
105 // prints HEX & ASCII
106 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
119 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
122 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
124 Dbprintf("%*D",l
,d
," ");
132 //-----------------------------------------------------------------------------
133 // Read an ADC channel and block till it completes, then return the result
134 // in ADC units (0 to 1023). Also a routine to average 32 samples and
136 //-----------------------------------------------------------------------------
137 static int ReadAdc(int ch
)
141 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
142 AT91C_BASE_ADC
->ADC_MR
=
143 ADC_MODE_PRESCALE(32) |
144 ADC_MODE_STARTUP_TIME(16) |
145 ADC_MODE_SAMPLE_HOLD_TIME(8);
146 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
148 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
149 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
151 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
156 int AvgAdc(int ch
) // was static - merlok
161 for(i
= 0; i
< 32; i
++) {
165 return (a
+ 15) >> 5;
168 void MeasureAntennaTuning(void)
170 uint8_t LF_Results
[256];
171 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
172 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
177 * Sweeps the useful LF range of the proxmark from
178 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
179 * read the voltage in the antenna, the result left
180 * in the buffer is a graph which should clearly show
181 * the resonating frequency of your LF antenna
182 * ( hopefully around 95 if it is tuned to 125kHz!)
185 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
186 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
187 for (i
=255; i
>=19; i
--) {
189 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
191 // Vref = 3.3V, and a 10000:240 voltage divider on the input
192 // can measure voltages up to 137500 mV
193 adcval
= ((137500 * AvgAdc(ADC_CHAN_LF
)) >> 10);
194 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
195 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
197 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
198 if(LF_Results
[i
] > peak
) {
200 peak
= LF_Results
[i
];
206 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
209 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
210 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
211 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
213 // Vref = 3300mV, and an 10:1 voltage divider on the input
214 // can measure voltages up to 33000 mV
215 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
217 cmd_send(CMD_MEASURED_ANTENNA_TUNING
,vLf125
|(vLf134
<<16),vHf
,peakf
|(peakv
<<16),LF_Results
,256);
218 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
224 void MeasureAntennaTuningHf(void)
226 int vHf
= 0; // in mV
228 DbpString("Measuring HF antenna, press button to exit");
231 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
232 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
233 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
235 // Vref = 3300mV, and an 10:1 voltage divider on the input
236 // can measure voltages up to 33000 mV
237 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
239 Dbprintf("%d mV",vHf
);
240 if (BUTTON_PRESS()) break;
242 DbpString("cancelled");
246 void SimulateTagHfListen(void)
248 uint8_t *dest
= (uint8_t *)BigBuf
+FREE_BUFFER_OFFSET
;
253 // We're using this mode just so that I can test it out; the simulated
254 // tag mode would work just as well and be simpler.
255 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
256 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
258 // We need to listen to the high-frequency, peak-detected path.
259 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
265 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
266 AT91C_BASE_SSC
->SSC_THR
= 0xff;
268 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
269 uint8_t r
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
283 if(i
>= FREE_BUFFER_SIZE
) {
289 DbpString("simulate tag (now type bitsamples)");
292 void ReadMem(int addr
)
294 const uint8_t *data
= ((uint8_t *)addr
);
296 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
297 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
300 /* osimage version information is linked in */
301 extern struct version_information version_information
;
302 /* bootrom version information is pointed to from _bootphase1_version_pointer */
303 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
;
304 void SendVersion(void)
306 char temp
[512]; /* Limited data payload in USB packets */
307 DbpString("Prox/RFID mark3 RFID instrument");
309 /* Try to find the bootrom version information. Expect to find a pointer at
310 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
311 * pointer, then use it.
313 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
314 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
315 DbpString("bootrom version information appears invalid");
317 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
321 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
324 FpgaGatherVersion(temp
, sizeof(temp
));
327 cmd_send(CMD_ACK
,*(AT91C_DBGU_CIDR
),0,0,NULL
,0);
331 // samy's sniff and repeat routine
334 DbpString("Stand-alone mode! No PC necessary.");
335 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
337 // 3 possible options? no just 2 for now
340 int high
[OPTS
], low
[OPTS
];
342 // Oooh pretty -- notify user we're in elite samy mode now
344 LED(LED_ORANGE
, 200);
346 LED(LED_ORANGE
, 200);
348 LED(LED_ORANGE
, 200);
350 LED(LED_ORANGE
, 200);
357 // Turn on selected LED
358 LED(selected
+ 1, 0);
365 // Was our button held down or pressed?
366 int button_pressed
= BUTTON_HELD(1000);
369 // Button was held for a second, begin recording
370 if (button_pressed
> 0 && cardRead
== 0)
373 LED(selected
+ 1, 0);
377 DbpString("Starting recording");
379 // wait for button to be released
380 while(BUTTON_PRESS())
383 /* need this delay to prevent catching some weird data */
386 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
387 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
390 LED(selected
+ 1, 0);
391 // Finished recording
393 // If we were previously playing, set playing off
394 // so next button push begins playing what we recorded
401 else if (button_pressed
> 0 && cardRead
== 1)
404 LED(selected
+ 1, 0);
408 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
410 // wait for button to be released
411 while(BUTTON_PRESS())
414 /* need this delay to prevent catching some weird data */
417 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
418 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
421 LED(selected
+ 1, 0);
422 // Finished recording
424 // If we were previously playing, set playing off
425 // so next button push begins playing what we recorded
432 // Change where to record (or begin playing)
433 else if (button_pressed
)
435 // Next option if we were previously playing
437 selected
= (selected
+ 1) % OPTS
;
441 LED(selected
+ 1, 0);
443 // Begin transmitting
447 DbpString("Playing");
448 // wait for button to be released
449 while(BUTTON_PRESS())
451 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
452 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
453 DbpString("Done playing");
454 if (BUTTON_HELD(1000) > 0)
456 DbpString("Exiting");
461 /* We pressed a button so ignore it here with a delay */
464 // when done, we're done playing, move to next option
465 selected
= (selected
+ 1) % OPTS
;
468 LED(selected
+ 1, 0);
471 while(BUTTON_PRESS())
480 Listen and detect an external reader. Determine the best location
484 Inside the ListenReaderField() function, there is two mode.
485 By default, when you call the function, you will enter mode 1.
486 If you press the PM3 button one time, you will enter mode 2.
487 If you press the PM3 button a second time, you will exit the function.
489 DESCRIPTION OF MODE 1:
490 This mode just listens for an external reader field and lights up green
491 for HF and/or red for LF. This is the original mode of the detectreader
494 DESCRIPTION OF MODE 2:
495 This mode will visually represent, using the LEDs, the actual strength of the
496 current compared to the maximum current detected. Basically, once you know
497 what kind of external reader is present, it will help you spot the best location to place
498 your antenna. You will probably not get some good results if there is a LF and a HF reader
499 at the same place! :-)
503 static const char LIGHT_SCHEME
[] = {
504 0x0, /* ---- | No field detected */
505 0x1, /* X--- | 14% of maximum current detected */
506 0x2, /* -X-- | 29% of maximum current detected */
507 0x4, /* --X- | 43% of maximum current detected */
508 0x8, /* ---X | 57% of maximum current detected */
509 0xC, /* --XX | 71% of maximum current detected */
510 0xE, /* -XXX | 86% of maximum current detected */
511 0xF, /* XXXX | 100% of maximum current detected */
513 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
515 void ListenReaderField(int limit
)
517 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_count
= 0, lf_max
;
518 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_count
= 0, hf_max
;
519 int mode
=1, display_val
, display_max
, i
;
526 lf_av
=lf_max
=ReadAdc(ADC_CHAN_LF
);
528 if(limit
!= HF_ONLY
) {
529 Dbprintf("LF 125/134 Baseline: %d", lf_av
);
533 hf_av
=hf_max
=ReadAdc(ADC_CHAN_HF
);
535 if (limit
!= LF_ONLY
) {
536 Dbprintf("HF 13.56 Baseline: %d", hf_av
);
541 if (BUTTON_PRESS()) {
546 DbpString("Signal Strength Mode");
550 DbpString("Stopped");
558 if (limit
!= HF_ONLY
) {
560 if (abs(lf_av
- lf_baseline
) > 10) LED_D_ON();
565 lf_av_new
= ReadAdc(ADC_CHAN_LF
);
566 // see if there's a significant change
567 if(abs(lf_av
- lf_av_new
) > 10) {
568 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av
, lf_av_new
, lf_count
);
576 if (limit
!= LF_ONLY
) {
578 if (abs(hf_av
- hf_baseline
) > 10) LED_B_ON();
583 hf_av_new
= ReadAdc(ADC_CHAN_HF
);
584 // see if there's a significant change
585 if(abs(hf_av
- hf_av_new
) > 10) {
586 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av
, hf_av_new
, hf_count
);
595 if (limit
== LF_ONLY
) {
597 display_max
= lf_max
;
598 } else if (limit
== HF_ONLY
) {
600 display_max
= hf_max
;
601 } else { /* Pick one at random */
602 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
604 display_max
= hf_max
;
607 display_max
= lf_max
;
610 for (i
=0; i
<LIGHT_LEN
; i
++) {
611 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
612 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
613 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
614 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
615 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
623 void UsbPacketReceived(uint8_t *packet
, int len
)
625 UsbCommand
*c
= (UsbCommand
*)packet
;
627 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
631 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
632 AcquireRawAdcSamples125k(c
->arg
[0]);
633 cmd_send(CMD_ACK
,0,0,0,0,0);
635 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
636 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
638 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
639 SnoopLFRawAdcSamples(c
->arg
[0], c
->arg
[1]);
640 cmd_send(CMD_ACK
,0,0,0,0,0);
642 case CMD_HID_DEMOD_FSK
:
643 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
645 case CMD_HID_SIM_TAG
:
646 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
648 case CMD_HID_CLONE_TAG
:
649 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
651 case CMD_IO_DEMOD_FSK
:
652 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
654 case CMD_IO_CLONE_TAG
:
655 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
657 case CMD_EM410X_DEMOD
:
658 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
660 case CMD_EM410X_WRITE_TAG
:
661 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
663 case CMD_READ_TI_TYPE
:
666 case CMD_WRITE_TI_TYPE
:
667 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
669 case CMD_SIMULATE_TAG_125K
:
671 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
674 case CMD_LF_SIMULATE_BIDIR
:
675 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
677 case CMD_INDALA_CLONE_TAG
:
678 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
680 case CMD_INDALA_CLONE_TAG_L
:
681 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
683 case CMD_T55XX_READ_BLOCK
:
684 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
686 case CMD_T55XX_WRITE_BLOCK
:
687 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
689 case CMD_T55XX_READ_TRACE
:
692 case CMD_PCF7931_READ
:
694 cmd_send(CMD_ACK
,0,0,0,0,0);
696 case CMD_EM4X_READ_WORD
:
697 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
699 case CMD_EM4X_WRITE_WORD
:
700 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
705 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
706 SnoopHitag(c
->arg
[0]);
708 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
709 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
711 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
712 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
717 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
718 AcquireRawAdcSamplesIso15693();
720 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
721 RecordRawAdcSamplesIso15693();
724 case CMD_ISO_15693_COMMAND
:
725 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
728 case CMD_ISO_15693_FIND_AFI
:
729 BruteforceIso15693Afi(c
->arg
[0]);
732 case CMD_ISO_15693_DEBUG
:
733 SetDebugIso15693(c
->arg
[0]);
736 case CMD_READER_ISO_15693
:
737 ReaderIso15693(c
->arg
[0]);
739 case CMD_SIMTAG_ISO_15693
:
740 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
745 case CMD_SIMULATE_TAG_LEGIC_RF
:
746 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
749 case CMD_WRITER_LEGIC_RF
:
750 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
753 case CMD_READER_LEGIC_RF
:
754 LegicRfReader(c
->arg
[0], c
->arg
[1]);
758 #ifdef WITH_ISO14443b
759 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
760 AcquireRawAdcSamplesIso14443(c
->arg
[0]);
762 case CMD_READ_SRI512_TAG
:
763 ReadSTMemoryIso14443(0x0F);
765 case CMD_READ_SRIX4K_TAG
:
766 ReadSTMemoryIso14443(0x7F);
768 case CMD_SNOOP_ISO_14443
:
771 case CMD_SIMULATE_TAG_ISO_14443
:
772 SimulateIso14443Tag();
774 case CMD_ISO_14443B_COMMAND
:
775 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
779 #ifdef WITH_ISO14443a
780 case CMD_SNOOP_ISO_14443a
:
781 SnoopIso14443a(c
->arg
[0]);
783 case CMD_READER_ISO_14443a
:
786 case CMD_SIMULATE_TAG_ISO_14443a
:
787 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
790 case CMD_EPA_PACE_COLLECT_NONCE
:
791 EPA_PACE_Collect_Nonce(c
);
794 case CMD_READER_MIFARE
:
795 ReaderMifare(c
->arg
[0]);
797 case CMD_MIFARE_READBL
:
798 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
800 case CMD_MIFAREU_READBL
:
801 MifareUReadBlock(c
->arg
[0],c
->d
.asBytes
);
803 case CMD_MIFAREU_READCARD
:
804 MifareUReadCard(c
->arg
[0],c
->d
.asBytes
);
806 case CMD_MIFARE_READSC
:
807 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
809 case CMD_MIFARE_WRITEBL
:
810 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
812 case CMD_MIFAREU_WRITEBL_COMPAT
:
813 MifareUWriteBlock(c
->arg
[0], c
->d
.asBytes
);
815 case CMD_MIFAREU_WRITEBL
:
816 MifareUWriteBlock_Special(c
->arg
[0], c
->d
.asBytes
);
818 case CMD_MIFARE_NESTED
:
819 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
821 case CMD_MIFARE_CHKKEYS
:
822 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
824 case CMD_SIMULATE_MIFARE_CARD
:
825 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
829 case CMD_MIFARE_SET_DBGMODE
:
830 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
832 case CMD_MIFARE_EML_MEMCLR
:
833 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
835 case CMD_MIFARE_EML_MEMSET
:
836 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
838 case CMD_MIFARE_EML_MEMGET
:
839 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
841 case CMD_MIFARE_EML_CARDLOAD
:
842 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
845 // Work with "magic Chinese" card
846 case CMD_MIFARE_CSETBLOCK
:
847 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
849 case CMD_MIFARE_CGETBLOCK
:
850 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
852 case CMD_MIFARE_CIDENT
:
857 case CMD_MIFARE_SNIFFER
:
858 SniffMifare(c
->arg
[0]);
863 // Makes use of ISO14443a FPGA Firmware
864 case CMD_SNOOP_ICLASS
:
867 case CMD_SIMULATE_TAG_ICLASS
:
868 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
870 case CMD_READER_ICLASS
:
871 ReaderIClass(c
->arg
[0]);
873 case CMD_READER_ICLASS_REPLAY
:
874 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
878 case CMD_SIMULATE_TAG_HF_LISTEN
:
879 SimulateTagHfListen();
886 case CMD_MEASURE_ANTENNA_TUNING
:
887 MeasureAntennaTuning();
890 case CMD_MEASURE_ANTENNA_TUNING_HF
:
891 MeasureAntennaTuningHf();
894 case CMD_LISTEN_READER_FIELD
:
895 ListenReaderField(c
->arg
[0]);
898 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
899 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
901 LED_D_OFF(); // LED D indicates field ON or OFF
904 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
907 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
908 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
909 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,0,((byte_t
*)BigBuf
)+c
->arg
[0]+i
,len
);
911 // Trigger a finish downloading signal with an ACK frame
912 cmd_send(CMD_ACK
,0,0,0,0,0);
916 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
917 uint8_t *b
= (uint8_t *)BigBuf
;
918 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
919 cmd_send(CMD_ACK
,0,0,0,0,0);
926 case CMD_SET_LF_DIVISOR
:
927 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
928 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
931 case CMD_SET_ADC_MUX
:
933 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
934 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
935 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
936 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
952 case CMD_SETUP_WRITE
:
953 case CMD_FINISH_WRITE
:
954 case CMD_HARDWARE_RESET
:
958 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
960 // We're going to reset, and the bootrom will take control.
964 case CMD_START_FLASH
:
965 if(common_area
.flags
.bootrom_present
) {
966 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
969 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
973 case CMD_DEVICE_INFO
: {
974 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
975 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
976 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
980 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
985 void __attribute__((noreturn
)) AppMain(void)
989 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
990 /* Initialize common area */
991 memset(&common_area
, 0, sizeof(common_area
));
992 common_area
.magic
= COMMON_AREA_MAGIC
;
993 common_area
.version
= 1;
995 common_area
.flags
.osimage_present
= 1;
1005 // The FPGA gets its clock from us from PCK0 output, so set that up.
1006 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1007 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1008 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1009 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1010 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1011 AT91C_PMC_PRES_CLK_4
;
1012 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1015 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1017 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1019 // Load the FPGA image, which we have stored in our flash.
1020 // (the HF version by default)
1021 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1029 byte_t rx
[sizeof(UsbCommand
)];
1034 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1036 UsbPacketReceived(rx
,rx_len
);
1042 if (BUTTON_HELD(1000) > 0)