]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/lfops.c
d5b64593868a89e9be0c84f0b01899a13452b872
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include "proxmark3.h"
12 #include "apps.h"
13 #include "util.h"
14 #include "hitag2.h"
15 #include "crc16.h"
16 #include "string.h"
17 #include "lfdemod.h"
18
19
20 /**
21 * Does the sample acquisition. If threshold is specified, the actual sampling
22 * is not commenced until the threshold has been reached.
23 * @param trigger_threshold - the threshold
24 * @param silent - is true, now outputs are made. If false, dbprints the status
25 */
26 void DoAcquisition125k_internal(int trigger_threshold,bool silent)
27 {
28 uint8_t *dest = (uint8_t *)BigBuf;
29 int n = sizeof(BigBuf);
30 int i;
31
32 memset(dest, 0, n);
33 i = 0;
34 for(;;) {
35 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
36 AT91C_BASE_SSC->SSC_THR = 0x43;
37 LED_D_ON();
38 }
39 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
40 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
41 LED_D_OFF();
42 if (trigger_threshold != -1 && dest[i] < trigger_threshold)
43 continue;
44 else
45 trigger_threshold = -1;
46 if (++i >= n) break;
47 }
48 }
49 if(!silent)
50 {
51 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
52 dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
53
54 }
55 }
56 /**
57 * Perform sample aquisition.
58 */
59 void DoAcquisition125k(int trigger_threshold)
60 {
61 DoAcquisition125k_internal(trigger_threshold, false);
62 }
63
64 /**
65 * Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
66 * if not already loaded, sets divisor and starts up the antenna.
67 * @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
68 * 0 or 95 ==> 125 KHz
69 *
70 **/
71 void LFSetupFPGAForADC(int divisor, bool lf_field)
72 {
73 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
74 if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
75 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
76 else if (divisor == 0)
77 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
78 else
79 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
80
81 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
82
83 // Connect the A/D to the peak-detected low-frequency path.
84 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
85 // Give it a bit of time for the resonant antenna to settle.
86 SpinDelay(50);
87 // Now set up the SSC to get the ADC samples that are now streaming at us.
88 FpgaSetupSsc();
89 }
90 /**
91 * Initializes the FPGA, and acquires the samples.
92 **/
93 void AcquireRawAdcSamples125k(int divisor)
94 {
95 LFSetupFPGAForADC(divisor, true);
96 // Now call the acquisition routine
97 DoAcquisition125k_internal(-1,false);
98 }
99 /**
100 * Initializes the FPGA for snoop-mode, and acquires the samples.
101 **/
102
103 void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
104 {
105 LFSetupFPGAForADC(divisor, false);
106 DoAcquisition125k(trigger_threshold);
107 }
108
109 void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
110 {
111
112 /* Make sure the tag is reset */
113 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
114 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
115 SpinDelay(2500);
116
117
118 int divisor_used = 95; // 125 KHz
119 // see if 'h' was specified
120
121 if (command[strlen((char *) command) - 1] == 'h')
122 divisor_used = 88; // 134.8 KHz
123
124
125 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
126 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
127 // Give it a bit of time for the resonant antenna to settle.
128 SpinDelay(50);
129
130 // And a little more time for the tag to fully power up
131 SpinDelay(2000);
132
133 // Now set up the SSC to get the ADC samples that are now streaming at us.
134 FpgaSetupSsc();
135
136 // now modulate the reader field
137 while(*command != '\0' && *command != ' ') {
138 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
139 LED_D_OFF();
140 SpinDelayUs(delay_off);
141 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
142
143 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
144 LED_D_ON();
145 if(*(command++) == '0')
146 SpinDelayUs(period_0);
147 else
148 SpinDelayUs(period_1);
149 }
150 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
151 LED_D_OFF();
152 SpinDelayUs(delay_off);
153 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
154
155 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
156
157 // now do the read
158 DoAcquisition125k(-1);
159 }
160
161 /* blank r/w tag data stream
162 ...0000000000000000 01111111
163 1010101010101010101010101010101010101010101010101010101010101010
164 0011010010100001
165 01111111
166 101010101010101[0]000...
167
168 [5555fe852c5555555555555555fe0000]
169 */
170 void ReadTItag(void)
171 {
172 // some hardcoded initial params
173 // when we read a TI tag we sample the zerocross line at 2Mhz
174 // TI tags modulate a 1 as 16 cycles of 123.2Khz
175 // TI tags modulate a 0 as 16 cycles of 134.2Khz
176 #define FSAMPLE 2000000
177 #define FREQLO 123200
178 #define FREQHI 134200
179
180 signed char *dest = (signed char *)BigBuf;
181 int n = sizeof(BigBuf);
182 // int *dest = GraphBuffer;
183 // int n = GraphTraceLen;
184
185 // 128 bit shift register [shift3:shift2:shift1:shift0]
186 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
187
188 int i, cycles=0, samples=0;
189 // how many sample points fit in 16 cycles of each frequency
190 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
191 // when to tell if we're close enough to one freq or another
192 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
193
194 // TI tags charge at 134.2Khz
195 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
196 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
197
198 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
199 // connects to SSP_DIN and the SSP_DOUT logic level controls
200 // whether we're modulating the antenna (high)
201 // or listening to the antenna (low)
202 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
203
204 // get TI tag data into the buffer
205 AcquireTiType();
206
207 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
208
209 for (i=0; i<n-1; i++) {
210 // count cycles by looking for lo to hi zero crossings
211 if ( (dest[i]<0) && (dest[i+1]>0) ) {
212 cycles++;
213 // after 16 cycles, measure the frequency
214 if (cycles>15) {
215 cycles=0;
216 samples=i-samples; // number of samples in these 16 cycles
217
218 // TI bits are coming to us lsb first so shift them
219 // right through our 128 bit right shift register
220 shift0 = (shift0>>1) | (shift1 << 31);
221 shift1 = (shift1>>1) | (shift2 << 31);
222 shift2 = (shift2>>1) | (shift3 << 31);
223 shift3 >>= 1;
224
225 // check if the cycles fall close to the number
226 // expected for either the low or high frequency
227 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
228 // low frequency represents a 1
229 shift3 |= (1<<31);
230 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
231 // high frequency represents a 0
232 } else {
233 // probably detected a gay waveform or noise
234 // use this as gaydar or discard shift register and start again
235 shift3 = shift2 = shift1 = shift0 = 0;
236 }
237 samples = i;
238
239 // for each bit we receive, test if we've detected a valid tag
240
241 // if we see 17 zeroes followed by 6 ones, we might have a tag
242 // remember the bits are backwards
243 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
244 // if start and end bytes match, we have a tag so break out of the loop
245 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
246 cycles = 0xF0B; //use this as a flag (ugly but whatever)
247 break;
248 }
249 }
250 }
251 }
252 }
253
254 // if flag is set we have a tag
255 if (cycles!=0xF0B) {
256 DbpString("Info: No valid tag detected.");
257 } else {
258 // put 64 bit data into shift1 and shift0
259 shift0 = (shift0>>24) | (shift1 << 8);
260 shift1 = (shift1>>24) | (shift2 << 8);
261
262 // align 16 bit crc into lower half of shift2
263 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
264
265 // if r/w tag, check ident match
266 if ( shift3&(1<<15) ) {
267 DbpString("Info: TI tag is rewriteable");
268 // only 15 bits compare, last bit of ident is not valid
269 if ( ((shift3>>16)^shift0)&0x7fff ) {
270 DbpString("Error: Ident mismatch!");
271 } else {
272 DbpString("Info: TI tag ident is valid");
273 }
274 } else {
275 DbpString("Info: TI tag is readonly");
276 }
277
278 // WARNING the order of the bytes in which we calc crc below needs checking
279 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
280 // bytes in reverse or something
281 // calculate CRC
282 uint32_t crc=0;
283
284 crc = update_crc16(crc, (shift0)&0xff);
285 crc = update_crc16(crc, (shift0>>8)&0xff);
286 crc = update_crc16(crc, (shift0>>16)&0xff);
287 crc = update_crc16(crc, (shift0>>24)&0xff);
288 crc = update_crc16(crc, (shift1)&0xff);
289 crc = update_crc16(crc, (shift1>>8)&0xff);
290 crc = update_crc16(crc, (shift1>>16)&0xff);
291 crc = update_crc16(crc, (shift1>>24)&0xff);
292
293 Dbprintf("Info: Tag data: %x%08x, crc=%x",
294 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
295 if (crc != (shift2&0xffff)) {
296 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
297 } else {
298 DbpString("Info: CRC is good");
299 }
300 }
301 }
302
303 void WriteTIbyte(uint8_t b)
304 {
305 int i = 0;
306
307 // modulate 8 bits out to the antenna
308 for (i=0; i<8; i++)
309 {
310 if (b&(1<<i)) {
311 // stop modulating antenna
312 LOW(GPIO_SSC_DOUT);
313 SpinDelayUs(1000);
314 // modulate antenna
315 HIGH(GPIO_SSC_DOUT);
316 SpinDelayUs(1000);
317 } else {
318 // stop modulating antenna
319 LOW(GPIO_SSC_DOUT);
320 SpinDelayUs(300);
321 // modulate antenna
322 HIGH(GPIO_SSC_DOUT);
323 SpinDelayUs(1700);
324 }
325 }
326 }
327
328 void AcquireTiType(void)
329 {
330 int i, j, n;
331 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
332 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
333 #define TIBUFLEN 1250
334
335 // clear buffer
336 memset(BigBuf,0,sizeof(BigBuf));
337
338 // Set up the synchronous serial port
339 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
340 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
341
342 // steal this pin from the SSP and use it to control the modulation
343 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
344 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
345
346 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
347 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
348
349 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
350 // 48/2 = 24 MHz clock must be divided by 12
351 AT91C_BASE_SSC->SSC_CMR = 12;
352
353 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
354 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
355 AT91C_BASE_SSC->SSC_TCMR = 0;
356 AT91C_BASE_SSC->SSC_TFMR = 0;
357
358 LED_D_ON();
359
360 // modulate antenna
361 HIGH(GPIO_SSC_DOUT);
362
363 // Charge TI tag for 50ms.
364 SpinDelay(50);
365
366 // stop modulating antenna and listen
367 LOW(GPIO_SSC_DOUT);
368
369 LED_D_OFF();
370
371 i = 0;
372 for(;;) {
373 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
374 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
375 i++; if(i >= TIBUFLEN) break;
376 }
377 WDT_HIT();
378 }
379
380 // return stolen pin to SSP
381 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
382 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
383
384 char *dest = (char *)BigBuf;
385 n = TIBUFLEN*32;
386 // unpack buffer
387 for (i=TIBUFLEN-1; i>=0; i--) {
388 for (j=0; j<32; j++) {
389 if(BigBuf[i] & (1 << j)) {
390 dest[--n] = 1;
391 } else {
392 dest[--n] = -1;
393 }
394 }
395 }
396 }
397
398 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
399 // if crc provided, it will be written with the data verbatim (even if bogus)
400 // if not provided a valid crc will be computed from the data and written.
401 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
402 {
403 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
404 if(crc == 0) {
405 crc = update_crc16(crc, (idlo)&0xff);
406 crc = update_crc16(crc, (idlo>>8)&0xff);
407 crc = update_crc16(crc, (idlo>>16)&0xff);
408 crc = update_crc16(crc, (idlo>>24)&0xff);
409 crc = update_crc16(crc, (idhi)&0xff);
410 crc = update_crc16(crc, (idhi>>8)&0xff);
411 crc = update_crc16(crc, (idhi>>16)&0xff);
412 crc = update_crc16(crc, (idhi>>24)&0xff);
413 }
414 Dbprintf("Writing to tag: %x%08x, crc=%x",
415 (unsigned int) idhi, (unsigned int) idlo, crc);
416
417 // TI tags charge at 134.2Khz
418 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
419 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
420 // connects to SSP_DIN and the SSP_DOUT logic level controls
421 // whether we're modulating the antenna (high)
422 // or listening to the antenna (low)
423 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
424 LED_A_ON();
425
426 // steal this pin from the SSP and use it to control the modulation
427 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
428 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
429
430 // writing algorithm:
431 // a high bit consists of a field off for 1ms and field on for 1ms
432 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
433 // initiate a charge time of 50ms (field on) then immediately start writing bits
434 // start by writing 0xBB (keyword) and 0xEB (password)
435 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
436 // finally end with 0x0300 (write frame)
437 // all data is sent lsb firts
438 // finish with 15ms programming time
439
440 // modulate antenna
441 HIGH(GPIO_SSC_DOUT);
442 SpinDelay(50); // charge time
443
444 WriteTIbyte(0xbb); // keyword
445 WriteTIbyte(0xeb); // password
446 WriteTIbyte( (idlo )&0xff );
447 WriteTIbyte( (idlo>>8 )&0xff );
448 WriteTIbyte( (idlo>>16)&0xff );
449 WriteTIbyte( (idlo>>24)&0xff );
450 WriteTIbyte( (idhi )&0xff );
451 WriteTIbyte( (idhi>>8 )&0xff );
452 WriteTIbyte( (idhi>>16)&0xff );
453 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
454 WriteTIbyte( (crc )&0xff ); // crc lo
455 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
456 WriteTIbyte(0x00); // write frame lo
457 WriteTIbyte(0x03); // write frame hi
458 HIGH(GPIO_SSC_DOUT);
459 SpinDelay(50); // programming time
460
461 LED_A_OFF();
462
463 // get TI tag data into the buffer
464 AcquireTiType();
465
466 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
467 DbpString("Now use tiread to check");
468 }
469
470 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
471 {
472 int i;
473 uint8_t *tab = (uint8_t *)BigBuf;
474
475 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
476 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
477
478 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
479
480 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
481 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
482
483 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
484 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
485
486 i = 0;
487 for(;;) {
488 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
489 if(BUTTON_PRESS()) {
490 DbpString("Stopped");
491 return;
492 }
493 WDT_HIT();
494 }
495
496 if (ledcontrol)
497 LED_D_ON();
498
499 if(tab[i])
500 OPEN_COIL();
501 else
502 SHORT_COIL();
503
504 if (ledcontrol)
505 LED_D_OFF();
506
507 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
508 if(BUTTON_PRESS()) {
509 DbpString("Stopped");
510 return;
511 }
512 WDT_HIT();
513 }
514
515 i++;
516 if(i == period) {
517 i = 0;
518 if (gap) {
519 SHORT_COIL();
520 SpinDelayUs(gap);
521 }
522 }
523 }
524 }
525
526 #define DEBUG_FRAME_CONTENTS 1
527 void SimulateTagLowFrequencyBidir(int divisor, int t0)
528 {
529 }
530
531 // compose fc/8 fc/10 waveform
532 static void fc(int c, int *n) {
533 uint8_t *dest = (uint8_t *)BigBuf;
534 int idx;
535
536 // for when we want an fc8 pattern every 4 logical bits
537 if(c==0) {
538 dest[((*n)++)]=1;
539 dest[((*n)++)]=1;
540 dest[((*n)++)]=0;
541 dest[((*n)++)]=0;
542 dest[((*n)++)]=0;
543 dest[((*n)++)]=0;
544 dest[((*n)++)]=0;
545 dest[((*n)++)]=0;
546 }
547 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
548 if(c==8) {
549 for (idx=0; idx<6; idx++) {
550 dest[((*n)++)]=1;
551 dest[((*n)++)]=1;
552 dest[((*n)++)]=0;
553 dest[((*n)++)]=0;
554 dest[((*n)++)]=0;
555 dest[((*n)++)]=0;
556 dest[((*n)++)]=0;
557 dest[((*n)++)]=0;
558 }
559 }
560
561 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
562 if(c==10) {
563 for (idx=0; idx<5; idx++) {
564 dest[((*n)++)]=1;
565 dest[((*n)++)]=1;
566 dest[((*n)++)]=1;
567 dest[((*n)++)]=0;
568 dest[((*n)++)]=0;
569 dest[((*n)++)]=0;
570 dest[((*n)++)]=0;
571 dest[((*n)++)]=0;
572 dest[((*n)++)]=0;
573 dest[((*n)++)]=0;
574 }
575 }
576 }
577
578 // prepare a waveform pattern in the buffer based on the ID given then
579 // simulate a HID tag until the button is pressed
580 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
581 {
582 int n=0, i=0;
583 /*
584 HID tag bitstream format
585 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
586 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
587 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
588 A fc8 is inserted before every 4 bits
589 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
590 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
591 */
592
593 if (hi>0xFFF) {
594 DbpString("Tags can only have 44 bits.");
595 return;
596 }
597 fc(0,&n);
598 // special start of frame marker containing invalid bit sequences
599 fc(8, &n); fc(8, &n); // invalid
600 fc(8, &n); fc(10, &n); // logical 0
601 fc(10, &n); fc(10, &n); // invalid
602 fc(8, &n); fc(10, &n); // logical 0
603
604 WDT_HIT();
605 // manchester encode bits 43 to 32
606 for (i=11; i>=0; i--) {
607 if ((i%4)==3) fc(0,&n);
608 if ((hi>>i)&1) {
609 fc(10, &n); fc(8, &n); // low-high transition
610 } else {
611 fc(8, &n); fc(10, &n); // high-low transition
612 }
613 }
614
615 WDT_HIT();
616 // manchester encode bits 31 to 0
617 for (i=31; i>=0; i--) {
618 if ((i%4)==3) fc(0,&n);
619 if ((lo>>i)&1) {
620 fc(10, &n); fc(8, &n); // low-high transition
621 } else {
622 fc(8, &n); fc(10, &n); // high-low transition
623 }
624 }
625
626 if (ledcontrol)
627 LED_A_ON();
628 SimulateTagLowFrequency(n, 0, ledcontrol);
629
630 if (ledcontrol)
631 LED_A_OFF();
632 }
633
634 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
635 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
636 {
637 uint8_t *dest = (uint8_t *)BigBuf;
638
639 size_t size=0; //, found=0;
640 uint32_t hi2=0, hi=0, lo=0;
641
642 // Configure to go in 125Khz listen mode
643 LFSetupFPGAForADC(95, true);
644
645 while(!BUTTON_PRESS()) {
646
647 WDT_HIT();
648 if (ledcontrol) LED_A_ON();
649
650 DoAcquisition125k_internal(-1,true);
651 size = sizeof(BigBuf);
652 if (size < 2000) continue;
653 // FSK demodulator
654
655 int bitLen = HIDdemodFSK(dest,size,&hi2,&hi,&lo);
656
657 WDT_HIT();
658
659 if (bitLen>0 && lo>0){
660 // final loop, go over previously decoded manchester data and decode into usable tag ID
661 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
662 if (hi2 != 0){ //extra large HID tags
663 Dbprintf("TAG ID: %x%08x%08x (%d)",
664 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
665 }else { //standard HID tags <38 bits
666 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
667 uint8_t bitlen = 0;
668 uint32_t fc = 0;
669 uint32_t cardnum = 0;
670 if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used
671 uint32_t lo2=0;
672 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
673 uint8_t idx3 = 1;
674 while(lo2>1){ //find last bit set to 1 (format len bit)
675 lo2=lo2>>1;
676 idx3++;
677 }
678 bitlen =idx3+19;
679 fc =0;
680 cardnum=0;
681 if(bitlen==26){
682 cardnum = (lo>>1)&0xFFFF;
683 fc = (lo>>17)&0xFF;
684 }
685 if(bitlen==37){
686 cardnum = (lo>>1)&0x7FFFF;
687 fc = ((hi&0xF)<<12)|(lo>>20);
688 }
689 if(bitlen==34){
690 cardnum = (lo>>1)&0xFFFF;
691 fc= ((hi&1)<<15)|(lo>>17);
692 }
693 if(bitlen==35){
694 cardnum = (lo>>1)&0xFFFFF;
695 fc = ((hi&1)<<11)|(lo>>21);
696 }
697 }
698 else { //if bit 38 is not set then 37 bit format is used
699 bitlen= 37;
700 fc =0;
701 cardnum=0;
702 if(bitlen==37){
703 cardnum = (lo>>1)&0x7FFFF;
704 fc = ((hi&0xF)<<12)|(lo>>20);
705 }
706 }
707 //Dbprintf("TAG ID: %x%08x (%d)",
708 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
709 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
710 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
711 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
712 }
713 if (findone){
714 if (ledcontrol) LED_A_OFF();
715 return;
716 }
717 // reset
718 hi2 = hi = lo = 0;
719 }
720 WDT_HIT();
721 //SpinDelay(50);
722 }
723 DbpString("Stopped");
724 if (ledcontrol) LED_A_OFF();
725 }
726
727 void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
728 {
729 uint8_t *dest = (uint8_t *)BigBuf;
730
731 size_t size=0; //, found=0;
732 uint32_t bitLen=0;
733 int clk=0, invert=0, errCnt=0;
734 uint64_t lo=0;
735 // Configure to go in 125Khz listen mode
736 LFSetupFPGAForADC(95, true);
737
738 while(!BUTTON_PRESS()) {
739
740 WDT_HIT();
741 if (ledcontrol) LED_A_ON();
742
743 DoAcquisition125k_internal(-1,true);
744 size = sizeof(BigBuf);
745 if (size < 2000) continue;
746 // FSK demodulator
747 //int askmandemod(uint8_t *BinStream,uint32_t *BitLen,int *clk, int *invert);
748 bitLen=size;
749 //Dbprintf("DEBUG: Buffer got");
750 errCnt = askmandemod(dest,&bitLen,&clk,&invert); //HIDdemodFSK(dest,size,&hi2,&hi,&lo);
751 //Dbprintf("DEBUG: ASK Got");
752 WDT_HIT();
753
754 if (errCnt>=0){
755 lo = Em410xDecode(dest,bitLen);
756 //Dbprintf("DEBUG: EM GOT");
757 //printEM410x(lo);
758 if (lo>0){
759 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",(uint32_t)(lo>>32),(uint32_t)lo,(uint32_t)(lo&0xFFFF),(uint32_t)((lo>>16LL) & 0xFF),(uint32_t)(lo & 0xFFFFFF));
760 }
761 if (findone){
762 if (ledcontrol) LED_A_OFF();
763 return;
764 }
765 } else{
766 //Dbprintf("DEBUG: No Tag");
767 }
768 WDT_HIT();
769 lo = 0;
770 clk=0;
771 invert=0;
772 errCnt=0;
773 size=0;
774 //SpinDelay(50);
775 }
776 DbpString("Stopped");
777 if (ledcontrol) LED_A_OFF();
778 }
779
780 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
781 {
782 uint8_t *dest = (uint8_t *)BigBuf;
783 size_t size=0;
784 int idx=0;
785 uint32_t code=0, code2=0;
786 uint8_t version=0;
787 uint8_t facilitycode=0;
788 uint16_t number=0;
789 // Configure to go in 125Khz listen mode
790 LFSetupFPGAForADC(95, true);
791
792 while(!BUTTON_PRESS()) {
793 WDT_HIT();
794 if (ledcontrol) LED_A_ON();
795 DoAcquisition125k_internal(-1,true);
796 //fskdemod and get start index
797 WDT_HIT();
798 idx = IOdemodFSK(dest,sizeof(BigBuf));
799 if (idx>0){
800 //valid tag found
801
802 //Index map
803 //0 10 20 30 40 50 60
804 //| | | | | | |
805 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
806 //-----------------------------------------------------------------------------
807 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
808 //
809 //XSF(version)facility:codeone+codetwo
810 //Handle the data
811 if(findone){ //only print binary if we are doing one
812 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
813 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
814 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
815 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
816 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
817 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
818 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
819 }
820 code = bytebits_to_byte(dest+idx,32);
821 code2 = bytebits_to_byte(dest+idx+32,32);
822 version = bytebits_to_byte(dest+idx+27,8); //14,4
823 facilitycode = bytebits_to_byte(dest+idx+18,8) ;
824 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
825
826 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
827 // if we're only looking for one tag
828 if (findone){
829 if (ledcontrol) LED_A_OFF();
830 //LED_A_OFF();
831 return;
832 }
833 code=code2=0;
834 version=facilitycode=0;
835 number=0;
836 idx=0;
837 }
838 WDT_HIT();
839 }
840 DbpString("Stopped");
841 if (ledcontrol) LED_A_OFF();
842 }
843
844 /*------------------------------
845 * T5555/T5557/T5567 routines
846 *------------------------------
847 */
848
849 /* T55x7 configuration register definitions */
850 #define T55x7_POR_DELAY 0x00000001
851 #define T55x7_ST_TERMINATOR 0x00000008
852 #define T55x7_PWD 0x00000010
853 #define T55x7_MAXBLOCK_SHIFT 5
854 #define T55x7_AOR 0x00000200
855 #define T55x7_PSKCF_RF_2 0
856 #define T55x7_PSKCF_RF_4 0x00000400
857 #define T55x7_PSKCF_RF_8 0x00000800
858 #define T55x7_MODULATION_DIRECT 0
859 #define T55x7_MODULATION_PSK1 0x00001000
860 #define T55x7_MODULATION_PSK2 0x00002000
861 #define T55x7_MODULATION_PSK3 0x00003000
862 #define T55x7_MODULATION_FSK1 0x00004000
863 #define T55x7_MODULATION_FSK2 0x00005000
864 #define T55x7_MODULATION_FSK1a 0x00006000
865 #define T55x7_MODULATION_FSK2a 0x00007000
866 #define T55x7_MODULATION_MANCHESTER 0x00008000
867 #define T55x7_MODULATION_BIPHASE 0x00010000
868 #define T55x7_BITRATE_RF_8 0
869 #define T55x7_BITRATE_RF_16 0x00040000
870 #define T55x7_BITRATE_RF_32 0x00080000
871 #define T55x7_BITRATE_RF_40 0x000C0000
872 #define T55x7_BITRATE_RF_50 0x00100000
873 #define T55x7_BITRATE_RF_64 0x00140000
874 #define T55x7_BITRATE_RF_100 0x00180000
875 #define T55x7_BITRATE_RF_128 0x001C0000
876
877 /* T5555 (Q5) configuration register definitions */
878 #define T5555_ST_TERMINATOR 0x00000001
879 #define T5555_MAXBLOCK_SHIFT 0x00000001
880 #define T5555_MODULATION_MANCHESTER 0
881 #define T5555_MODULATION_PSK1 0x00000010
882 #define T5555_MODULATION_PSK2 0x00000020
883 #define T5555_MODULATION_PSK3 0x00000030
884 #define T5555_MODULATION_FSK1 0x00000040
885 #define T5555_MODULATION_FSK2 0x00000050
886 #define T5555_MODULATION_BIPHASE 0x00000060
887 #define T5555_MODULATION_DIRECT 0x00000070
888 #define T5555_INVERT_OUTPUT 0x00000080
889 #define T5555_PSK_RF_2 0
890 #define T5555_PSK_RF_4 0x00000100
891 #define T5555_PSK_RF_8 0x00000200
892 #define T5555_USE_PWD 0x00000400
893 #define T5555_USE_AOR 0x00000800
894 #define T5555_BITRATE_SHIFT 12
895 #define T5555_FAST_WRITE 0x00004000
896 #define T5555_PAGE_SELECT 0x00008000
897
898 /*
899 * Relevant times in microsecond
900 * To compensate antenna falling times shorten the write times
901 * and enlarge the gap ones.
902 */
903 #define START_GAP 250
904 #define WRITE_GAP 160
905 #define WRITE_0 144 // 192
906 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
907
908 // Write one bit to card
909 void T55xxWriteBit(int bit)
910 {
911 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
912 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
913 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
914 if (bit == 0)
915 SpinDelayUs(WRITE_0);
916 else
917 SpinDelayUs(WRITE_1);
918 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
919 SpinDelayUs(WRITE_GAP);
920 }
921
922 // Write one card block in page 0, no lock
923 void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
924 {
925 //unsigned int i; //enio adjustment 12/10/14
926 uint32_t i;
927
928 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
929 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
930 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
931
932 // Give it a bit of time for the resonant antenna to settle.
933 // And for the tag to fully power up
934 SpinDelay(150);
935
936 // Now start writting
937 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
938 SpinDelayUs(START_GAP);
939
940 // Opcode
941 T55xxWriteBit(1);
942 T55xxWriteBit(0); //Page 0
943 if (PwdMode == 1){
944 // Pwd
945 for (i = 0x80000000; i != 0; i >>= 1)
946 T55xxWriteBit(Pwd & i);
947 }
948 // Lock bit
949 T55xxWriteBit(0);
950
951 // Data
952 for (i = 0x80000000; i != 0; i >>= 1)
953 T55xxWriteBit(Data & i);
954
955 // Block
956 for (i = 0x04; i != 0; i >>= 1)
957 T55xxWriteBit(Block & i);
958
959 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
960 // so wait a little more)
961 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
962 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
963 SpinDelay(20);
964 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
965 }
966
967 // Read one card block in page 0
968 void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
969 {
970 uint8_t *dest = (uint8_t *)BigBuf;
971 //int m=0, i=0; //enio adjustment 12/10/14
972 uint32_t m=0, i=0;
973 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
974 m = sizeof(BigBuf);
975 // Clear destination buffer before sending the command
976 memset(dest, 128, m);
977 // Connect the A/D to the peak-detected low-frequency path.
978 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
979 // Now set up the SSC to get the ADC samples that are now streaming at us.
980 FpgaSetupSsc();
981
982 LED_D_ON();
983 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
984 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
985
986 // Give it a bit of time for the resonant antenna to settle.
987 // And for the tag to fully power up
988 SpinDelay(150);
989
990 // Now start writting
991 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
992 SpinDelayUs(START_GAP);
993
994 // Opcode
995 T55xxWriteBit(1);
996 T55xxWriteBit(0); //Page 0
997 if (PwdMode == 1){
998 // Pwd
999 for (i = 0x80000000; i != 0; i >>= 1)
1000 T55xxWriteBit(Pwd & i);
1001 }
1002 // Lock bit
1003 T55xxWriteBit(0);
1004 // Block
1005 for (i = 0x04; i != 0; i >>= 1)
1006 T55xxWriteBit(Block & i);
1007
1008 // Turn field on to read the response
1009 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1010 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1011
1012 // Now do the acquisition
1013 i = 0;
1014 for(;;) {
1015 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1016 AT91C_BASE_SSC->SSC_THR = 0x43;
1017 }
1018 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1019 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1020 // we don't care about actual value, only if it's more or less than a
1021 // threshold essentially we capture zero crossings for later analysis
1022 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1023 i++;
1024 if (i >= m) break;
1025 }
1026 }
1027
1028 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1029 LED_D_OFF();
1030 DbpString("DONE!");
1031 }
1032
1033 // Read card traceability data (page 1)
1034 void T55xxReadTrace(void){
1035 uint8_t *dest = (uint8_t *)BigBuf;
1036 int m=0, i=0;
1037
1038 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1039 m = sizeof(BigBuf);
1040 // Clear destination buffer before sending the command
1041 memset(dest, 128, m);
1042 // Connect the A/D to the peak-detected low-frequency path.
1043 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1044 // Now set up the SSC to get the ADC samples that are now streaming at us.
1045 FpgaSetupSsc();
1046
1047 LED_D_ON();
1048 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1049 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1050
1051 // Give it a bit of time for the resonant antenna to settle.
1052 // And for the tag to fully power up
1053 SpinDelay(150);
1054
1055 // Now start writting
1056 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1057 SpinDelayUs(START_GAP);
1058
1059 // Opcode
1060 T55xxWriteBit(1);
1061 T55xxWriteBit(1); //Page 1
1062
1063 // Turn field on to read the response
1064 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1065 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1066
1067 // Now do the acquisition
1068 i = 0;
1069 for(;;) {
1070 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1071 AT91C_BASE_SSC->SSC_THR = 0x43;
1072 }
1073 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1074 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1075 i++;
1076 if (i >= m) break;
1077 }
1078 }
1079
1080 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1081 LED_D_OFF();
1082 DbpString("DONE!");
1083 }
1084
1085 /*-------------- Cloning routines -----------*/
1086 // Copy HID id to card and setup block 0 config
1087 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
1088 {
1089 int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
1090 int last_block = 0;
1091
1092 if (longFMT){
1093 // Ensure no more than 84 bits supplied
1094 if (hi2>0xFFFFF) {
1095 DbpString("Tags can only have 84 bits.");
1096 return;
1097 }
1098 // Build the 6 data blocks for supplied 84bit ID
1099 last_block = 6;
1100 data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1101 for (int i=0;i<4;i++) {
1102 if (hi2 & (1<<(19-i)))
1103 data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
1104 else
1105 data1 |= (1<<((3-i)*2)); // 0 -> 01
1106 }
1107
1108 data2 = 0;
1109 for (int i=0;i<16;i++) {
1110 if (hi2 & (1<<(15-i)))
1111 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1112 else
1113 data2 |= (1<<((15-i)*2)); // 0 -> 01
1114 }
1115
1116 data3 = 0;
1117 for (int i=0;i<16;i++) {
1118 if (hi & (1<<(31-i)))
1119 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1120 else
1121 data3 |= (1<<((15-i)*2)); // 0 -> 01
1122 }
1123
1124 data4 = 0;
1125 for (int i=0;i<16;i++) {
1126 if (hi & (1<<(15-i)))
1127 data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1128 else
1129 data4 |= (1<<((15-i)*2)); // 0 -> 01
1130 }
1131
1132 data5 = 0;
1133 for (int i=0;i<16;i++) {
1134 if (lo & (1<<(31-i)))
1135 data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1136 else
1137 data5 |= (1<<((15-i)*2)); // 0 -> 01
1138 }
1139
1140 data6 = 0;
1141 for (int i=0;i<16;i++) {
1142 if (lo & (1<<(15-i)))
1143 data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1144 else
1145 data6 |= (1<<((15-i)*2)); // 0 -> 01
1146 }
1147 }
1148 else {
1149 // Ensure no more than 44 bits supplied
1150 if (hi>0xFFF) {
1151 DbpString("Tags can only have 44 bits.");
1152 return;
1153 }
1154
1155 // Build the 3 data blocks for supplied 44bit ID
1156 last_block = 3;
1157
1158 data1 = 0x1D000000; // load preamble
1159
1160 for (int i=0;i<12;i++) {
1161 if (hi & (1<<(11-i)))
1162 data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
1163 else
1164 data1 |= (1<<((11-i)*2)); // 0 -> 01
1165 }
1166
1167 data2 = 0;
1168 for (int i=0;i<16;i++) {
1169 if (lo & (1<<(31-i)))
1170 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1171 else
1172 data2 |= (1<<((15-i)*2)); // 0 -> 01
1173 }
1174
1175 data3 = 0;
1176 for (int i=0;i<16;i++) {
1177 if (lo & (1<<(15-i)))
1178 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1179 else
1180 data3 |= (1<<((15-i)*2)); // 0 -> 01
1181 }
1182 }
1183
1184 LED_D_ON();
1185 // Program the data blocks for supplied ID
1186 // and the block 0 for HID format
1187 T55xxWriteBlock(data1,1,0,0);
1188 T55xxWriteBlock(data2,2,0,0);
1189 T55xxWriteBlock(data3,3,0,0);
1190
1191 if (longFMT) { // if long format there are 6 blocks
1192 T55xxWriteBlock(data4,4,0,0);
1193 T55xxWriteBlock(data5,5,0,0);
1194 T55xxWriteBlock(data6,6,0,0);
1195 }
1196
1197 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1198 T55xxWriteBlock(T55x7_BITRATE_RF_50 |
1199 T55x7_MODULATION_FSK2a |
1200 last_block << T55x7_MAXBLOCK_SHIFT,
1201 0,0,0);
1202
1203 LED_D_OFF();
1204
1205 DbpString("DONE!");
1206 }
1207
1208 void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
1209 {
1210 int data1=0, data2=0; //up to six blocks for long format
1211
1212 data1 = hi; // load preamble
1213 data2 = lo;
1214
1215 LED_D_ON();
1216 // Program the data blocks for supplied ID
1217 // and the block 0 for HID format
1218 T55xxWriteBlock(data1,1,0,0);
1219 T55xxWriteBlock(data2,2,0,0);
1220
1221 //Config Block
1222 T55xxWriteBlock(0x00147040,0,0,0);
1223 LED_D_OFF();
1224
1225 DbpString("DONE!");
1226 }
1227
1228 // Define 9bit header for EM410x tags
1229 #define EM410X_HEADER 0x1FF
1230 #define EM410X_ID_LENGTH 40
1231
1232 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
1233 {
1234 int i, id_bit;
1235 uint64_t id = EM410X_HEADER;
1236 uint64_t rev_id = 0; // reversed ID
1237 int c_parity[4]; // column parity
1238 int r_parity = 0; // row parity
1239 uint32_t clock = 0;
1240
1241 // Reverse ID bits given as parameter (for simpler operations)
1242 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1243 if (i < 32) {
1244 rev_id = (rev_id << 1) | (id_lo & 1);
1245 id_lo >>= 1;
1246 } else {
1247 rev_id = (rev_id << 1) | (id_hi & 1);
1248 id_hi >>= 1;
1249 }
1250 }
1251
1252 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1253 id_bit = rev_id & 1;
1254
1255 if (i % 4 == 0) {
1256 // Don't write row parity bit at start of parsing
1257 if (i)
1258 id = (id << 1) | r_parity;
1259 // Start counting parity for new row
1260 r_parity = id_bit;
1261 } else {
1262 // Count row parity
1263 r_parity ^= id_bit;
1264 }
1265
1266 // First elements in column?
1267 if (i < 4)
1268 // Fill out first elements
1269 c_parity[i] = id_bit;
1270 else
1271 // Count column parity
1272 c_parity[i % 4] ^= id_bit;
1273
1274 // Insert ID bit
1275 id = (id << 1) | id_bit;
1276 rev_id >>= 1;
1277 }
1278
1279 // Insert parity bit of last row
1280 id = (id << 1) | r_parity;
1281
1282 // Fill out column parity at the end of tag
1283 for (i = 0; i < 4; ++i)
1284 id = (id << 1) | c_parity[i];
1285
1286 // Add stop bit
1287 id <<= 1;
1288
1289 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1290 LED_D_ON();
1291
1292 // Write EM410x ID
1293 T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
1294 T55xxWriteBlock((uint32_t)id, 2, 0, 0);
1295
1296 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1297 if (card) {
1298 // Clock rate is stored in bits 8-15 of the card value
1299 clock = (card & 0xFF00) >> 8;
1300 Dbprintf("Clock rate: %d", clock);
1301 switch (clock)
1302 {
1303 case 32:
1304 clock = T55x7_BITRATE_RF_32;
1305 break;
1306 case 16:
1307 clock = T55x7_BITRATE_RF_16;
1308 break;
1309 case 0:
1310 // A value of 0 is assumed to be 64 for backwards-compatibility
1311 // Fall through...
1312 case 64:
1313 clock = T55x7_BITRATE_RF_64;
1314 break;
1315 default:
1316 Dbprintf("Invalid clock rate: %d", clock);
1317 return;
1318 }
1319
1320 // Writing configuration for T55x7 tag
1321 T55xxWriteBlock(clock |
1322 T55x7_MODULATION_MANCHESTER |
1323 2 << T55x7_MAXBLOCK_SHIFT,
1324 0, 0, 0);
1325 }
1326 else
1327 // Writing configuration for T5555(Q5) tag
1328 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
1329 T5555_MODULATION_MANCHESTER |
1330 2 << T5555_MAXBLOCK_SHIFT,
1331 0, 0, 0);
1332
1333 LED_D_OFF();
1334 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1335 (uint32_t)(id >> 32), (uint32_t)id);
1336 }
1337
1338 // Clone Indala 64-bit tag by UID to T55x7
1339 void CopyIndala64toT55x7(int hi, int lo)
1340 {
1341
1342 //Program the 2 data blocks for supplied 64bit UID
1343 // and the block 0 for Indala64 format
1344 T55xxWriteBlock(hi,1,0,0);
1345 T55xxWriteBlock(lo,2,0,0);
1346 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1347 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1348 T55x7_MODULATION_PSK1 |
1349 2 << T55x7_MAXBLOCK_SHIFT,
1350 0, 0, 0);
1351 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1352 // T5567WriteBlock(0x603E1042,0);
1353
1354 DbpString("DONE!");
1355
1356 }
1357
1358 void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
1359 {
1360
1361 //Program the 7 data blocks for supplied 224bit UID
1362 // and the block 0 for Indala224 format
1363 T55xxWriteBlock(uid1,1,0,0);
1364 T55xxWriteBlock(uid2,2,0,0);
1365 T55xxWriteBlock(uid3,3,0,0);
1366 T55xxWriteBlock(uid4,4,0,0);
1367 T55xxWriteBlock(uid5,5,0,0);
1368 T55xxWriteBlock(uid6,6,0,0);
1369 T55xxWriteBlock(uid7,7,0,0);
1370 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1371 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1372 T55x7_MODULATION_PSK1 |
1373 7 << T55x7_MAXBLOCK_SHIFT,
1374 0,0,0);
1375 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1376 // T5567WriteBlock(0x603E10E2,0);
1377
1378 DbpString("DONE!");
1379
1380 }
1381
1382
1383 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1384 #define max(x,y) ( x<y ? y:x)
1385
1386 int DemodPCF7931(uint8_t **outBlocks) {
1387 uint8_t BitStream[256];
1388 uint8_t Blocks[8][16];
1389 uint8_t *GraphBuffer = (uint8_t *)BigBuf;
1390 int GraphTraceLen = sizeof(BigBuf);
1391 int i, j, lastval, bitidx, half_switch;
1392 int clock = 64;
1393 int tolerance = clock / 8;
1394 int pmc, block_done;
1395 int lc, warnings = 0;
1396 int num_blocks = 0;
1397 int lmin=128, lmax=128;
1398 uint8_t dir;
1399
1400 AcquireRawAdcSamples125k(0);
1401
1402 lmin = 64;
1403 lmax = 192;
1404
1405 i = 2;
1406
1407 /* Find first local max/min */
1408 if(GraphBuffer[1] > GraphBuffer[0]) {
1409 while(i < GraphTraceLen) {
1410 if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
1411 break;
1412 i++;
1413 }
1414 dir = 0;
1415 }
1416 else {
1417 while(i < GraphTraceLen) {
1418 if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
1419 break;
1420 i++;
1421 }
1422 dir = 1;
1423 }
1424
1425 lastval = i++;
1426 half_switch = 0;
1427 pmc = 0;
1428 block_done = 0;
1429
1430 for (bitidx = 0; i < GraphTraceLen; i++)
1431 {
1432 if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
1433 {
1434 lc = i - lastval;
1435 lastval = i;
1436
1437 // Switch depending on lc length:
1438 // Tolerance is 1/8 of clock rate (arbitrary)
1439 if (abs(lc-clock/4) < tolerance) {
1440 // 16T0
1441 if((i - pmc) == lc) { /* 16T0 was previous one */
1442 /* It's a PMC ! */
1443 i += (128+127+16+32+33+16)-1;
1444 lastval = i;
1445 pmc = 0;
1446 block_done = 1;
1447 }
1448 else {
1449 pmc = i;
1450 }
1451 } else if (abs(lc-clock/2) < tolerance) {
1452 // 32TO
1453 if((i - pmc) == lc) { /* 16T0 was previous one */
1454 /* It's a PMC ! */
1455 i += (128+127+16+32+33)-1;
1456 lastval = i;
1457 pmc = 0;
1458 block_done = 1;
1459 }
1460 else if(half_switch == 1) {
1461 BitStream[bitidx++] = 0;
1462 half_switch = 0;
1463 }
1464 else
1465 half_switch++;
1466 } else if (abs(lc-clock) < tolerance) {
1467 // 64TO
1468 BitStream[bitidx++] = 1;
1469 } else {
1470 // Error
1471 warnings++;
1472 if (warnings > 10)
1473 {
1474 Dbprintf("Error: too many detection errors, aborting.");
1475 return 0;
1476 }
1477 }
1478
1479 if(block_done == 1) {
1480 if(bitidx == 128) {
1481 for(j=0; j<16; j++) {
1482 Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
1483 64*BitStream[j*8+6]+
1484 32*BitStream[j*8+5]+
1485 16*BitStream[j*8+4]+
1486 8*BitStream[j*8+3]+
1487 4*BitStream[j*8+2]+
1488 2*BitStream[j*8+1]+
1489 BitStream[j*8];
1490 }
1491 num_blocks++;
1492 }
1493 bitidx = 0;
1494 block_done = 0;
1495 half_switch = 0;
1496 }
1497 if(i < GraphTraceLen)
1498 {
1499 if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
1500 else dir = 1;
1501 }
1502 }
1503 if(bitidx==255)
1504 bitidx=0;
1505 warnings = 0;
1506 if(num_blocks == 4) break;
1507 }
1508 memcpy(outBlocks, Blocks, 16*num_blocks);
1509 return num_blocks;
1510 }
1511
1512 int IsBlock0PCF7931(uint8_t *Block) {
1513 // Assume RFU means 0 :)
1514 if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1515 return 1;
1516 if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
1517 return 1;
1518 return 0;
1519 }
1520
1521 int IsBlock1PCF7931(uint8_t *Block) {
1522 // Assume RFU means 0 :)
1523 if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
1524 if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
1525 return 1;
1526
1527 return 0;
1528 }
1529
1530 #define ALLOC 16
1531
1532 void ReadPCF7931() {
1533 uint8_t Blocks[8][17];
1534 uint8_t tmpBlocks[4][16];
1535 int i, j, ind, ind2, n;
1536 int num_blocks = 0;
1537 int max_blocks = 8;
1538 int ident = 0;
1539 int error = 0;
1540 int tries = 0;
1541
1542 memset(Blocks, 0, 8*17*sizeof(uint8_t));
1543
1544 do {
1545 memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
1546 n = DemodPCF7931((uint8_t**)tmpBlocks);
1547 if(!n)
1548 error++;
1549 if(error==10 && num_blocks == 0) {
1550 Dbprintf("Error, no tag or bad tag");
1551 return;
1552 }
1553 else if (tries==20 || error==10) {
1554 Dbprintf("Error reading the tag");
1555 Dbprintf("Here is the partial content");
1556 goto end;
1557 }
1558
1559 for(i=0; i<n; i++)
1560 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1561 tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
1562 tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
1563 if(!ident) {
1564 for(i=0; i<n; i++) {
1565 if(IsBlock0PCF7931(tmpBlocks[i])) {
1566 // Found block 0 ?
1567 if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
1568 // Found block 1!
1569 // \o/
1570 ident = 1;
1571 memcpy(Blocks[0], tmpBlocks[i], 16);
1572 Blocks[0][ALLOC] = 1;
1573 memcpy(Blocks[1], tmpBlocks[i+1], 16);
1574 Blocks[1][ALLOC] = 1;
1575 max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
1576 // Debug print
1577 Dbprintf("(dbg) Max blocks: %d", max_blocks);
1578 num_blocks = 2;
1579 // Handle following blocks
1580 for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
1581 if(j==n) j=0;
1582 if(j==i) break;
1583 memcpy(Blocks[ind2], tmpBlocks[j], 16);
1584 Blocks[ind2][ALLOC] = 1;
1585 }
1586 break;
1587 }
1588 }
1589 }
1590 }
1591 else {
1592 for(i=0; i<n; i++) { // Look for identical block in known blocks
1593 if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1594 for(j=0; j<max_blocks; j++) {
1595 if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
1596 // Found an identical block
1597 for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
1598 if(ind2 < 0)
1599 ind2 = max_blocks;
1600 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1601 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1602 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1603 Blocks[ind2][ALLOC] = 1;
1604 num_blocks++;
1605 if(num_blocks == max_blocks) goto end;
1606 }
1607 }
1608 for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
1609 if(ind2 > max_blocks)
1610 ind2 = 0;
1611 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1612 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1613 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1614 Blocks[ind2][ALLOC] = 1;
1615 num_blocks++;
1616 if(num_blocks == max_blocks) goto end;
1617 }
1618 }
1619 }
1620 }
1621 }
1622 }
1623 }
1624 tries++;
1625 if (BUTTON_PRESS()) return;
1626 } while (num_blocks != max_blocks);
1627 end:
1628 Dbprintf("-----------------------------------------");
1629 Dbprintf("Memory content:");
1630 Dbprintf("-----------------------------------------");
1631 for(i=0; i<max_blocks; i++) {
1632 if(Blocks[i][ALLOC]==1)
1633 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1634 Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
1635 Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
1636 else
1637 Dbprintf("<missing block %d>", i);
1638 }
1639 Dbprintf("-----------------------------------------");
1640
1641 return ;
1642 }
1643
1644
1645 //-----------------------------------
1646 // EM4469 / EM4305 routines
1647 //-----------------------------------
1648 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1649 #define FWD_CMD_WRITE 0xA
1650 #define FWD_CMD_READ 0x9
1651 #define FWD_CMD_DISABLE 0x5
1652
1653
1654 uint8_t forwardLink_data[64]; //array of forwarded bits
1655 uint8_t * forward_ptr; //ptr for forward message preparation
1656 uint8_t fwd_bit_sz; //forwardlink bit counter
1657 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1658
1659 //====================================================================
1660 // prepares command bits
1661 // see EM4469 spec
1662 //====================================================================
1663 //--------------------------------------------------------------------
1664 uint8_t Prepare_Cmd( uint8_t cmd ) {
1665 //--------------------------------------------------------------------
1666
1667 *forward_ptr++ = 0; //start bit
1668 *forward_ptr++ = 0; //second pause for 4050 code
1669
1670 *forward_ptr++ = cmd;
1671 cmd >>= 1;
1672 *forward_ptr++ = cmd;
1673 cmd >>= 1;
1674 *forward_ptr++ = cmd;
1675 cmd >>= 1;
1676 *forward_ptr++ = cmd;
1677
1678 return 6; //return number of emited bits
1679 }
1680
1681 //====================================================================
1682 // prepares address bits
1683 // see EM4469 spec
1684 //====================================================================
1685
1686 //--------------------------------------------------------------------
1687 uint8_t Prepare_Addr( uint8_t addr ) {
1688 //--------------------------------------------------------------------
1689
1690 register uint8_t line_parity;
1691
1692 uint8_t i;
1693 line_parity = 0;
1694 for(i=0;i<6;i++) {
1695 *forward_ptr++ = addr;
1696 line_parity ^= addr;
1697 addr >>= 1;
1698 }
1699
1700 *forward_ptr++ = (line_parity & 1);
1701
1702 return 7; //return number of emited bits
1703 }
1704
1705 //====================================================================
1706 // prepares data bits intreleaved with parity bits
1707 // see EM4469 spec
1708 //====================================================================
1709
1710 //--------------------------------------------------------------------
1711 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1712 //--------------------------------------------------------------------
1713
1714 register uint8_t line_parity;
1715 register uint8_t column_parity;
1716 register uint8_t i, j;
1717 register uint16_t data;
1718
1719 data = data_low;
1720 column_parity = 0;
1721
1722 for(i=0; i<4; i++) {
1723 line_parity = 0;
1724 for(j=0; j<8; j++) {
1725 line_parity ^= data;
1726 column_parity ^= (data & 1) << j;
1727 *forward_ptr++ = data;
1728 data >>= 1;
1729 }
1730 *forward_ptr++ = line_parity;
1731 if(i == 1)
1732 data = data_hi;
1733 }
1734
1735 for(j=0; j<8; j++) {
1736 *forward_ptr++ = column_parity;
1737 column_parity >>= 1;
1738 }
1739 *forward_ptr = 0;
1740
1741 return 45; //return number of emited bits
1742 }
1743
1744 //====================================================================
1745 // Forward Link send function
1746 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1747 // fwd_bit_count set with number of bits to be sent
1748 //====================================================================
1749 void SendForward(uint8_t fwd_bit_count) {
1750
1751 fwd_write_ptr = forwardLink_data;
1752 fwd_bit_sz = fwd_bit_count;
1753
1754 LED_D_ON();
1755
1756 //Field on
1757 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1758 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1759 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1760
1761 // Give it a bit of time for the resonant antenna to settle.
1762 // And for the tag to fully power up
1763 SpinDelay(150);
1764
1765 // force 1st mod pulse (start gap must be longer for 4305)
1766 fwd_bit_sz--; //prepare next bit modulation
1767 fwd_write_ptr++;
1768 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1769 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1770 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1771 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1772 SpinDelayUs(16*8); //16 cycles on (8us each)
1773
1774 // now start writting
1775 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1776 if(((*fwd_write_ptr++) & 1) == 1)
1777 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1778 else {
1779 //These timings work for 4469/4269/4305 (with the 55*8 above)
1780 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1781 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1782 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1783 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1784 SpinDelayUs(9*8); //16 cycles on (8us each)
1785 }
1786 }
1787 }
1788
1789 void EM4xLogin(uint32_t Password) {
1790
1791 uint8_t fwd_bit_count;
1792
1793 forward_ptr = forwardLink_data;
1794 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1795 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1796
1797 SendForward(fwd_bit_count);
1798
1799 //Wait for command to complete
1800 SpinDelay(20);
1801
1802 }
1803
1804 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1805
1806 uint8_t fwd_bit_count;
1807 uint8_t *dest = (uint8_t *)BigBuf;
1808 int m=0, i=0;
1809
1810 //If password mode do login
1811 if (PwdMode == 1) EM4xLogin(Pwd);
1812
1813 forward_ptr = forwardLink_data;
1814 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1815 fwd_bit_count += Prepare_Addr( Address );
1816
1817 m = sizeof(BigBuf);
1818 // Clear destination buffer before sending the command
1819 memset(dest, 128, m);
1820 // Connect the A/D to the peak-detected low-frequency path.
1821 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1822 // Now set up the SSC to get the ADC samples that are now streaming at us.
1823 FpgaSetupSsc();
1824
1825 SendForward(fwd_bit_count);
1826
1827 // Now do the acquisition
1828 i = 0;
1829 for(;;) {
1830 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1831 AT91C_BASE_SSC->SSC_THR = 0x43;
1832 }
1833 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1834 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1835 i++;
1836 if (i >= m) break;
1837 }
1838 }
1839 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1840 LED_D_OFF();
1841 }
1842
1843 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1844
1845 uint8_t fwd_bit_count;
1846
1847 //If password mode do login
1848 if (PwdMode == 1) EM4xLogin(Pwd);
1849
1850 forward_ptr = forwardLink_data;
1851 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1852 fwd_bit_count += Prepare_Addr( Address );
1853 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1854
1855 SendForward(fwd_bit_count);
1856
1857 //Wait for write to complete
1858 SpinDelay(20);
1859 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1860 LED_D_OFF();
1861 }
Impressum, Datenschutz