1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
21 * Does the sample acquisition. If threshold is specified, the actual sampling
22 * is not commenced until the threshold has been reached.
23 * @param trigger_threshold - the threshold
24 * @param silent - is true, now outputs are made. If false, dbprints the status
26 void DoAcquisition125k_internal(int trigger_threshold
,bool silent
)
28 uint8_t *dest
= (uint8_t *)BigBuf
;
29 int n
= sizeof(BigBuf
);
35 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
36 AT91C_BASE_SSC
->SSC_THR
= 0x43;
39 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
40 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
42 if (trigger_threshold
!= -1 && dest
[i
] < trigger_threshold
)
45 trigger_threshold
= -1;
51 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
52 dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]);
57 * Perform sample aquisition.
59 void DoAcquisition125k(int trigger_threshold
)
61 DoAcquisition125k_internal(trigger_threshold
, false);
65 * Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
66 * if not already loaded, sets divisor and starts up the antenna.
67 * @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
71 void LFSetupFPGAForADC(int divisor
, bool lf_field
)
73 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
74 if ( (divisor
== 1) || (divisor
< 0) || (divisor
> 255) )
75 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
76 else if (divisor
== 0)
77 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
79 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
81 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| (lf_field
? FPGA_LF_ADC_READER_FIELD
: 0));
83 // Connect the A/D to the peak-detected low-frequency path.
84 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
85 // Give it a bit of time for the resonant antenna to settle.
87 // Now set up the SSC to get the ADC samples that are now streaming at us.
91 * Initializes the FPGA, and acquires the samples.
93 void AcquireRawAdcSamples125k(int divisor
)
95 LFSetupFPGAForADC(divisor
, true);
96 // Now call the acquisition routine
97 DoAcquisition125k_internal(-1,false);
100 * Initializes the FPGA for snoop-mode, and acquires the samples.
103 void SnoopLFRawAdcSamples(int divisor
, int trigger_threshold
)
105 LFSetupFPGAForADC(divisor
, false);
106 DoAcquisition125k(trigger_threshold
);
109 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
112 /* Make sure the tag is reset */
113 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
114 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
118 int divisor_used
= 95; // 125 KHz
119 // see if 'h' was specified
121 if (command
[strlen((char *) command
) - 1] == 'h')
122 divisor_used
= 88; // 134.8 KHz
125 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
126 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
127 // Give it a bit of time for the resonant antenna to settle.
130 // And a little more time for the tag to fully power up
133 // Now set up the SSC to get the ADC samples that are now streaming at us.
136 // now modulate the reader field
137 while(*command
!= '\0' && *command
!= ' ') {
138 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
140 SpinDelayUs(delay_off
);
141 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
143 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
145 if(*(command
++) == '0')
146 SpinDelayUs(period_0
);
148 SpinDelayUs(period_1
);
150 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
152 SpinDelayUs(delay_off
);
153 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
155 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
158 DoAcquisition125k(-1);
161 /* blank r/w tag data stream
162 ...0000000000000000 01111111
163 1010101010101010101010101010101010101010101010101010101010101010
166 101010101010101[0]000...
168 [5555fe852c5555555555555555fe0000]
172 // some hardcoded initial params
173 // when we read a TI tag we sample the zerocross line at 2Mhz
174 // TI tags modulate a 1 as 16 cycles of 123.2Khz
175 // TI tags modulate a 0 as 16 cycles of 134.2Khz
176 #define FSAMPLE 2000000
177 #define FREQLO 123200
178 #define FREQHI 134200
180 signed char *dest
= (signed char *)BigBuf
;
181 int n
= sizeof(BigBuf
);
182 // int *dest = GraphBuffer;
183 // int n = GraphTraceLen;
185 // 128 bit shift register [shift3:shift2:shift1:shift0]
186 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
188 int i
, cycles
=0, samples
=0;
189 // how many sample points fit in 16 cycles of each frequency
190 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
191 // when to tell if we're close enough to one freq or another
192 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
194 // TI tags charge at 134.2Khz
195 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
196 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
198 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
199 // connects to SSP_DIN and the SSP_DOUT logic level controls
200 // whether we're modulating the antenna (high)
201 // or listening to the antenna (low)
202 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
204 // get TI tag data into the buffer
207 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
209 for (i
=0; i
<n
-1; i
++) {
210 // count cycles by looking for lo to hi zero crossings
211 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
213 // after 16 cycles, measure the frequency
216 samples
=i
-samples
; // number of samples in these 16 cycles
218 // TI bits are coming to us lsb first so shift them
219 // right through our 128 bit right shift register
220 shift0
= (shift0
>>1) | (shift1
<< 31);
221 shift1
= (shift1
>>1) | (shift2
<< 31);
222 shift2
= (shift2
>>1) | (shift3
<< 31);
225 // check if the cycles fall close to the number
226 // expected for either the low or high frequency
227 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
228 // low frequency represents a 1
230 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
231 // high frequency represents a 0
233 // probably detected a gay waveform or noise
234 // use this as gaydar or discard shift register and start again
235 shift3
= shift2
= shift1
= shift0
= 0;
239 // for each bit we receive, test if we've detected a valid tag
241 // if we see 17 zeroes followed by 6 ones, we might have a tag
242 // remember the bits are backwards
243 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
244 // if start and end bytes match, we have a tag so break out of the loop
245 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
246 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
254 // if flag is set we have a tag
256 DbpString("Info: No valid tag detected.");
258 // put 64 bit data into shift1 and shift0
259 shift0
= (shift0
>>24) | (shift1
<< 8);
260 shift1
= (shift1
>>24) | (shift2
<< 8);
262 // align 16 bit crc into lower half of shift2
263 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
265 // if r/w tag, check ident match
266 if ( shift3
&(1<<15) ) {
267 DbpString("Info: TI tag is rewriteable");
268 // only 15 bits compare, last bit of ident is not valid
269 if ( ((shift3
>>16)^shift0
)&0x7fff ) {
270 DbpString("Error: Ident mismatch!");
272 DbpString("Info: TI tag ident is valid");
275 DbpString("Info: TI tag is readonly");
278 // WARNING the order of the bytes in which we calc crc below needs checking
279 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
280 // bytes in reverse or something
284 crc
= update_crc16(crc
, (shift0
)&0xff);
285 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
286 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
287 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
288 crc
= update_crc16(crc
, (shift1
)&0xff);
289 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
290 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
291 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
293 Dbprintf("Info: Tag data: %x%08x, crc=%x",
294 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
295 if (crc
!= (shift2
&0xffff)) {
296 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
298 DbpString("Info: CRC is good");
303 void WriteTIbyte(uint8_t b
)
307 // modulate 8 bits out to the antenna
311 // stop modulating antenna
318 // stop modulating antenna
328 void AcquireTiType(void)
331 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
332 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
333 #define TIBUFLEN 1250
336 memset(BigBuf
,0,sizeof(BigBuf
));
338 // Set up the synchronous serial port
339 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
340 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
342 // steal this pin from the SSP and use it to control the modulation
343 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
344 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
346 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
347 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
349 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
350 // 48/2 = 24 MHz clock must be divided by 12
351 AT91C_BASE_SSC
->SSC_CMR
= 12;
353 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
354 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
355 AT91C_BASE_SSC
->SSC_TCMR
= 0;
356 AT91C_BASE_SSC
->SSC_TFMR
= 0;
363 // Charge TI tag for 50ms.
366 // stop modulating antenna and listen
373 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
374 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
375 i
++; if(i
>= TIBUFLEN
) break;
380 // return stolen pin to SSP
381 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
382 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
384 char *dest
= (char *)BigBuf
;
387 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
388 for (j
=0; j
<32; j
++) {
389 if(BigBuf
[i
] & (1 << j
)) {
398 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
399 // if crc provided, it will be written with the data verbatim (even if bogus)
400 // if not provided a valid crc will be computed from the data and written.
401 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
403 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
405 crc
= update_crc16(crc
, (idlo
)&0xff);
406 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
407 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
408 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
409 crc
= update_crc16(crc
, (idhi
)&0xff);
410 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
411 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
412 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
414 Dbprintf("Writing to tag: %x%08x, crc=%x",
415 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
417 // TI tags charge at 134.2Khz
418 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
419 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
420 // connects to SSP_DIN and the SSP_DOUT logic level controls
421 // whether we're modulating the antenna (high)
422 // or listening to the antenna (low)
423 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
426 // steal this pin from the SSP and use it to control the modulation
427 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
428 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
430 // writing algorithm:
431 // a high bit consists of a field off for 1ms and field on for 1ms
432 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
433 // initiate a charge time of 50ms (field on) then immediately start writing bits
434 // start by writing 0xBB (keyword) and 0xEB (password)
435 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
436 // finally end with 0x0300 (write frame)
437 // all data is sent lsb firts
438 // finish with 15ms programming time
442 SpinDelay(50); // charge time
444 WriteTIbyte(0xbb); // keyword
445 WriteTIbyte(0xeb); // password
446 WriteTIbyte( (idlo
)&0xff );
447 WriteTIbyte( (idlo
>>8 )&0xff );
448 WriteTIbyte( (idlo
>>16)&0xff );
449 WriteTIbyte( (idlo
>>24)&0xff );
450 WriteTIbyte( (idhi
)&0xff );
451 WriteTIbyte( (idhi
>>8 )&0xff );
452 WriteTIbyte( (idhi
>>16)&0xff );
453 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
454 WriteTIbyte( (crc
)&0xff ); // crc lo
455 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
456 WriteTIbyte(0x00); // write frame lo
457 WriteTIbyte(0x03); // write frame hi
459 SpinDelay(50); // programming time
463 // get TI tag data into the buffer
466 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
467 DbpString("Now use tiread to check");
470 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
473 uint8_t *tab
= (uint8_t *)BigBuf
;
475 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
476 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
478 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
480 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
481 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
483 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
484 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
488 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
490 DbpString("Stopped");
507 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
509 DbpString("Stopped");
526 #define DEBUG_FRAME_CONTENTS 1
527 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
531 // compose fc/8 fc/10 waveform
532 static void fc(int c
, int *n
) {
533 uint8_t *dest
= (uint8_t *)BigBuf
;
536 // for when we want an fc8 pattern every 4 logical bits
547 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
549 for (idx
=0; idx
<6; idx
++) {
561 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
563 for (idx
=0; idx
<5; idx
++) {
578 // prepare a waveform pattern in the buffer based on the ID given then
579 // simulate a HID tag until the button is pressed
580 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
584 HID tag bitstream format
585 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
586 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
587 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
588 A fc8 is inserted before every 4 bits
589 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
590 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
594 DbpString("Tags can only have 44 bits.");
598 // special start of frame marker containing invalid bit sequences
599 fc(8, &n
); fc(8, &n
); // invalid
600 fc(8, &n
); fc(10, &n
); // logical 0
601 fc(10, &n
); fc(10, &n
); // invalid
602 fc(8, &n
); fc(10, &n
); // logical 0
605 // manchester encode bits 43 to 32
606 for (i
=11; i
>=0; i
--) {
607 if ((i
%4)==3) fc(0,&n
);
609 fc(10, &n
); fc(8, &n
); // low-high transition
611 fc(8, &n
); fc(10, &n
); // high-low transition
616 // manchester encode bits 31 to 0
617 for (i
=31; i
>=0; i
--) {
618 if ((i
%4)==3) fc(0,&n
);
620 fc(10, &n
); fc(8, &n
); // low-high transition
622 fc(8, &n
); fc(10, &n
); // high-low transition
628 SimulateTagLowFrequency(n
, 0, ledcontrol
);
634 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
635 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
637 uint8_t *dest
= (uint8_t *)BigBuf
;
639 size_t size
=0; //, found=0;
640 uint32_t hi2
=0, hi
=0, lo
=0;
642 // Configure to go in 125Khz listen mode
643 LFSetupFPGAForADC(95, true);
645 while(!BUTTON_PRESS()) {
648 if (ledcontrol
) LED_A_ON();
650 DoAcquisition125k_internal(-1,true);
651 size
= sizeof(BigBuf
);
652 if (size
< 2000) continue;
655 int bitLen
= HIDdemodFSK(dest
,size
,&hi2
,&hi
,&lo
);
659 if (bitLen
>0 && lo
>0){
660 // final loop, go over previously decoded manchester data and decode into usable tag ID
661 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
662 if (hi2
!= 0){ //extra large HID tags
663 Dbprintf("TAG ID: %x%08x%08x (%d)",
664 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
665 }else { //standard HID tags <38 bits
666 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
669 uint32_t cardnum
= 0;
670 if (((hi
>>5)&1)==1){//if bit 38 is set then < 37 bit format is used
672 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
674 while(lo2
>1){ //find last bit set to 1 (format len bit)
682 cardnum
= (lo
>>1)&0xFFFF;
686 cardnum
= (lo
>>1)&0x7FFFF;
687 fc
= ((hi
&0xF)<<12)|(lo
>>20);
690 cardnum
= (lo
>>1)&0xFFFF;
691 fc
= ((hi
&1)<<15)|(lo
>>17);
694 cardnum
= (lo
>>1)&0xFFFFF;
695 fc
= ((hi
&1)<<11)|(lo
>>21);
698 else { //if bit 38 is not set then 37 bit format is used
703 cardnum
= (lo
>>1)&0x7FFFF;
704 fc
= ((hi
&0xF)<<12)|(lo
>>20);
707 //Dbprintf("TAG ID: %x%08x (%d)",
708 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
709 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
710 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF,
711 (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
);
714 if (ledcontrol
) LED_A_OFF();
723 DbpString("Stopped");
724 if (ledcontrol
) LED_A_OFF();
727 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
729 uint8_t *dest
= (uint8_t *)BigBuf
;
731 size_t size
=0; //, found=0;
733 int clk
=0, invert
=0, errCnt
=0;
735 // Configure to go in 125Khz listen mode
736 LFSetupFPGAForADC(95, true);
738 while(!BUTTON_PRESS()) {
741 if (ledcontrol
) LED_A_ON();
743 DoAcquisition125k_internal(-1,true);
744 size
= sizeof(BigBuf
);
745 if (size
< 2000) continue;
747 //int askmandemod(uint8_t *BinStream,uint32_t *BitLen,int *clk, int *invert);
749 //Dbprintf("DEBUG: Buffer got");
750 errCnt
= askmandemod(dest
,&bitLen
,&clk
,&invert
); //HIDdemodFSK(dest,size,&hi2,&hi,&lo);
751 //Dbprintf("DEBUG: ASK Got");
755 lo
= Em410xDecode(dest
,bitLen
);
756 //Dbprintf("DEBUG: EM GOT");
759 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",(uint32_t)(lo
>>32),(uint32_t)lo
,(uint32_t)(lo
&0xFFFF),(uint32_t)((lo
>>16LL) & 0xFF),(uint32_t)(lo
& 0xFFFFFF));
762 if (ledcontrol
) LED_A_OFF();
766 //Dbprintf("DEBUG: No Tag");
776 DbpString("Stopped");
777 if (ledcontrol
) LED_A_OFF();
780 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
782 uint8_t *dest
= (uint8_t *)BigBuf
;
785 uint32_t code
=0, code2
=0;
787 uint8_t facilitycode
=0;
789 // Configure to go in 125Khz listen mode
790 LFSetupFPGAForADC(95, true);
792 while(!BUTTON_PRESS()) {
794 if (ledcontrol
) LED_A_ON();
795 DoAcquisition125k_internal(-1,true);
796 //fskdemod and get start index
798 idx
= IOdemodFSK(dest
,sizeof(BigBuf
));
803 //0 10 20 30 40 50 60
805 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
806 //-----------------------------------------------------------------------------
807 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
809 //XSF(version)facility:codeone+codetwo
811 if(findone
){ //only print binary if we are doing one
812 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
813 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
814 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
815 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
816 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
817 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
818 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
820 code
= bytebits_to_byte(dest
+idx
,32);
821 code2
= bytebits_to_byte(dest
+idx
+32,32);
822 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
823 facilitycode
= bytebits_to_byte(dest
+idx
+18,8) ;
824 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
826 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version
,facilitycode
,number
,code
,code2
);
827 // if we're only looking for one tag
829 if (ledcontrol
) LED_A_OFF();
834 version
=facilitycode
=0;
840 DbpString("Stopped");
841 if (ledcontrol
) LED_A_OFF();
844 /*------------------------------
845 * T5555/T5557/T5567 routines
846 *------------------------------
849 /* T55x7 configuration register definitions */
850 #define T55x7_POR_DELAY 0x00000001
851 #define T55x7_ST_TERMINATOR 0x00000008
852 #define T55x7_PWD 0x00000010
853 #define T55x7_MAXBLOCK_SHIFT 5
854 #define T55x7_AOR 0x00000200
855 #define T55x7_PSKCF_RF_2 0
856 #define T55x7_PSKCF_RF_4 0x00000400
857 #define T55x7_PSKCF_RF_8 0x00000800
858 #define T55x7_MODULATION_DIRECT 0
859 #define T55x7_MODULATION_PSK1 0x00001000
860 #define T55x7_MODULATION_PSK2 0x00002000
861 #define T55x7_MODULATION_PSK3 0x00003000
862 #define T55x7_MODULATION_FSK1 0x00004000
863 #define T55x7_MODULATION_FSK2 0x00005000
864 #define T55x7_MODULATION_FSK1a 0x00006000
865 #define T55x7_MODULATION_FSK2a 0x00007000
866 #define T55x7_MODULATION_MANCHESTER 0x00008000
867 #define T55x7_MODULATION_BIPHASE 0x00010000
868 #define T55x7_BITRATE_RF_8 0
869 #define T55x7_BITRATE_RF_16 0x00040000
870 #define T55x7_BITRATE_RF_32 0x00080000
871 #define T55x7_BITRATE_RF_40 0x000C0000
872 #define T55x7_BITRATE_RF_50 0x00100000
873 #define T55x7_BITRATE_RF_64 0x00140000
874 #define T55x7_BITRATE_RF_100 0x00180000
875 #define T55x7_BITRATE_RF_128 0x001C0000
877 /* T5555 (Q5) configuration register definitions */
878 #define T5555_ST_TERMINATOR 0x00000001
879 #define T5555_MAXBLOCK_SHIFT 0x00000001
880 #define T5555_MODULATION_MANCHESTER 0
881 #define T5555_MODULATION_PSK1 0x00000010
882 #define T5555_MODULATION_PSK2 0x00000020
883 #define T5555_MODULATION_PSK3 0x00000030
884 #define T5555_MODULATION_FSK1 0x00000040
885 #define T5555_MODULATION_FSK2 0x00000050
886 #define T5555_MODULATION_BIPHASE 0x00000060
887 #define T5555_MODULATION_DIRECT 0x00000070
888 #define T5555_INVERT_OUTPUT 0x00000080
889 #define T5555_PSK_RF_2 0
890 #define T5555_PSK_RF_4 0x00000100
891 #define T5555_PSK_RF_8 0x00000200
892 #define T5555_USE_PWD 0x00000400
893 #define T5555_USE_AOR 0x00000800
894 #define T5555_BITRATE_SHIFT 12
895 #define T5555_FAST_WRITE 0x00004000
896 #define T5555_PAGE_SELECT 0x00008000
899 * Relevant times in microsecond
900 * To compensate antenna falling times shorten the write times
901 * and enlarge the gap ones.
903 #define START_GAP 250
904 #define WRITE_GAP 160
905 #define WRITE_0 144 // 192
906 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
908 // Write one bit to card
909 void T55xxWriteBit(int bit
)
911 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
912 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
913 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
915 SpinDelayUs(WRITE_0
);
917 SpinDelayUs(WRITE_1
);
918 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
919 SpinDelayUs(WRITE_GAP
);
922 // Write one card block in page 0, no lock
923 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
925 //unsigned int i; //enio adjustment 12/10/14
928 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
929 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
930 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
932 // Give it a bit of time for the resonant antenna to settle.
933 // And for the tag to fully power up
936 // Now start writting
937 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
938 SpinDelayUs(START_GAP
);
942 T55xxWriteBit(0); //Page 0
945 for (i
= 0x80000000; i
!= 0; i
>>= 1)
946 T55xxWriteBit(Pwd
& i
);
952 for (i
= 0x80000000; i
!= 0; i
>>= 1)
953 T55xxWriteBit(Data
& i
);
956 for (i
= 0x04; i
!= 0; i
>>= 1)
957 T55xxWriteBit(Block
& i
);
959 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
960 // so wait a little more)
961 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
962 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
964 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
967 // Read one card block in page 0
968 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
970 uint8_t *dest
= (uint8_t *)BigBuf
;
971 //int m=0, i=0; //enio adjustment 12/10/14
973 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
975 // Clear destination buffer before sending the command
976 memset(dest
, 128, m
);
977 // Connect the A/D to the peak-detected low-frequency path.
978 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
979 // Now set up the SSC to get the ADC samples that are now streaming at us.
983 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
984 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
986 // Give it a bit of time for the resonant antenna to settle.
987 // And for the tag to fully power up
990 // Now start writting
991 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
992 SpinDelayUs(START_GAP
);
996 T55xxWriteBit(0); //Page 0
999 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1000 T55xxWriteBit(Pwd
& i
);
1005 for (i
= 0x04; i
!= 0; i
>>= 1)
1006 T55xxWriteBit(Block
& i
);
1008 // Turn field on to read the response
1009 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1010 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1012 // Now do the acquisition
1015 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1016 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1018 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1019 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1020 // we don't care about actual value, only if it's more or less than a
1021 // threshold essentially we capture zero crossings for later analysis
1022 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1028 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1033 // Read card traceability data (page 1)
1034 void T55xxReadTrace(void){
1035 uint8_t *dest
= (uint8_t *)BigBuf
;
1038 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1040 // Clear destination buffer before sending the command
1041 memset(dest
, 128, m
);
1042 // Connect the A/D to the peak-detected low-frequency path.
1043 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1044 // Now set up the SSC to get the ADC samples that are now streaming at us.
1048 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1049 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1051 // Give it a bit of time for the resonant antenna to settle.
1052 // And for the tag to fully power up
1055 // Now start writting
1056 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1057 SpinDelayUs(START_GAP
);
1061 T55xxWriteBit(1); //Page 1
1063 // Turn field on to read the response
1064 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1065 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1067 // Now do the acquisition
1070 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1071 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1073 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1074 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1080 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1085 /*-------------- Cloning routines -----------*/
1086 // Copy HID id to card and setup block 0 config
1087 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1089 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1093 // Ensure no more than 84 bits supplied
1095 DbpString("Tags can only have 84 bits.");
1098 // Build the 6 data blocks for supplied 84bit ID
1100 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1101 for (int i
=0;i
<4;i
++) {
1102 if (hi2
& (1<<(19-i
)))
1103 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1105 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1109 for (int i
=0;i
<16;i
++) {
1110 if (hi2
& (1<<(15-i
)))
1111 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1113 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1117 for (int i
=0;i
<16;i
++) {
1118 if (hi
& (1<<(31-i
)))
1119 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1121 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1125 for (int i
=0;i
<16;i
++) {
1126 if (hi
& (1<<(15-i
)))
1127 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1129 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1133 for (int i
=0;i
<16;i
++) {
1134 if (lo
& (1<<(31-i
)))
1135 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1137 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1141 for (int i
=0;i
<16;i
++) {
1142 if (lo
& (1<<(15-i
)))
1143 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1145 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1149 // Ensure no more than 44 bits supplied
1151 DbpString("Tags can only have 44 bits.");
1155 // Build the 3 data blocks for supplied 44bit ID
1158 data1
= 0x1D000000; // load preamble
1160 for (int i
=0;i
<12;i
++) {
1161 if (hi
& (1<<(11-i
)))
1162 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1164 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1168 for (int i
=0;i
<16;i
++) {
1169 if (lo
& (1<<(31-i
)))
1170 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1172 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1176 for (int i
=0;i
<16;i
++) {
1177 if (lo
& (1<<(15-i
)))
1178 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1180 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1185 // Program the data blocks for supplied ID
1186 // and the block 0 for HID format
1187 T55xxWriteBlock(data1
,1,0,0);
1188 T55xxWriteBlock(data2
,2,0,0);
1189 T55xxWriteBlock(data3
,3,0,0);
1191 if (longFMT
) { // if long format there are 6 blocks
1192 T55xxWriteBlock(data4
,4,0,0);
1193 T55xxWriteBlock(data5
,5,0,0);
1194 T55xxWriteBlock(data6
,6,0,0);
1197 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1198 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1199 T55x7_MODULATION_FSK2a
|
1200 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1208 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1210 int data1
=0, data2
=0; //up to six blocks for long format
1212 data1
= hi
; // load preamble
1216 // Program the data blocks for supplied ID
1217 // and the block 0 for HID format
1218 T55xxWriteBlock(data1
,1,0,0);
1219 T55xxWriteBlock(data2
,2,0,0);
1222 T55xxWriteBlock(0x00147040,0,0,0);
1228 // Define 9bit header for EM410x tags
1229 #define EM410X_HEADER 0x1FF
1230 #define EM410X_ID_LENGTH 40
1232 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1235 uint64_t id
= EM410X_HEADER
;
1236 uint64_t rev_id
= 0; // reversed ID
1237 int c_parity
[4]; // column parity
1238 int r_parity
= 0; // row parity
1241 // Reverse ID bits given as parameter (for simpler operations)
1242 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1244 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1247 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1252 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1253 id_bit
= rev_id
& 1;
1256 // Don't write row parity bit at start of parsing
1258 id
= (id
<< 1) | r_parity
;
1259 // Start counting parity for new row
1266 // First elements in column?
1268 // Fill out first elements
1269 c_parity
[i
] = id_bit
;
1271 // Count column parity
1272 c_parity
[i
% 4] ^= id_bit
;
1275 id
= (id
<< 1) | id_bit
;
1279 // Insert parity bit of last row
1280 id
= (id
<< 1) | r_parity
;
1282 // Fill out column parity at the end of tag
1283 for (i
= 0; i
< 4; ++i
)
1284 id
= (id
<< 1) | c_parity
[i
];
1289 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1293 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1294 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1296 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1298 // Clock rate is stored in bits 8-15 of the card value
1299 clock
= (card
& 0xFF00) >> 8;
1300 Dbprintf("Clock rate: %d", clock
);
1304 clock
= T55x7_BITRATE_RF_32
;
1307 clock
= T55x7_BITRATE_RF_16
;
1310 // A value of 0 is assumed to be 64 for backwards-compatibility
1313 clock
= T55x7_BITRATE_RF_64
;
1316 Dbprintf("Invalid clock rate: %d", clock
);
1320 // Writing configuration for T55x7 tag
1321 T55xxWriteBlock(clock
|
1322 T55x7_MODULATION_MANCHESTER
|
1323 2 << T55x7_MAXBLOCK_SHIFT
,
1327 // Writing configuration for T5555(Q5) tag
1328 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1329 T5555_MODULATION_MANCHESTER
|
1330 2 << T5555_MAXBLOCK_SHIFT
,
1334 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1335 (uint32_t)(id
>> 32), (uint32_t)id
);
1338 // Clone Indala 64-bit tag by UID to T55x7
1339 void CopyIndala64toT55x7(int hi
, int lo
)
1342 //Program the 2 data blocks for supplied 64bit UID
1343 // and the block 0 for Indala64 format
1344 T55xxWriteBlock(hi
,1,0,0);
1345 T55xxWriteBlock(lo
,2,0,0);
1346 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1347 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1348 T55x7_MODULATION_PSK1
|
1349 2 << T55x7_MAXBLOCK_SHIFT
,
1351 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1352 // T5567WriteBlock(0x603E1042,0);
1358 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1361 //Program the 7 data blocks for supplied 224bit UID
1362 // and the block 0 for Indala224 format
1363 T55xxWriteBlock(uid1
,1,0,0);
1364 T55xxWriteBlock(uid2
,2,0,0);
1365 T55xxWriteBlock(uid3
,3,0,0);
1366 T55xxWriteBlock(uid4
,4,0,0);
1367 T55xxWriteBlock(uid5
,5,0,0);
1368 T55xxWriteBlock(uid6
,6,0,0);
1369 T55xxWriteBlock(uid7
,7,0,0);
1370 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1371 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1372 T55x7_MODULATION_PSK1
|
1373 7 << T55x7_MAXBLOCK_SHIFT
,
1375 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1376 // T5567WriteBlock(0x603E10E2,0);
1383 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1384 #define max(x,y) ( x<y ? y:x)
1386 int DemodPCF7931(uint8_t **outBlocks
) {
1387 uint8_t BitStream
[256];
1388 uint8_t Blocks
[8][16];
1389 uint8_t *GraphBuffer
= (uint8_t *)BigBuf
;
1390 int GraphTraceLen
= sizeof(BigBuf
);
1391 int i
, j
, lastval
, bitidx
, half_switch
;
1393 int tolerance
= clock
/ 8;
1394 int pmc
, block_done
;
1395 int lc
, warnings
= 0;
1397 int lmin
=128, lmax
=128;
1400 AcquireRawAdcSamples125k(0);
1407 /* Find first local max/min */
1408 if(GraphBuffer
[1] > GraphBuffer
[0]) {
1409 while(i
< GraphTraceLen
) {
1410 if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
)
1417 while(i
< GraphTraceLen
) {
1418 if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
)
1430 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1432 if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir
== 0 && GraphBuffer
[i
] < lmin
))
1437 // Switch depending on lc length:
1438 // Tolerance is 1/8 of clock rate (arbitrary)
1439 if (abs(lc
-clock
/4) < tolerance
) {
1441 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1443 i
+= (128+127+16+32+33+16)-1;
1451 } else if (abs(lc
-clock
/2) < tolerance
) {
1453 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1455 i
+= (128+127+16+32+33)-1;
1460 else if(half_switch
== 1) {
1461 BitStream
[bitidx
++] = 0;
1466 } else if (abs(lc
-clock
) < tolerance
) {
1468 BitStream
[bitidx
++] = 1;
1474 Dbprintf("Error: too many detection errors, aborting.");
1479 if(block_done
== 1) {
1481 for(j
=0; j
<16; j
++) {
1482 Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+
1483 64*BitStream
[j
*8+6]+
1484 32*BitStream
[j
*8+5]+
1485 16*BitStream
[j
*8+4]+
1497 if(i
< GraphTraceLen
)
1499 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0;
1506 if(num_blocks
== 4) break;
1508 memcpy(outBlocks
, Blocks
, 16*num_blocks
);
1512 int IsBlock0PCF7931(uint8_t *Block
) {
1513 // Assume RFU means 0 :)
1514 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1516 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1521 int IsBlock1PCF7931(uint8_t *Block
) {
1522 // Assume RFU means 0 :)
1523 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1524 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1532 void ReadPCF7931() {
1533 uint8_t Blocks
[8][17];
1534 uint8_t tmpBlocks
[4][16];
1535 int i
, j
, ind
, ind2
, n
;
1542 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1545 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1546 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1549 if(error
==10 && num_blocks
== 0) {
1550 Dbprintf("Error, no tag or bad tag");
1553 else if (tries
==20 || error
==10) {
1554 Dbprintf("Error reading the tag");
1555 Dbprintf("Here is the partial content");
1560 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1561 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1562 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1564 for(i
=0; i
<n
; i
++) {
1565 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1567 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1571 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1572 Blocks
[0][ALLOC
] = 1;
1573 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1574 Blocks
[1][ALLOC
] = 1;
1575 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1577 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1579 // Handle following blocks
1580 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1583 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1584 Blocks
[ind2
][ALLOC
] = 1;
1592 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1593 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1594 for(j
=0; j
<max_blocks
; j
++) {
1595 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1596 // Found an identical block
1597 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1600 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1601 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1602 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1603 Blocks
[ind2
][ALLOC
] = 1;
1605 if(num_blocks
== max_blocks
) goto end
;
1608 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1609 if(ind2
> max_blocks
)
1611 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1612 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1613 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1614 Blocks
[ind2
][ALLOC
] = 1;
1616 if(num_blocks
== max_blocks
) goto end
;
1625 if (BUTTON_PRESS()) return;
1626 } while (num_blocks
!= max_blocks
);
1628 Dbprintf("-----------------------------------------");
1629 Dbprintf("Memory content:");
1630 Dbprintf("-----------------------------------------");
1631 for(i
=0; i
<max_blocks
; i
++) {
1632 if(Blocks
[i
][ALLOC
]==1)
1633 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1634 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1635 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1637 Dbprintf("<missing block %d>", i
);
1639 Dbprintf("-----------------------------------------");
1645 //-----------------------------------
1646 // EM4469 / EM4305 routines
1647 //-----------------------------------
1648 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1649 #define FWD_CMD_WRITE 0xA
1650 #define FWD_CMD_READ 0x9
1651 #define FWD_CMD_DISABLE 0x5
1654 uint8_t forwardLink_data
[64]; //array of forwarded bits
1655 uint8_t * forward_ptr
; //ptr for forward message preparation
1656 uint8_t fwd_bit_sz
; //forwardlink bit counter
1657 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1659 //====================================================================
1660 // prepares command bits
1662 //====================================================================
1663 //--------------------------------------------------------------------
1664 uint8_t Prepare_Cmd( uint8_t cmd
) {
1665 //--------------------------------------------------------------------
1667 *forward_ptr
++ = 0; //start bit
1668 *forward_ptr
++ = 0; //second pause for 4050 code
1670 *forward_ptr
++ = cmd
;
1672 *forward_ptr
++ = cmd
;
1674 *forward_ptr
++ = cmd
;
1676 *forward_ptr
++ = cmd
;
1678 return 6; //return number of emited bits
1681 //====================================================================
1682 // prepares address bits
1684 //====================================================================
1686 //--------------------------------------------------------------------
1687 uint8_t Prepare_Addr( uint8_t addr
) {
1688 //--------------------------------------------------------------------
1690 register uint8_t line_parity
;
1695 *forward_ptr
++ = addr
;
1696 line_parity
^= addr
;
1700 *forward_ptr
++ = (line_parity
& 1);
1702 return 7; //return number of emited bits
1705 //====================================================================
1706 // prepares data bits intreleaved with parity bits
1708 //====================================================================
1710 //--------------------------------------------------------------------
1711 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1712 //--------------------------------------------------------------------
1714 register uint8_t line_parity
;
1715 register uint8_t column_parity
;
1716 register uint8_t i
, j
;
1717 register uint16_t data
;
1722 for(i
=0; i
<4; i
++) {
1724 for(j
=0; j
<8; j
++) {
1725 line_parity
^= data
;
1726 column_parity
^= (data
& 1) << j
;
1727 *forward_ptr
++ = data
;
1730 *forward_ptr
++ = line_parity
;
1735 for(j
=0; j
<8; j
++) {
1736 *forward_ptr
++ = column_parity
;
1737 column_parity
>>= 1;
1741 return 45; //return number of emited bits
1744 //====================================================================
1745 // Forward Link send function
1746 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1747 // fwd_bit_count set with number of bits to be sent
1748 //====================================================================
1749 void SendForward(uint8_t fwd_bit_count
) {
1751 fwd_write_ptr
= forwardLink_data
;
1752 fwd_bit_sz
= fwd_bit_count
;
1757 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1758 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1759 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1761 // Give it a bit of time for the resonant antenna to settle.
1762 // And for the tag to fully power up
1765 // force 1st mod pulse (start gap must be longer for 4305)
1766 fwd_bit_sz
--; //prepare next bit modulation
1768 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1769 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1770 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1771 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1772 SpinDelayUs(16*8); //16 cycles on (8us each)
1774 // now start writting
1775 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1776 if(((*fwd_write_ptr
++) & 1) == 1)
1777 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1779 //These timings work for 4469/4269/4305 (with the 55*8 above)
1780 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1781 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1782 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1783 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1784 SpinDelayUs(9*8); //16 cycles on (8us each)
1789 void EM4xLogin(uint32_t Password
) {
1791 uint8_t fwd_bit_count
;
1793 forward_ptr
= forwardLink_data
;
1794 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1795 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1797 SendForward(fwd_bit_count
);
1799 //Wait for command to complete
1804 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1806 uint8_t fwd_bit_count
;
1807 uint8_t *dest
= (uint8_t *)BigBuf
;
1810 //If password mode do login
1811 if (PwdMode
== 1) EM4xLogin(Pwd
);
1813 forward_ptr
= forwardLink_data
;
1814 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1815 fwd_bit_count
+= Prepare_Addr( Address
);
1818 // Clear destination buffer before sending the command
1819 memset(dest
, 128, m
);
1820 // Connect the A/D to the peak-detected low-frequency path.
1821 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1822 // Now set up the SSC to get the ADC samples that are now streaming at us.
1825 SendForward(fwd_bit_count
);
1827 // Now do the acquisition
1830 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1831 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1833 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1834 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1839 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1843 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1845 uint8_t fwd_bit_count
;
1847 //If password mode do login
1848 if (PwdMode
== 1) EM4xLogin(Pwd
);
1850 forward_ptr
= forwardLink_data
;
1851 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1852 fwd_bit_count
+= Prepare_Addr( Address
);
1853 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1855 SendForward(fwd_bit_count
);
1857 //Wait for write to complete
1859 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off