]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
dac87677c60c6e8a8b0ba337e2118fd199cec84c
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include "proxmark3.h"
14 #include "apps.h"
15 #include "util.h"
16 #include "printf.h"
17 #include "string.h"
18
19 #include <stdarg.h>
20
21 #include "legicrf.h"
22 #include <hitag2.h>
23
24 #ifdef WITH_LCD
25 # include "fonts.h"
26 # include "LCD.h"
27 #endif
28
29 #define abs(x) ( ((x)<0) ? -(x) : (x) )
30
31 //=============================================================================
32 // A buffer where we can queue things up to be sent through the FPGA, for
33 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
34 // is the order in which they go out on the wire.
35 //=============================================================================
36
37 uint8_t ToSend[512];
38 int ToSendMax;
39 static int ToSendBit;
40 struct common_area common_area __attribute__((section(".commonarea")));
41
42 void BufferClear(void)
43 {
44 memset(BigBuf,0,sizeof(BigBuf));
45 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf));
46 }
47
48 void ToSendReset(void)
49 {
50 ToSendMax = -1;
51 ToSendBit = 8;
52 }
53
54 void ToSendStuffBit(int b)
55 {
56 if(ToSendBit >= 8) {
57 ToSendMax++;
58 ToSend[ToSendMax] = 0;
59 ToSendBit = 0;
60 }
61
62 if(b) {
63 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
64 }
65
66 ToSendBit++;
67
68 if(ToSendBit >= sizeof(ToSend)) {
69 ToSendBit = 0;
70 DbpString("ToSendStuffBit overflowed!");
71 }
72 }
73
74 //=============================================================================
75 // Debug print functions, to go out over USB, to the usual PC-side client.
76 //=============================================================================
77
78 void DbpString(char *str)
79 {
80 /* this holds up stuff unless we're connected to usb */
81 if (!UsbConnected())
82 return;
83
84 UsbCommand c;
85 c.cmd = CMD_DEBUG_PRINT_STRING;
86 c.arg[0] = strlen(str);
87 if(c.arg[0] > sizeof(c.d.asBytes)) {
88 c.arg[0] = sizeof(c.d.asBytes);
89 }
90 memcpy(c.d.asBytes, str, c.arg[0]);
91
92 UsbSendPacket((uint8_t *)&c, sizeof(c));
93 // TODO fix USB so stupid things like this aren't req'd
94 SpinDelay(50);
95 }
96
97 #if 0
98 void DbpIntegers(int x1, int x2, int x3)
99 {
100 /* this holds up stuff unless we're connected to usb */
101 if (!UsbConnected())
102 return;
103
104 UsbCommand c;
105 c.cmd = CMD_DEBUG_PRINT_INTEGERS;
106 c.arg[0] = x1;
107 c.arg[1] = x2;
108 c.arg[2] = x3;
109
110 UsbSendPacket((uint8_t *)&c, sizeof(c));
111 // XXX
112 SpinDelay(50);
113 }
114 #endif
115
116 void Dbprintf(const char *fmt, ...) {
117 // should probably limit size here; oh well, let's just use a big buffer
118 char output_string[128];
119 va_list ap;
120
121 va_start(ap, fmt);
122 kvsprintf(fmt, output_string, 10, ap);
123 va_end(ap);
124
125 DbpString(output_string);
126 }
127
128 // prints HEX & ASCII
129 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
130 int l=0,i;
131 char ascii[9];
132
133 while (len>0) {
134 if (len>8) l=8;
135 else l=len;
136
137 memcpy(ascii,d,l);
138 ascii[l]=0;
139
140 // filter safe ascii
141 for (i=0;i<l;i++)
142 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
143
144 if (bAsci) {
145 Dbprintf("%-8s %*D",ascii,l,d," ");
146 } else {
147 Dbprintf("%*D",l,d," ");
148 }
149
150 len-=8;
151 d+=8;
152 }
153 }
154
155 //-----------------------------------------------------------------------------
156 // Read an ADC channel and block till it completes, then return the result
157 // in ADC units (0 to 1023). Also a routine to average 32 samples and
158 // return that.
159 //-----------------------------------------------------------------------------
160 static int ReadAdc(int ch)
161 {
162 uint32_t d;
163
164 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
165 AT91C_BASE_ADC->ADC_MR =
166 ADC_MODE_PRESCALE(32) |
167 ADC_MODE_STARTUP_TIME(16) |
168 ADC_MODE_SAMPLE_HOLD_TIME(8);
169 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
170
171 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
172 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
173 ;
174 d = AT91C_BASE_ADC->ADC_CDR[ch];
175
176 return d;
177 }
178
179 int AvgAdc(int ch) // was static - merlok
180 {
181 int i;
182 int a = 0;
183
184 for(i = 0; i < 32; i++) {
185 a += ReadAdc(ch);
186 }
187
188 return (a + 15) >> 5;
189 }
190
191 void MeasureAntennaTuning(void)
192 {
193 uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
194 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
195 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
196
197 UsbCommand c;
198
199 LED_B_ON();
200 DbpString("Measuring antenna characteristics, please wait...");
201 memset(dest,0,sizeof(FREE_BUFFER_SIZE));
202
203 /*
204 * Sweeps the useful LF range of the proxmark from
205 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
206 * read the voltage in the antenna, the result left
207 * in the buffer is a graph which should clearly show
208 * the resonating frequency of your LF antenna
209 * ( hopefully around 95 if it is tuned to 125kHz!)
210 */
211
212 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
213 for (i=255; i>19; i--) {
214 WDT_HIT();
215 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
216 SpinDelay(20);
217 // Vref = 3.3V, and a 10000:240 voltage divider on the input
218 // can measure voltages up to 137500 mV
219 adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
220 if (i==95) vLf125 = adcval; // voltage at 125Khz
221 if (i==89) vLf134 = adcval; // voltage at 134Khz
222
223 dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes
224 if(dest[i] > peak) {
225 peakv = adcval;
226 peak = dest[i];
227 peakf = i;
228 //ptr = i;
229 }
230 }
231
232 LED_A_ON();
233 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
234 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
235 SpinDelay(20);
236 // Vref = 3300mV, and an 10:1 voltage divider on the input
237 // can measure voltages up to 33000 mV
238 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
239
240 c.cmd = CMD_MEASURED_ANTENNA_TUNING;
241 c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
242 c.arg[1] = vHf;
243 c.arg[2] = peakf | (peakv << 16);
244
245 DbpString("Measuring complete, sending report back to host");
246
247 UsbSendPacket((uint8_t *)&c, sizeof(c));
248 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
249 LED_A_OFF();
250 LED_B_OFF();
251 return;
252 }
253
254 void MeasureAntennaTuningHf(void)
255 {
256 int vHf = 0; // in mV
257
258 DbpString("Measuring HF antenna, press button to exit");
259
260 for (;;) {
261 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
262 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
263 SpinDelay(20);
264 // Vref = 3300mV, and an 10:1 voltage divider on the input
265 // can measure voltages up to 33000 mV
266 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
267
268 Dbprintf("%d mV",vHf);
269 if (BUTTON_PRESS()) break;
270 }
271 DbpString("cancelled");
272 }
273
274
275 void SimulateTagHfListen(void)
276 {
277 uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
278 uint8_t v = 0;
279 int i;
280 int p = 0;
281
282 // We're using this mode just so that I can test it out; the simulated
283 // tag mode would work just as well and be simpler.
284 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
285
286 // We need to listen to the high-frequency, peak-detected path.
287 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
288
289 FpgaSetupSsc();
290
291 i = 0;
292 for(;;) {
293 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
294 AT91C_BASE_SSC->SSC_THR = 0xff;
295 }
296 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
297 uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
298
299 v <<= 1;
300 if(r & 1) {
301 v |= 1;
302 }
303 p++;
304
305 if(p >= 8) {
306 dest[i] = v;
307 v = 0;
308 p = 0;
309 i++;
310
311 if(i >= FREE_BUFFER_SIZE) {
312 break;
313 }
314 }
315 }
316 }
317 DbpString("simulate tag (now type bitsamples)");
318 }
319
320 void ReadMem(int addr)
321 {
322 const uint8_t *data = ((uint8_t *)addr);
323
324 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
325 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
326 }
327
328 /* osimage version information is linked in */
329 extern struct version_information version_information;
330 /* bootrom version information is pointed to from _bootphase1_version_pointer */
331 extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
332 void SendVersion(void)
333 {
334 char temp[48]; /* Limited data payload in USB packets */
335 DbpString("Prox/RFID mark3 RFID instrument");
336
337 /* Try to find the bootrom version information. Expect to find a pointer at
338 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
339 * pointer, then use it.
340 */
341 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
342 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
343 DbpString("bootrom version information appears invalid");
344 } else {
345 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
346 DbpString(temp);
347 }
348
349 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
350 DbpString(temp);
351
352 FpgaGatherVersion(temp, sizeof(temp));
353 DbpString(temp);
354 }
355
356 #ifdef WITH_LF
357 // samy's sniff and repeat routine
358 void SamyRun()
359 {
360 DbpString("Stand-alone mode! No PC necessary.");
361
362 // 3 possible options? no just 2 for now
363 #define OPTS 2
364
365 int high[OPTS], low[OPTS];
366
367 // Oooh pretty -- notify user we're in elite samy mode now
368 LED(LED_RED, 200);
369 LED(LED_ORANGE, 200);
370 LED(LED_GREEN, 200);
371 LED(LED_ORANGE, 200);
372 LED(LED_RED, 200);
373 LED(LED_ORANGE, 200);
374 LED(LED_GREEN, 200);
375 LED(LED_ORANGE, 200);
376 LED(LED_RED, 200);
377
378 int selected = 0;
379 int playing = 0;
380
381 // Turn on selected LED
382 LED(selected + 1, 0);
383
384 for (;;)
385 {
386 UsbPoll(FALSE);
387 WDT_HIT();
388
389 // Was our button held down or pressed?
390 int button_pressed = BUTTON_HELD(1000);
391 SpinDelay(300);
392
393 // Button was held for a second, begin recording
394 if (button_pressed > 0)
395 {
396 LEDsoff();
397 LED(selected + 1, 0);
398 LED(LED_RED2, 0);
399
400 // record
401 DbpString("Starting recording");
402
403 // wait for button to be released
404 while(BUTTON_PRESS())
405 WDT_HIT();
406
407 /* need this delay to prevent catching some weird data */
408 SpinDelay(500);
409
410 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
411 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
412
413 LEDsoff();
414 LED(selected + 1, 0);
415 // Finished recording
416
417 // If we were previously playing, set playing off
418 // so next button push begins playing what we recorded
419 playing = 0;
420 }
421
422 // Change where to record (or begin playing)
423 else if (button_pressed)
424 {
425 // Next option if we were previously playing
426 if (playing)
427 selected = (selected + 1) % OPTS;
428 playing = !playing;
429
430 LEDsoff();
431 LED(selected + 1, 0);
432
433 // Begin transmitting
434 if (playing)
435 {
436 LED(LED_GREEN, 0);
437 DbpString("Playing");
438 // wait for button to be released
439 while(BUTTON_PRESS())
440 WDT_HIT();
441 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
442 CmdHIDsimTAG(high[selected], low[selected], 0);
443 DbpString("Done playing");
444 if (BUTTON_HELD(1000) > 0)
445 {
446 DbpString("Exiting");
447 LEDsoff();
448 return;
449 }
450
451 /* We pressed a button so ignore it here with a delay */
452 SpinDelay(300);
453
454 // when done, we're done playing, move to next option
455 selected = (selected + 1) % OPTS;
456 playing = !playing;
457 LEDsoff();
458 LED(selected + 1, 0);
459 }
460 else
461 while(BUTTON_PRESS())
462 WDT_HIT();
463 }
464 }
465 }
466 #endif
467
468 /*
469 OBJECTIVE
470 Listen and detect an external reader. Determine the best location
471 for the antenna.
472
473 INSTRUCTIONS:
474 Inside the ListenReaderField() function, there is two mode.
475 By default, when you call the function, you will enter mode 1.
476 If you press the PM3 button one time, you will enter mode 2.
477 If you press the PM3 button a second time, you will exit the function.
478
479 DESCRIPTION OF MODE 1:
480 This mode just listens for an external reader field and lights up green
481 for HF and/or red for LF. This is the original mode of the detectreader
482 function.
483
484 DESCRIPTION OF MODE 2:
485 This mode will visually represent, using the LEDs, the actual strength of the
486 current compared to the maximum current detected. Basically, once you know
487 what kind of external reader is present, it will help you spot the best location to place
488 your antenna. You will probably not get some good results if there is a LF and a HF reader
489 at the same place! :-)
490
491 LIGHT SCHEME USED:
492 */
493 static const char LIGHT_SCHEME[] = {
494 0x0, /* ---- | No field detected */
495 0x1, /* X--- | 14% of maximum current detected */
496 0x2, /* -X-- | 29% of maximum current detected */
497 0x4, /* --X- | 43% of maximum current detected */
498 0x8, /* ---X | 57% of maximum current detected */
499 0xC, /* --XX | 71% of maximum current detected */
500 0xE, /* -XXX | 86% of maximum current detected */
501 0xF, /* XXXX | 100% of maximum current detected */
502 };
503 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
504
505 void ListenReaderField(int limit)
506 {
507 int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
508 int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;
509 int mode=1, display_val, display_max, i;
510
511 #define LF_ONLY 1
512 #define HF_ONLY 2
513
514 LEDsoff();
515
516 lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
517
518 if(limit != HF_ONLY) {
519 Dbprintf("LF 125/134 Baseline: %d", lf_av);
520 lf_baseline = lf_av;
521 }
522
523 hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
524
525 if (limit != LF_ONLY) {
526 Dbprintf("HF 13.56 Baseline: %d", hf_av);
527 hf_baseline = hf_av;
528 }
529
530 for(;;) {
531 if (BUTTON_PRESS()) {
532 SpinDelay(500);
533 switch (mode) {
534 case 1:
535 mode=2;
536 DbpString("Signal Strength Mode");
537 break;
538 case 2:
539 default:
540 DbpString("Stopped");
541 LEDsoff();
542 return;
543 break;
544 }
545 }
546 WDT_HIT();
547
548 if (limit != HF_ONLY) {
549 if(mode==1) {
550 if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
551 else LED_D_OFF();
552 }
553
554 ++lf_count;
555 lf_av_new= ReadAdc(ADC_CHAN_LF);
556 // see if there's a significant change
557 if(abs(lf_av - lf_av_new) > 10) {
558 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count);
559 lf_av = lf_av_new;
560 if (lf_av > lf_max)
561 lf_max = lf_av;
562 lf_count= 0;
563 }
564 }
565
566 if (limit != LF_ONLY) {
567 if (mode == 1){
568 if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
569 else LED_B_OFF();
570 }
571
572 ++hf_count;
573 hf_av_new= ReadAdc(ADC_CHAN_HF);
574 // see if there's a significant change
575 if(abs(hf_av - hf_av_new) > 10) {
576 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count);
577 hf_av = hf_av_new;
578 if (hf_av > hf_max)
579 hf_max = hf_av;
580 hf_count= 0;
581 }
582 }
583
584 if(mode == 2) {
585 if (limit == LF_ONLY) {
586 display_val = lf_av;
587 display_max = lf_max;
588 } else if (limit == HF_ONLY) {
589 display_val = hf_av;
590 display_max = hf_max;
591 } else { /* Pick one at random */
592 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
593 display_val = hf_av;
594 display_max = hf_max;
595 } else {
596 display_val = lf_av;
597 display_max = lf_max;
598 }
599 }
600 for (i=0; i<LIGHT_LEN; i++) {
601 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
602 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
603 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
604 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
605 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
606 break;
607 }
608 }
609 }
610 }
611 }
612
613 void UsbPacketReceived(uint8_t *packet, int len)
614 {
615 UsbCommand *c = (UsbCommand *)packet;
616 UsbCommand ack;
617 ack.cmd = CMD_ACK;
618
619 switch(c->cmd) {
620 #ifdef WITH_LF
621 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
622 AcquireRawAdcSamples125k(c->arg[0]);
623 UsbSendPacket((uint8_t*)&ack, sizeof(ack));
624 break;
625 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
626 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
627 break;
628 case CMD_HID_DEMOD_FSK:
629 CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
630 break;
631 case CMD_HID_SIM_TAG:
632 CmdHIDsimTAG(c->arg[0], c->arg[1], 1); // Simulate HID tag by ID
633 break;
634 case CMD_HID_CLONE_TAG:
635 CopyHIDtoT55x7(c->arg[0], c->arg[1]); // Clone HID tag by ID to T55x7
636 break;
637 case CMD_EM410X_WRITE_TAG:
638 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
639 break;
640 case CMD_READ_TI_TYPE:
641 ReadTItag();
642 break;
643 case CMD_WRITE_TI_TYPE:
644 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
645 break;
646 case CMD_SIMULATE_TAG_125K:
647 LED_A_ON();
648 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
649 LED_A_OFF();
650 break;
651 case CMD_LF_SIMULATE_BIDIR:
652 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
653 break;
654 case CMD_INDALA_CLONE_TAG: // Clone Indala 64-bit tag by UID to T55x7
655 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
656 break;
657 case CMD_INDALA_CLONE_TAG_L: // Clone Indala 224-bit tag by UID to T55x7
658 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
659 break;
660 #endif
661
662 #ifdef WITH_HITAG
663 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
664 SnoopHitag(c->arg[0]);
665 break;
666 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
667 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
668 break;
669 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
670 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
671 break;
672 #endif
673
674 #ifdef WITH_ISO15693
675 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
676 AcquireRawAdcSamplesIso15693();
677 break;
678 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
679 RecordRawAdcSamplesIso15693();
680 break;
681
682 case CMD_ISO_15693_COMMAND:
683 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
684 break;
685
686 case CMD_ISO_15693_FIND_AFI:
687 BruteforceIso15693Afi(c->arg[0]);
688 break;
689
690 case CMD_ISO_15693_DEBUG:
691 SetDebugIso15693(c->arg[0]);
692 break;
693
694 case CMD_READER_ISO_15693:
695 ReaderIso15693(c->arg[0]);
696 break;
697 case CMD_SIMTAG_ISO_15693:
698 SimTagIso15693(c->arg[0]);
699 break;
700 #endif
701
702 #ifdef WITH_LEGICRF
703 case CMD_SIMULATE_TAG_LEGIC_RF:
704 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
705 break;
706
707 case CMD_WRITER_LEGIC_RF:
708 LegicRfWriter(c->arg[1], c->arg[0]);
709 break;
710
711 case CMD_READER_LEGIC_RF:
712 LegicRfReader(c->arg[0], c->arg[1]);
713 break;
714 #endif
715
716 #ifdef WITH_ISO14443b
717 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
718 AcquireRawAdcSamplesIso14443(c->arg[0]);
719 break;
720 case CMD_READ_SRI512_TAG:
721 ReadSRI512Iso14443(c->arg[0]);
722 break;
723 case CMD_READ_SRIX4K_TAG:
724 ReadSRIX4KIso14443(c->arg[0]);
725 break;
726 case CMD_SNOOP_ISO_14443:
727 SnoopIso14443();
728 break;
729 case CMD_SIMULATE_TAG_ISO_14443:
730 SimulateIso14443Tag();
731 break;
732 #endif
733
734 #ifdef WITH_ISO14443a
735 case CMD_SNOOP_ISO_14443a:
736 SnoopIso14443a(c->arg[0]);
737 break;
738 case CMD_READER_ISO_14443a:
739 ReaderIso14443a(c, &ack);
740 break;
741 case CMD_SIMULATE_TAG_ISO_14443a:
742 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2]); // ## Simulate iso14443a tag - pass tag type & UID
743 break;
744 case CMD_EPA_PACE_COLLECT_NONCE:
745 EPA_PACE_Collect_Nonce(c, &ack);
746 break;
747
748 case CMD_READER_MIFARE:
749 ReaderMifare(c->arg[0]);
750 break;
751 case CMD_MIFARE_READBL:
752 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
753 break;
754 case CMD_MIFARE_READSC:
755 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
756 break;
757 case CMD_MIFARE_WRITEBL:
758 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
759 break;
760 case CMD_MIFARE_NESTED:
761 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
762 break;
763 case CMD_MIFARE_CHKKEYS:
764 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
765 break;
766 case CMD_SIMULATE_MIFARE_CARD:
767 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
768 break;
769
770 // emulator
771 case CMD_MIFARE_SET_DBGMODE:
772 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
773 break;
774 case CMD_MIFARE_EML_MEMCLR:
775 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
776 break;
777 case CMD_MIFARE_EML_MEMSET:
778 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
779 break;
780 case CMD_MIFARE_EML_MEMGET:
781 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
782 break;
783 case CMD_MIFARE_EML_CARDLOAD:
784 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
785 break;
786
787 // Work with "magic Chinese" card
788 case CMD_MIFARE_EML_CSETBLOCK:
789 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
790 break;
791 case CMD_MIFARE_EML_CGETBLOCK:
792 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
793 break;
794
795 // mifare sniffer
796 case CMD_MIFARE_SNIFFER:
797 SniffMifare(c->arg[0]);
798 break;
799 #endif
800
801 #ifdef WITH_ICLASS
802 // Makes use of ISO14443a FPGA Firmware
803 case CMD_SNOOP_ICLASS:
804 SnoopIClass();
805 break;
806 case CMD_SIMULATE_TAG_ICLASS:
807 SimulateIClass(c->arg[0], c->d.asBytes);
808 break;
809 case CMD_READER_ICLASS:
810 ReaderIClass(c->arg[0]);
811 break;
812 #endif
813
814 case CMD_SIMULATE_TAG_HF_LISTEN:
815 SimulateTagHfListen();
816 break;
817
818 case CMD_BUFF_CLEAR:
819 BufferClear();
820 break;
821
822 case CMD_MEASURE_ANTENNA_TUNING:
823 MeasureAntennaTuning();
824 break;
825
826 case CMD_MEASURE_ANTENNA_TUNING_HF:
827 MeasureAntennaTuningHf();
828 break;
829
830 case CMD_LISTEN_READER_FIELD:
831 ListenReaderField(c->arg[0]);
832 break;
833
834 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
835 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
836 SpinDelay(200);
837 LED_D_OFF(); // LED D indicates field ON or OFF
838 break;
839
840 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {
841 UsbCommand n;
842 if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
843 n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
844 } else {
845 n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
846 }
847 n.arg[0] = c->arg[0];
848 memcpy(n.d.asDwords, BigBuf+c->arg[0], 12*sizeof(uint32_t));
849 LED_B_ON();
850 UsbSendPacket((uint8_t *)&n, sizeof(n));
851 LED_B_OFF();
852 } break;
853
854 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
855 uint8_t *b = (uint8_t *)BigBuf;
856 memcpy(b+c->arg[0], c->d.asBytes, 48);
857 //Dbprintf("copied 48 bytes to %i",b+c->arg[0]);
858 UsbSendPacket((uint8_t*)&ack, sizeof(ack));
859 } break;
860
861 case CMD_READ_MEM:
862 ReadMem(c->arg[0]);
863 break;
864
865 case CMD_SET_LF_DIVISOR:
866 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
867 break;
868
869 case CMD_SET_ADC_MUX:
870 switch(c->arg[0]) {
871 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
872 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
873 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
874 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
875 }
876 break;
877
878 case CMD_VERSION:
879 SendVersion();
880 break;
881
882 #ifdef WITH_LCD
883 case CMD_LCD_RESET:
884 LCDReset();
885 break;
886 case CMD_LCD:
887 LCDSend(c->arg[0]);
888 break;
889 #endif
890 case CMD_SETUP_WRITE:
891 case CMD_FINISH_WRITE:
892 case CMD_HARDWARE_RESET: {
893 USB_D_PLUS_PULLUP_OFF();
894 SpinDelay(1000);
895 SpinDelay(1000);
896 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
897 for(;;) {
898 // We're going to reset, and the bootrom will take control.
899 }
900 } break;
901
902 case CMD_START_FLASH: {
903 if(common_area.flags.bootrom_present) {
904 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
905 }
906 USB_D_PLUS_PULLUP_OFF();
907 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
908 for(;;);
909 } break;
910
911 case CMD_DEVICE_INFO: {
912 UsbCommand c;
913 c.cmd = CMD_DEVICE_INFO;
914 c.arg[0] = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
915 if(common_area.flags.bootrom_present) c.arg[0] |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
916 UsbSendPacket((uint8_t*)&c, sizeof(c));
917 } break;
918
919 default: {
920 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
921 } break;
922 }
923 }
924
925 void __attribute__((noreturn)) AppMain(void)
926 {
927 SpinDelay(100);
928
929 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
930 /* Initialize common area */
931 memset(&common_area, 0, sizeof(common_area));
932 common_area.magic = COMMON_AREA_MAGIC;
933 common_area.version = 1;
934 }
935 common_area.flags.osimage_present = 1;
936
937 LED_D_OFF();
938 LED_C_OFF();
939 LED_B_OFF();
940 LED_A_OFF();
941
942 UsbStart();
943
944 // The FPGA gets its clock from us from PCK0 output, so set that up.
945 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
946 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
947 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
948 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
949 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
950 AT91C_PMC_PRES_CLK_4;
951 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
952
953 // Reset SPI
954 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
955 // Reset SSC
956 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
957
958 // Load the FPGA image, which we have stored in our flash.
959 FpgaDownloadAndGo();
960
961 StartTickCount();
962
963 #ifdef WITH_LCD
964
965 LCDInit();
966
967 // test text on different colored backgrounds
968 LCDString(" The quick brown fox ", (char *)&FONT6x8,1,1+8*0,WHITE ,BLACK );
969 LCDString(" jumped over the ", (char *)&FONT6x8,1,1+8*1,BLACK ,WHITE );
970 LCDString(" lazy dog. ", (char *)&FONT6x8,1,1+8*2,YELLOW ,RED );
971 LCDString(" AaBbCcDdEeFfGgHhIiJj ", (char *)&FONT6x8,1,1+8*3,RED ,GREEN );
972 LCDString(" KkLlMmNnOoPpQqRrSsTt ", (char *)&FONT6x8,1,1+8*4,MAGENTA,BLUE );
973 LCDString("UuVvWwXxYyZz0123456789", (char *)&FONT6x8,1,1+8*5,BLUE ,YELLOW);
974 LCDString("`-=[]_;',./~!@#$%^&*()", (char *)&FONT6x8,1,1+8*6,BLACK ,CYAN );
975 LCDString(" _+{}|:\\\"<>? ",(char *)&FONT6x8,1,1+8*7,BLUE ,MAGENTA);
976
977 // color bands
978 LCDFill(0, 1+8* 8, 132, 8, BLACK);
979 LCDFill(0, 1+8* 9, 132, 8, WHITE);
980 LCDFill(0, 1+8*10, 132, 8, RED);
981 LCDFill(0, 1+8*11, 132, 8, GREEN);
982 LCDFill(0, 1+8*12, 132, 8, BLUE);
983 LCDFill(0, 1+8*13, 132, 8, YELLOW);
984 LCDFill(0, 1+8*14, 132, 8, CYAN);
985 LCDFill(0, 1+8*15, 132, 8, MAGENTA);
986
987 #endif
988
989 for(;;) {
990 UsbPoll(FALSE);
991 WDT_HIT();
992
993 #ifdef WITH_LF
994 if (BUTTON_HELD(1000) > 0)
995 SamyRun();
996 #endif
997 }
998 }
Impressum, Datenschutz