]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso14443b.c
db7f7539e31488c570051ae6fbcb08e965a23735
[proxmark3-svn] / armsrc / iso14443b.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, split Nov 2006
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Routines to support ISO 14443B. This includes both the reader software and
9 // the `fake tag' modes.
10 //-----------------------------------------------------------------------------
11
12 #include "proxmark3.h"
13 #include "apps.h"
14 #include "util.h"
15 #include "string.h"
16
17 #include "iso14443crc.h"
18
19 #define RECEIVE_SAMPLES_TIMEOUT 200000
20 #define ISO14443B_DMA_BUFFER_SIZE 512
21
22 uint8_t PowerOn = TRUE;
23 //=============================================================================
24 // An ISO 14443 Type B tag. We listen for commands from the reader, using
25 // a UART kind of thing that's implemented in software. When we get a
26 // frame (i.e., a group of bytes between SOF and EOF), we check the CRC.
27 // If it's good, then we can do something appropriate with it, and send
28 // a response.
29 //=============================================================================
30
31 //-----------------------------------------------------------------------------
32 // Code up a string of octets at layer 2 (including CRC, we don't generate
33 // that here) so that they can be transmitted to the reader. Doesn't transmit
34 // them yet, just leaves them ready to send in ToSend[].
35 //-----------------------------------------------------------------------------
36 static void CodeIso14443bAsTag(const uint8_t *cmd, int len)
37 {
38 int i;
39
40 ToSendReset();
41
42 // Transmit a burst of ones, as the initial thing that lets the
43 // reader get phase sync. This (TR1) must be > 80/fs, per spec,
44 // but tag that I've tried (a Paypass) exceeds that by a fair bit,
45 // so I will too.
46 for(i = 0; i < 20; i++) {
47 ToSendStuffBit(1);
48 ToSendStuffBit(1);
49 ToSendStuffBit(1);
50 ToSendStuffBit(1);
51 }
52
53 // Send SOF.
54 for(i = 0; i < 10; i++) {
55 ToSendStuffBit(0);
56 ToSendStuffBit(0);
57 ToSendStuffBit(0);
58 ToSendStuffBit(0);
59 }
60 for(i = 0; i < 2; i++) {
61 ToSendStuffBit(1);
62 ToSendStuffBit(1);
63 ToSendStuffBit(1);
64 ToSendStuffBit(1);
65 }
66
67 for(i = 0; i < len; i++) {
68 int j;
69 uint8_t b = cmd[i];
70
71 // Start bit
72 ToSendStuffBit(0);
73 ToSendStuffBit(0);
74 ToSendStuffBit(0);
75 ToSendStuffBit(0);
76
77 // Data bits
78 for(j = 0; j < 8; j++) {
79 if(b & 1) {
80 ToSendStuffBit(1);
81 ToSendStuffBit(1);
82 ToSendStuffBit(1);
83 ToSendStuffBit(1);
84 } else {
85 ToSendStuffBit(0);
86 ToSendStuffBit(0);
87 ToSendStuffBit(0);
88 ToSendStuffBit(0);
89 }
90 b >>= 1;
91 }
92
93 // Stop bit
94 ToSendStuffBit(1);
95 ToSendStuffBit(1);
96 ToSendStuffBit(1);
97 ToSendStuffBit(1);
98 }
99
100 // Send EOF.
101 for(i = 0; i < 10; i++) {
102 ToSendStuffBit(0);
103 ToSendStuffBit(0);
104 ToSendStuffBit(0);
105 ToSendStuffBit(0);
106 }
107 for(i = 0; i < 2; i++) {
108 ToSendStuffBit(1);
109 ToSendStuffBit(1);
110 ToSendStuffBit(1);
111 ToSendStuffBit(1);
112 }
113
114 // Convert from last byte pos to length
115 ToSendMax++;
116 }
117
118 //-----------------------------------------------------------------------------
119 // The software UART that receives commands from the reader, and its state
120 // variables.
121 //-----------------------------------------------------------------------------
122 static struct {
123 enum {
124 STATE_UNSYNCD,
125 STATE_GOT_FALLING_EDGE_OF_SOF,
126 STATE_AWAITING_START_BIT,
127 STATE_RECEIVING_DATA
128 } state;
129 uint16_t shiftReg;
130 int bitCnt;
131 int byteCnt;
132 int byteCntMax;
133 int posCnt;
134 uint8_t *output;
135 } Uart;
136
137 /* Receive & handle a bit coming from the reader.
138 *
139 * This function is called 4 times per bit (every 2 subcarrier cycles).
140 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
141 *
142 * LED handling:
143 * LED A -> ON once we have received the SOF and are expecting the rest.
144 * LED A -> OFF once we have received EOF or are in error state or unsynced
145 *
146 * Returns: true if we received a EOF
147 * false if we are still waiting for some more
148 */
149 static RAMFUNC int Handle14443bUartBit(uint8_t bit)
150 {
151 switch(Uart.state) {
152 case STATE_UNSYNCD:
153 if(!bit) {
154 // we went low, so this could be the beginning
155 // of an SOF
156 Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
157 Uart.posCnt = 0;
158 Uart.bitCnt = 0;
159 }
160 break;
161
162 case STATE_GOT_FALLING_EDGE_OF_SOF:
163 Uart.posCnt++;
164 if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
165 if(bit) {
166 if(Uart.bitCnt > 9) {
167 // we've seen enough consecutive
168 // zeros that it's a valid SOF
169 Uart.posCnt = 0;
170 Uart.byteCnt = 0;
171 Uart.state = STATE_AWAITING_START_BIT;
172 LED_A_ON(); // Indicate we got a valid SOF
173 } else {
174 // didn't stay down long enough
175 // before going high, error
176 Uart.state = STATE_UNSYNCD;
177 }
178 } else {
179 // do nothing, keep waiting
180 }
181 Uart.bitCnt++;
182 }
183 if(Uart.posCnt >= 4) Uart.posCnt = 0;
184 if(Uart.bitCnt > 12) {
185 // Give up if we see too many zeros without
186 // a one, too.
187 LED_A_OFF();
188 Uart.state = STATE_UNSYNCD;
189 }
190 break;
191
192 case STATE_AWAITING_START_BIT:
193 Uart.posCnt++;
194 if(bit) {
195 if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
196 // stayed high for too long between
197 // characters, error
198 Uart.state = STATE_UNSYNCD;
199 }
200 } else {
201 // falling edge, this starts the data byte
202 Uart.posCnt = 0;
203 Uart.bitCnt = 0;
204 Uart.shiftReg = 0;
205 Uart.state = STATE_RECEIVING_DATA;
206 }
207 break;
208
209 case STATE_RECEIVING_DATA:
210 Uart.posCnt++;
211 if(Uart.posCnt == 2) {
212 // time to sample a bit
213 Uart.shiftReg >>= 1;
214 if(bit) {
215 Uart.shiftReg |= 0x200;
216 }
217 Uart.bitCnt++;
218 }
219 if(Uart.posCnt >= 4) {
220 Uart.posCnt = 0;
221 }
222 if(Uart.bitCnt == 10) {
223 if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
224 {
225 // this is a data byte, with correct
226 // start and stop bits
227 Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
228 Uart.byteCnt++;
229
230 if(Uart.byteCnt >= Uart.byteCntMax) {
231 // Buffer overflowed, give up
232 LED_A_OFF();
233 Uart.state = STATE_UNSYNCD;
234 } else {
235 // so get the next byte now
236 Uart.posCnt = 0;
237 Uart.state = STATE_AWAITING_START_BIT;
238 }
239 } else if (Uart.shiftReg == 0x000) {
240 // this is an EOF byte
241 LED_A_OFF(); // Finished receiving
242 Uart.state = STATE_UNSYNCD;
243 if (Uart.byteCnt != 0) {
244 return TRUE;
245 }
246 } else {
247 // this is an error
248 LED_A_OFF();
249 Uart.state = STATE_UNSYNCD;
250 }
251 }
252 break;
253
254 default:
255 LED_A_OFF();
256 Uart.state = STATE_UNSYNCD;
257 break;
258 }
259
260 return FALSE;
261 }
262
263
264 static void UartReset()
265 {
266 Uart.byteCntMax = MAX_FRAME_SIZE;
267 Uart.state = STATE_UNSYNCD;
268 Uart.byteCnt = 0;
269 Uart.bitCnt = 0;
270 memset(Uart.output, 0x00, MAX_FRAME_SIZE);
271 }
272
273
274 static void UartInit(uint8_t *data)
275 {
276 Uart.output = data;
277 UartReset();
278 }
279
280
281 //-----------------------------------------------------------------------------
282 // Receive a command (from the reader to us, where we are the simulated tag),
283 // and store it in the given buffer, up to the given maximum length. Keeps
284 // spinning, waiting for a well-framed command, until either we get one
285 // (returns TRUE) or someone presses the pushbutton on the board (FALSE).
286 //
287 // Assume that we're called with the SSC (to the FPGA) and ADC path set
288 // correctly.
289 //-----------------------------------------------------------------------------
290 static int GetIso14443bCommandFromReader(uint8_t *received, uint16_t *len)
291 {
292 // Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen
293 // only, since we are receiving, not transmitting).
294 // Signal field is off with the appropriate LED
295 LED_D_OFF();
296 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
297
298 // Now run a `software UART' on the stream of incoming samples.
299 UartInit(received);
300
301 for(;;) {
302 WDT_HIT();
303
304 if(BUTTON_PRESS()) return FALSE;
305
306 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
307 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
308 for(uint8_t mask = 0x80; mask != 0x00; mask >>= 1) {
309 if(Handle14443bUartBit(b & mask)) {
310 *len = Uart.byteCnt;
311 return TRUE;
312 }
313 }
314 }
315 }
316
317 return FALSE;
318 }
319
320 //-----------------------------------------------------------------------------
321 // Main loop of simulated tag: receive commands from reader, decide what
322 // response to send, and send it.
323 //-----------------------------------------------------------------------------
324 void SimulateIso14443bTag(void)
325 {
326 // the only commands we understand is WUPB, AFI=0, Select All, N=1:
327 static const uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 }; // WUPB
328 // ... and REQB, AFI=0, Normal Request, N=1:
329 static const uint8_t cmd2[] = { 0x05, 0x00, 0x00, 0x71, 0xFF }; // REQB
330 // ... and HLTB
331 static const uint8_t cmd3[] = { 0x50, 0xff, 0xff, 0xff, 0xff }; // HLTB
332 // ... and ATTRIB
333 static const uint8_t cmd4[] = { 0x1D, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; // ATTRIB
334
335 // ... and we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922,
336 // supports only 106kBit/s in both directions, max frame size = 32Bytes,
337 // supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported:
338 static const uint8_t response1[] = {
339 0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22,
340 0x00, 0x21, 0x85, 0x5e, 0xd7
341 };
342 // response to HLTB and ATTRIB
343 static const uint8_t response2[] = {0x00, 0x78, 0xF0};
344
345 uint8_t parity[MAX_PARITY_SIZE];
346
347 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
348
349 clear_trace();
350 set_tracing(TRUE);
351
352 const uint8_t *resp;
353 uint8_t *respCode;
354 uint16_t respLen, respCodeLen;
355
356 // allocate command receive buffer
357 BigBuf_free();
358 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
359
360 uint16_t len;
361 uint16_t cmdsRecvd = 0;
362
363 // prepare the (only one) tag answer:
364 CodeIso14443bAsTag(response1, sizeof(response1));
365 uint8_t *resp1Code = BigBuf_malloc(ToSendMax);
366 memcpy(resp1Code, ToSend, ToSendMax);
367 uint16_t resp1CodeLen = ToSendMax;
368
369 // prepare the (other) tag answer:
370 CodeIso14443bAsTag(response2, sizeof(response2));
371 uint8_t *resp2Code = BigBuf_malloc(ToSendMax);
372 memcpy(resp2Code, ToSend, ToSendMax);
373 uint16_t resp2CodeLen = ToSendMax;
374
375 // We need to listen to the high-frequency, peak-detected path.
376 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
377 FpgaSetupSsc();
378
379 cmdsRecvd = 0;
380
381 for(;;) {
382
383 if(!GetIso14443bCommandFromReader(receivedCmd, &len)) {
384 Dbprintf("button pressed, received %d commands", cmdsRecvd);
385 break;
386 }
387
388 if (tracing) {
389 LogTrace(receivedCmd, len, 0, 0, parity, TRUE);
390 }
391
392 // Good, look at the command now.
393 if ( (len == sizeof(cmd1) && memcmp(receivedCmd, cmd1, len) == 0)
394 || (len == sizeof(cmd2) && memcmp(receivedCmd, cmd2, len) == 0) ) {
395 resp = response1;
396 respLen = sizeof(response1);
397 respCode = resp1Code;
398 respCodeLen = resp1CodeLen;
399 } else if ( (len == sizeof(cmd3) && receivedCmd[0] == cmd3[0])
400 || (len == sizeof(cmd4) && receivedCmd[0] == cmd4[0]) ) {
401 resp = response2;
402 respLen = sizeof(response2);
403 respCode = resp2Code;
404 respCodeLen = resp2CodeLen;
405 } else {
406 Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len, cmdsRecvd);
407 // And print whether the CRC fails, just for good measure
408 uint8_t b1, b2;
409 if (len >= 3){ // if crc exists
410 ComputeCrc14443(CRC_14443_B, receivedCmd, len-2, &b1, &b2);
411 if(b1 != receivedCmd[len-2] || b2 != receivedCmd[len-1]) {
412 // Not so good, try again.
413 DbpString("+++CRC fail");
414
415 } else {
416 DbpString("CRC passes");
417 }
418 }
419 //get rid of compiler warning
420 respCodeLen = 0;
421 resp = response1;
422 respLen = 0;
423 respCode = resp1Code;
424 //don't crash at new command just wait and see if reader will send other new cmds.
425 //break;
426 }
427
428 cmdsRecvd++;
429
430 if(cmdsRecvd > 0x30) {
431 DbpString("many commands later...");
432 break;
433 }
434
435 if(respCodeLen <= 0) continue;
436
437 // Modulate BPSK
438 // Signal field is off with the appropriate LED
439 LED_D_OFF();
440 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK);
441 AT91C_BASE_SSC->SSC_THR = 0xff;
442 FpgaSetupSsc();
443
444 uint8_t c;
445 // clear receiving shift register and holding register
446 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
447 c = AT91C_BASE_SSC->SSC_RHR; (void) c;
448 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
449 c = AT91C_BASE_SSC->SSC_RHR; (void) c;
450
451 // Clear TXRDY:
452 AT91C_BASE_SSC->SSC_THR = 0x00;
453
454 // Transmit the response.
455 uint16_t FpgaSendQueueDelay = 0;
456 uint16_t i = 0;
457 for(;i < respCodeLen; ) {
458 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
459 AT91C_BASE_SSC->SSC_THR = respCode[i++];
460 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
461 }
462 if(BUTTON_PRESS()) break;
463 }
464
465 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
466 uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
467 for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
468 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
469 AT91C_BASE_SSC->SSC_THR = 0x00;
470 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
471 i++;
472 }
473 }
474
475 // trace the response:
476 if (tracing) LogTrace(resp, respLen, 0, 0, parity, FALSE);
477 }
478 FpgaDisableSscDma();
479 }
480
481 //=============================================================================
482 // An ISO 14443 Type B reader. We take layer two commands, code them
483 // appropriately, and then send them to the tag. We then listen for the
484 // tag's response, which we leave in the buffer to be demodulated on the
485 // PC side.
486 //=============================================================================
487
488 static struct {
489 enum {
490 DEMOD_UNSYNCD,
491 DEMOD_PHASE_REF_TRAINING,
492 DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
493 DEMOD_GOT_FALLING_EDGE_OF_SOF,
494 DEMOD_AWAITING_START_BIT,
495 DEMOD_RECEIVING_DATA
496 } state;
497 int bitCount;
498 int posCount;
499 int thisBit;
500 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
501 int metric;
502 int metricN;
503 */
504 uint16_t shiftReg;
505 uint8_t *output;
506 int len;
507 int sumI;
508 int sumQ;
509 } Demod;
510
511 /*
512 * Handles reception of a bit from the tag
513 *
514 * This function is called 2 times per bit (every 4 subcarrier cycles).
515 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us
516 *
517 * LED handling:
518 * LED C -> ON once we have received the SOF and are expecting the rest.
519 * LED C -> OFF once we have received EOF or are unsynced
520 *
521 * Returns: true if we received a EOF
522 * false if we are still waiting for some more
523 *
524 */
525 static RAMFUNC int Handle14443bSamplesDemod(int ci, int cq)
526 {
527 int v;
528
529 // The soft decision on the bit uses an estimate of just the
530 // quadrant of the reference angle, not the exact angle.
531 #define MAKE_SOFT_DECISION() { \
532 if(Demod.sumI > 0) { \
533 v = ci; \
534 } else { \
535 v = -ci; \
536 } \
537 if(Demod.sumQ > 0) { \
538 v += cq; \
539 } else { \
540 v -= cq; \
541 } \
542 }
543
544 #define SUBCARRIER_DETECT_THRESHOLD 8
545
546 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by abs(ci) + abs(cq)
547 /* #define CHECK_FOR_SUBCARRIER() { \
548 v = ci; \
549 if(v < 0) v = -v; \
550 if(cq > 0) { \
551 v += cq; \
552 } else { \
553 v -= cq; \
554 } \
555 }
556 */
557 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
558 #define CHECK_FOR_SUBCARRIER() { \
559 if(ci < 0) { \
560 if(cq < 0) { /* ci < 0, cq < 0 */ \
561 if (cq < ci) { \
562 v = -cq - (ci >> 1); \
563 } else { \
564 v = -ci - (cq >> 1); \
565 } \
566 } else { /* ci < 0, cq >= 0 */ \
567 if (cq < -ci) { \
568 v = -ci + (cq >> 1); \
569 } else { \
570 v = cq - (ci >> 1); \
571 } \
572 } \
573 } else { \
574 if(cq < 0) { /* ci >= 0, cq < 0 */ \
575 if (-cq < ci) { \
576 v = ci - (cq >> 1); \
577 } else { \
578 v = -cq + (ci >> 1); \
579 } \
580 } else { /* ci >= 0, cq >= 0 */ \
581 if (cq < ci) { \
582 v = ci + (cq >> 1); \
583 } else { \
584 v = cq + (ci >> 1); \
585 } \
586 } \
587 } \
588 }
589
590 switch(Demod.state) {
591 case DEMOD_UNSYNCD:
592 CHECK_FOR_SUBCARRIER();
593 if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected
594 Demod.state = DEMOD_PHASE_REF_TRAINING;
595 Demod.sumI = ci;
596 Demod.sumQ = cq;
597 Demod.posCount = 1;
598 }
599 break;
600
601 case DEMOD_PHASE_REF_TRAINING:
602 if(Demod.posCount < 10*2) {
603 CHECK_FOR_SUBCARRIER();
604 if (v > SUBCARRIER_DETECT_THRESHOLD) {
605 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
606 // note: synchronization time > 80 1/fs
607 Demod.sumI += ci;
608 Demod.sumQ += cq;
609 Demod.posCount++;
610 } else { // subcarrier lost
611 Demod.state = DEMOD_UNSYNCD;
612 }
613 } else {
614 Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
615 }
616 break;
617
618 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
619 MAKE_SOFT_DECISION();
620 if(v < 0) { // logic '0' detected
621 Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
622 Demod.posCount = 0; // start of SOF sequence
623 } else {
624 //if(Demod.posCount > 200/4) { // maximum length of TR1 = 200 1/fs
625 if(Demod.posCount > 25*2) { // maximum length of TR1 = 200 1/fs
626 Demod.state = DEMOD_UNSYNCD;
627 }
628 }
629 Demod.posCount++;
630 break;
631
632 case DEMOD_GOT_FALLING_EDGE_OF_SOF:
633 Demod.posCount++;
634 MAKE_SOFT_DECISION();
635 if(v > 0) {
636 if(Demod.posCount < 10*2) { // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
637 Demod.state = DEMOD_UNSYNCD;
638 } else {
639 Demod.state = DEMOD_AWAITING_START_BIT;
640 Demod.posCount = 0;
641 Demod.len = 0;
642 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
643 Demod.metricN = 0;
644 Demod.metric = 0;
645 */
646 }
647 } else {
648 if(Demod.posCount > 13*2) { // low phase of SOF too long (> 12 etu)
649 Demod.state = DEMOD_UNSYNCD;
650 LED_C_OFF();
651 }
652 }
653 break;
654
655 case DEMOD_AWAITING_START_BIT:
656 Demod.posCount++;
657 MAKE_SOFT_DECISION();
658 if(v > 0) {
659 if(Demod.posCount > 3*2) { // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
660 Demod.state = DEMOD_UNSYNCD;
661 LED_C_OFF();
662 }
663 } else { // start bit detected
664 Demod.bitCount = 0;
665 Demod.posCount = 1; // this was the first half
666 Demod.thisBit = v;
667 Demod.shiftReg = 0;
668 Demod.state = DEMOD_RECEIVING_DATA;
669 }
670 break;
671
672 case DEMOD_RECEIVING_DATA:
673 MAKE_SOFT_DECISION();
674 if(Demod.posCount == 0) { // first half of bit
675 Demod.thisBit = v;
676 Demod.posCount = 1;
677 } else { // second half of bit
678 Demod.thisBit += v;
679
680 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
681 if(Demod.thisBit > 0) {
682 Demod.metric += Demod.thisBit;
683 } else {
684 Demod.metric -= Demod.thisBit;
685 }
686 (Demod.metricN)++;
687 */
688
689 Demod.shiftReg >>= 1;
690 if(Demod.thisBit > 0) { // logic '1'
691 Demod.shiftReg |= 0x200;
692 }
693
694 Demod.bitCount++;
695 if(Demod.bitCount == 10) {
696 LED_C_ON();
697 uint16_t s = Demod.shiftReg;
698 if((s & 0x200) && !(s & 0x001)) { // stop bit == '1', start bit == '0'
699 uint8_t b = (s >> 1);
700 Demod.output[Demod.len] = b;
701 Demod.len++;
702 Demod.state = DEMOD_AWAITING_START_BIT;
703 } else {
704 Demod.state = DEMOD_UNSYNCD;
705 LED_C_OFF();
706 if(s == 0x000) {
707 // This is EOF (start, stop and all data bits == '0'
708 return TRUE;
709 }
710 }
711 }
712 Demod.posCount = 0;
713 }
714 break;
715
716 default:
717 Demod.state = DEMOD_UNSYNCD;
718 LED_C_OFF();
719 break;
720 }
721 return FALSE;
722 }
723
724
725 static void DemodReset()
726 {
727 // Clear out the state of the "UART" that receives from the tag.
728 Demod.len = 0;
729 Demod.state = DEMOD_UNSYNCD;
730 Demod.posCount = 0;
731 memset(Demod.output, 0x00, MAX_FRAME_SIZE);
732 }
733
734
735 static void DemodInit(uint8_t *data)
736 {
737 Demod.output = data;
738 DemodReset();
739 }
740
741
742 /*
743 * Demodulate the samples we received from the tag, also log to tracebuffer
744 * quiet: set to 'TRUE' to disable debug output
745 */
746 static void GetSamplesFor14443bDemod(int n, bool quiet)
747 {
748 int max = 0;
749 bool gotFrame = FALSE;
750 int lastRxCounter, ci, cq, samples = 0;
751
752 // Allocate memory from BigBuf for some buffers
753 // free all previous allocations first
754 BigBuf_free();
755
756 // And put the FPGA in the appropriate mode
757 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
758
759 // The response (tag -> reader) that we're receiving.
760 uint8_t *resp = BigBuf_malloc(MAX_FRAME_SIZE);
761
762 // Set up the demodulator for tag -> reader responses.
763 DemodInit(resp);
764
765 // The DMA buffer, used to stream samples from the FPGA
766 int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE);
767
768
769 int8_t *upTo = dmaBuf;
770 lastRxCounter = ISO14443B_DMA_BUFFER_SIZE;
771
772 // Signal field is ON with the appropriate LED:
773 LED_D_ON();
774
775 // Setup and start DMA.
776 FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE);
777
778
779 for(;;) {
780 int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
781 if(behindBy > max) max = behindBy;
782
783 while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO14443B_DMA_BUFFER_SIZE-1)) > 2) {
784 ci = upTo[0];
785 cq = upTo[1];
786 upTo += 2;
787 if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) {
788 upTo = dmaBuf;
789 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
790 AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE;
791 }
792 lastRxCounter -= 2;
793 if(lastRxCounter <= 0) {
794 lastRxCounter += ISO14443B_DMA_BUFFER_SIZE;
795 }
796
797 samples += 2;
798
799 if(Handle14443bSamplesDemod(ci, cq)) {
800 gotFrame = TRUE;
801 break;
802 }
803 }
804
805 if(samples > n || gotFrame) {
806 break;
807 }
808 }
809
810 AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
811
812 if (!quiet) {
813 Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d",
814 max,
815 samples,
816 gotFrame,
817 Demod.len,
818 Demod.sumI,
819 Demod.sumQ
820 );
821 }
822
823 //Tracing
824 if (tracing && Demod.len > 0) {
825 uint8_t parity[MAX_PARITY_SIZE];
826 LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE);
827 }
828 }
829
830
831 //-----------------------------------------------------------------------------
832 // Transmit the command (to the tag) that was placed in ToSend[].
833 //-----------------------------------------------------------------------------
834 static void TransmitFor14443b(void)
835 {
836 int c;
837
838 FpgaSetupSsc();
839
840 while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
841 AT91C_BASE_SSC->SSC_THR = 0xff;
842 }
843
844 // Signal field is ON with the appropriate Red LED
845 LED_D_ON();
846 // Signal we are transmitting with the Green LED
847 LED_B_ON();
848 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
849 if ( !PowerOn )
850 SpinDelay(200);
851
852 for(c = 0; c < 10;) {
853 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
854 AT91C_BASE_SSC->SSC_THR = 0xff;
855 c++;
856 }
857 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
858 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
859 (void)r;
860 }
861 WDT_HIT();
862 }
863
864 c = 0;
865 for(;;) {
866 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
867 AT91C_BASE_SSC->SSC_THR = ToSend[c];
868 c++;
869 if(c >= ToSendMax) {
870 break;
871 }
872 }
873 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
874 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
875 (void)r;
876 }
877 WDT_HIT();
878 }
879 LED_B_OFF(); // Finished sending
880 }
881
882
883 //-----------------------------------------------------------------------------
884 // Code a layer 2 command (string of octets, including CRC) into ToSend[],
885 // so that it is ready to transmit to the tag using TransmitFor14443b().
886 //-----------------------------------------------------------------------------
887 static void CodeIso14443bAsReader(const uint8_t *cmd, int len)
888 {
889 int i, j;
890 uint8_t b;
891
892 ToSendReset();
893
894 // Establish initial reference level
895 for(i = 0; i < 80; i++) {
896 ToSendStuffBit(1);
897 }
898 // Send SOF
899 for(i = 0; i < 11; i++) {
900 ToSendStuffBit(0);
901 }
902
903 for(i = 0; i < len; i++) {
904 // Stop bits/EGT
905 ToSendStuffBit(1);
906 ToSendStuffBit(1);
907 // Start bit
908 ToSendStuffBit(0);
909 // Data bits
910 b = cmd[i];
911 for(j = 0; j < 8; j++) {
912 if(b & 1) {
913 ToSendStuffBit(1);
914 } else {
915 ToSendStuffBit(0);
916 }
917 b >>= 1;
918 }
919 }
920 // Send EOF
921 ToSendStuffBit(1);
922 for(i = 0; i < 11; i++) {
923 ToSendStuffBit(0);
924 }
925 for(i = 0; i < 8; i++) {
926 ToSendStuffBit(1);
927 }
928
929 // And then a little more, to make sure that the last character makes
930 // it out before we switch to rx mode.
931 for(i = 0; i < 10; i++) {
932 ToSendStuffBit(1);
933 }
934
935 // Convert from last character reference to length
936 ToSendMax++;
937 }
938
939
940 /**
941 Convenience function to encode, transmit and trace iso 14443b comms
942 **/
943 static void CodeAndTransmit14443bAsReader(const uint8_t *cmd, int len)
944 {
945 CodeIso14443bAsReader(cmd, len);
946 TransmitFor14443b();
947 if (tracing) {
948 uint8_t parity[MAX_PARITY_SIZE];
949 LogTrace(cmd,len, 0, 0, parity, TRUE);
950 }
951 }
952
953
954 //-----------------------------------------------------------------------------
955 // Read a SRI512 ISO 14443B tag.
956 //
957 // SRI512 tags are just simple memory tags, here we're looking at making a dump
958 // of the contents of the memory. No anticollision algorithm is done, we assume
959 // we have a single tag in the field.
960 //
961 // I tried to be systematic and check every answer of the tag, every CRC, etc...
962 //-----------------------------------------------------------------------------
963 void ReadSTMemoryIso14443b(uint32_t dwLast)
964 {
965 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
966 BigBuf_free();
967
968 clear_trace();
969 set_tracing(TRUE);
970
971 uint8_t i = 0x00;
972
973 // Make sure that we start from off, since the tags are stateful;
974 // confusing things will happen if we don't reset them between reads.
975 LED_D_OFF();
976 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
977 SpinDelay(200);
978
979 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
980 FpgaSetupSsc();
981
982 // Now give it time to spin up.
983 // Signal field is on with the appropriate LED
984 LED_D_ON();
985 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
986 SpinDelay(200);
987
988 // First command: wake up the tag using the INITIATE command
989 uint8_t cmd1[] = {0x06, 0x00, 0x97, 0x5b};
990 CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
991 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
992
993 if (Demod.len == 0) {
994 DbpString("No response from tag");
995 return;
996 } else {
997 Dbprintf("Randomly generated Chip ID (+ 2 byte CRC): %02x %02x %02x",
998 Demod.output[0], Demod.output[1], Demod.output[2]);
999 }
1000
1001 // There is a response, SELECT the uid
1002 DbpString("Now SELECT tag:");
1003 cmd1[0] = 0x0E; // 0x0E is SELECT
1004 cmd1[1] = Demod.output[0];
1005 ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]);
1006 CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
1007 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
1008 if (Demod.len != 3) {
1009 Dbprintf("Expected 3 bytes from tag, got %d", Demod.len);
1010 return;
1011 }
1012 // Check the CRC of the answer:
1013 ComputeCrc14443(CRC_14443_B, Demod.output, 1 , &cmd1[2], &cmd1[3]);
1014 if(cmd1[2] != Demod.output[1] || cmd1[3] != Demod.output[2]) {
1015 DbpString("CRC Error reading select response.");
1016 return;
1017 }
1018 // Check response from the tag: should be the same UID as the command we just sent:
1019 if (cmd1[1] != Demod.output[0]) {
1020 Dbprintf("Bad response to SELECT from Tag, aborting: %02x %02x", cmd1[1], Demod.output[0]);
1021 return;
1022 }
1023
1024 // Tag is now selected,
1025 // First get the tag's UID:
1026 cmd1[0] = 0x0B;
1027 ComputeCrc14443(CRC_14443_B, cmd1, 1 , &cmd1[1], &cmd1[2]);
1028 CodeAndTransmit14443bAsReader(cmd1, 3); // Only first three bytes for this one
1029 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
1030 if (Demod.len != 10) {
1031 Dbprintf("Expected 10 bytes from tag, got %d", Demod.len);
1032 return;
1033 }
1034 // The check the CRC of the answer (use cmd1 as temporary variable):
1035 ComputeCrc14443(CRC_14443_B, Demod.output, 8, &cmd1[2], &cmd1[3]);
1036 if(cmd1[2] != Demod.output[8] || cmd1[3] != Demod.output[9]) {
1037 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
1038 (cmd1[2]<<8)+cmd1[3], (Demod.output[8]<<8)+Demod.output[9]);
1039 // Do not return;, let's go on... (we should retry, maybe ?)
1040 }
1041 Dbprintf("Tag UID (64 bits): %08x %08x",
1042 (Demod.output[7]<<24) + (Demod.output[6]<<16) + (Demod.output[5]<<8) + Demod.output[4],
1043 (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0]);
1044
1045 // Now loop to read all 16 blocks, address from 0 to last block
1046 Dbprintf("Tag memory dump, block 0 to %d", dwLast);
1047 cmd1[0] = 0x08;
1048 i = 0x00;
1049 dwLast++;
1050 for (;;) {
1051 if (i == dwLast) {
1052 DbpString("System area block (0xff):");
1053 i = 0xff;
1054 }
1055 cmd1[1] = i;
1056 ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]);
1057 CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
1058 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
1059 if (Demod.len != 6) { // Check if we got an answer from the tag
1060 DbpString("Expected 6 bytes from tag, got less...");
1061 return;
1062 }
1063 // The check the CRC of the answer (use cmd1 as temporary variable):
1064 ComputeCrc14443(CRC_14443_B, Demod.output, 4, &cmd1[2], &cmd1[3]);
1065 if(cmd1[2] != Demod.output[4] || cmd1[3] != Demod.output[5]) {
1066 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
1067 (cmd1[2]<<8)+cmd1[3], (Demod.output[4]<<8)+Demod.output[5]);
1068 // Do not return;, let's go on... (we should retry, maybe ?)
1069 }
1070 // Now print out the memory location:
1071 Dbprintf("Address=%02x, Contents=%08x, CRC=%04x", i,
1072 (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0],
1073 (Demod.output[4]<<8)+Demod.output[5]);
1074 if (i == 0xff) {
1075 break;
1076 }
1077 i++;
1078 }
1079 }
1080
1081
1082 //=============================================================================
1083 // Finally, the `sniffer' combines elements from both the reader and
1084 // simulated tag, to show both sides of the conversation.
1085 //=============================================================================
1086
1087 //-----------------------------------------------------------------------------
1088 // Record the sequence of commands sent by the reader to the tag, with
1089 // triggering so that we start recording at the point that the tag is moved
1090 // near the reader.
1091 //-----------------------------------------------------------------------------
1092 /*
1093 * Memory usage for this function, (within BigBuf)
1094 * Last Received command (reader->tag) - MAX_FRAME_SIZE
1095 * Last Received command (tag->reader) - MAX_FRAME_SIZE
1096 * DMA Buffer - ISO14443B_DMA_BUFFER_SIZE
1097 * Demodulated samples received - all the rest
1098 */
1099 void RAMFUNC SnoopIso14443b(void)
1100 {
1101 // We won't start recording the frames that we acquire until we trigger;
1102 // a good trigger condition to get started is probably when we see a
1103 // response from the tag.
1104 int triggered = TRUE; // TODO: set and evaluate trigger condition
1105
1106 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1107 BigBuf_free();
1108
1109 clear_trace();
1110 set_tracing(TRUE);
1111
1112 // The DMA buffer, used to stream samples from the FPGA
1113 int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE);
1114 int lastRxCounter;
1115 int8_t *upTo;
1116 int ci, cq;
1117 int maxBehindBy = 0;
1118
1119 // Count of samples received so far, so that we can include timing
1120 // information in the trace buffer.
1121 int samples = 0;
1122
1123 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
1124 UartInit(BigBuf_malloc(MAX_FRAME_SIZE));
1125
1126 // Print some debug information about the buffer sizes
1127 Dbprintf("Snooping buffers initialized:");
1128 Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
1129 Dbprintf(" Reader -> tag: %i bytes", MAX_FRAME_SIZE);
1130 Dbprintf(" tag -> Reader: %i bytes", MAX_FRAME_SIZE);
1131 Dbprintf(" DMA: %i bytes", ISO14443B_DMA_BUFFER_SIZE);
1132
1133 // Signal field is off, no reader signal, no tag signal
1134 LEDsoff();
1135
1136 // And put the FPGA in the appropriate mode
1137 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
1138 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1139
1140 // Setup for the DMA.
1141 FpgaSetupSsc();
1142 upTo = dmaBuf;
1143 lastRxCounter = ISO14443B_DMA_BUFFER_SIZE;
1144 FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE);
1145 uint8_t parity[MAX_PARITY_SIZE];
1146
1147 bool TagIsActive = FALSE;
1148 bool ReaderIsActive = FALSE;
1149
1150 // And now we loop, receiving samples.
1151 for(;;) {
1152 int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
1153 (ISO14443B_DMA_BUFFER_SIZE-1);
1154 if(behindBy > maxBehindBy) {
1155 maxBehindBy = behindBy;
1156 }
1157
1158 if(behindBy < 2) continue;
1159
1160 ci = upTo[0];
1161 cq = upTo[1];
1162 upTo += 2;
1163 lastRxCounter -= 2;
1164 if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) {
1165 upTo = dmaBuf;
1166 lastRxCounter += ISO14443B_DMA_BUFFER_SIZE;
1167 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
1168 AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE;
1169 WDT_HIT();
1170 if(behindBy > (9*ISO14443B_DMA_BUFFER_SIZE/10)) { // TODO: understand whether we can increase/decrease as we want or not?
1171 Dbprintf("blew circular buffer! behindBy=%d", behindBy);
1172 break;
1173 }
1174 if(!tracing) {
1175 DbpString("Reached trace limit");
1176 break;
1177 }
1178 if(BUTTON_PRESS()) {
1179 DbpString("cancelled");
1180 break;
1181 }
1182 }
1183
1184 samples += 2;
1185
1186 if (!TagIsActive) { // no need to try decoding reader data if the tag is sending
1187 if(Handle14443bUartBit(ci & 0x01)) {
1188 if(triggered && tracing) {
1189 LogTrace(Uart.output, Uart.byteCnt, samples, samples, parity, TRUE);
1190 }
1191 /* And ready to receive another command. */
1192 UartReset();
1193 /* And also reset the demod code, which might have been */
1194 /* false-triggered by the commands from the reader. */
1195 DemodReset();
1196 }
1197 if(Handle14443bUartBit(cq & 0x01)) {
1198 if(triggered && tracing) {
1199 LogTrace(Uart.output, Uart.byteCnt, samples, samples, parity, TRUE);
1200 }
1201 /* And ready to receive another command. */
1202 UartReset();
1203 /* And also reset the demod code, which might have been */
1204 /* false-triggered by the commands from the reader. */
1205 DemodReset();
1206 }
1207 ReaderIsActive = (Uart.state > STATE_GOT_FALLING_EDGE_OF_SOF);
1208 }
1209
1210 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
1211 if(Handle14443bSamplesDemod(ci | 0x01, cq | 0x01)) {
1212
1213 //Use samples as a time measurement
1214 if(tracing)
1215 {
1216 //uint8_t parity[MAX_PARITY_SIZE];
1217 LogTrace(Demod.output, Demod.len, samples, samples, parity, FALSE);
1218 }
1219 triggered = TRUE;
1220
1221 // And ready to receive another response.
1222 DemodReset();
1223 }
1224 TagIsActive = (Demod.state > DEMOD_GOT_FALLING_EDGE_OF_SOF);
1225 }
1226
1227 }
1228
1229 FpgaDisableSscDma();
1230 LEDsoff();
1231 AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
1232 DbpString("Snoop statistics:");
1233 Dbprintf(" Max behind by: %i", maxBehindBy);
1234 Dbprintf(" Uart State: %x", Uart.state);
1235 Dbprintf(" Uart ByteCnt: %i", Uart.byteCnt);
1236 Dbprintf(" Uart ByteCntMax: %i", Uart.byteCntMax);
1237 Dbprintf(" Trace length: %i", BigBuf_get_traceLen());
1238 }
1239
1240
1241 /*
1242 * Send raw command to tag ISO14443B
1243 * @Input
1244 * datalen len of buffer data
1245 * recv bool when true wait for data from tag and send to client
1246 * powerfield bool leave the field on when true
1247 * data buffer with byte to send
1248 *
1249 * @Output
1250 * none
1251 *
1252 */
1253 void SendRawCommand14443B(uint32_t datalen, uint32_t recv, uint8_t powerfield, uint8_t data[])
1254 {
1255 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1256 BigBuf_free();
1257 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1258 if ( !PowerOn ){
1259 FpgaSetupSsc();
1260 }
1261
1262 if ( datalen == 0 && recv == 0 && powerfield == 0){
1263 clear_trace();
1264 } else {
1265 set_tracing(TRUE);
1266 CodeAndTransmit14443bAsReader(data, datalen);
1267 }
1268
1269 if(recv) {
1270 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, FALSE);
1271 uint16_t iLen = MIN(Demod.len, USB_CMD_DATA_SIZE);
1272 cmd_send(CMD_ACK, iLen, 0, 0, Demod.output, iLen);
1273 }
1274
1275 if(!powerfield) {
1276 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1277 FpgaDisableSscDma();
1278 LED_D_OFF();
1279 PowerOn = 0;
1280 }
1281 }
1282
Impressum, Datenschutz