1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, split Nov 2006
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Routines to support ISO 14443B. This includes both the reader software and
9 // the `fake tag' modes.
10 //-----------------------------------------------------------------------------
12 #include "proxmark3.h"
17 #include "iso14443crc.h"
19 #define RECEIVE_SAMPLES_TIMEOUT 200000
20 #define ISO14443B_DMA_BUFFER_SIZE 512
22 uint8_t PowerOn
= TRUE
;
23 //=============================================================================
24 // An ISO 14443 Type B tag. We listen for commands from the reader, using
25 // a UART kind of thing that's implemented in software. When we get a
26 // frame (i.e., a group of bytes between SOF and EOF), we check the CRC.
27 // If it's good, then we can do something appropriate with it, and send
29 //=============================================================================
31 //-----------------------------------------------------------------------------
32 // Code up a string of octets at layer 2 (including CRC, we don't generate
33 // that here) so that they can be transmitted to the reader. Doesn't transmit
34 // them yet, just leaves them ready to send in ToSend[].
35 //-----------------------------------------------------------------------------
36 static void CodeIso14443bAsTag(const uint8_t *cmd
, int len
)
42 // Transmit a burst of ones, as the initial thing that lets the
43 // reader get phase sync. This (TR1) must be > 80/fs, per spec,
44 // but tag that I've tried (a Paypass) exceeds that by a fair bit,
46 for(i
= 0; i
< 20; i
++) {
54 for(i
= 0; i
< 10; i
++) {
60 for(i
= 0; i
< 2; i
++) {
67 for(i
= 0; i
< len
; i
++) {
78 for(j
= 0; j
< 8; j
++) {
101 for(i
= 0; i
< 10; i
++) {
107 for(i
= 0; i
< 2; i
++) {
114 // Convert from last byte pos to length
118 //-----------------------------------------------------------------------------
119 // The software UART that receives commands from the reader, and its state
121 //-----------------------------------------------------------------------------
125 STATE_GOT_FALLING_EDGE_OF_SOF
,
126 STATE_AWAITING_START_BIT
,
137 /* Receive & handle a bit coming from the reader.
139 * This function is called 4 times per bit (every 2 subcarrier cycles).
140 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
143 * LED A -> ON once we have received the SOF and are expecting the rest.
144 * LED A -> OFF once we have received EOF or are in error state or unsynced
146 * Returns: true if we received a EOF
147 * false if we are still waiting for some more
149 static RAMFUNC
int Handle14443bUartBit(uint8_t bit
)
154 // we went low, so this could be the beginning
156 Uart
.state
= STATE_GOT_FALLING_EDGE_OF_SOF
;
162 case STATE_GOT_FALLING_EDGE_OF_SOF
:
164 if(Uart
.posCnt
== 2) { // sample every 4 1/fs in the middle of a bit
166 if(Uart
.bitCnt
> 9) {
167 // we've seen enough consecutive
168 // zeros that it's a valid SOF
171 Uart
.state
= STATE_AWAITING_START_BIT
;
172 LED_A_ON(); // Indicate we got a valid SOF
174 // didn't stay down long enough
175 // before going high, error
176 Uart
.state
= STATE_UNSYNCD
;
179 // do nothing, keep waiting
183 if(Uart
.posCnt
>= 4) Uart
.posCnt
= 0;
184 if(Uart
.bitCnt
> 12) {
185 // Give up if we see too many zeros without
188 Uart
.state
= STATE_UNSYNCD
;
192 case STATE_AWAITING_START_BIT
:
195 if(Uart
.posCnt
> 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
196 // stayed high for too long between
198 Uart
.state
= STATE_UNSYNCD
;
201 // falling edge, this starts the data byte
205 Uart
.state
= STATE_RECEIVING_DATA
;
209 case STATE_RECEIVING_DATA
:
211 if(Uart
.posCnt
== 2) {
212 // time to sample a bit
215 Uart
.shiftReg
|= 0x200;
219 if(Uart
.posCnt
>= 4) {
222 if(Uart
.bitCnt
== 10) {
223 if((Uart
.shiftReg
& 0x200) && !(Uart
.shiftReg
& 0x001))
225 // this is a data byte, with correct
226 // start and stop bits
227 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
>> 1) & 0xff;
230 if(Uart
.byteCnt
>= Uart
.byteCntMax
) {
231 // Buffer overflowed, give up
233 Uart
.state
= STATE_UNSYNCD
;
235 // so get the next byte now
237 Uart
.state
= STATE_AWAITING_START_BIT
;
239 } else if (Uart
.shiftReg
== 0x000) {
240 // this is an EOF byte
241 LED_A_OFF(); // Finished receiving
242 Uart
.state
= STATE_UNSYNCD
;
243 if (Uart
.byteCnt
!= 0) {
249 Uart
.state
= STATE_UNSYNCD
;
256 Uart
.state
= STATE_UNSYNCD
;
264 static void UartReset()
266 Uart
.byteCntMax
= MAX_FRAME_SIZE
;
267 Uart
.state
= STATE_UNSYNCD
;
270 memset(Uart
.output
, 0x00, MAX_FRAME_SIZE
);
274 static void UartInit(uint8_t *data
)
281 //-----------------------------------------------------------------------------
282 // Receive a command (from the reader to us, where we are the simulated tag),
283 // and store it in the given buffer, up to the given maximum length. Keeps
284 // spinning, waiting for a well-framed command, until either we get one
285 // (returns TRUE) or someone presses the pushbutton on the board (FALSE).
287 // Assume that we're called with the SSC (to the FPGA) and ADC path set
289 //-----------------------------------------------------------------------------
290 static int GetIso14443bCommandFromReader(uint8_t *received
, uint16_t *len
)
292 // Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen
293 // only, since we are receiving, not transmitting).
294 // Signal field is off with the appropriate LED
296 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
298 // Now run a `software UART' on the stream of incoming samples.
304 if(BUTTON_PRESS()) return FALSE
;
306 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
307 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
308 for(uint8_t mask
= 0x80; mask
!= 0x00; mask
>>= 1) {
309 if(Handle14443bUartBit(b
& mask
)) {
320 //-----------------------------------------------------------------------------
321 // Main loop of simulated tag: receive commands from reader, decide what
322 // response to send, and send it.
323 //-----------------------------------------------------------------------------
324 void SimulateIso14443bTag(void)
326 // the only commands we understand is WUPB, AFI=0, Select All, N=1:
327 static const uint8_t cmd1
[] = { 0x05, 0x00, 0x08, 0x39, 0x73 }; // WUPB
328 // ... and REQB, AFI=0, Normal Request, N=1:
329 static const uint8_t cmd2
[] = { 0x05, 0x00, 0x00, 0x71, 0xFF }; // REQB
331 static const uint8_t cmd3
[] = { 0x50, 0xff, 0xff, 0xff, 0xff }; // HLTB
333 static const uint8_t cmd4
[] = { 0x1D, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; // ATTRIB
335 // ... and we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922,
336 // supports only 106kBit/s in both directions, max frame size = 32Bytes,
337 // supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported:
338 static const uint8_t response1
[] = {
339 0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22,
340 0x00, 0x21, 0x85, 0x5e, 0xd7
342 // response to HLTB and ATTRIB
343 static const uint8_t response2
[] = {0x00, 0x78, 0xF0};
345 uint8_t parity
[MAX_PARITY_SIZE
];
347 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
354 uint16_t respLen
, respCodeLen
;
356 // allocate command receive buffer
358 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
361 uint16_t cmdsRecvd
= 0;
363 // prepare the (only one) tag answer:
364 CodeIso14443bAsTag(response1
, sizeof(response1
));
365 uint8_t *resp1Code
= BigBuf_malloc(ToSendMax
);
366 memcpy(resp1Code
, ToSend
, ToSendMax
);
367 uint16_t resp1CodeLen
= ToSendMax
;
369 // prepare the (other) tag answer:
370 CodeIso14443bAsTag(response2
, sizeof(response2
));
371 uint8_t *resp2Code
= BigBuf_malloc(ToSendMax
);
372 memcpy(resp2Code
, ToSend
, ToSendMax
);
373 uint16_t resp2CodeLen
= ToSendMax
;
375 // We need to listen to the high-frequency, peak-detected path.
376 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
383 if(!GetIso14443bCommandFromReader(receivedCmd
, &len
)) {
384 Dbprintf("button pressed, received %d commands", cmdsRecvd
);
389 LogTrace(receivedCmd
, len
, 0, 0, parity
, TRUE
);
392 // Good, look at the command now.
393 if ( (len
== sizeof(cmd1
) && memcmp(receivedCmd
, cmd1
, len
) == 0)
394 || (len
== sizeof(cmd2
) && memcmp(receivedCmd
, cmd2
, len
) == 0) ) {
396 respLen
= sizeof(response1
);
397 respCode
= resp1Code
;
398 respCodeLen
= resp1CodeLen
;
399 } else if ( (len
== sizeof(cmd3
) && receivedCmd
[0] == cmd3
[0])
400 || (len
== sizeof(cmd4
) && receivedCmd
[0] == cmd4
[0]) ) {
402 respLen
= sizeof(response2
);
403 respCode
= resp2Code
;
404 respCodeLen
= resp2CodeLen
;
406 Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len
, cmdsRecvd
);
407 // And print whether the CRC fails, just for good measure
409 if (len
>= 3){ // if crc exists
410 ComputeCrc14443(CRC_14443_B
, receivedCmd
, len
-2, &b1
, &b2
);
411 if(b1
!= receivedCmd
[len
-2] || b2
!= receivedCmd
[len
-1]) {
412 // Not so good, try again.
413 DbpString("+++CRC fail");
416 DbpString("CRC passes");
419 //get rid of compiler warning
423 respCode
= resp1Code
;
424 //don't crash at new command just wait and see if reader will send other new cmds.
430 if(cmdsRecvd
> 0x30) {
431 DbpString("many commands later...");
435 if(respCodeLen
<= 0) continue;
438 // Signal field is off with the appropriate LED
440 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_BPSK
);
441 AT91C_BASE_SSC
->SSC_THR
= 0xff;
445 // clear receiving shift register and holding register
446 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
447 c
= AT91C_BASE_SSC
->SSC_RHR
; (void) c
;
448 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
449 c
= AT91C_BASE_SSC
->SSC_RHR
; (void) c
;
452 AT91C_BASE_SSC
->SSC_THR
= 0x00;
454 // Transmit the response.
455 uint16_t FpgaSendQueueDelay
= 0;
457 for(;i
< respCodeLen
; ) {
458 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
459 AT91C_BASE_SSC
->SSC_THR
= respCode
[i
++];
460 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
462 if(BUTTON_PRESS()) break;
465 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
466 uint8_t fpga_queued_bits
= FpgaSendQueueDelay
>> 3;
467 for (i
= 0; i
<= fpga_queued_bits
/8 + 1; ) {
468 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
469 AT91C_BASE_SSC
->SSC_THR
= 0x00;
470 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
475 // trace the response:
476 if (tracing
) LogTrace(resp
, respLen
, 0, 0, parity
, FALSE
);
481 //=============================================================================
482 // An ISO 14443 Type B reader. We take layer two commands, code them
483 // appropriately, and then send them to the tag. We then listen for the
484 // tag's response, which we leave in the buffer to be demodulated on the
486 //=============================================================================
491 DEMOD_PHASE_REF_TRAINING
,
492 DEMOD_AWAITING_FALLING_EDGE_OF_SOF
,
493 DEMOD_GOT_FALLING_EDGE_OF_SOF
,
494 DEMOD_AWAITING_START_BIT
,
500 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
512 * Handles reception of a bit from the tag
514 * This function is called 2 times per bit (every 4 subcarrier cycles).
515 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us
518 * LED C -> ON once we have received the SOF and are expecting the rest.
519 * LED C -> OFF once we have received EOF or are unsynced
521 * Returns: true if we received a EOF
522 * false if we are still waiting for some more
525 static RAMFUNC
int Handle14443bSamplesDemod(int ci
, int cq
)
529 // The soft decision on the bit uses an estimate of just the
530 // quadrant of the reference angle, not the exact angle.
531 #define MAKE_SOFT_DECISION() { \
532 if(Demod.sumI > 0) { \
537 if(Demod.sumQ > 0) { \
544 #define SUBCARRIER_DETECT_THRESHOLD 8
546 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by abs(ci) + abs(cq)
547 /* #define CHECK_FOR_SUBCARRIER() { \
557 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
558 #define CHECK_FOR_SUBCARRIER() { \
560 if(cq < 0) { /* ci < 0, cq < 0 */ \
562 v = -cq - (ci >> 1); \
564 v = -ci - (cq >> 1); \
566 } else { /* ci < 0, cq >= 0 */ \
568 v = -ci + (cq >> 1); \
570 v = cq - (ci >> 1); \
574 if(cq < 0) { /* ci >= 0, cq < 0 */ \
576 v = ci - (cq >> 1); \
578 v = -cq + (ci >> 1); \
580 } else { /* ci >= 0, cq >= 0 */ \
582 v = ci + (cq >> 1); \
584 v = cq + (ci >> 1); \
590 switch(Demod
.state
) {
592 CHECK_FOR_SUBCARRIER();
593 if(v
> SUBCARRIER_DETECT_THRESHOLD
) { // subcarrier detected
594 Demod
.state
= DEMOD_PHASE_REF_TRAINING
;
601 case DEMOD_PHASE_REF_TRAINING
:
602 if(Demod
.posCount
< 10*2) {
603 CHECK_FOR_SUBCARRIER();
604 if (v
> SUBCARRIER_DETECT_THRESHOLD
) {
605 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
606 // note: synchronization time > 80 1/fs
610 } else { // subcarrier lost
611 Demod
.state
= DEMOD_UNSYNCD
;
614 Demod
.state
= DEMOD_AWAITING_FALLING_EDGE_OF_SOF
;
618 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF
:
619 MAKE_SOFT_DECISION();
620 if(v
< 0) { // logic '0' detected
621 Demod
.state
= DEMOD_GOT_FALLING_EDGE_OF_SOF
;
622 Demod
.posCount
= 0; // start of SOF sequence
624 //if(Demod.posCount > 200/4) { // maximum length of TR1 = 200 1/fs
625 if(Demod
.posCount
> 25*2) { // maximum length of TR1 = 200 1/fs
626 Demod
.state
= DEMOD_UNSYNCD
;
632 case DEMOD_GOT_FALLING_EDGE_OF_SOF
:
634 MAKE_SOFT_DECISION();
636 if(Demod
.posCount
< 10*2) { // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
637 Demod
.state
= DEMOD_UNSYNCD
;
639 Demod
.state
= DEMOD_AWAITING_START_BIT
;
642 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
648 if(Demod
.posCount
> 13*2) { // low phase of SOF too long (> 12 etu)
649 Demod
.state
= DEMOD_UNSYNCD
;
655 case DEMOD_AWAITING_START_BIT
:
657 MAKE_SOFT_DECISION();
659 if(Demod
.posCount
> 3*2) { // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
660 Demod
.state
= DEMOD_UNSYNCD
;
663 } else { // start bit detected
665 Demod
.posCount
= 1; // this was the first half
668 Demod
.state
= DEMOD_RECEIVING_DATA
;
672 case DEMOD_RECEIVING_DATA
:
673 MAKE_SOFT_DECISION();
674 if(Demod
.posCount
== 0) { // first half of bit
677 } else { // second half of bit
680 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
681 if(Demod.thisBit > 0) {
682 Demod.metric += Demod.thisBit;
684 Demod.metric -= Demod.thisBit;
689 Demod
.shiftReg
>>= 1;
690 if(Demod
.thisBit
> 0) { // logic '1'
691 Demod
.shiftReg
|= 0x200;
695 if(Demod
.bitCount
== 10) {
697 uint16_t s
= Demod
.shiftReg
;
698 if((s
& 0x200) && !(s
& 0x001)) { // stop bit == '1', start bit == '0'
699 uint8_t b
= (s
>> 1);
700 Demod
.output
[Demod
.len
] = b
;
702 Demod
.state
= DEMOD_AWAITING_START_BIT
;
704 Demod
.state
= DEMOD_UNSYNCD
;
707 // This is EOF (start, stop and all data bits == '0'
717 Demod
.state
= DEMOD_UNSYNCD
;
725 static void DemodReset()
727 // Clear out the state of the "UART" that receives from the tag.
729 Demod
.state
= DEMOD_UNSYNCD
;
731 memset(Demod
.output
, 0x00, MAX_FRAME_SIZE
);
735 static void DemodInit(uint8_t *data
)
743 * Demodulate the samples we received from the tag, also log to tracebuffer
744 * quiet: set to 'TRUE' to disable debug output
746 static void GetSamplesFor14443bDemod(int n
, bool quiet
)
749 bool gotFrame
= FALSE
;
750 int lastRxCounter
, ci
, cq
, samples
= 0;
752 // Allocate memory from BigBuf for some buffers
753 // free all previous allocations first
756 // And put the FPGA in the appropriate mode
757 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
);
759 // The response (tag -> reader) that we're receiving.
760 uint8_t *resp
= BigBuf_malloc(MAX_FRAME_SIZE
);
762 // Set up the demodulator for tag -> reader responses.
765 // The DMA buffer, used to stream samples from the FPGA
766 int8_t *dmaBuf
= (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE
);
769 int8_t *upTo
= dmaBuf
;
770 lastRxCounter
= ISO14443B_DMA_BUFFER_SIZE
;
772 // Signal field is ON with the appropriate LED:
775 // Setup and start DMA.
776 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO14443B_DMA_BUFFER_SIZE
);
780 int behindBy
= lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
781 if(behindBy
> max
) max
= behindBy
;
783 while(((lastRxCounter
-AT91C_BASE_PDC_SSC
->PDC_RCR
) & (ISO14443B_DMA_BUFFER_SIZE
-1)) > 2) {
787 if(upTo
>= dmaBuf
+ ISO14443B_DMA_BUFFER_SIZE
) {
789 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
790 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO14443B_DMA_BUFFER_SIZE
;
793 if(lastRxCounter
<= 0) {
794 lastRxCounter
+= ISO14443B_DMA_BUFFER_SIZE
;
799 if(Handle14443bSamplesDemod(ci
, cq
)) {
805 if(samples
> n
|| gotFrame
) {
810 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
813 Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d",
824 if (tracing
&& Demod
.len
> 0) {
825 uint8_t parity
[MAX_PARITY_SIZE
];
826 LogTrace(Demod
.output
, Demod
.len
, 0, 0, parity
, FALSE
);
831 //-----------------------------------------------------------------------------
832 // Transmit the command (to the tag) that was placed in ToSend[].
833 //-----------------------------------------------------------------------------
834 static void TransmitFor14443b(void)
840 while(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
841 AT91C_BASE_SSC
->SSC_THR
= 0xff;
844 // Signal field is ON with the appropriate Red LED
846 // Signal we are transmitting with the Green LED
848 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
| FPGA_HF_READER_TX_SHALLOW_MOD
);
852 for(c
= 0; c
< 10;) {
853 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
854 AT91C_BASE_SSC
->SSC_THR
= 0xff;
857 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
858 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
866 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
867 AT91C_BASE_SSC
->SSC_THR
= ToSend
[c
];
873 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
874 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
879 LED_B_OFF(); // Finished sending
883 //-----------------------------------------------------------------------------
884 // Code a layer 2 command (string of octets, including CRC) into ToSend[],
885 // so that it is ready to transmit to the tag using TransmitFor14443b().
886 //-----------------------------------------------------------------------------
887 static void CodeIso14443bAsReader(const uint8_t *cmd
, int len
)
894 // Establish initial reference level
895 for(i
= 0; i
< 80; i
++) {
899 for(i
= 0; i
< 11; i
++) {
903 for(i
= 0; i
< len
; i
++) {
911 for(j
= 0; j
< 8; j
++) {
922 for(i
= 0; i
< 11; i
++) {
925 for(i
= 0; i
< 8; i
++) {
929 // And then a little more, to make sure that the last character makes
930 // it out before we switch to rx mode.
931 for(i
= 0; i
< 10; i
++) {
935 // Convert from last character reference to length
941 Convenience function to encode, transmit and trace iso 14443b comms
943 static void CodeAndTransmit14443bAsReader(const uint8_t *cmd
, int len
)
945 CodeIso14443bAsReader(cmd
, len
);
948 uint8_t parity
[MAX_PARITY_SIZE
];
949 LogTrace(cmd
,len
, 0, 0, parity
, TRUE
);
954 //-----------------------------------------------------------------------------
955 // Read a SRI512 ISO 14443B tag.
957 // SRI512 tags are just simple memory tags, here we're looking at making a dump
958 // of the contents of the memory. No anticollision algorithm is done, we assume
959 // we have a single tag in the field.
961 // I tried to be systematic and check every answer of the tag, every CRC, etc...
962 //-----------------------------------------------------------------------------
963 void ReadSTMemoryIso14443b(uint32_t dwLast
)
965 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
973 // Make sure that we start from off, since the tags are stateful;
974 // confusing things will happen if we don't reset them between reads.
976 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
979 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
982 // Now give it time to spin up.
983 // Signal field is on with the appropriate LED
985 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
);
988 // First command: wake up the tag using the INITIATE command
989 uint8_t cmd1
[] = {0x06, 0x00, 0x97, 0x5b};
990 CodeAndTransmit14443bAsReader(cmd1
, sizeof(cmd1
));
991 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, TRUE
);
993 if (Demod
.len
== 0) {
994 DbpString("No response from tag");
997 Dbprintf("Randomly generated Chip ID (+ 2 byte CRC): %02x %02x %02x",
998 Demod
.output
[0], Demod
.output
[1], Demod
.output
[2]);
1001 // There is a response, SELECT the uid
1002 DbpString("Now SELECT tag:");
1003 cmd1
[0] = 0x0E; // 0x0E is SELECT
1004 cmd1
[1] = Demod
.output
[0];
1005 ComputeCrc14443(CRC_14443_B
, cmd1
, 2, &cmd1
[2], &cmd1
[3]);
1006 CodeAndTransmit14443bAsReader(cmd1
, sizeof(cmd1
));
1007 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, TRUE
);
1008 if (Demod
.len
!= 3) {
1009 Dbprintf("Expected 3 bytes from tag, got %d", Demod
.len
);
1012 // Check the CRC of the answer:
1013 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 1 , &cmd1
[2], &cmd1
[3]);
1014 if(cmd1
[2] != Demod
.output
[1] || cmd1
[3] != Demod
.output
[2]) {
1015 DbpString("CRC Error reading select response.");
1018 // Check response from the tag: should be the same UID as the command we just sent:
1019 if (cmd1
[1] != Demod
.output
[0]) {
1020 Dbprintf("Bad response to SELECT from Tag, aborting: %02x %02x", cmd1
[1], Demod
.output
[0]);
1024 // Tag is now selected,
1025 // First get the tag's UID:
1027 ComputeCrc14443(CRC_14443_B
, cmd1
, 1 , &cmd1
[1], &cmd1
[2]);
1028 CodeAndTransmit14443bAsReader(cmd1
, 3); // Only first three bytes for this one
1029 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, TRUE
);
1030 if (Demod
.len
!= 10) {
1031 Dbprintf("Expected 10 bytes from tag, got %d", Demod
.len
);
1034 // The check the CRC of the answer (use cmd1 as temporary variable):
1035 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 8, &cmd1
[2], &cmd1
[3]);
1036 if(cmd1
[2] != Demod
.output
[8] || cmd1
[3] != Demod
.output
[9]) {
1037 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
1038 (cmd1
[2]<<8)+cmd1
[3], (Demod
.output
[8]<<8)+Demod
.output
[9]);
1039 // Do not return;, let's go on... (we should retry, maybe ?)
1041 Dbprintf("Tag UID (64 bits): %08x %08x",
1042 (Demod
.output
[7]<<24) + (Demod
.output
[6]<<16) + (Demod
.output
[5]<<8) + Demod
.output
[4],
1043 (Demod
.output
[3]<<24) + (Demod
.output
[2]<<16) + (Demod
.output
[1]<<8) + Demod
.output
[0]);
1045 // Now loop to read all 16 blocks, address from 0 to last block
1046 Dbprintf("Tag memory dump, block 0 to %d", dwLast
);
1052 DbpString("System area block (0xff):");
1056 ComputeCrc14443(CRC_14443_B
, cmd1
, 2, &cmd1
[2], &cmd1
[3]);
1057 CodeAndTransmit14443bAsReader(cmd1
, sizeof(cmd1
));
1058 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, TRUE
);
1059 if (Demod
.len
!= 6) { // Check if we got an answer from the tag
1060 DbpString("Expected 6 bytes from tag, got less...");
1063 // The check the CRC of the answer (use cmd1 as temporary variable):
1064 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 4, &cmd1
[2], &cmd1
[3]);
1065 if(cmd1
[2] != Demod
.output
[4] || cmd1
[3] != Demod
.output
[5]) {
1066 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
1067 (cmd1
[2]<<8)+cmd1
[3], (Demod
.output
[4]<<8)+Demod
.output
[5]);
1068 // Do not return;, let's go on... (we should retry, maybe ?)
1070 // Now print out the memory location:
1071 Dbprintf("Address=%02x, Contents=%08x, CRC=%04x", i
,
1072 (Demod
.output
[3]<<24) + (Demod
.output
[2]<<16) + (Demod
.output
[1]<<8) + Demod
.output
[0],
1073 (Demod
.output
[4]<<8)+Demod
.output
[5]);
1082 //=============================================================================
1083 // Finally, the `sniffer' combines elements from both the reader and
1084 // simulated tag, to show both sides of the conversation.
1085 //=============================================================================
1087 //-----------------------------------------------------------------------------
1088 // Record the sequence of commands sent by the reader to the tag, with
1089 // triggering so that we start recording at the point that the tag is moved
1091 //-----------------------------------------------------------------------------
1093 * Memory usage for this function, (within BigBuf)
1094 * Last Received command (reader->tag) - MAX_FRAME_SIZE
1095 * Last Received command (tag->reader) - MAX_FRAME_SIZE
1096 * DMA Buffer - ISO14443B_DMA_BUFFER_SIZE
1097 * Demodulated samples received - all the rest
1099 void RAMFUNC
SnoopIso14443b(void)
1101 // We won't start recording the frames that we acquire until we trigger;
1102 // a good trigger condition to get started is probably when we see a
1103 // response from the tag.
1104 int triggered
= TRUE
; // TODO: set and evaluate trigger condition
1106 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1112 // The DMA buffer, used to stream samples from the FPGA
1113 int8_t *dmaBuf
= (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE
);
1117 int maxBehindBy
= 0;
1119 // Count of samples received so far, so that we can include timing
1120 // information in the trace buffer.
1123 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE
));
1124 UartInit(BigBuf_malloc(MAX_FRAME_SIZE
));
1126 // Print some debug information about the buffer sizes
1127 Dbprintf("Snooping buffers initialized:");
1128 Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
1129 Dbprintf(" Reader -> tag: %i bytes", MAX_FRAME_SIZE
);
1130 Dbprintf(" tag -> Reader: %i bytes", MAX_FRAME_SIZE
);
1131 Dbprintf(" DMA: %i bytes", ISO14443B_DMA_BUFFER_SIZE
);
1133 // Signal field is off, no reader signal, no tag signal
1136 // And put the FPGA in the appropriate mode
1137 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
1138 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1140 // Setup for the DMA.
1143 lastRxCounter
= ISO14443B_DMA_BUFFER_SIZE
;
1144 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO14443B_DMA_BUFFER_SIZE
);
1145 uint8_t parity
[MAX_PARITY_SIZE
];
1147 bool TagIsActive
= FALSE
;
1148 bool ReaderIsActive
= FALSE
;
1150 // And now we loop, receiving samples.
1152 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) &
1153 (ISO14443B_DMA_BUFFER_SIZE
-1);
1154 if(behindBy
> maxBehindBy
) {
1155 maxBehindBy
= behindBy
;
1158 if(behindBy
< 2) continue;
1164 if(upTo
>= dmaBuf
+ ISO14443B_DMA_BUFFER_SIZE
) {
1166 lastRxCounter
+= ISO14443B_DMA_BUFFER_SIZE
;
1167 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
1168 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO14443B_DMA_BUFFER_SIZE
;
1170 if(behindBy
> (9*ISO14443B_DMA_BUFFER_SIZE
/10)) { // TODO: understand whether we can increase/decrease as we want or not?
1171 Dbprintf("blew circular buffer! behindBy=%d", behindBy
);
1175 DbpString("Reached trace limit");
1178 if(BUTTON_PRESS()) {
1179 DbpString("cancelled");
1186 if (!TagIsActive
) { // no need to try decoding reader data if the tag is sending
1187 if(Handle14443bUartBit(ci
& 0x01)) {
1188 if(triggered
&& tracing
) {
1189 LogTrace(Uart
.output
, Uart
.byteCnt
, samples
, samples
, parity
, TRUE
);
1191 /* And ready to receive another command. */
1193 /* And also reset the demod code, which might have been */
1194 /* false-triggered by the commands from the reader. */
1197 if(Handle14443bUartBit(cq
& 0x01)) {
1198 if(triggered
&& tracing
) {
1199 LogTrace(Uart
.output
, Uart
.byteCnt
, samples
, samples
, parity
, TRUE
);
1201 /* And ready to receive another command. */
1203 /* And also reset the demod code, which might have been */
1204 /* false-triggered by the commands from the reader. */
1207 ReaderIsActive
= (Uart
.state
> STATE_GOT_FALLING_EDGE_OF_SOF
);
1210 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
1211 if(Handle14443bSamplesDemod(ci
| 0x01, cq
| 0x01)) {
1213 //Use samples as a time measurement
1216 //uint8_t parity[MAX_PARITY_SIZE];
1217 LogTrace(Demod
.output
, Demod
.len
, samples
, samples
, parity
, FALSE
);
1221 // And ready to receive another response.
1224 TagIsActive
= (Demod
.state
> DEMOD_GOT_FALLING_EDGE_OF_SOF
);
1229 FpgaDisableSscDma();
1231 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
1232 DbpString("Snoop statistics:");
1233 Dbprintf(" Max behind by: %i", maxBehindBy
);
1234 Dbprintf(" Uart State: %x", Uart
.state
);
1235 Dbprintf(" Uart ByteCnt: %i", Uart
.byteCnt
);
1236 Dbprintf(" Uart ByteCntMax: %i", Uart
.byteCntMax
);
1237 Dbprintf(" Trace length: %i", BigBuf_get_traceLen());
1242 * Send raw command to tag ISO14443B
1244 * datalen len of buffer data
1245 * recv bool when true wait for data from tag and send to client
1246 * powerfield bool leave the field on when true
1247 * data buffer with byte to send
1253 void SendRawCommand14443B(uint32_t datalen
, uint32_t recv
, uint8_t powerfield
, uint8_t data
[])
1255 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1257 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1262 if ( datalen
== 0 && recv
== 0 && powerfield
== 0){
1266 CodeAndTransmit14443bAsReader(data
, datalen
);
1270 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, FALSE
);
1271 uint16_t iLen
= MIN(Demod
.len
, USB_CMD_DATA_SIZE
);
1272 cmd_send(CMD_ACK
, iLen
, 0, 0, Demod
.output
, iLen
);
1276 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1277 FpgaDisableSscDma();