1 //----------------------------------------------------------------------------- 
   2 // Gerhard de Koning Gans - May 2008 
   3 // Hagen Fritsch - June 2010 
   4 // Gerhard de Koning Gans - May 2011 
   5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation 
   7 // This code is licensed to you under the terms of the GNU GPL, version 2 or, 
   8 // at your option, any later version. See the LICENSE.txt file for the text of 
  10 //----------------------------------------------------------------------------- 
  11 // Routines to support iClass. 
  12 //----------------------------------------------------------------------------- 
  13 // Based on ISO14443a implementation. Still in experimental phase. 
  14 // Contribution made during a security research at Radboud University Nijmegen 
  16 // Please feel free to contribute and extend iClass support!! 
  17 //----------------------------------------------------------------------------- 
  21 // We still have sometimes a demodulation error when snooping iClass communication. 
  22 // The resulting trace of a read-block-03 command may look something like this: 
  24 //  +  22279:    :     0c  03  e8  01     
  26 //    ...with an incorrect answer... 
  28 //  +     85:   0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb  33  bb  00  01! 0e! 04! bb     !crc 
  30 // We still left the error signalling bytes in the traces like 0xbb 
  32 // A correct trace should look like this: 
  34 // +  21112:    :     0c  03  e8  01     
  35 // +     85:   0: TAG ff  ff  ff  ff  ff  ff  ff  ff  ea  f5     
  37 //----------------------------------------------------------------------------- 
  39 #include "proxmark3.h" 
  45 // Needed for CRC in emulation mode; 
  46 // same construction as in ISO 14443; 
  47 // different initial value (CRC_ICLASS) 
  48 #include "iso14443crc.h" 
  49 #include "iso15693tools.h" 
  50 #include "protocols.h" 
  51 #include "optimized_cipher.h" 
  53 static int timeout 
= 4096; 
  56 static int SendIClassAnswer(uint8_t *resp
, int respLen
, int delay
); 
  58 //----------------------------------------------------------------------------- 
  59 // The software UART that receives commands from the reader, and its state 
  61 //----------------------------------------------------------------------------- 
  65         STATE_START_OF_COMMUNICATION
, 
  85 static RAMFUNC 
int OutOfNDecoding(int bit
) 
  91                 Uart
.bitBuffer 
= bit 
^ 0xFF0; 
  96                 Uart
.bitBuffer 
^= bit
; 
 100                 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; 
 103                 if(Uart.byteCnt > 15) { return TRUE; } 
 109         if(Uart
.state 
!= STATE_UNSYNCD
) { 
 112                 if((Uart
.bitBuffer 
& Uart
.syncBit
) ^ Uart
.syncBit
) { 
 118                 if(((Uart
.bitBuffer 
<< 1) & Uart
.syncBit
) ^ Uart
.syncBit
) { 
 124                 if(bit 
!= bitright
) { bit 
= bitright
; } 
 127                 // So, now we only have to deal with *bit*, lets see... 
 128                 if(Uart
.posCnt 
== 1) { 
 129                         // measurement first half bitperiod 
 131                                 // Drop in first half means that we are either seeing 
 134                                 if(Uart
.nOutOfCnt 
== 1) { 
 135                                         // End of Communication 
 136                                         Uart
.state 
= STATE_UNSYNCD
; 
 138                                         if(Uart
.byteCnt 
== 0) { 
 139                                                 // Its not straightforward to show single EOFs 
 140                                                 // So just leave it and do not return TRUE 
 141                                                 Uart
.output
[0] = 0xf0; 
 148                                 else if(Uart
.state 
!= STATE_START_OF_COMMUNICATION
) { 
 149                                         // When not part of SOF or EOF, it is an error 
 150                                         Uart
.state 
= STATE_UNSYNCD
; 
 157                         // measurement second half bitperiod 
 158                         // Count the bitslot we are in... (ISO 15693) 
 162                                 if(Uart
.dropPosition
) { 
 163                                         if(Uart
.state 
== STATE_START_OF_COMMUNICATION
) { 
 169                                         // It is an error if we already have seen a drop in current frame 
 170                                         Uart
.state 
= STATE_UNSYNCD
; 
 174                                         Uart
.dropPosition 
= Uart
.nOutOfCnt
; 
 181                         if(Uart
.nOutOfCnt 
== Uart
.OutOfCnt 
&& Uart
.OutOfCnt 
== 4) { 
 184                                 if(Uart
.state 
== STATE_START_OF_COMMUNICATION
) { 
 185                                         if(Uart
.dropPosition 
== 4) { 
 186                                                 Uart
.state 
= STATE_RECEIVING
; 
 189                                         else if(Uart
.dropPosition 
== 3) { 
 190                                                 Uart
.state 
= STATE_RECEIVING
; 
 192                                                 //Uart.output[Uart.byteCnt] = 0xdd; 
 196                                                 Uart
.state 
= STATE_UNSYNCD
; 
 199                                         Uart
.dropPosition 
= 0; 
 204                                         if(!Uart
.dropPosition
) { 
 205                                                 Uart
.state 
= STATE_UNSYNCD
; 
 214                                                 //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; } 
 215                                                 //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; } 
 217                                                 Uart
.shiftReg 
^= ((Uart
.dropPosition 
& 0x03) << 6); 
 219                                                 Uart
.dropPosition 
= 0; 
 221                                                 if(Uart
.bitCnt 
== 8) { 
 222                                                         Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg 
& 0xff); 
 230                         else if(Uart
.nOutOfCnt 
== Uart
.OutOfCnt
) { 
 233                                 if(!Uart
.dropPosition
) { 
 234                                         Uart
.state 
= STATE_UNSYNCD
; 
 240                                         Uart
.output
[Uart
.byteCnt
] = (Uart
.dropPosition 
& 0xff); 
 245                                         Uart
.dropPosition 
= 0; 
 250                                 Uart.output[Uart.byteCnt] = 0xAA; 
 252                                 Uart.output[Uart.byteCnt] = error & 0xFF; 
 254                                 Uart.output[Uart.byteCnt] = 0xAA; 
 256                                 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; 
 258                                 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; 
 260                                 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; 
 262                                 Uart.output[Uart.byteCnt] = 0xAA; 
 270                 bit 
= Uart
.bitBuffer 
& 0xf0; 
 272                 bit 
^= 0x0F; // drops become 1s ;-) 
 274                         // should have been high or at least (4 * 128) / fc 
 275                         // according to ISO this should be at least (9 * 128 + 20) / fc 
 276                         if(Uart
.highCnt 
== 8) { 
 277                                 // we went low, so this could be start of communication 
 278                                 // it turns out to be safer to choose a less significant 
 279                                 // syncbit... so we check whether the neighbour also represents the drop 
 280                                 Uart
.posCnt 
= 1;   // apparently we are busy with our first half bit period 
 281                                 Uart
.syncBit 
= bit 
& 8; 
 283                                 if(!Uart
.syncBit
)       { Uart
.syncBit 
= bit 
& 4; Uart
.samples 
= 2; } 
 284                                 else if(bit 
& 4)        { Uart
.syncBit 
= bit 
& 4; Uart
.samples 
= 2; bit 
<<= 2; } 
 285                                 if(!Uart
.syncBit
)       { Uart
.syncBit 
= bit 
& 2; Uart
.samples 
= 1; } 
 286                                 else if(bit 
& 2)        { Uart
.syncBit 
= bit 
& 2; Uart
.samples 
= 1; bit 
<<= 1; } 
 287                                 if(!Uart
.syncBit
)       { Uart
.syncBit 
= bit 
& 1; Uart
.samples 
= 0; 
 288                                         if(Uart
.syncBit 
&& (Uart
.bitBuffer 
& 8)) { 
 291                                                 // the first half bit period is expected in next sample 
 296                                 else if(bit 
& 1)        { Uart
.syncBit 
= bit 
& 1; Uart
.samples 
= 0; } 
 299                                 Uart
.state 
= STATE_START_OF_COMMUNICATION
; 
 303                                 Uart
.OutOfCnt 
= 4; // Start at 1/4, could switch to 1/256 
 304                                 Uart
.dropPosition 
= 0; 
 313                         if(Uart
.highCnt 
< 8) { 
 322 //============================================================================= 
 324 //============================================================================= 
 329                 DEMOD_START_OF_COMMUNICATION
, 
 330                 DEMOD_START_OF_COMMUNICATION2
, 
 331                 DEMOD_START_OF_COMMUNICATION3
, 
 335                 DEMOD_END_OF_COMMUNICATION
, 
 336                 DEMOD_END_OF_COMMUNICATION2
, 
 359 static RAMFUNC 
int ManchesterDecoding(int v
) 
 366         Demod
.buffer 
= Demod
.buffer2
; 
 367         Demod
.buffer2 
= Demod
.buffer3
; 
 375         if(Demod
.state
==DEMOD_UNSYNCD
) { 
 376                 Demod
.output
[Demod
.len
] = 0xfa; 
 379                 Demod
.posCount 
= 1;             // This is the first half bit period, so after syncing handle the second part 
 382                         Demod
.syncBit 
= 0x08; 
 389                         Demod
.syncBit 
= 0x04; 
 396                         Demod
.syncBit 
= 0x02; 
 399                 if(bit 
& 0x01 && Demod
.syncBit
) { 
 400                         Demod
.syncBit 
= 0x01; 
 405                         Demod
.state 
= DEMOD_START_OF_COMMUNICATION
; 
 406                         Demod
.sub 
= SUB_FIRST_HALF
; 
 411                                 //if(trigger) LED_A_OFF();  // Not useful in this case... 
 412                                 switch(Demod
.syncBit
) { 
 413                                         case 0x08: Demod
.samples 
= 3; break; 
 414                                         case 0x04: Demod
.samples 
= 2; break; 
 415                                         case 0x02: Demod
.samples 
= 1; break; 
 416                                         case 0x01: Demod
.samples 
= 0; break; 
 418                                 // SOF must be long burst... otherwise stay unsynced!!! 
 419                                 if(!(Demod
.buffer 
& Demod
.syncBit
) || !(Demod
.buffer2 
& Demod
.syncBit
)) { 
 420                                         Demod
.state 
= DEMOD_UNSYNCD
; 
 424                                 // SOF must be long burst... otherwise stay unsynced!!! 
 425                                 if(!(Demod
.buffer2 
& Demod
.syncBit
) || !(Demod
.buffer3 
& Demod
.syncBit
)) { 
 426                                         Demod
.state 
= DEMOD_UNSYNCD
; 
 430                                 // TODO: use this error value to print?  Ask Holiman. 
 437                 modulation 
= bit 
& Demod
.syncBit
; 
 438                 modulation 
|= ((bit 
<< 1) ^ ((Demod
.buffer 
& 0x08) >> 3)) & Demod
.syncBit
; 
 442                 if(Demod
.posCount
==0) { 
 445                                 Demod
.sub 
= SUB_FIRST_HALF
; 
 448                                 Demod
.sub 
= SUB_NONE
; 
 453                         /*(modulation && (Demod.sub == SUB_FIRST_HALF)) { 
 454                                 if(Demod.state!=DEMOD_ERROR_WAIT) { 
 455                                         Demod.state = DEMOD_ERROR_WAIT; 
 456                                         Demod.output[Demod.len] = 0xaa; 
 460                         //else if(modulation) { 
 462                                 if(Demod
.sub 
== SUB_FIRST_HALF
) { 
 463                                         Demod
.sub 
= SUB_BOTH
; 
 466                                         Demod
.sub 
= SUB_SECOND_HALF
; 
 469                         else if(Demod
.sub 
== SUB_NONE
) { 
 470                                 if(Demod
.state 
== DEMOD_SOF_COMPLETE
) { 
 471                                         Demod
.output
[Demod
.len
] = 0x0f; 
 473                                         Demod
.state 
= DEMOD_UNSYNCD
; 
 478                                         Demod
.state 
= DEMOD_ERROR_WAIT
; 
 481                                 /*if(Demod.state!=DEMOD_ERROR_WAIT) { 
 482                                         Demod.state = DEMOD_ERROR_WAIT; 
 483                                         Demod.output[Demod.len] = 0xaa; 
 488                         switch(Demod
.state
) { 
 489                                 case DEMOD_START_OF_COMMUNICATION
: 
 490                                         if(Demod
.sub 
== SUB_BOTH
) { 
 491                                                 //Demod.state = DEMOD_MANCHESTER_D; 
 492                                                 Demod
.state 
= DEMOD_START_OF_COMMUNICATION2
; 
 494                                                 Demod
.sub 
= SUB_NONE
; 
 497                                                 Demod
.output
[Demod
.len
] = 0xab; 
 498                                                 Demod
.state 
= DEMOD_ERROR_WAIT
; 
 502                                 case DEMOD_START_OF_COMMUNICATION2
: 
 503                                         if(Demod
.sub 
== SUB_SECOND_HALF
) { 
 504                                                 Demod
.state 
= DEMOD_START_OF_COMMUNICATION3
; 
 507                                                 Demod
.output
[Demod
.len
] = 0xab; 
 508                                                 Demod
.state 
= DEMOD_ERROR_WAIT
; 
 512                                 case DEMOD_START_OF_COMMUNICATION3
: 
 513                                         if(Demod
.sub 
== SUB_SECOND_HALF
) { 
 514 //                                              Demod.state = DEMOD_MANCHESTER_D; 
 515                                                 Demod
.state 
= DEMOD_SOF_COMPLETE
; 
 516                                                 //Demod.output[Demod.len] = Demod.syncBit & 0xFF; 
 520                                                 Demod
.output
[Demod
.len
] = 0xab; 
 521                                                 Demod
.state 
= DEMOD_ERROR_WAIT
; 
 525                                 case DEMOD_SOF_COMPLETE
: 
 526                                 case DEMOD_MANCHESTER_D
: 
 527                                 case DEMOD_MANCHESTER_E
: 
 528                                         // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443) 
 529                                         //                          00001111 = 1 (0 in 14443) 
 530                                         if(Demod
.sub 
== SUB_SECOND_HALF
) { // SUB_FIRST_HALF 
 532                                                 Demod
.shiftReg 
= (Demod
.shiftReg 
>> 1) ^ 0x100; 
 533                                                 Demod
.state 
= DEMOD_MANCHESTER_D
; 
 535                                         else if(Demod
.sub 
== SUB_FIRST_HALF
) { // SUB_SECOND_HALF 
 537                                                 Demod
.shiftReg 
>>= 1; 
 538                                                 Demod
.state 
= DEMOD_MANCHESTER_E
; 
 540                                         else if(Demod
.sub 
== SUB_BOTH
) { 
 541                                                 Demod
.state 
= DEMOD_MANCHESTER_F
; 
 544                                                 Demod
.state 
= DEMOD_ERROR_WAIT
; 
 549                                 case DEMOD_MANCHESTER_F
: 
 550                                         // Tag response does not need to be a complete byte! 
 551                                         if(Demod
.len 
> 0 || Demod
.bitCount 
> 0) { 
 552                                                 if(Demod
.bitCount 
> 1) {  // was > 0, do not interpret last closing bit, is part of EOF 
 553                                                         Demod
.shiftReg 
>>= (9 - Demod
.bitCount
);        // right align data 
 554                                                         Demod
.output
[Demod
.len
] = Demod
.shiftReg 
& 0xff; 
 558                                                 Demod
.state 
= DEMOD_UNSYNCD
; 
 562                                                 Demod
.output
[Demod
.len
] = 0xad; 
 563                                                 Demod
.state 
= DEMOD_ERROR_WAIT
; 
 568                                 case DEMOD_ERROR_WAIT
: 
 569                                         Demod
.state 
= DEMOD_UNSYNCD
; 
 573                                         Demod
.output
[Demod
.len
] = 0xdd; 
 574                                         Demod
.state 
= DEMOD_UNSYNCD
; 
 578                         /*if(Demod.bitCount>=9) { 
 579                                 Demod.output[Demod.len] = Demod.shiftReg & 0xff; 
 582                                 Demod.parityBits <<= 1; 
 583                                 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01); 
 588                         if(Demod
.bitCount
>=8) { 
 589                                 Demod
.shiftReg 
>>= 1; 
 590                                 Demod
.output
[Demod
.len
] = (Demod
.shiftReg 
& 0xff); 
 597                                 Demod
.output
[Demod
.len
] = 0xBB; 
 599                                 Demod
.output
[Demod
.len
] = error 
& 0xFF; 
 601                                 Demod
.output
[Demod
.len
] = 0xBB; 
 603                                 Demod
.output
[Demod
.len
] = bit 
& 0xFF; 
 605                                 Demod
.output
[Demod
.len
] = Demod
.buffer 
& 0xFF; 
 608                                 Demod
.output
[Demod
.len
] = Demod
.buffer2 
& 0xFF; 
 610                                 Demod
.output
[Demod
.len
] = Demod
.syncBit 
& 0xFF; 
 612                                 Demod
.output
[Demod
.len
] = 0xBB; 
 619         } // end (state != UNSYNCED) 
 624 //============================================================================= 
 625 // Finally, a `sniffer' for iClass communication 
 626 // Both sides of communication! 
 627 //============================================================================= 
 629 //----------------------------------------------------------------------------- 
 630 // Record the sequence of commands sent by the reader to the tag, with 
 631 // triggering so that we start recording at the point that the tag is moved 
 633 //----------------------------------------------------------------------------- 
 634 void RAMFUNC 
SnoopIClass(void) 
 636     // We won't start recording the frames that we acquire until we trigger; 
 637     // a good trigger condition to get started is probably when we see a 
 638     // response from the tag. 
 639     //int triggered = FALSE; // FALSE to wait first for card 
 641     // The command (reader -> tag) that we're receiving. 
 642         // The length of a received command will in most cases be no more than 18 bytes. 
 643         // So 32 should be enough! 
 644         #define ICLASS_BUFFER_SIZE 32 
 645         uint8_t readerToTagCmd
[ICLASS_BUFFER_SIZE
]; 
 646     // The response (tag -> reader) that we're receiving. 
 647         uint8_t tagToReaderResponse
[ICLASS_BUFFER_SIZE
]; 
 649     FpgaDownloadAndGo(FPGA_BITSTREAM_HF
); 
 651         // free all BigBuf memory 
 653     // The DMA buffer, used to stream samples from the FPGA 
 654     uint8_t *dmaBuf 
= BigBuf_malloc(DMA_BUFFER_SIZE
); 
 659     iso14a_set_trigger(FALSE
); 
 666     // Count of samples received so far, so that we can include timing 
 667     // information in the trace buffer. 
 671     // Set up the demodulator for tag -> reader responses. 
 672         Demod
.output 
= tagToReaderResponse
; 
 674     Demod
.state 
= DEMOD_UNSYNCD
; 
 676     // Setup for the DMA. 
 679     lastRxCounter 
= DMA_BUFFER_SIZE
; 
 680     FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); 
 682     // And the reader -> tag commands 
 683     memset(&Uart
, 0, sizeof(Uart
)); 
 684         Uart
.output 
= readerToTagCmd
; 
 685     Uart
.byteCntMax 
= 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// 
 686     Uart
.state 
= STATE_UNSYNCD
; 
 688     // And put the FPGA in the appropriate mode 
 689     // Signal field is off with the appropriate LED 
 691     FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A 
| FPGA_HF_ISO14443A_SNIFFER
); 
 692     SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); 
 694         uint32_t time_0 
= GetCountSspClk(); 
 695         uint32_t time_start 
= 0; 
 696         uint32_t time_stop  
= 0; 
 703     // And now we loop, receiving samples. 
 707         int behindBy 
= (lastRxCounter 
- AT91C_BASE_PDC_SSC
->PDC_RCR
) & (DMA_BUFFER_SIZE
-1); 
 709         if ( behindBy 
> maxBehindBy
) { 
 710             maxBehindBy 
= behindBy
; 
 711             if ( behindBy 
> (9 * DMA_BUFFER_SIZE 
/ 10)) { 
 712                 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy
); 
 716         if( behindBy 
< 1) continue; 
 722         if (upTo 
- dmaBuf 
> DMA_BUFFER_SIZE
) { 
 723             upTo 
-= DMA_BUFFER_SIZE
; 
 724             lastRxCounter 
+= DMA_BUFFER_SIZE
; 
 725             AT91C_BASE_PDC_SSC
->PDC_RNPR 
= (uint32_t) upTo
; 
 726             AT91C_BASE_PDC_SSC
->PDC_RNCR 
= DMA_BUFFER_SIZE
; 
 733                         decbyte 
^= (1 << (3 - div
)); 
 736                 // FOR READER SIDE COMMUMICATION... 
 739                 decbyter 
^= (smpl 
& 0x30); 
 743                 if (( div 
+ 1) % 2 == 0) { 
 745                         if ( OutOfNDecoding((smpl 
& 0xF0) >> 4)) { 
 746                                 rsamples 
= samples 
- Uart
.samples
; 
 747                                 time_stop 
= (GetCountSspClk()-time_0
) << 4; 
 750                                 //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,TRUE)) break; 
 751                                 //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break; 
 753                                         uint8_t parity
[MAX_PARITY_SIZE
]; 
 754                                         GetParity(Uart
.output
, Uart
.byteCnt
, parity
); 
 755                                         LogTrace(Uart
.output
,Uart
.byteCnt
, time_start
, time_stop
, parity
, TRUE
); 
 758                                 /* And ready to receive another command. */ 
 759                                 Uart
.state 
= STATE_UNSYNCD
; 
 760                                 /* And also reset the demod code, which might have been */ 
 761                                 /* false-triggered by the commands from the reader. */ 
 762                                 Demod
.state 
= DEMOD_UNSYNCD
; 
 766                                 time_start 
= (GetCountSspClk()-time_0
) << 4; 
 773                         if(ManchesterDecoding(smpl 
& 0x0F)) { 
 774                                 time_stop 
= (GetCountSspClk()-time_0
) << 4; 
 776                                 rsamples 
= samples 
- Demod
.samples
; 
 780                                         uint8_t parity
[MAX_PARITY_SIZE
]; 
 781                                         GetParity(Demod
.output
, Demod
.len
, parity
); 
 782                                         LogTrace(Demod
.output
, Demod
.len
, time_start
, time_stop
, parity
, FALSE
); 
 785                                 // And ready to receive another response. 
 786                                 memset(&Demod
, 0, sizeof(Demod
)); 
 787                                 Demod
.output 
= tagToReaderResponse
; 
 788                                 Demod
.state 
= DEMOD_UNSYNCD
; 
 791                                 time_start 
= (GetCountSspClk()-time_0
) << 4; 
 798         if (BUTTON_PRESS()) { 
 799             DbpString("cancelled_a"); 
 804     DbpString("COMMAND FINISHED"); 
 806     Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
); 
 807         Dbprintf("%x %x %x", Uart
.byteCntMax
, BigBuf_get_traceLen(), (int)Uart
.output
[0]); 
 810     AT91C_BASE_PDC_SSC
->PDC_PTCR 
= AT91C_PDC_RXTDIS
; 
 811     Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
); 
 812         Dbprintf("%x %x %x", Uart
.byteCntMax
, BigBuf_get_traceLen(), (int)Uart
.output
[0]); 
 817 void rotateCSN(uint8_t* originalCSN
, uint8_t* rotatedCSN
) { 
 819         for(i 
= 0; i 
< 8; i
++) 
 820                 rotatedCSN
[i
] = (originalCSN
[i
] >> 3) | (originalCSN
[(i
+1)%8
] << 5); 
 823 //----------------------------------------------------------------------------- 
 824 // Wait for commands from reader 
 825 // Stop when button is pressed 
 826 // Or return TRUE when command is captured 
 827 //----------------------------------------------------------------------------- 
 828 static int GetIClassCommandFromReader(uint8_t *received
, int *len
, int maxLen
) 
 830     // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen 
 831     // only, since we are receiving, not transmitting). 
 832     // Signal field is off with the appropriate LED 
 834     FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A 
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
); 
 836     // Now run a `software UART' on the stream of incoming samples. 
 837     Uart
.output 
= received
; 
 838     Uart
.byteCntMax 
= maxLen
; 
 839     Uart
.state 
= STATE_UNSYNCD
; 
 844         if(BUTTON_PRESS()) return FALSE
; 
 846         if(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_TXRDY
)) { 
 847             AT91C_BASE_SSC
->SSC_THR 
= 0x00; 
 849         if(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_RXRDY
)) { 
 850             uint8_t b 
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
 852                         if(OutOfNDecoding(b 
& 0x0f)) { 
 860 static uint8_t encode4Bits(const uint8_t b
) 
 863         // OTA, the least significant bits first 
 865         //               1 - Bit value to send 
 866         //               2 - Reversed (big-endian) 
 872           case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55 
 873           case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95 
 874           case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65 
 875           case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5 
 876           case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59 
 877           case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99 
 878           case 9:  return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69 
 879           case 8:  return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9 
 880           case 7:  return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56 
 881           case 6:  return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96 
 882           case 5:  return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66 
 883           case 4:  return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6 
 884           case 3:  return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a 
 885           case 2:  return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a 
 886           case 1:  return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a 
 887           default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa 
 892 //----------------------------------------------------------------------------- 
 893 // Prepare tag messages 
 894 //----------------------------------------------------------------------------- 
 895 static void CodeIClassTagAnswer(const uint8_t *cmd
, int len
) 
 899          * SOF comprises 3 parts; 
 900          * * An unmodulated time of 56.64 us 
 901          * * 24 pulses of 423.75 KHz (fc/32) 
 902          * * A logic 1, which starts with an unmodulated time of 18.88us 
 903          *   followed by 8 pulses of 423.75kHz (fc/32) 
 906          * EOF comprises 3 parts: 
 907          * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated 
 909          * - 24 pulses of fc/32 
 910          * - An unmodulated time of 56.64 us 
 913          * A logic 0 starts with 8 pulses of fc/32 
 914          * followed by an unmodulated time of 256/fc (~18,88us). 
 916          * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by 
 917          * 8 pulses of fc/32 (also 18.88us) 
 919          * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag, 
 921          * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us). 
 922          * - A 0-bit inptu to the FPGA becomes an unmodulated time of 18.88us 
 924          * In this mode the SOF can be written as 00011101 = 0x1D 
 925          * The EOF can be written as 10111000 = 0xb8 
 936         ToSend
[++ToSendMax
] = 0x1D; 
 938         for(i 
= 0; i 
< len
; i
++) { 
 940                 ToSend
[++ToSendMax
] = encode4Bits(b 
& 0xF); //Least significant half 
 941                 ToSend
[++ToSendMax
] = encode4Bits((b 
>>4) & 0xF);//Most significant half 
 945         ToSend
[++ToSendMax
] = 0xB8; 
 946         //lastProxToAirDuration  = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end 
 947         // Convert from last byte pos to length 
 952 static void CodeIClassTagSOF() 
 954         //So far a dummy implementation, not used 
 955         //int lastProxToAirDuration =0; 
 959         ToSend
[++ToSendMax
] = 0x1D; 
 960 //      lastProxToAirDuration  = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning 
 962         // Convert from last byte pos to length 
 965 #define MODE_SIM_CSN        0 
 966 #define MODE_EXIT_AFTER_MAC 1 
 967 #define MODE_FULLSIM        2 
 969 int doIClassSimulation(int simulationMode
, uint8_t *reader_mac_buf
); 
 971  * @brief SimulateIClass simulates an iClass card. 
 972  * @param arg0 type of simulation 
 973  *                      - 0 uses the first 8 bytes in usb data as CSN 
 974  *                      - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified 
 975  *                      in the usb data. This mode collects MAC from the reader, in order to do an offline 
 976  *                      attack on the keys. For more info, see "dismantling iclass" and proxclone.com. 
 977  *                      - Other : Uses the default CSN (031fec8af7ff12e0) 
 978  * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only) 
 982 void SimulateIClass(uint32_t arg0
, uint32_t arg1
, uint32_t arg2
, uint8_t *datain
) 
 984         uint32_t simType 
= arg0
; 
 985         uint32_t numberOfCSNS 
= arg1
; 
 986         FpgaDownloadAndGo(FPGA_BITSTREAM_HF
); 
 988         // Enable and clear the trace 
 992         //Use the emulator memory for SIM 
 993         uint8_t *emulator 
= BigBuf_get_EM_addr(); 
 996                 // Use the CSN from commandline 
 997                 memcpy(emulator
, datain
, 8); 
 998                 doIClassSimulation(MODE_SIM_CSN
,NULL
); 
 999         }else if(simType 
== 1) 
1002                 uint8_t csn_crc
[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 }; 
1003                 // Use the CSN from commandline 
1004                 memcpy(emulator
, csn_crc
, 8); 
1005                 doIClassSimulation(MODE_SIM_CSN
,NULL
); 
1007         else if(simType 
== 2) 
1010                 uint8_t mac_responses
[USB_CMD_DATA_SIZE
] = { 0 }; 
1011                 Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS
); 
1012                 // In this mode, a number of csns are within datain. We'll simulate each one, one at a time 
1013                 // in order to collect MAC's from the reader. This can later be used in an offlne-attack 
1014                 // in order to obtain the keys, as in the "dismantling iclass"-paper. 
1016                 for( ; i 
< numberOfCSNS 
&& i
*8+8 < USB_CMD_DATA_SIZE
; i
++) 
1018                         // The usb data is 512 bytes, fitting 65 8-byte CSNs in there. 
1020                         memcpy(emulator
, datain
+(i
*8), 8); 
1021                         if(doIClassSimulation(MODE_EXIT_AFTER_MAC
,mac_responses
+i
*8)) 
1023                                 cmd_send(CMD_ACK
,CMD_SIMULATE_TAG_ICLASS
,i
,0,mac_responses
,i
*8); 
1024                                 return; // Button pressed 
1027                 cmd_send(CMD_ACK
,CMD_SIMULATE_TAG_ICLASS
,i
,0,mac_responses
,i
*8); 
1029         }else if(simType 
== 3){ 
1030                 //This is 'full sim' mode, where we use the emulator storage for data. 
1031                 doIClassSimulation(MODE_FULLSIM
, NULL
); 
1034                 // We may want a mode here where we hardcode the csns to use (from proxclone). 
1035                 // That will speed things up a little, but not required just yet. 
1036                 Dbprintf("The mode is not implemented, reserved for future use"); 
1038         Dbprintf("Done..."); 
1041 void AppendCrc(uint8_t* data
, int len
) 
1043         ComputeCrc14443(CRC_ICLASS
,data
,len
,data
+len
,data
+len
+1); 
1047  * @brief Does the actual simulation 
1048  * @param csn - csn to use 
1049  * @param breakAfterMacReceived if true, returns after reader MAC has been received. 
1051 int doIClassSimulation( int simulationMode
, uint8_t *reader_mac_buf
) 
1053         // free eventually allocated BigBuf memory 
1054         BigBuf_free_keep_EM(); 
1057 //      State cipher_state_reserve; 
1058         uint8_t *csn 
= BigBuf_get_EM_addr(); 
1059         uint8_t *emulator 
= csn
; 
1060         uint8_t sof_data
[] = { 0x0F} ; 
1061         // CSN followed by two CRC bytes 
1062         uint8_t anticoll_data
[10] = { 0 }; 
1063         uint8_t csn_data
[10] = { 0 }; 
1064         memcpy(csn_data
,csn
,sizeof(csn_data
)); 
1065         Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn
[0],csn
[1],csn
[2],csn
[3],csn
[4],csn
[5],csn
[6],csn
[7]); 
1067         // Construct anticollision-CSN 
1068         rotateCSN(csn_data
,anticoll_data
); 
1070         // Compute CRC on both CSNs 
1071         ComputeCrc14443(CRC_ICLASS
, anticoll_data
, 8, &anticoll_data
[8], &anticoll_data
[9]); 
1072         ComputeCrc14443(CRC_ICLASS
, csn_data
, 8, &csn_data
[8], &csn_data
[9]); 
1074         uint8_t diversified_key
[8] = { 0 }; 
1076         uint8_t card_challenge_data
[8] = { 0x00 }; 
1077         if(simulationMode 
== MODE_FULLSIM
) 
1079                 //The diversified key should be stored on block 3 
1080                 //Get the diversified key from emulator memory 
1081                 memcpy(diversified_key
, emulator
+(8*3),8); 
1083                 //Card challenge, a.k.a e-purse is on block 2 
1084                 memcpy(card_challenge_data
,emulator 
+ (8 * 2) , 8); 
1085                 //Precalculate the cipher state, feeding it the CC 
1086                 cipher_state 
= opt_doTagMAC_1(card_challenge_data
,diversified_key
); 
1094         // Tag    anticoll. CSN 
1095         // Reader 81 anticoll. CSN 
1098         uint8_t *modulated_response
; 
1099         int modulated_response_size 
= 0; 
1100         uint8_t* trace_data 
= NULL
; 
1101         int trace_data_size 
= 0; 
1104         // Respond SOF -- takes 1 bytes 
1105         uint8_t *resp_sof 
= BigBuf_malloc(2); 
1108         // Anticollision CSN (rotated CSN) 
1109         // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) 
1110         uint8_t *resp_anticoll 
= BigBuf_malloc(28); 
1111         int resp_anticoll_len
; 
1114         // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) 
1115         uint8_t *resp_csn 
= BigBuf_malloc(30); 
1119         // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit) 
1120         uint8_t *resp_cc 
= BigBuf_malloc(20); 
1123         uint8_t *receivedCmd 
= BigBuf_malloc(MAX_FRAME_SIZE
); 
1126         // Prepare card messages 
1129         // First card answer: SOF 
1131         memcpy(resp_sof
, ToSend
, ToSendMax
); resp_sof_Len 
= ToSendMax
; 
1133         // Anticollision CSN 
1134         CodeIClassTagAnswer(anticoll_data
, sizeof(anticoll_data
)); 
1135         memcpy(resp_anticoll
, ToSend
, ToSendMax
); resp_anticoll_len 
= ToSendMax
; 
1138         CodeIClassTagAnswer(csn_data
, sizeof(csn_data
)); 
1139         memcpy(resp_csn
, ToSend
, ToSendMax
); resp_csn_len 
= ToSendMax
; 
1142         CodeIClassTagAnswer(card_challenge_data
, sizeof(card_challenge_data
)); 
1143         memcpy(resp_cc
, ToSend
, ToSendMax
); resp_cc_len 
= ToSendMax
; 
1145         //This is used for responding to READ-block commands or other data which is dynamically generated 
1146         //First the 'trace'-data, not encoded for FPGA 
1147         uint8_t *data_generic_trace 
= BigBuf_malloc(8 + 2);//8 bytes data + 2byte CRC is max tag answer 
1148         //Then storage for the modulated data 
1149         //Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes) 
1150         uint8_t *data_response 
= BigBuf_malloc( (8+2) * 2 + 2); 
1152         // Start from off (no field generated) 
1153         //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); 
1155         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A 
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
); 
1158         // We need to listen to the high-frequency, peak-detected path. 
1159         SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); 
1162         // To control where we are in the protocol 
1164         uint32_t time_0 
= GetCountSspClk(); 
1165         uint32_t t2r_time 
=0; 
1166         uint32_t r2t_time 
=0; 
1169         bool buttonPressed 
= false; 
1170         uint8_t response_delay 
= 1; 
1175                 // Can be used to get a trigger for an oscilloscope.. 
1178                 if(!GetIClassCommandFromReader(receivedCmd
, &len
, 100)) { 
1179                         buttonPressed 
= true; 
1182                 r2t_time 
= GetCountSspClk(); 
1186                 // Okay, look at the command now. 
1187                 if(receivedCmd
[0] == ICLASS_CMD_ACTALL 
) { 
1188                         // Reader in anticollission phase 
1189                         modulated_response 
= resp_sof
; modulated_response_size 
= resp_sof_Len
; //order = 1; 
1190                         trace_data 
= sof_data
; 
1191                         trace_data_size 
= sizeof(sof_data
); 
1192                 } else if(receivedCmd
[0] == ICLASS_CMD_READ_OR_IDENTIFY 
&& len 
== 1) { 
1193                         // Reader asks for anticollission CSN 
1194                         modulated_response 
= resp_anticoll
; modulated_response_size 
= resp_anticoll_len
; //order = 2; 
1195                         trace_data 
= anticoll_data
; 
1196                         trace_data_size 
= sizeof(anticoll_data
); 
1197                         //DbpString("Reader requests anticollission CSN:"); 
1198                 } else if(receivedCmd
[0] == ICLASS_CMD_SELECT
) { 
1199                         // Reader selects anticollission CSN. 
1200                         // Tag sends the corresponding real CSN 
1201                         modulated_response 
= resp_csn
; modulated_response_size 
= resp_csn_len
; //order = 3; 
1202                         trace_data 
= csn_data
; 
1203                         trace_data_size 
= sizeof(csn_data
); 
1204                         //DbpString("Reader selects anticollission CSN:"); 
1205                 } else if(receivedCmd
[0] == ICLASS_CMD_READCHECK_KD
) { 
1206                         // Read e-purse (88 02) 
1207                         modulated_response 
= resp_cc
; modulated_response_size 
= resp_cc_len
; //order = 4; 
1208                         trace_data 
= card_challenge_data
; 
1209                         trace_data_size 
= sizeof(card_challenge_data
); 
1211                 } else if(receivedCmd
[0] == ICLASS_CMD_CHECK
) { 
1212                         // Reader random and reader MAC!!! 
1213                         if(simulationMode 
== MODE_FULLSIM
) 
1215                                 //NR, from reader, is in receivedCmd +1 
1216                                 opt_doTagMAC_2(cipher_state
,receivedCmd
+1,data_generic_trace
,diversified_key
); 
1218                                 trace_data 
= data_generic_trace
; 
1219                                 trace_data_size 
= 4; 
1220                                 CodeIClassTagAnswer(trace_data 
, trace_data_size
); 
1221                                 memcpy(data_response
, ToSend
, ToSendMax
); 
1222                                 modulated_response 
= data_response
; 
1223                                 modulated_response_size 
= ToSendMax
; 
1224                                 response_delay 
= 0;//We need to hurry here... 
1227                         {       //Not fullsim, we don't respond 
1228             // We do not know what to answer, so lets keep quiet 
1229                                 modulated_response 
= resp_sof
; modulated_response_size 
= 0; 
1231                         trace_data_size 
= 0; 
1232                                 if (simulationMode 
== MODE_EXIT_AFTER_MAC
){ 
1234                                 Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x" 
1235                                                    ,csn
[0],csn
[1],csn
[2],csn
[3],csn
[4],csn
[5],csn
[6],csn
[7]); 
1236                                 Dbprintf("RDR:  (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len
, 
1237                                                 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2], 
1238                                                 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5], 
1239                                                 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]); 
1240                                 if (reader_mac_buf 
!= NULL
) 
1242                                         memcpy(reader_mac_buf
,receivedCmd
+1,8); 
1248                 } else if(receivedCmd
[0] == ICLASS_CMD_HALT 
&& len 
== 1) { 
1249                         // Reader ends the session 
1250                         modulated_response 
= resp_sof
; modulated_response_size 
= 0; //order = 0; 
1252                         trace_data_size 
= 0; 
1253                 } else if(simulationMode 
== MODE_FULLSIM 
&& receivedCmd
[0] == ICLASS_CMD_READ_OR_IDENTIFY 
&& len 
== 4){ 
1255                         uint16_t blk 
= receivedCmd
[1]; 
1257                         memcpy(data_generic_trace
, emulator
+(blk 
<< 3),8); 
1259                         AppendCrc(data_generic_trace
, 8); 
1260                         trace_data 
= data_generic_trace
; 
1261                         trace_data_size 
= 10; 
1262                         CodeIClassTagAnswer(trace_data 
, trace_data_size
); 
1263                         memcpy(data_response
, ToSend
, ToSendMax
); 
1264                         modulated_response 
= data_response
; 
1265                         modulated_response_size 
= ToSendMax
; 
1266                 }else if(receivedCmd
[0] == ICLASS_CMD_UPDATE 
&& simulationMode 
== MODE_FULLSIM
) 
1267                 {//Probably the reader wants to update the nonce. Let's just ignore that for now. 
1268                         // OBS! If this is implemented, don't forget to regenerate the cipher_state 
1269                         //We're expected to respond with the data+crc, exactly what's already in the receivedcmd 
1270                         //receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b| 
1273                         memcpy(data_generic_trace
, receivedCmd
+2,8); 
1275                         AppendCrc(data_generic_trace
, 8); 
1276                         trace_data 
= data_generic_trace
; 
1277                         trace_data_size 
= 10; 
1278                         CodeIClassTagAnswer(trace_data 
, trace_data_size
); 
1279                         memcpy(data_response
, ToSend
, ToSendMax
); 
1280                         modulated_response 
= data_response
; 
1281                         modulated_response_size 
= ToSendMax
; 
1283                 else if(receivedCmd
[0] == ICLASS_CMD_PAGESEL
) 
1285                         //Pagesel enables to select a page in the selected chip memory and return its configuration block 
1286                         //Chips with a single page will not answer to this command 
1287                         // It appears we're fine ignoring this. 
1288                         //Otherwise, we should answer 8bytes (block) + 2bytes CRC 
1291                         //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44 
1292                         // Never seen this command before 
1293                         Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x", 
1295                         receivedCmd
[0], receivedCmd
[1], receivedCmd
[2], 
1296                         receivedCmd
[3], receivedCmd
[4], receivedCmd
[5], 
1297                         receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]); 
1299                         modulated_response 
= resp_sof
; modulated_response_size 
= 0; //order = 0; 
1301                         trace_data_size 
= 0; 
1304                 if(cmdsRecvd 
>  100) { 
1305                         //DbpString("100 commands later..."); 
1312                 A legit tag has about 380us delay between reader EOT and tag SOF. 
1314                 if(modulated_response_size 
> 0) { 
1315                         SendIClassAnswer(modulated_response
, modulated_response_size
, response_delay
); 
1316                         t2r_time 
= GetCountSspClk(); 
1320                         uint8_t parity
[MAX_PARITY_SIZE
]; 
1321                         GetParity(receivedCmd
, len
, parity
); 
1322                         LogTrace(receivedCmd
,len
, (r2t_time
-time_0
)<< 4, (r2t_time
-time_0
) << 4, parity
, TRUE
); 
1324                         if (trace_data 
!= NULL
) { 
1325                                 GetParity(trace_data
, trace_data_size
, parity
); 
1326                                 LogTrace(trace_data
, trace_data_size
, (t2r_time
-time_0
) << 4, (t2r_time
-time_0
) << 4, parity
, FALSE
); 
1329                                 DbpString("Trace full"); 
1337                 DbpString("Button pressed"); 
1339         return buttonPressed
; 
1342 static int SendIClassAnswer(uint8_t *resp
, int respLen
, int delay
) 
1344         int i 
= 0, d
=0;//, u = 0, d = 0; 
1347         //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K); 
1348         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT
); 
1350         AT91C_BASE_SSC
->SSC_THR 
= 0x00; 
1352         while(!BUTTON_PRESS()) { 
1353                 if((AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
)){ 
1354                         b 
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
; 
1356                 if(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_TXRDY
)){ 
1369                         AT91C_BASE_SSC
->SSC_THR 
= b
; 
1372 //              if (i > respLen +4) break; 
1373                 if (i 
> respLen 
+1) break; 
1381 //----------------------------------------------------------------------------- 
1382 // Transmit the command (to the tag) that was placed in ToSend[]. 
1383 //----------------------------------------------------------------------------- 
1384 static void TransmitIClassCommand(const uint8_t *cmd
, int len
, int *samples
, int *wait
) 
1387         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A 
| FPGA_HF_ISO14443A_READER_MOD
); 
1388         AT91C_BASE_SSC
->SSC_THR 
= 0x00; 
1392                 if(*wait 
< 10) *wait 
= 10; 
1394                 for(c 
= 0; c 
< *wait
;) { 
1395                         if(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_TXRDY
)) { 
1396                                 AT91C_BASE_SSC
->SSC_THR 
= 0x00;         // For exact timing! 
1399                         if(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_RXRDY
)) { 
1400                                 volatile uint32_t r 
= AT91C_BASE_SSC
->SSC_RHR
; 
1409         bool firstpart 
= TRUE
; 
1412     if(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_TXRDY
)) { 
1414       // DOUBLE THE SAMPLES! 
1416         sendbyte 
= (cmd
[c
] & 0xf0) | (cmd
[c
] >> 4);  
1419         sendbyte 
= (cmd
[c
] & 0x0f) | (cmd
[c
] << 4); 
1422       if(sendbyte 
== 0xff) { 
1425       AT91C_BASE_SSC
->SSC_THR 
= sendbyte
; 
1426       firstpart 
= !firstpart
; 
1432     if(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_RXRDY
)) { 
1433       volatile uint32_t r 
= AT91C_BASE_SSC
->SSC_RHR
; 
1438   if (samples 
&& wait
) *samples 
= (c 
+ *wait
) << 3; 
1442 //----------------------------------------------------------------------------- 
1443 // Prepare iClass reader command to send to FPGA 
1444 //----------------------------------------------------------------------------- 
1445 void CodeIClassCommand(const uint8_t * cmd
, int len
) 
1452   // Start of Communication: 1 out of 4 
1453   ToSend
[++ToSendMax
] = 0xf0; 
1454   ToSend
[++ToSendMax
] = 0x00; 
1455   ToSend
[++ToSendMax
] = 0x0f; 
1456   ToSend
[++ToSendMax
] = 0x00; 
1458   // Modulate the bytes  
1459   for (i 
= 0; i 
< len
; i
++) { 
1461     for(j 
= 0; j 
< 4; j
++) { 
1462       for(k 
= 0; k 
< 4; k
++) { 
1464                                 ToSend
[++ToSendMax
] = 0x0f; 
1467                                 ToSend
[++ToSendMax
] = 0x00; 
1474   // End of Communication 
1475   ToSend
[++ToSendMax
] = 0x00; 
1476   ToSend
[++ToSendMax
] = 0x00; 
1477   ToSend
[++ToSendMax
] = 0xf0; 
1478   ToSend
[++ToSendMax
] = 0x00; 
1480   // Convert from last character reference to length 
1484 void ReaderTransmitIClass(uint8_t* frame
, int len
) 
1489   // This is tied to other size changes 
1490   CodeIClassCommand(frame
,len
); 
1493   TransmitIClassCommand(ToSend
, ToSendMax
, &samples
, &wait
); 
1497   // Store reader command in buffer 
1499                 uint8_t par
[MAX_PARITY_SIZE
]; 
1500                 GetParity(frame
, len
, par
); 
1501                 LogTrace(frame
, len
, rsamples
, rsamples
, par
, TRUE
); 
1505 //----------------------------------------------------------------------------- 
1506 // Wait a certain time for tag response 
1507 //  If a response is captured return TRUE 
1508 //  If it takes too long return FALSE 
1509 //----------------------------------------------------------------------------- 
1510 static int GetIClassAnswer(uint8_t *receivedResponse
, int maxLen
, int *samples
, int *elapsed
) //uint8_t *buffer 
1512         // buffer needs to be 512 bytes 
1515         // Set FPGA mode to "reader listen mode", no modulation (listen 
1516         // only, since we are receiving, not transmitting). 
1517         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A 
| FPGA_HF_ISO14443A_READER_LISTEN
); 
1519         // Now get the answer from the card 
1520         Demod
.output 
= receivedResponse
; 
1522         Demod
.state 
= DEMOD_UNSYNCD
; 
1525         if (elapsed
) *elapsed 
= 0; 
1533             if(BUTTON_PRESS()) return FALSE
; 
1535                 if(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_TXRDY
)) { 
1536                         AT91C_BASE_SSC
->SSC_THR 
= 0x00;  // To make use of exact timing of next command from reader!! 
1537                         if (elapsed
) (*elapsed
)++; 
1539                 if(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_RXRDY
)) { 
1540                         if(c 
< timeout
) { c
++; } else { return FALSE
; } 
1541                         b 
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
1545                         if(ManchesterDecoding(b 
& 0x0f)) { 
1553 int ReaderReceiveIClass(uint8_t* receivedAnswer
) 
1556   if (!GetIClassAnswer(receivedAnswer
,160,&samples
,0)) return FALSE
; 
1557   rsamples 
+= samples
; 
1559         uint8_t parity
[MAX_PARITY_SIZE
]; 
1560         GetParity(receivedAnswer
, Demod
.len
, parity
); 
1561         LogTrace(receivedAnswer
,Demod
.len
,rsamples
,rsamples
,parity
,FALSE
); 
1563   if(samples 
== 0) return FALSE
; 
1567 void setupIclassReader() 
1569     FpgaDownloadAndGo(FPGA_BITSTREAM_HF
); 
1570     // Reset trace buffer 
1576     // Start from off (no field generated) 
1577     // Signal field is off with the appropriate LED 
1579     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1582     SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); 
1584     // Now give it time to spin up. 
1585     // Signal field is on with the appropriate LED 
1586     FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A 
| FPGA_HF_ISO14443A_READER_MOD
); 
1592 bool sendCmdGetResponseWithRetries(uint8_t* command
, size_t cmdsize
, uint8_t* resp
, uint8_t expected_size
, uint8_t retries
) 
1594         while(retries
-- > 0) 
1596                 ReaderTransmitIClass(command
, cmdsize
); 
1597                 if(expected_size 
== ReaderReceiveIClass(resp
)){ 
1601         return false;//Error 
1605  * @brief Talks to an iclass tag, sends the commands to get CSN and CC. 
1606  * @param card_data where the CSN and CC are stored for return 
1609  *         2 = Got CSN and CC 
1611 uint8_t handshakeIclassTag_ext(uint8_t *card_data
, bool use_credit_key
) 
1613         static uint8_t act_all
[]     = { 0x0a }; 
1614         //static uint8_t identify[]    = { 0x0c }; 
1615         static uint8_t identify
[]    = { 0x0c, 0x00, 0x73, 0x33 }; 
1616         static uint8_t select
[]      = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 
1617         static uint8_t readcheck_cc
[]= { 0x88, 0x02 }; 
1619                 readcheck_cc
[0] = 0x18; 
1621                 readcheck_cc
[0] = 0x88; 
1623         uint8_t resp
[ICLASS_BUFFER_SIZE
]; 
1625         uint8_t read_status 
= 0; 
1628         ReaderTransmitIClass(act_all
, 1); 
1630         if(!ReaderReceiveIClass(resp
)) return read_status
;//Fail 
1632         ReaderTransmitIClass(identify
, 1); 
1633         //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC 
1634         uint8_t len  
= ReaderReceiveIClass(resp
); 
1635         if(len 
!= 10) return read_status
;//Fail 
1637         //Copy the Anti-collision CSN to our select-packet 
1638         memcpy(&select
[1],resp
,8); 
1640         ReaderTransmitIClass(select
, sizeof(select
)); 
1641         //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC 
1642         len  
= ReaderReceiveIClass(resp
); 
1643         if(len 
!= 10) return read_status
;//Fail 
1645         //Success - level 1, we got CSN 
1646         //Save CSN in response data 
1647         memcpy(card_data
,resp
,8); 
1649         //Flag that we got to at least stage 1, read CSN 
1652         // Card selected, now read e-purse (cc) 
1653         ReaderTransmitIClass(readcheck_cc
, sizeof(readcheck_cc
)); 
1654         if(ReaderReceiveIClass(resp
) == 8) { 
1655                 //Save CC (e-purse) in response data 
1656                 memcpy(card_data
+8,resp
,8); 
1662 uint8_t handshakeIclassTag(uint8_t *card_data
){ 
1663         return handshakeIclassTag_ext(card_data
, false); 
1667 // Reader iClass Anticollission 
1668 void ReaderIClass(uint8_t arg0
) { 
1670         uint8_t card_data
[6 * 8]={0}; 
1671         memset(card_data
, 0xFF, sizeof(card_data
)); 
1672     uint8_t last_csn
[8]={0}; 
1674         //Read conf block CRC(0x01) => 0xfa 0x22 
1675         uint8_t readConf
[] = { ICLASS_CMD_READ_OR_IDENTIFY
,0x01, 0xfa, 0x22}; 
1676         //Read conf block CRC(0x05) => 0xde  0x64 
1677         uint8_t readAA
[] = { ICLASS_CMD_READ_OR_IDENTIFY
,0x05, 0xde, 0x64}; 
1681         uint8_t result_status 
= 0; 
1682     bool abort_after_read 
= arg0 
& FLAG_ICLASS_READER_ONLY_ONCE
; 
1683         bool try_once 
= arg0 
& FLAG_ICLASS_READER_ONE_TRY
; 
1684         bool use_credit_key 
= false; 
1685         if (arg0 
& FLAG_ICLASS_READER_CEDITKEY
) 
1686                 use_credit_key 
= true; 
1688     setupIclassReader(); 
1691     while(!BUTTON_PRESS()) 
1693                 if (try_once 
&& tryCnt 
> 5) break;  
1698                         DbpString("Trace full"); 
1703                 read_status 
= handshakeIclassTag_ext(card_data
, use_credit_key
); 
1705                 if(read_status 
== 0) continue; 
1706                 if(read_status 
== 1) result_status 
= FLAG_ICLASS_READER_CSN
; 
1707                 if(read_status 
== 2) result_status 
= FLAG_ICLASS_READER_CSN
|FLAG_ICLASS_READER_CC
; 
1709                 // handshakeIclass returns CSN|CC, but the actual block 
1710                 // layout is CSN|CONFIG|CC, so here we reorder the data, 
1711                 // moving CC forward 8 bytes 
1712                 memcpy(card_data
+16,card_data
+8, 8); 
1713                 //Read block 1, config 
1714                 if(arg0 
& FLAG_ICLASS_READER_CONF
) 
1716                         if(sendCmdGetResponseWithRetries(readConf
, sizeof(readConf
),card_data
+8, 10, 10)) 
1718                                 result_status 
|= FLAG_ICLASS_READER_CONF
; 
1720                                 Dbprintf("Failed to dump config block"); 
1725                 if(arg0 
& FLAG_ICLASS_READER_AA
){ 
1726                         if(sendCmdGetResponseWithRetries(readAA
, sizeof(readAA
),card_data
+(8*4), 10, 10)) 
1728                                 result_status 
|= FLAG_ICLASS_READER_AA
; 
1730                                 //Dbprintf("Failed to dump AA block"); 
1735                 // 1 : Configuration 
1737                 // (3,4 write-only, kc and kd) 
1738                 // 5 Application issuer area 
1740                 //Then we can 'ship' back the 8 * 5 bytes of data, 
1741                 // with 0xFF:s in block 3 and 4. 
1744                     //Send back to client, but don't bother if we already sent this 
1745                     if(memcmp(last_csn
, card_data
, 8) != 0) 
1747                         // If caller requires that we get CC, continue until we got it 
1748                         if( (arg0 
& read_status 
& FLAG_ICLASS_READER_CC
) || !(arg0 
& FLAG_ICLASS_READER_CC
)) 
1750                                 cmd_send(CMD_ACK
,result_status
,0,0,card_data
,sizeof(card_data
)); 
1751                                 if(abort_after_read
) { 
1756                                 //Save that we already sent this.... 
1757                                 memcpy(last_csn
, card_data
, 8); 
1762     cmd_send(CMD_ACK
,0,0,0,card_data
, 0); 
1767 void ReaderIClass_Replay(uint8_t arg0
, uint8_t *MAC
) { 
1769         uint8_t card_data
[USB_CMD_DATA_SIZE
]={0}; 
1770         uint16_t block_crc_LUT
[255] = {0}; 
1772         {//Generate a lookup table for block crc 
1773                 for(int block 
= 0; block 
< 255; block
++){ 
1775                         block_crc_LUT
[block
] = iclass_crc16(&bl 
,1); 
1778         //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]); 
1780         uint8_t check
[]       = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 
1781         uint8_t read
[]        = { 0x0c, 0x00, 0x00, 0x00 }; 
1787         static struct memory_t
{ 
1795         uint8_t resp
[ICLASS_BUFFER_SIZE
]; 
1797     setupIclassReader(); 
1800         while(!BUTTON_PRESS()) { 
1805                         DbpString("Trace full"); 
1809                 uint8_t read_status 
= handshakeIclassTag(card_data
); 
1810                 if(read_status 
< 2) continue; 
1812                 //for now replay captured auth (as cc not updated) 
1813                 memcpy(check
+5,MAC
,4); 
1815                 if(!sendCmdGetResponseWithRetries(check
, sizeof(check
),resp
, 4, 5)) 
1817                         Dbprintf("Error: Authentication Fail!"); 
1821                 //first get configuration block (block 1) 
1822                 crc 
= block_crc_LUT
[1]; 
1825                 read
[3] = crc 
& 0xff; 
1827                 if(!sendCmdGetResponseWithRetries(read
, sizeof(read
),resp
, 10, 10)) 
1829                         Dbprintf("Dump config (block 1) failed"); 
1834                  memory
.k16
= (mem 
& 0x80); 
1835                  memory
.book
= (mem 
& 0x20); 
1836                  memory
.k2
= (mem 
& 0x8); 
1837                  memory
.lockauth
= (mem 
& 0x2); 
1838                  memory
.keyaccess
= (mem 
& 0x1); 
1840                 cardsize 
= memory
.k16 
? 255 : 32; 
1842                 //Set card_data to all zeroes, we'll fill it with data 
1843                 memset(card_data
,0x0,USB_CMD_DATA_SIZE
); 
1844                 uint8_t failedRead 
=0; 
1845                 uint32_t stored_data_length 
=0; 
1846                                 //then loop around remaining blocks 
1847                 for(int block
=0; block 
< cardsize
; block
++){ 
1850                         crc 
= block_crc_LUT
[block
]; 
1852                         read
[3] = crc 
& 0xff; 
1854                         if(sendCmdGetResponseWithRetries(read
, sizeof(read
), resp
, 10, 10)) 
1856                                 Dbprintf("     %02x: %02x %02x %02x %02x %02x %02x %02x %02x", 
1857                                         block
, resp
[0], resp
[1], resp
[2], 
1858                                         resp
[3], resp
[4], resp
[5], 
1861                                 //Fill up the buffer 
1862                                 memcpy(card_data
+stored_data_length
,resp
,8); 
1863                                 stored_data_length 
+= 8; 
1864                                 if(stored_data_length 
+8 > USB_CMD_DATA_SIZE
) 
1865                                 {//Time to send this off and start afresh 
1867                                                          stored_data_length
,//data length 
1868                                                          failedRead
,//Failed blocks? 
1870                                                          card_data
, stored_data_length
); 
1872                                         stored_data_length 
= 0; 
1877                                 stored_data_length 
+=8;//Otherwise, data becomes misaligned 
1878                                 Dbprintf("Failed to dump block %d", block
); 
1882                 //Send off any remaining data 
1883                 if(stored_data_length 
> 0) 
1886                                          stored_data_length
,//data length 
1887                                          failedRead
,//Failed blocks? 
1889                                          card_data
, stored_data_length
); 
1891                 //If we got here, let's break 
1894         //Signal end of transmission 
1905 void iClass_ReadCheck(uint8_t   blockNo
, uint8_t keyType
) { 
1906         uint8_t readcheck
[] = { keyType
, blockNo 
}; 
1907         uint8_t resp
[] = {0,0,0,0,0,0,0,0}; 
1909         isOK 
= sendCmdGetResponseWithRetries(readcheck
, sizeof(readcheck
), resp
, sizeof(resp
), 6); 
1910         cmd_send(CMD_ACK
,isOK
,0,0,0,0); 
1913 void iClass_Authentication(uint8_t *MAC
) { 
1914         uint8_t check
[] = { ICLASS_CMD_CHECK
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 
1915         uint8_t resp
[ICLASS_BUFFER_SIZE
]; 
1916         memcpy(check
+5,MAC
,4); 
1918         isOK 
= sendCmdGetResponseWithRetries(check
, sizeof(check
), resp
, 4, 6); 
1919         cmd_send(CMD_ACK
,isOK
,0,0,0,0); 
1921 bool iClass_ReadBlock(uint8_t blockNo
, uint8_t *readdata
) { 
1922         uint8_t readcmd
[] = {ICLASS_CMD_READ_OR_IDENTIFY
, blockNo
, 0x00, 0x00}; //0x88, 0x00 // can i use 0C? 
1924         uint16_t rdCrc 
= iclass_crc16(&bl
, 1); 
1925         readcmd
[2] = rdCrc 
>> 8; 
1926         readcmd
[3] = rdCrc 
& 0xff; 
1927         uint8_t resp
[] = {0,0,0,0,0,0,0,0,0,0}; 
1930         //readcmd[1] = blockNo; 
1931         isOK 
= sendCmdGetResponseWithRetries(readcmd
, sizeof(readcmd
), resp
, 10, 10); 
1932         memcpy(readdata
, resp
, sizeof(resp
)); 
1937 void iClass_ReadBlk(uint8_t blockno
) { 
1938         uint8_t readblockdata
[] = {0,0,0,0,0,0,0,0,0,0}; 
1940         isOK 
= iClass_ReadBlock(blockno
, readblockdata
); 
1941         cmd_send(CMD_ACK
, isOK
, 0, 0, readblockdata
, 8); 
1944 void iClass_Dump(uint8_t blockno
, uint8_t numblks
) { 
1945         uint8_t readblockdata
[] = {0,0,0,0,0,0,0,0,0,0}; 
1950         uint8_t *dataout 
= BigBuf_malloc(255*8); 
1951         if (dataout 
== NULL
){ 
1952                 Dbprintf("out of memory"); 
1956         memset(dataout
,0xFF,255*8); 
1958         for (;blkCnt 
< numblks
; blkCnt
++) { 
1959                 isOK 
= iClass_ReadBlock(blockno
+blkCnt
, readblockdata
); 
1960                 if (!isOK 
|| (readblockdata
[0] == 0xBB || readblockdata
[7] == 0xBB || readblockdata
[2] == 0xBB)) { //try again 
1961                         isOK 
= iClass_ReadBlock(blockno
+blkCnt
, readblockdata
); 
1963                                 Dbprintf("Block %02X failed to read", blkCnt
+blockno
); 
1967                 memcpy(dataout
+(blkCnt
*8),readblockdata
,8); 
1969         //return pointer to dump memory in arg3 
1970         cmd_send(CMD_ACK
,isOK
,blkCnt
,BigBuf_max_traceLen(),0,0); 
1971         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1976 bool iClass_WriteBlock_ext(uint8_t blockNo
, uint8_t *data
) { 
1977         uint8_t write
[] = { ICLASS_CMD_UPDATE
, blockNo
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 
1978         //uint8_t readblockdata[10]; 
1979         //write[1] = blockNo; 
1980         memcpy(write
+2, data
, 12); // data + mac 
1981         uint8_t resp
[] = {0,0,0,0,0,0,0,0,0,0}; 
1983         isOK 
= sendCmdGetResponseWithRetries(write
,sizeof(write
),resp
,sizeof(resp
),10); 
1985                 //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]); 
1986                 if (memcmp(write
+2,resp
,8)) { 
1988                         isOK 
= sendCmdGetResponseWithRetries(write
,sizeof(write
),resp
,sizeof(resp
),10); 
1994 void iClass_WriteBlock(uint8_t blockNo
, uint8_t *data
) { 
1995         bool isOK 
= iClass_WriteBlock_ext(blockNo
, data
); 
1997                 Dbprintf("Write block [%02x] successful",blockNo
); 
1999                 Dbprintf("Write block [%02x] failed",blockNo
);           
2001         cmd_send(CMD_ACK
,isOK
,0,0,0,0);  
2004 void iClass_Clone(uint8_t startblock
, uint8_t endblock
, uint8_t *data
) { 
2007         int total_block 
= (endblock 
- startblock
) + 1; 
2008         for (i 
= 0; i 
< total_block
;i
++){ 
2010                 if (iClass_WriteBlock_ext(i
+startblock
, data
+(i
*12))){ 
2011                         Dbprintf("Write block [%02x] successful",i 
+ startblock
); 
2014                         if (iClass_WriteBlock_ext(i
+startblock
, data
+(i
*12))){ 
2015                                 Dbprintf("Write block [%02x] successful",i 
+ startblock
); 
2018                                 Dbprintf("Write block [%02x] failed",i 
+ startblock
); 
2022         if (written 
== total_block
) 
2023                 Dbprintf("Clone complete"); 
2025                 Dbprintf("Clone incomplete");    
2027         cmd_send(CMD_ACK
,1,0,0,0,0); 
2028         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);