]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/lfops.c
e086a7174d3e252bf21909ab46fc764e9bc6b121
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include "../include/proxmark3.h"
12 #include "apps.h"
13 #include "util.h"
14 #include "../include/hitag2.h"
15 #include "../common/crc16.h"
16 #include "string.h"
17 #include "crapto1.h"
18 #include "mifareutil.h"
19
20 void LFSetupFPGAForADC(int divisor, bool lf_field)
21 {
22 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
23 if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
24 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
25 else if (divisor == 0)
26 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
27 else
28 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
29
30 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
31
32 // Connect the A/D to the peak-detected low-frequency path.
33 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
34
35 // Give it a bit of time for the resonant antenna to settle.
36 SpinDelay(150);
37
38 // Now set up the SSC to get the ADC samples that are now streaming at us.
39 FpgaSetupSsc();
40 }
41
42 void AcquireRawAdcSamples125k(int divisor)
43 {
44 LFSetupFPGAForADC(divisor, true);
45 DoAcquisition125k(-1);
46 }
47
48 void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
49 {
50 LFSetupFPGAForADC(divisor, false);
51 DoAcquisition125k(trigger_threshold);
52 }
53
54 // split into two routines so we can avoid timing issues after sending commands //
55 void DoAcquisition125k(int trigger_threshold)
56 {
57 uint8_t *dest = mifare_get_bigbufptr();
58 int n = 8000;
59 int i;
60
61 memset(dest, 0x00, n);
62 i = 0;
63 for(;;) {
64 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
65 AT91C_BASE_SSC->SSC_THR = 0x43;
66 LED_D_ON();
67 }
68 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
69 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
70 LED_D_OFF();
71 if (trigger_threshold != -1 && dest[i] < trigger_threshold)
72 continue;
73 else
74 trigger_threshold = -1;
75 if (++i >= n) break;
76 }
77 }
78 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
79 dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
80
81 }
82
83 void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
84 {
85 int at134khz;
86
87 /* Make sure the tag is reset */
88 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
89 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
90 SpinDelay(2500);
91
92 // see if 'h' was specified
93 if (command[strlen((char *) command) - 1] == 'h')
94 at134khz = TRUE;
95 else
96 at134khz = FALSE;
97
98 if (at134khz)
99 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
100 else
101 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
102
103 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
104
105 // Give it a bit of time for the resonant antenna to settle.
106 SpinDelay(50);
107 // And a little more time for the tag to fully power up
108 SpinDelay(2000);
109
110 // Now set up the SSC to get the ADC samples that are now streaming at us.
111 FpgaSetupSsc();
112
113 // now modulate the reader field
114 while(*command != '\0' && *command != ' ') {
115 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
116 LED_D_OFF();
117 SpinDelayUs(delay_off);
118 if (at134khz)
119 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
120 else
121 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
122
123 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
124 LED_D_ON();
125 if(*(command++) == '0')
126 SpinDelayUs(period_0);
127 else
128 SpinDelayUs(period_1);
129 }
130 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
131 LED_D_OFF();
132 SpinDelayUs(delay_off);
133 if (at134khz)
134 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
135 else
136 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
137
138 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
139
140 // now do the read
141 DoAcquisition125k(-1);
142 }
143
144 /* blank r/w tag data stream
145 ...0000000000000000 01111111
146 1010101010101010101010101010101010101010101010101010101010101010
147 0011010010100001
148 01111111
149 101010101010101[0]000...
150
151 [5555fe852c5555555555555555fe0000]
152 */
153 void ReadTItag(void)
154 {
155 // some hardcoded initial params
156 // when we read a TI tag we sample the zerocross line at 2Mhz
157 // TI tags modulate a 1 as 16 cycles of 123.2Khz
158 // TI tags modulate a 0 as 16 cycles of 134.2Khz
159 #define FSAMPLE 2000000
160 #define FREQLO 123200
161 #define FREQHI 134200
162
163 signed char *dest = (signed char *)BigBuf;
164 int n = sizeof(BigBuf);
165 // int *dest = GraphBuffer;
166 // int n = GraphTraceLen;
167
168 // 128 bit shift register [shift3:shift2:shift1:shift0]
169 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
170
171 int i, cycles=0, samples=0;
172 // how many sample points fit in 16 cycles of each frequency
173 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
174 // when to tell if we're close enough to one freq or another
175 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
176
177 // TI tags charge at 134.2Khz
178 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
179 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
180
181 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
182 // connects to SSP_DIN and the SSP_DOUT logic level controls
183 // whether we're modulating the antenna (high)
184 // or listening to the antenna (low)
185 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
186
187 // get TI tag data into the buffer
188 AcquireTiType();
189
190 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
191
192 for (i=0; i<n-1; i++) {
193 // count cycles by looking for lo to hi zero crossings
194 if ( (dest[i]<0) && (dest[i+1]>0) ) {
195 cycles++;
196 // after 16 cycles, measure the frequency
197 if (cycles>15) {
198 cycles=0;
199 samples=i-samples; // number of samples in these 16 cycles
200
201 // TI bits are coming to us lsb first so shift them
202 // right through our 128 bit right shift register
203 shift0 = (shift0>>1) | (shift1 << 31);
204 shift1 = (shift1>>1) | (shift2 << 31);
205 shift2 = (shift2>>1) | (shift3 << 31);
206 shift3 >>= 1;
207
208 // check if the cycles fall close to the number
209 // expected for either the low or high frequency
210 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
211 // low frequency represents a 1
212 shift3 |= (1<<31);
213 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
214 // high frequency represents a 0
215 } else {
216 // probably detected a gay waveform or noise
217 // use this as gaydar or discard shift register and start again
218 shift3 = shift2 = shift1 = shift0 = 0;
219 }
220 samples = i;
221
222 // for each bit we receive, test if we've detected a valid tag
223
224 // if we see 17 zeroes followed by 6 ones, we might have a tag
225 // remember the bits are backwards
226 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
227 // if start and end bytes match, we have a tag so break out of the loop
228 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
229 cycles = 0xF0B; //use this as a flag (ugly but whatever)
230 break;
231 }
232 }
233 }
234 }
235 }
236
237 // if flag is set we have a tag
238 if (cycles!=0xF0B) {
239 DbpString("Info: No valid tag detected.");
240 } else {
241 // put 64 bit data into shift1 and shift0
242 shift0 = (shift0>>24) | (shift1 << 8);
243 shift1 = (shift1>>24) | (shift2 << 8);
244
245 // align 16 bit crc into lower half of shift2
246 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
247
248 // if r/w tag, check ident match
249 if ( shift3&(1<<15) ) {
250 DbpString("Info: TI tag is rewriteable");
251 // only 15 bits compare, last bit of ident is not valid
252 if ( ((shift3>>16)^shift0)&0x7fff ) {
253 DbpString("Error: Ident mismatch!");
254 } else {
255 DbpString("Info: TI tag ident is valid");
256 }
257 } else {
258 DbpString("Info: TI tag is readonly");
259 }
260
261 // WARNING the order of the bytes in which we calc crc below needs checking
262 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
263 // bytes in reverse or something
264 // calculate CRC
265 uint32_t crc=0;
266
267 crc = update_crc16(crc, (shift0)&0xff);
268 crc = update_crc16(crc, (shift0>>8)&0xff);
269 crc = update_crc16(crc, (shift0>>16)&0xff);
270 crc = update_crc16(crc, (shift0>>24)&0xff);
271 crc = update_crc16(crc, (shift1)&0xff);
272 crc = update_crc16(crc, (shift1>>8)&0xff);
273 crc = update_crc16(crc, (shift1>>16)&0xff);
274 crc = update_crc16(crc, (shift1>>24)&0xff);
275
276 Dbprintf("Info: Tag data: %x%08x, crc=%x",
277 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
278 if (crc != (shift2&0xffff)) {
279 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
280 } else {
281 DbpString("Info: CRC is good");
282 }
283 }
284 }
285
286 void WriteTIbyte(uint8_t b)
287 {
288 int i = 0;
289
290 // modulate 8 bits out to the antenna
291 for (i=0; i<8; i++)
292 {
293 if (b&(1<<i)) {
294 // stop modulating antenna
295 LOW(GPIO_SSC_DOUT);
296 SpinDelayUs(1000);
297 // modulate antenna
298 HIGH(GPIO_SSC_DOUT);
299 SpinDelayUs(1000);
300 } else {
301 // stop modulating antenna
302 LOW(GPIO_SSC_DOUT);
303 SpinDelayUs(300);
304 // modulate antenna
305 HIGH(GPIO_SSC_DOUT);
306 SpinDelayUs(1700);
307 }
308 }
309 }
310
311 void AcquireTiType(void)
312 {
313 int i, j, n;
314 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
315 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
316 #define TIBUFLEN 1250
317
318 // clear buffer
319 memset(BigBuf,0,sizeof(BigBuf));
320
321 // Set up the synchronous serial port
322 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
323 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
324
325 // steal this pin from the SSP and use it to control the modulation
326 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
327 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
328
329 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
330 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
331
332 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
333 // 48/2 = 24 MHz clock must be divided by 12
334 AT91C_BASE_SSC->SSC_CMR = 12;
335
336 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
337 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
338 AT91C_BASE_SSC->SSC_TCMR = 0;
339 AT91C_BASE_SSC->SSC_TFMR = 0;
340
341 LED_D_ON();
342
343 // modulate antenna
344 HIGH(GPIO_SSC_DOUT);
345
346 // Charge TI tag for 50ms.
347 SpinDelay(50);
348
349 // stop modulating antenna and listen
350 LOW(GPIO_SSC_DOUT);
351
352 LED_D_OFF();
353
354 i = 0;
355 for(;;) {
356 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
357 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
358 i++; if(i >= TIBUFLEN) break;
359 }
360 WDT_HIT();
361 }
362
363 // return stolen pin to SSP
364 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
365 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
366
367 char *dest = (char *)BigBuf;
368 n = TIBUFLEN*32;
369 // unpack buffer
370 for (i=TIBUFLEN-1; i>=0; i--) {
371 for (j=0; j<32; j++) {
372 if(BigBuf[i] & (1 << j)) {
373 dest[--n] = 1;
374 } else {
375 dest[--n] = -1;
376 }
377 }
378 }
379 }
380
381 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
382 // if crc provided, it will be written with the data verbatim (even if bogus)
383 // if not provided a valid crc will be computed from the data and written.
384 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
385 {
386 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
387 if(crc == 0) {
388 crc = update_crc16(crc, (idlo)&0xff);
389 crc = update_crc16(crc, (idlo>>8)&0xff);
390 crc = update_crc16(crc, (idlo>>16)&0xff);
391 crc = update_crc16(crc, (idlo>>24)&0xff);
392 crc = update_crc16(crc, (idhi)&0xff);
393 crc = update_crc16(crc, (idhi>>8)&0xff);
394 crc = update_crc16(crc, (idhi>>16)&0xff);
395 crc = update_crc16(crc, (idhi>>24)&0xff);
396 }
397 Dbprintf("Writing to tag: %x%08x, crc=%x",
398 (unsigned int) idhi, (unsigned int) idlo, crc);
399
400 // TI tags charge at 134.2Khz
401 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
402 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
403 // connects to SSP_DIN and the SSP_DOUT logic level controls
404 // whether we're modulating the antenna (high)
405 // or listening to the antenna (low)
406 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
407 LED_A_ON();
408
409 // steal this pin from the SSP and use it to control the modulation
410 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
411 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
412
413 // writing algorithm:
414 // a high bit consists of a field off for 1ms and field on for 1ms
415 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
416 // initiate a charge time of 50ms (field on) then immediately start writing bits
417 // start by writing 0xBB (keyword) and 0xEB (password)
418 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
419 // finally end with 0x0300 (write frame)
420 // all data is sent lsb firts
421 // finish with 15ms programming time
422
423 // modulate antenna
424 HIGH(GPIO_SSC_DOUT);
425 SpinDelay(50); // charge time
426
427 WriteTIbyte(0xbb); // keyword
428 WriteTIbyte(0xeb); // password
429 WriteTIbyte( (idlo )&0xff );
430 WriteTIbyte( (idlo>>8 )&0xff );
431 WriteTIbyte( (idlo>>16)&0xff );
432 WriteTIbyte( (idlo>>24)&0xff );
433 WriteTIbyte( (idhi )&0xff );
434 WriteTIbyte( (idhi>>8 )&0xff );
435 WriteTIbyte( (idhi>>16)&0xff );
436 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
437 WriteTIbyte( (crc )&0xff ); // crc lo
438 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
439 WriteTIbyte(0x00); // write frame lo
440 WriteTIbyte(0x03); // write frame hi
441 HIGH(GPIO_SSC_DOUT);
442 SpinDelay(50); // programming time
443
444 LED_A_OFF();
445
446 // get TI tag data into the buffer
447 AcquireTiType();
448
449 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
450 DbpString("Now use tiread to check");
451 }
452
453 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
454 {
455 int i;
456 uint8_t *tab = (uint8_t *)BigBuf;
457
458 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
459 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
460
461 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
462
463 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
464 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
465
466 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
467 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
468
469 i = 0;
470 for(;;) {
471 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
472 if(BUTTON_PRESS()) {
473 DbpString("Stopped");
474 return;
475 }
476 WDT_HIT();
477 }
478
479 if (ledcontrol)
480 LED_D_ON();
481
482 if(tab[i])
483 OPEN_COIL();
484 else
485 SHORT_COIL();
486
487 if (ledcontrol)
488 LED_D_OFF();
489
490 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
491 if(BUTTON_PRESS()) {
492 DbpString("Stopped");
493 return;
494 }
495 WDT_HIT();
496 }
497
498 i++;
499 if(i == period) {
500 i = 0;
501 if (gap) {
502 SHORT_COIL();
503 SpinDelayUs(gap);
504 }
505 }
506 }
507 }
508
509 #define DEBUG_FRAME_CONTENTS 1
510 void SimulateTagLowFrequencyBidir(int divisor, int t0)
511 {
512 }
513
514 // compose fc/8 fc/10 waveform
515 static void fc(int c, int *n) {
516 uint8_t *dest = (uint8_t *)BigBuf;
517 int idx;
518
519 // for when we want an fc8 pattern every 4 logical bits
520 if(c==0) {
521 dest[((*n)++)]=1;
522 dest[((*n)++)]=1;
523 dest[((*n)++)]=0;
524 dest[((*n)++)]=0;
525 dest[((*n)++)]=0;
526 dest[((*n)++)]=0;
527 dest[((*n)++)]=0;
528 dest[((*n)++)]=0;
529 }
530 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
531 if(c==8) {
532 for (idx=0; idx<6; idx++) {
533 dest[((*n)++)]=1;
534 dest[((*n)++)]=1;
535 dest[((*n)++)]=0;
536 dest[((*n)++)]=0;
537 dest[((*n)++)]=0;
538 dest[((*n)++)]=0;
539 dest[((*n)++)]=0;
540 dest[((*n)++)]=0;
541 }
542 }
543
544 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
545 if(c==10) {
546 for (idx=0; idx<5; idx++) {
547 dest[((*n)++)]=1;
548 dest[((*n)++)]=1;
549 dest[((*n)++)]=1;
550 dest[((*n)++)]=0;
551 dest[((*n)++)]=0;
552 dest[((*n)++)]=0;
553 dest[((*n)++)]=0;
554 dest[((*n)++)]=0;
555 dest[((*n)++)]=0;
556 dest[((*n)++)]=0;
557 }
558 }
559 }
560
561 // prepare a waveform pattern in the buffer based on the ID given then
562 // simulate a HID tag until the button is pressed
563 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
564 {
565 int n=0, i=0;
566 /*
567 HID tag bitstream format
568 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
569 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
570 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
571 A fc8 is inserted before every 4 bits
572 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
573 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
574 */
575
576 if (hi>0xFFF) {
577 DbpString("Tags can only have 44 bits.");
578 return;
579 }
580 fc(0,&n);
581 // special start of frame marker containing invalid bit sequences
582 fc(8, &n); fc(8, &n); // invalid
583 fc(8, &n); fc(10, &n); // logical 0
584 fc(10, &n); fc(10, &n); // invalid
585 fc(8, &n); fc(10, &n); // logical 0
586
587 WDT_HIT();
588 // manchester encode bits 43 to 32
589 for (i=11; i>=0; i--) {
590 if ((i%4)==3) fc(0,&n);
591 if ((hi>>i)&1) {
592 fc(10, &n); fc(8, &n); // low-high transition
593 } else {
594 fc(8, &n); fc(10, &n); // high-low transition
595 }
596 }
597
598 WDT_HIT();
599 // manchester encode bits 31 to 0
600 for (i=31; i>=0; i--) {
601 if ((i%4)==3) fc(0,&n);
602 if ((lo>>i)&1) {
603 fc(10, &n); fc(8, &n); // low-high transition
604 } else {
605 fc(8, &n); fc(10, &n); // high-low transition
606 }
607 }
608
609 if (ledcontrol)
610 LED_A_ON();
611 SimulateTagLowFrequency(n, 0, ledcontrol);
612
613 if (ledcontrol)
614 LED_A_OFF();
615 }
616
617
618 // loop to capture raw HID waveform then FSK demodulate the TAG ID from it
619 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
620 {
621 uint8_t *dest = (uint8_t *)BigBuf;
622 int m=0, n=0, i=0, idx=0, found=0, lastval=0;
623 uint32_t hi2=0, hi=0, lo=0;
624
625 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
626 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
627 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
628
629 // Connect the A/D to the peak-detected low-frequency path.
630 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
631
632 // Give it a bit of time for the resonant antenna to settle.
633 SpinDelay(50);
634
635 // Now set up the SSC to get the ADC samples that are now streaming at us.
636 FpgaSetupSsc();
637
638 for(;;) {
639 WDT_HIT();
640 if (ledcontrol)
641 LED_A_ON();
642 if(BUTTON_PRESS()) {
643 DbpString("Stopped");
644 if (ledcontrol)
645 LED_A_OFF();
646 return;
647 }
648
649 i = 0;
650 m = sizeof(BigBuf);
651 memset(dest,128,m);
652 for(;;) {
653 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
654 AT91C_BASE_SSC->SSC_THR = 0x43;
655 if (ledcontrol)
656 LED_D_ON();
657 }
658 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
659 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
660 // we don't care about actual value, only if it's more or less than a
661 // threshold essentially we capture zero crossings for later analysis
662 if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
663 i++;
664 if (ledcontrol)
665 LED_D_OFF();
666 if(i >= m) {
667 break;
668 }
669 }
670 }
671
672 // FSK demodulator
673
674 // sync to first lo-hi transition
675 for( idx=1; idx<m; idx++) {
676 if (dest[idx-1]<dest[idx])
677 lastval=idx;
678 break;
679 }
680 WDT_HIT();
681
682 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
683 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
684 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
685 for( i=0; idx<m; idx++) {
686 if (dest[idx-1]<dest[idx]) {
687 dest[i]=idx-lastval;
688 if (dest[i] <= 8) {
689 dest[i]=1;
690 } else {
691 dest[i]=0;
692 }
693
694 lastval=idx;
695 i++;
696 }
697 }
698 m=i;
699 WDT_HIT();
700
701 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
702 lastval=dest[0];
703 idx=0;
704 i=0;
705 n=0;
706 for( idx=0; idx<m; idx++) {
707 if (dest[idx]==lastval) {
708 n++;
709 } else {
710 // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
711 // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
712 // swallowed up by rounding
713 // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
714 // special start of frame markers use invalid manchester states (no transitions) by using sequences
715 // like 111000
716 if (dest[idx-1]) {
717 n=(n+1)/6; // fc/8 in sets of 6
718 } else {
719 n=(n+1)/5; // fc/10 in sets of 5
720 }
721 switch (n) { // stuff appropriate bits in buffer
722 case 0:
723 case 1: // one bit
724 dest[i++]=dest[idx-1];
725 break;
726 case 2: // two bits
727 dest[i++]=dest[idx-1];
728 dest[i++]=dest[idx-1];
729 break;
730 case 3: // 3 bit start of frame markers
731 dest[i++]=dest[idx-1];
732 dest[i++]=dest[idx-1];
733 dest[i++]=dest[idx-1];
734 break;
735 // When a logic 0 is immediately followed by the start of the next transmisson
736 // (special pattern) a pattern of 4 bit duration lengths is created.
737 case 4:
738 dest[i++]=dest[idx-1];
739 dest[i++]=dest[idx-1];
740 dest[i++]=dest[idx-1];
741 dest[i++]=dest[idx-1];
742 break;
743 default: // this shouldn't happen, don't stuff any bits
744 break;
745 }
746 n=0;
747 lastval=dest[idx];
748 }
749 }
750 m=i;
751 WDT_HIT();
752
753 // final loop, go over previously decoded manchester data and decode into usable tag ID
754 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
755 for( idx=0; idx<m-6; idx++) {
756 // search for a start of frame marker
757 if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
758 {
759 found=1;
760 idx+=6;
761 if (found && (hi2|hi|lo)) {
762 if (hi2 != 0){
763 Dbprintf("TAG ID: %x%08x%08x (%d)",
764 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
765 }
766 else {
767 Dbprintf("TAG ID: %x%08x (%d)",
768 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
769 }
770 /* if we're only looking for one tag */
771 if (findone)
772 {
773 *high = hi;
774 *low = lo;
775 return;
776 }
777 hi2=0;
778 hi=0;
779 lo=0;
780 found=0;
781 }
782 }
783 if (found) {
784 if (dest[idx] && (!dest[idx+1]) ) {
785 hi2=(hi2<<1)|(hi>>31);
786 hi=(hi<<1)|(lo>>31);
787 lo=(lo<<1)|0;
788 } else if ( (!dest[idx]) && dest[idx+1]) {
789 hi2=(hi2<<1)|(hi>>31);
790 hi=(hi<<1)|(lo>>31);
791 lo=(lo<<1)|1;
792 } else {
793 found=0;
794 hi2=0;
795 hi=0;
796 lo=0;
797 }
798 idx++;
799 }
800 if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
801 {
802 found=1;
803 idx+=6;
804 if (found && (hi|lo)) {
805 if (hi2 != 0){
806 Dbprintf("TAG ID: %x%08x%08x (%d)",
807 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
808 }
809 else {
810 Dbprintf("TAG ID: %x%08x (%d)",
811 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
812 }
813 /* if we're only looking for one tag */
814 if (findone)
815 {
816 *high = hi;
817 *low = lo;
818 return;
819 }
820 hi2=0;
821 hi=0;
822 lo=0;
823 found=0;
824 }
825 }
826 }
827 WDT_HIT();
828 }
829 }
830
831 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
832 {
833 uint8_t *dest = mifare_get_bigbufptr();
834 int m=0, n=0, i=0, idx=0, lastval=0;
835 int found=0;
836 uint32_t code=0, code2=0;
837
838 LFSetupFPGAForADC(0, true);
839
840 for(;;) {
841 WDT_HIT();
842 if (ledcontrol)
843 LED_A_ON();
844 if(BUTTON_PRESS()) {
845 DbpString("Stopped");
846 if (ledcontrol)
847 LED_A_OFF();
848 return;
849 }
850
851 i = 0;
852 m = 30000;
853 memset(dest,128,m);
854 for(;;) {
855 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
856 AT91C_BASE_SSC->SSC_THR = 0x43;
857 if (ledcontrol)
858 LED_D_ON();
859 }
860 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
861 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
862 // we don't care about actual value, only if it's more or less than a
863 // threshold essentially we capture zero crossings for later analysis
864 dest[i] = (dest[i] < 127) ? 0 : 1;
865 ++i;
866 if (ledcontrol)
867 LED_D_OFF();
868 if(i >= m)
869 break;
870 }
871 }
872
873 // FSK demodulator
874
875 // sync to first lo-hi transition
876 for( idx=1; idx<m; idx++) {
877 if (dest[idx-1]<dest[idx])
878 lastval=idx;
879 break;
880 }
881 WDT_HIT();
882
883 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
884 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
885 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
886 for( i=0; idx<m; idx++) {
887 if (dest[idx-1]<dest[idx]) {
888 dest[i]=idx-lastval;
889 dest[i] = (dest[i] <= 8) ? 1:0;
890 lastval=idx;
891 i++;
892 }
893 }
894 m=i;
895 WDT_HIT();
896
897 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
898 lastval=dest[0];
899 idx=0;
900 i=0;
901 n=0;
902 for( idx=0; idx<m; idx++) {
903 if (dest[idx]==lastval) {
904 n++;
905 } else {
906 // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
907 // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
908 // swallowed up by rounding
909 // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
910 // special start of frame markers use invalid manchester states (no transitions) by using sequences
911 // like 111000
912 if (dest[idx-1]) {
913 n=(n+1)/7; // fc/8 in sets of 7
914 } else {
915 n=(n+1)/6; // fc/10 in sets of 6
916 }
917
918 // stuff appropriate bits in buffer
919 if ( n==0 )
920 dest[i++]=dest[idx-1]^1;
921 else {
922 if ( n < 13){
923 for(int j=0; j<n; j++){
924 dest[i++]=dest[idx-1]^1;
925 }
926 }
927 }
928
929 n=0;
930 lastval=dest[idx];
931 }
932 }//end for
933
934 m=i;
935 WDT_HIT();
936
937 for( idx=0; idx<m-9; idx++) {
938 if ( !(dest[idx]) && !(dest[idx+1]) && !(dest[idx+2]) && !(dest[idx+3]) && !(dest[idx+4]) && !(dest[idx+5]) && !(dest[idx+6]) && !(dest[idx+7]) && !(dest[idx+8])&& (dest[idx+9])){
939 found=1;
940 //idx+=9;
941 if (found) {
942 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7]);
943 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+8], dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15]);
944 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+16],dest[idx+17],dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23]);
945 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+24],dest[idx+25],dest[idx+26],dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31]);
946 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35],dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39]);
947 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44],dest[idx+45],dest[idx+46],dest[idx+47]);
948 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53],dest[idx+54],dest[idx+55]);
949 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
950
951 short version='\x00';
952 char unknown='\x00';
953 uint16_t number=0;
954 for(int j=14;j<18;j++){
955 //Dbprintf("%d",dest[idx+j]);
956 version <<=1;
957 if (dest[idx+j]) version |= 1;
958 }
959 for(int j=19;j<27;j++){
960 //Dbprintf("%d",dest[idx+j]);
961 unknown <<=1;
962 if (dest[idx+j]) unknown |= 1;
963 }
964 for(int j=37;j<45;j++){
965 //Dbprintf("%d",dest[idx+j]);
966 number <<=1;
967 if (dest[idx+j]) number |= 1;
968 }
969 for(int j=46;j<53;j++){
970 //Dbprintf("%d",dest[idx+j]);
971 number <<=1;
972 if (dest[idx+j]) number |= 1;
973 }
974
975 for(int j=0; j<32; j++){
976 code <<=1;
977 if(dest[idx+j]) code |= 1;
978 }
979 for(int j=32; j<64; j++){
980 code2 <<=1;
981 if(dest[idx+j]) code2 |= 1;
982 }
983
984 Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,unknown,number,code,code2);
985 if (ledcontrol)
986 LED_D_OFF();
987 }
988 // if we're only looking for one tag
989 if (findone){
990 LED_A_OFF();
991 return;
992 }
993
994 found=0;
995 }
996 }
997 }
998 WDT_HIT();
999 }
1000
1001 /*------------------------------
1002 * T5555/T5557/T5567 routines
1003 *------------------------------
1004 */
1005
1006 /* T55x7 configuration register definitions */
1007 #define T55x7_POR_DELAY 0x00000001
1008 #define T55x7_ST_TERMINATOR 0x00000008
1009 #define T55x7_PWD 0x00000010
1010 #define T55x7_MAXBLOCK_SHIFT 5
1011 #define T55x7_AOR 0x00000200
1012 #define T55x7_PSKCF_RF_2 0
1013 #define T55x7_PSKCF_RF_4 0x00000400
1014 #define T55x7_PSKCF_RF_8 0x00000800
1015 #define T55x7_MODULATION_DIRECT 0
1016 #define T55x7_MODULATION_PSK1 0x00001000
1017 #define T55x7_MODULATION_PSK2 0x00002000
1018 #define T55x7_MODULATION_PSK3 0x00003000
1019 #define T55x7_MODULATION_FSK1 0x00004000
1020 #define T55x7_MODULATION_FSK2 0x00005000
1021 #define T55x7_MODULATION_FSK1a 0x00006000
1022 #define T55x7_MODULATION_FSK2a 0x00007000
1023 #define T55x7_MODULATION_MANCHESTER 0x00008000
1024 #define T55x7_MODULATION_BIPHASE 0x00010000
1025 #define T55x7_BITRATE_RF_8 0
1026 #define T55x7_BITRATE_RF_16 0x00040000
1027 #define T55x7_BITRATE_RF_32 0x00080000
1028 #define T55x7_BITRATE_RF_40 0x000C0000
1029 #define T55x7_BITRATE_RF_50 0x00100000
1030 #define T55x7_BITRATE_RF_64 0x00140000
1031 #define T55x7_BITRATE_RF_100 0x00180000
1032 #define T55x7_BITRATE_RF_128 0x001C0000
1033
1034 /* T5555 (Q5) configuration register definitions */
1035 #define T5555_ST_TERMINATOR 0x00000001
1036 #define T5555_MAXBLOCK_SHIFT 0x00000001
1037 #define T5555_MODULATION_MANCHESTER 0
1038 #define T5555_MODULATION_PSK1 0x00000010
1039 #define T5555_MODULATION_PSK2 0x00000020
1040 #define T5555_MODULATION_PSK3 0x00000030
1041 #define T5555_MODULATION_FSK1 0x00000040
1042 #define T5555_MODULATION_FSK2 0x00000050
1043 #define T5555_MODULATION_BIPHASE 0x00000060
1044 #define T5555_MODULATION_DIRECT 0x00000070
1045 #define T5555_INVERT_OUTPUT 0x00000080
1046 #define T5555_PSK_RF_2 0
1047 #define T5555_PSK_RF_4 0x00000100
1048 #define T5555_PSK_RF_8 0x00000200
1049 #define T5555_USE_PWD 0x00000400
1050 #define T5555_USE_AOR 0x00000800
1051 #define T5555_BITRATE_SHIFT 12
1052 #define T5555_FAST_WRITE 0x00004000
1053 #define T5555_PAGE_SELECT 0x00008000
1054
1055 /*
1056 * Relevant times in microsecond
1057 * To compensate antenna falling times shorten the write times
1058 * and enlarge the gap ones.
1059 */
1060 #define START_GAP 30*8 // 10 - 50fc 250
1061 #define WRITE_GAP 20*8 // 8 - 30fc
1062 #define WRITE_0 24*8 // 16 - 31fc 24fc 192
1063 #define WRITE_1 54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550
1064
1065 // VALUES TAKEN FROM EM4x function: SendForward
1066 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1067 // WRITE_GAP = 128; (16*8)
1068 // WRITE_1 = 256 32*8; (32*8)
1069
1070 // These timings work for 4469/4269/4305 (with the 55*8 above)
1071 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1072
1073 #define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..)
1074
1075 // Write one bit to card
1076 void T55xxWriteBit(int bit)
1077 {
1078 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1079 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1080 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1081 if (!bit)
1082 SpinDelayUs(WRITE_0);
1083 else
1084 SpinDelayUs(WRITE_1);
1085 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1086 SpinDelayUs(WRITE_GAP);
1087 }
1088
1089 // Write one card block in page 0, no lock
1090 void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
1091 {
1092 uint32_t i = 0;
1093
1094 // Set up FPGA, 125kHz
1095 // Wait for config.. (192+8190xPOW)x8 == 67ms
1096 LFSetupFPGAForADC(0, true);
1097
1098 // Now start writting
1099 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1100 SpinDelayUs(START_GAP);
1101
1102 // Opcode
1103 T55xxWriteBit(1);
1104 T55xxWriteBit(0); //Page 0
1105 if (PwdMode == 1){
1106 // Pwd
1107 for (i = 0x80000000; i != 0; i >>= 1)
1108 T55xxWriteBit(Pwd & i);
1109 }
1110 // Lock bit
1111 T55xxWriteBit(0);
1112
1113 // Data
1114 for (i = 0x80000000; i != 0; i >>= 1)
1115 T55xxWriteBit(Data & i);
1116
1117 // Block
1118 for (i = 0x04; i != 0; i >>= 1)
1119 T55xxWriteBit(Block & i);
1120
1121 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1122 // so wait a little more)
1123 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1124 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1125 SpinDelay(20);
1126 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1127 }
1128
1129 // Read one card block in page 0
1130 void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
1131 {
1132 uint8_t *dest = mifare_get_bigbufptr();
1133 uint16_t bufferlength = T55xx_SAMPLES_SIZE;
1134 uint32_t i = 0;
1135
1136 // Clear destination buffer before sending the command 0x80 = average.
1137 memset(dest, 0x80, bufferlength);
1138
1139 // Set up FPGA, 125kHz
1140 // Wait for config.. (192+8190xPOW)x8 == 67ms
1141 LFSetupFPGAForADC(0, true);
1142
1143 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1144 SpinDelayUs(START_GAP);
1145
1146 // Opcode
1147 T55xxWriteBit(1);
1148 T55xxWriteBit(0); //Page 0
1149 if (PwdMode == 1){
1150 // Pwd
1151 for (i = 0x80000000; i != 0; i >>= 1)
1152 T55xxWriteBit(Pwd & i);
1153 }
1154 // Lock bit
1155 T55xxWriteBit(0);
1156 // Block
1157 for (i = 0x04; i != 0; i >>= 1)
1158 T55xxWriteBit(Block & i);
1159
1160 // Turn field on to read the response
1161 TurnReadLFOn();
1162
1163 // Now do the acquisition
1164 i = 0;
1165 for(;;) {
1166 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1167 AT91C_BASE_SSC->SSC_THR = 0x43;
1168 LED_D_ON();
1169 }
1170 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1171 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1172 ++i;
1173 LED_D_OFF();
1174 if (i > bufferlength) break;
1175 }
1176 }
1177
1178 cmd_send(CMD_ACK,0,0,0,0,0);
1179 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1180 LED_D_OFF();
1181 }
1182
1183 // Read card traceability data (page 1)
1184 void T55xxReadTrace(void){
1185 uint8_t *dest = mifare_get_bigbufptr();
1186 uint16_t bufferlength = T55xx_SAMPLES_SIZE;
1187 int i=0;
1188
1189 // Clear destination buffer before sending the command 0x80 = average
1190 memset(dest, 0x80, bufferlength);
1191
1192 LFSetupFPGAForADC(0, true);
1193
1194 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1195 SpinDelayUs(START_GAP);
1196
1197 // Opcode
1198 T55xxWriteBit(1);
1199 T55xxWriteBit(1); //Page 1
1200
1201 // Turn field on to read the response
1202 TurnReadLFOn();
1203
1204 // Now do the acquisition
1205 for(;;) {
1206 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1207 AT91C_BASE_SSC->SSC_THR = 0x43;
1208 LED_D_ON();
1209 }
1210 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1211 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1212 ++i;
1213 LED_D_OFF();
1214
1215 if (i >= bufferlength) break;
1216 }
1217 }
1218
1219 cmd_send(CMD_ACK,0,0,0,0,0);
1220 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1221 LED_D_OFF();
1222 }
1223
1224 void TurnReadLFOn(){
1225 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1226 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1227 // Give it a bit of time for the resonant antenna to settle.
1228 //SpinDelay(30);
1229 SpinDelayUs(8*150);
1230 }
1231
1232 /*-------------- Cloning routines -----------*/
1233 // Copy HID id to card and setup block 0 config
1234 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
1235 {
1236 int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
1237 int last_block = 0;
1238
1239 if (longFMT){
1240 // Ensure no more than 84 bits supplied
1241 if (hi2>0xFFFFF) {
1242 DbpString("Tags can only have 84 bits.");
1243 return;
1244 }
1245 // Build the 6 data blocks for supplied 84bit ID
1246 last_block = 6;
1247 data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1248 for (int i=0;i<4;i++) {
1249 if (hi2 & (1<<(19-i)))
1250 data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
1251 else
1252 data1 |= (1<<((3-i)*2)); // 0 -> 01
1253 }
1254
1255 data2 = 0;
1256 for (int i=0;i<16;i++) {
1257 if (hi2 & (1<<(15-i)))
1258 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1259 else
1260 data2 |= (1<<((15-i)*2)); // 0 -> 01
1261 }
1262
1263 data3 = 0;
1264 for (int i=0;i<16;i++) {
1265 if (hi & (1<<(31-i)))
1266 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1267 else
1268 data3 |= (1<<((15-i)*2)); // 0 -> 01
1269 }
1270
1271 data4 = 0;
1272 for (int i=0;i<16;i++) {
1273 if (hi & (1<<(15-i)))
1274 data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1275 else
1276 data4 |= (1<<((15-i)*2)); // 0 -> 01
1277 }
1278
1279 data5 = 0;
1280 for (int i=0;i<16;i++) {
1281 if (lo & (1<<(31-i)))
1282 data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1283 else
1284 data5 |= (1<<((15-i)*2)); // 0 -> 01
1285 }
1286
1287 data6 = 0;
1288 for (int i=0;i<16;i++) {
1289 if (lo & (1<<(15-i)))
1290 data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1291 else
1292 data6 |= (1<<((15-i)*2)); // 0 -> 01
1293 }
1294 }
1295 else {
1296 // Ensure no more than 44 bits supplied
1297 if (hi>0xFFF) {
1298 DbpString("Tags can only have 44 bits.");
1299 return;
1300 }
1301
1302 // Build the 3 data blocks for supplied 44bit ID
1303 last_block = 3;
1304
1305 data1 = 0x1D000000; // load preamble
1306
1307 for (int i=0;i<12;i++) {
1308 if (hi & (1<<(11-i)))
1309 data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
1310 else
1311 data1 |= (1<<((11-i)*2)); // 0 -> 01
1312 }
1313
1314 data2 = 0;
1315 for (int i=0;i<16;i++) {
1316 if (lo & (1<<(31-i)))
1317 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1318 else
1319 data2 |= (1<<((15-i)*2)); // 0 -> 01
1320 }
1321
1322 data3 = 0;
1323 for (int i=0;i<16;i++) {
1324 if (lo & (1<<(15-i)))
1325 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1326 else
1327 data3 |= (1<<((15-i)*2)); // 0 -> 01
1328 }
1329 }
1330
1331 LED_D_ON();
1332 // Program the data blocks for supplied ID
1333 // and the block 0 for HID format
1334 T55xxWriteBlock(data1,1,0,0);
1335 T55xxWriteBlock(data2,2,0,0);
1336 T55xxWriteBlock(data3,3,0,0);
1337
1338 if (longFMT) { // if long format there are 6 blocks
1339 T55xxWriteBlock(data4,4,0,0);
1340 T55xxWriteBlock(data5,5,0,0);
1341 T55xxWriteBlock(data6,6,0,0);
1342 }
1343
1344 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1345 T55xxWriteBlock(T55x7_BITRATE_RF_50 |
1346 T55x7_MODULATION_FSK2a |
1347 last_block << T55x7_MAXBLOCK_SHIFT,
1348 0,0,0);
1349
1350 LED_D_OFF();
1351
1352 DbpString("DONE!");
1353 }
1354
1355 void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
1356 {
1357 int data1=0, data2=0; //up to six blocks for long format
1358
1359 data1 = hi; // load preamble
1360 data2 = lo;
1361
1362 LED_D_ON();
1363 // Program the data blocks for supplied ID
1364 // and the block 0 for HID format
1365 T55xxWriteBlock(data1,1,0,0);
1366 T55xxWriteBlock(data2,2,0,0);
1367
1368 //Config Block
1369 T55xxWriteBlock(0x00147040,0,0,0);
1370 LED_D_OFF();
1371
1372 DbpString("DONE!");
1373 }
1374
1375 // Define 9bit header for EM410x tags
1376 #define EM410X_HEADER 0x1FF
1377 #define EM410X_ID_LENGTH 40
1378
1379 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
1380 {
1381 int i, id_bit;
1382 uint64_t id = EM410X_HEADER;
1383 uint64_t rev_id = 0; // reversed ID
1384 int c_parity[4]; // column parity
1385 int r_parity = 0; // row parity
1386 uint32_t clock = 0;
1387
1388 // Reverse ID bits given as parameter (for simpler operations)
1389 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1390 if (i < 32) {
1391 rev_id = (rev_id << 1) | (id_lo & 1);
1392 id_lo >>= 1;
1393 } else {
1394 rev_id = (rev_id << 1) | (id_hi & 1);
1395 id_hi >>= 1;
1396 }
1397 }
1398
1399 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1400 id_bit = rev_id & 1;
1401
1402 if (i % 4 == 0) {
1403 // Don't write row parity bit at start of parsing
1404 if (i)
1405 id = (id << 1) | r_parity;
1406 // Start counting parity for new row
1407 r_parity = id_bit;
1408 } else {
1409 // Count row parity
1410 r_parity ^= id_bit;
1411 }
1412
1413 // First elements in column?
1414 if (i < 4)
1415 // Fill out first elements
1416 c_parity[i] = id_bit;
1417 else
1418 // Count column parity
1419 c_parity[i % 4] ^= id_bit;
1420
1421 // Insert ID bit
1422 id = (id << 1) | id_bit;
1423 rev_id >>= 1;
1424 }
1425
1426 // Insert parity bit of last row
1427 id = (id << 1) | r_parity;
1428
1429 // Fill out column parity at the end of tag
1430 for (i = 0; i < 4; ++i)
1431 id = (id << 1) | c_parity[i];
1432
1433 // Add stop bit
1434 id <<= 1;
1435
1436 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1437 LED_D_ON();
1438
1439 // Write EM410x ID
1440 T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
1441 T55xxWriteBlock((uint32_t)id, 2, 0, 0);
1442
1443 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1444 if (card) {
1445 // Clock rate is stored in bits 8-15 of the card value
1446 clock = (card & 0xFF00) >> 8;
1447 Dbprintf("Clock rate: %d", clock);
1448 switch (clock)
1449 {
1450 case 32:
1451 clock = T55x7_BITRATE_RF_32;
1452 break;
1453 case 16:
1454 clock = T55x7_BITRATE_RF_16;
1455 break;
1456 case 0:
1457 // A value of 0 is assumed to be 64 for backwards-compatibility
1458 // Fall through...
1459 case 64:
1460 clock = T55x7_BITRATE_RF_64;
1461 break;
1462 default:
1463 Dbprintf("Invalid clock rate: %d", clock);
1464 return;
1465 }
1466
1467 // Writing configuration for T55x7 tag
1468 T55xxWriteBlock(clock |
1469 T55x7_MODULATION_MANCHESTER |
1470 2 << T55x7_MAXBLOCK_SHIFT,
1471 0, 0, 0);
1472 }
1473 else
1474 // Writing configuration for T5555(Q5) tag
1475 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
1476 T5555_MODULATION_MANCHESTER |
1477 2 << T5555_MAXBLOCK_SHIFT,
1478 0, 0, 0);
1479
1480 LED_D_OFF();
1481 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1482 (uint32_t)(id >> 32), (uint32_t)id);
1483 }
1484
1485 // Clone Indala 64-bit tag by UID to T55x7
1486 void CopyIndala64toT55x7(int hi, int lo)
1487 {
1488 //Program the 2 data blocks for supplied 64bit UID
1489 // and the block 0 for Indala64 format
1490 T55xxWriteBlock(hi,1,0,0);
1491 T55xxWriteBlock(lo,2,0,0);
1492 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1493 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1494 T55x7_MODULATION_PSK1 |
1495 2 << T55x7_MAXBLOCK_SHIFT,
1496 0, 0, 0);
1497 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1498 // T5567WriteBlock(0x603E1042,0);
1499
1500 DbpString("DONE!");
1501 }
1502
1503 void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
1504 {
1505 //Program the 7 data blocks for supplied 224bit UID
1506 // and the block 0 for Indala224 format
1507 T55xxWriteBlock(uid1,1,0,0);
1508 T55xxWriteBlock(uid2,2,0,0);
1509 T55xxWriteBlock(uid3,3,0,0);
1510 T55xxWriteBlock(uid4,4,0,0);
1511 T55xxWriteBlock(uid5,5,0,0);
1512 T55xxWriteBlock(uid6,6,0,0);
1513 T55xxWriteBlock(uid7,7,0,0);
1514 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1515 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1516 T55x7_MODULATION_PSK1 |
1517 7 << T55x7_MAXBLOCK_SHIFT,
1518 0,0,0);
1519 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1520 // T5567WriteBlock(0x603E10E2,0);
1521
1522 DbpString("DONE!");
1523 }
1524
1525
1526 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1527 #define max(x,y) ( x<y ? y:x)
1528
1529 int DemodPCF7931(uint8_t **outBlocks) {
1530 uint8_t BitStream[256];
1531 uint8_t Blocks[8][16];
1532 uint8_t *GraphBuffer = (uint8_t *)BigBuf;
1533 int GraphTraceLen = sizeof(BigBuf);
1534 int i, j, lastval, bitidx, half_switch;
1535 int clock = 64;
1536 int tolerance = clock / 8;
1537 int pmc, block_done;
1538 int lc, warnings = 0;
1539 int num_blocks = 0;
1540 int lmin=128, lmax=128;
1541 uint8_t dir;
1542
1543 AcquireRawAdcSamples125k(0);
1544
1545 lmin = 64;
1546 lmax = 192;
1547
1548 i = 2;
1549
1550 /* Find first local max/min */
1551 if(GraphBuffer[1] > GraphBuffer[0]) {
1552 while(i < GraphTraceLen) {
1553 if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
1554 break;
1555 i++;
1556 }
1557 dir = 0;
1558 }
1559 else {
1560 while(i < GraphTraceLen) {
1561 if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
1562 break;
1563 i++;
1564 }
1565 dir = 1;
1566 }
1567
1568 lastval = i++;
1569 half_switch = 0;
1570 pmc = 0;
1571 block_done = 0;
1572
1573 for (bitidx = 0; i < GraphTraceLen; i++)
1574 {
1575 if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
1576 {
1577 lc = i - lastval;
1578 lastval = i;
1579
1580 // Switch depending on lc length:
1581 // Tolerance is 1/8 of clock rate (arbitrary)
1582 if (abs(lc-clock/4) < tolerance) {
1583 // 16T0
1584 if((i - pmc) == lc) { /* 16T0 was previous one */
1585 /* It's a PMC ! */
1586 i += (128+127+16+32+33+16)-1;
1587 lastval = i;
1588 pmc = 0;
1589 block_done = 1;
1590 }
1591 else {
1592 pmc = i;
1593 }
1594 } else if (abs(lc-clock/2) < tolerance) {
1595 // 32TO
1596 if((i - pmc) == lc) { /* 16T0 was previous one */
1597 /* It's a PMC ! */
1598 i += (128+127+16+32+33)-1;
1599 lastval = i;
1600 pmc = 0;
1601 block_done = 1;
1602 }
1603 else if(half_switch == 1) {
1604 BitStream[bitidx++] = 0;
1605 half_switch = 0;
1606 }
1607 else
1608 half_switch++;
1609 } else if (abs(lc-clock) < tolerance) {
1610 // 64TO
1611 BitStream[bitidx++] = 1;
1612 } else {
1613 // Error
1614 warnings++;
1615 if (warnings > 10)
1616 {
1617 Dbprintf("Error: too many detection errors, aborting.");
1618 return 0;
1619 }
1620 }
1621
1622 if(block_done == 1) {
1623 if(bitidx == 128) {
1624 for(j=0; j<16; j++) {
1625 Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
1626 64*BitStream[j*8+6]+
1627 32*BitStream[j*8+5]+
1628 16*BitStream[j*8+4]+
1629 8*BitStream[j*8+3]+
1630 4*BitStream[j*8+2]+
1631 2*BitStream[j*8+1]+
1632 BitStream[j*8];
1633 }
1634 num_blocks++;
1635 }
1636 bitidx = 0;
1637 block_done = 0;
1638 half_switch = 0;
1639 }
1640 if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
1641 else dir = 1;
1642 }
1643 if(bitidx==255)
1644 bitidx=0;
1645 warnings = 0;
1646 if(num_blocks == 4) break;
1647 }
1648 memcpy(outBlocks, Blocks, 16*num_blocks);
1649 return num_blocks;
1650 }
1651
1652 int IsBlock0PCF7931(uint8_t *Block) {
1653 // Assume RFU means 0 :)
1654 if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1655 return 1;
1656 if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
1657 return 1;
1658 return 0;
1659 }
1660
1661 int IsBlock1PCF7931(uint8_t *Block) {
1662 // Assume RFU means 0 :)
1663 if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
1664 if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
1665 return 1;
1666
1667 return 0;
1668 }
1669 #define ALLOC 16
1670
1671 void ReadPCF7931() {
1672 uint8_t Blocks[8][17];
1673 uint8_t tmpBlocks[4][16];
1674 int i, j, ind, ind2, n;
1675 int num_blocks = 0;
1676 int max_blocks = 8;
1677 int ident = 0;
1678 int error = 0;
1679 int tries = 0;
1680
1681 memset(Blocks, 0, 8*17*sizeof(uint8_t));
1682
1683 do {
1684 memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
1685 n = DemodPCF7931((uint8_t**)tmpBlocks);
1686 if(!n)
1687 error++;
1688 if(error==10 && num_blocks == 0) {
1689 Dbprintf("Error, no tag or bad tag");
1690 return;
1691 }
1692 else if (tries==20 || error==10) {
1693 Dbprintf("Error reading the tag");
1694 Dbprintf("Here is the partial content");
1695 goto end;
1696 }
1697
1698 for(i=0; i<n; i++)
1699 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1700 tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
1701 tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
1702 if(!ident) {
1703 for(i=0; i<n; i++) {
1704 if(IsBlock0PCF7931(tmpBlocks[i])) {
1705 // Found block 0 ?
1706 if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
1707 // Found block 1!
1708 // \o/
1709 ident = 1;
1710 memcpy(Blocks[0], tmpBlocks[i], 16);
1711 Blocks[0][ALLOC] = 1;
1712 memcpy(Blocks[1], tmpBlocks[i+1], 16);
1713 Blocks[1][ALLOC] = 1;
1714 max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
1715 // Debug print
1716 Dbprintf("(dbg) Max blocks: %d", max_blocks);
1717 num_blocks = 2;
1718 // Handle following blocks
1719 for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
1720 if(j==n) j=0;
1721 if(j==i) break;
1722 memcpy(Blocks[ind2], tmpBlocks[j], 16);
1723 Blocks[ind2][ALLOC] = 1;
1724 }
1725 break;
1726 }
1727 }
1728 }
1729 }
1730 else {
1731 for(i=0; i<n; i++) { // Look for identical block in known blocks
1732 if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1733 for(j=0; j<max_blocks; j++) {
1734 if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
1735 // Found an identical block
1736 for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
1737 if(ind2 < 0)
1738 ind2 = max_blocks;
1739 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1740 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1741 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1742 Blocks[ind2][ALLOC] = 1;
1743 num_blocks++;
1744 if(num_blocks == max_blocks) goto end;
1745 }
1746 }
1747 for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
1748 if(ind2 > max_blocks)
1749 ind2 = 0;
1750 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1751 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1752 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1753 Blocks[ind2][ALLOC] = 1;
1754 num_blocks++;
1755 if(num_blocks == max_blocks) goto end;
1756 }
1757 }
1758 }
1759 }
1760 }
1761 }
1762 }
1763 tries++;
1764 if (BUTTON_PRESS()) return;
1765 } while (num_blocks != max_blocks);
1766 end:
1767 Dbprintf("-----------------------------------------");
1768 Dbprintf("Memory content:");
1769 Dbprintf("-----------------------------------------");
1770 for(i=0; i<max_blocks; i++) {
1771 if(Blocks[i][ALLOC]==1)
1772 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1773 Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
1774 Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
1775 else
1776 Dbprintf("<missing block %d>", i);
1777 }
1778 Dbprintf("-----------------------------------------");
1779
1780 return ;
1781 }
1782
1783
1784 //-----------------------------------
1785 // EM4469 / EM4305 routines
1786 //-----------------------------------
1787 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1788 #define FWD_CMD_WRITE 0xA
1789 #define FWD_CMD_READ 0x9
1790 #define FWD_CMD_DISABLE 0x5
1791
1792
1793 uint8_t forwardLink_data[64]; //array of forwarded bits
1794 uint8_t * forward_ptr; //ptr for forward message preparation
1795 uint8_t fwd_bit_sz; //forwardlink bit counter
1796 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1797
1798 //====================================================================
1799 // prepares command bits
1800 // see EM4469 spec
1801 //====================================================================
1802 //--------------------------------------------------------------------
1803 uint8_t Prepare_Cmd( uint8_t cmd ) {
1804 //--------------------------------------------------------------------
1805
1806 *forward_ptr++ = 0; //start bit
1807 *forward_ptr++ = 0; //second pause for 4050 code
1808
1809 *forward_ptr++ = cmd;
1810 cmd >>= 1;
1811 *forward_ptr++ = cmd;
1812 cmd >>= 1;
1813 *forward_ptr++ = cmd;
1814 cmd >>= 1;
1815 *forward_ptr++ = cmd;
1816
1817 return 6; //return number of emited bits
1818 }
1819
1820 //====================================================================
1821 // prepares address bits
1822 // see EM4469 spec
1823 //====================================================================
1824
1825 //--------------------------------------------------------------------
1826 uint8_t Prepare_Addr( uint8_t addr ) {
1827 //--------------------------------------------------------------------
1828
1829 register uint8_t line_parity;
1830
1831 uint8_t i;
1832 line_parity = 0;
1833 for(i=0;i<6;i++) {
1834 *forward_ptr++ = addr;
1835 line_parity ^= addr;
1836 addr >>= 1;
1837 }
1838
1839 *forward_ptr++ = (line_parity & 1);
1840
1841 return 7; //return number of emited bits
1842 }
1843
1844 //====================================================================
1845 // prepares data bits intreleaved with parity bits
1846 // see EM4469 spec
1847 //====================================================================
1848
1849 //--------------------------------------------------------------------
1850 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1851 //--------------------------------------------------------------------
1852
1853 register uint8_t line_parity;
1854 register uint8_t column_parity;
1855 register uint8_t i, j;
1856 register uint16_t data;
1857
1858 data = data_low;
1859 column_parity = 0;
1860
1861 for(i=0; i<4; i++) {
1862 line_parity = 0;
1863 for(j=0; j<8; j++) {
1864 line_parity ^= data;
1865 column_parity ^= (data & 1) << j;
1866 *forward_ptr++ = data;
1867 data >>= 1;
1868 }
1869 *forward_ptr++ = line_parity;
1870 if(i == 1)
1871 data = data_hi;
1872 }
1873
1874 for(j=0; j<8; j++) {
1875 *forward_ptr++ = column_parity;
1876 column_parity >>= 1;
1877 }
1878 *forward_ptr = 0;
1879
1880 return 45; //return number of emited bits
1881 }
1882
1883 //====================================================================
1884 // Forward Link send function
1885 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1886 // fwd_bit_count set with number of bits to be sent
1887 //====================================================================
1888 void SendForward(uint8_t fwd_bit_count) {
1889
1890 fwd_write_ptr = forwardLink_data;
1891 fwd_bit_sz = fwd_bit_count;
1892
1893 LED_D_ON();
1894
1895 //Field on
1896 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1897 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1898 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1899
1900 // Give it a bit of time for the resonant antenna to settle.
1901 // And for the tag to fully power up
1902 SpinDelay(150);
1903
1904 // force 1st mod pulse (start gap must be longer for 4305)
1905 fwd_bit_sz--; //prepare next bit modulation
1906 fwd_write_ptr++;
1907 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1908 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1909 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1910 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1911 SpinDelayUs(16*8); //16 cycles on (8us each)
1912
1913 // now start writting
1914 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1915 if(((*fwd_write_ptr++) & 1) == 1)
1916 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1917 else {
1918 //These timings work for 4469/4269/4305 (with the 55*8 above)
1919 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1920 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1921 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1922 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1923 SpinDelayUs(9*8); //16 cycles on (8us each)
1924 }
1925 }
1926 }
1927
1928
1929 void EM4xLogin(uint32_t Password) {
1930
1931 uint8_t fwd_bit_count;
1932
1933 forward_ptr = forwardLink_data;
1934 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1935 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1936
1937 SendForward(fwd_bit_count);
1938
1939 //Wait for command to complete
1940 SpinDelay(20);
1941
1942 }
1943
1944 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1945
1946 uint8_t *dest = mifare_get_bigbufptr();
1947 uint16_t bufferlength = 12000;
1948 uint32_t i = 0;
1949
1950 // Clear destination buffer before sending the command 0x80 = average.
1951 memset(dest, 0x80, bufferlength);
1952
1953 uint8_t fwd_bit_count;
1954
1955 //If password mode do login
1956 if (PwdMode == 1) EM4xLogin(Pwd);
1957
1958 forward_ptr = forwardLink_data;
1959 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1960 fwd_bit_count += Prepare_Addr( Address );
1961
1962 // Connect the A/D to the peak-detected low-frequency path.
1963 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1964 // Now set up the SSC to get the ADC samples that are now streaming at us.
1965 FpgaSetupSsc();
1966
1967 SendForward(fwd_bit_count);
1968
1969 // // Turn field on to read the response
1970 // TurnReadLFOn();
1971
1972 // Now do the acquisition
1973 i = 0;
1974 for(;;) {
1975 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1976 AT91C_BASE_SSC->SSC_THR = 0x43;
1977 }
1978 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1979 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1980 ++i;
1981 if (i >= bufferlength) break;
1982 }
1983 }
1984
1985 cmd_send(CMD_ACK,0,0,0,0,0);
1986 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1987 LED_D_OFF();
1988 }
1989
1990 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1991
1992 uint8_t fwd_bit_count;
1993
1994 //If password mode do login
1995 if (PwdMode == 1) EM4xLogin(Pwd);
1996
1997 forward_ptr = forwardLink_data;
1998 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1999 fwd_bit_count += Prepare_Addr( Address );
2000 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
2001
2002 SendForward(fwd_bit_count);
2003
2004 //Wait for write to complete
2005 SpinDelay(20);
2006 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2007 LED_D_OFF();
2008 }
Impressum, Datenschutz