]> cvs.zerfleddert.de Git - proxmark3-svn/blob - common/lfdemod.c
e1fcbf736ed4ffd5d6ed73e916d04271eba06415
[proxmark3-svn] / common / lfdemod.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2014
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
10
11 #include <stdlib.h>
12 #include "lfdemod.h"
13 #include <string.h>
14
15 //to allow debug print calls when used not on device
16 void dummy(char *fmt, ...){}
17
18 #ifndef ON_DEVICE
19 #include "ui.h"
20 #include "cmdparser.h"
21 #include "cmddata.h"
22 #define prnt PrintAndLog
23 #else
24 uint8_t g_debugMode=0;
25 #define prnt dummy
26 #endif
27
28 uint8_t justNoise(uint8_t *BitStream, size_t size)
29 {
30 static const uint8_t THRESHOLD = 123;
31 //test samples are not just noise
32 uint8_t justNoise1 = 1;
33 for(size_t idx=0; idx < size && justNoise1 ;idx++){
34 justNoise1 = BitStream[idx] < THRESHOLD;
35 }
36 return justNoise1;
37 }
38
39 //by marshmellow
40 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
41 int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo)
42 {
43 *high=0;
44 *low=255;
45 // get high and low thresholds
46 for (size_t i=0; i < size; i++){
47 if (BitStream[i] > *high) *high = BitStream[i];
48 if (BitStream[i] < *low) *low = BitStream[i];
49 }
50 if (*high < 123) return -1; // just noise
51 *high = ((*high-128)*fuzzHi + 12800)/100;
52 *low = ((*low-128)*fuzzLo + 12800)/100;
53 return 1;
54 }
55
56 // by marshmellow
57 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
58 // returns 1 if passed
59 uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType)
60 {
61 uint8_t ans = 0;
62 for (uint8_t i = 0; i < bitLen; i++){
63 ans ^= ((bits >> i) & 1);
64 }
65 if (g_debugMode) prnt("DEBUG: ans: %d, ptype: %d, bits: %08X",ans,pType,bits);
66 return (ans == pType);
67 }
68
69 // by marshmellow
70 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
71 // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run)
72 size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen)
73 {
74 uint32_t parityWd = 0;
75 size_t j = 0, bitCnt = 0;
76 for (int word = 0; word < (bLen); word+=pLen) {
77 for (int bit=0; bit < pLen; bit++) {
78 parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
79 BitStream[j++] = (BitStream[startIdx+word+bit]);
80 }
81 if (word+pLen > bLen) break;
82
83 j--; // overwrite parity with next data
84 // if parity fails then return 0
85 switch (pType) {
86 case 3: if (BitStream[j]==1) {return 0;} break; //should be 0 spacer bit
87 case 2: if (BitStream[j]==0) {return 0;} break; //should be 1 spacer bit
88 default: if (parityTest(parityWd, pLen, pType) == 0) {return 0;} break; //test parity
89 }
90 bitCnt+=(pLen-1);
91 parityWd = 0;
92 }
93 // if we got here then all the parities passed
94 //return ID start index and size
95 return bitCnt;
96 }
97
98 // by marshmellow
99 // takes a array of binary values, length of bits per parity (includes parity bit),
100 // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run)
101 // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added
102 size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t pLen, uint8_t pType)
103 {
104 uint32_t parityWd = 0;
105 size_t j = 0, bitCnt = 0;
106 for (int word = 0; word < sourceLen; word+=pLen-1) {
107 for (int bit=0; bit < pLen-1; bit++){
108 parityWd = (parityWd << 1) | BitSource[word+bit];
109 dest[j++] = (BitSource[word+bit]);
110 }
111 // if parity fails then return 0
112 switch (pType) {
113 case 3: dest[j++]=0; break; // marker bit which should be a 0
114 case 2: dest[j++]=1; break; // marker bit which should be a 1
115 default:
116 dest[j++] = parityTest(parityWd, pLen-1, pType) ^ 1;
117 break;
118 }
119 bitCnt += pLen;
120 parityWd = 0;
121 }
122 // if we got here then all the parities passed
123 //return ID start index and size
124 return bitCnt;
125 }
126
127 uint32_t bytebits_to_byte(uint8_t *src, size_t numbits)
128 {
129 uint32_t num = 0;
130 for(int i = 0 ; i < numbits ; i++)
131 {
132 num = (num << 1) | (*src);
133 src++;
134 }
135 return num;
136 }
137
138 //least significant bit first
139 uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits)
140 {
141 uint32_t num = 0;
142 for(int i = 0 ; i < numbits ; i++)
143 {
144 num = (num << 1) | *(src + (numbits-(i+1)));
145 }
146 return num;
147 }
148
149 //by marshmellow
150 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
151 uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx)
152 {
153 return (preambleSearchEx(BitStream, preamble, pLen, size, startIdx, false)) ? 1 : 0;
154 }
155
156 // search for given preamble in given BitStream and return success=1 or fail=0 and startIndex (where it was found) and length if not fineone
157 // fineone does not look for a repeating preamble for em4x05/4x69 sends preamble once, so look for it once in the first pLen bits
158 bool preambleSearchEx(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx, bool findone) {
159 // Sanity check. If preamble length is bigger than bitstream length.
160 if ( *size <= pLen ) return false;
161
162 uint8_t foundCnt = 0;
163 for (size_t idx = 0; idx < *size - pLen; idx++) {
164 if (memcmp(BitStream+idx, preamble, pLen) == 0) {
165 //first index found
166 foundCnt++;
167 if (foundCnt == 1) {
168 if (g_debugMode) prnt("DEBUG: preamble found at %u", idx);
169 *startIdx = idx;
170 if (findone) return true;
171 } else if (foundCnt == 2) {
172 *size = idx - *startIdx;
173 return true;
174 }
175 }
176 }
177 return false;
178 }
179
180 // find start of modulating data (for fsk and psk) in case of beginning noise or slow chip startup.
181 size_t findModStart(uint8_t dest[], size_t size, uint8_t threshold_value, uint8_t expWaveSize) {
182 size_t i = 0;
183 size_t waveSizeCnt = 0;
184 uint8_t thresholdCnt = 0;
185 bool isAboveThreshold = dest[i++] >= threshold_value;
186 for (; i < size-20; i++ ) {
187 if(dest[i] < threshold_value && isAboveThreshold) {
188 thresholdCnt++;
189 if (thresholdCnt > 2 && waveSizeCnt < expWaveSize+1) break;
190 isAboveThreshold = false;
191 waveSizeCnt = 0;
192 } else if (dest[i] >= threshold_value && !isAboveThreshold) {
193 thresholdCnt++;
194 if (thresholdCnt > 2 && waveSizeCnt < expWaveSize+1) break;
195 isAboveThreshold = true;
196 waveSizeCnt = 0;
197 } else {
198 waveSizeCnt++;
199 }
200 if (thresholdCnt > 10) break;
201 }
202 if (g_debugMode == 2) prnt("DEBUG: threshold Count reached at %u, count: %u",i, thresholdCnt);
203 return i;
204 }
205
206 //by marshmellow
207 //takes 1s and 0s and searches for EM410x format - output EM ID
208 uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo)
209 {
210 //sanity checks
211 if (*size < 64) return 0;
212 if (BitStream[1]>1) return 0; //allow only 1s and 0s
213
214 // 111111111 bit pattern represent start of frame
215 // include 0 in front to help get start pos
216 uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1};
217 uint8_t errChk = 0;
218 uint8_t FmtLen = 10; // sets of 4 bits = end data
219 *startIdx = 0;
220 errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx);
221 if (errChk == 0 || *size < 64) return 0;
222 if (*size == 110) FmtLen = 22; // 22 sets of 4 bits
223
224 //skip last 4bit parity row for simplicity
225 *size = removeParity(BitStream, *startIdx + sizeof(preamble), 5, 0, FmtLen * 5);
226 if (*size == 40) { // std em410x format
227 *hi = 0;
228 *lo = ((uint64_t)(bytebits_to_byte(BitStream, 8)) << 32) | (bytebits_to_byte(BitStream + 8, 32));
229 } else if (*size == 88) { // long em format
230 *hi = (bytebits_to_byte(BitStream, 24));
231 *lo = ((uint64_t)(bytebits_to_byte(BitStream + 24, 32)) << 32) | (bytebits_to_byte(BitStream + 24 + 32, 32));
232 } else {
233 return 0;
234 }
235 return 1;
236 }
237
238 //by marshmellow
239 //demodulates strong heavily clipped samples
240 int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low)
241 {
242 size_t bitCnt=0, smplCnt=0, errCnt=0;
243 uint8_t waveHigh = 0;
244 for (size_t i=0; i < *size; i++){
245 if (BinStream[i] >= high && waveHigh){
246 smplCnt++;
247 } else if (BinStream[i] <= low && !waveHigh){
248 smplCnt++;
249 } else { //transition
250 if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){
251 if (smplCnt > clk-(clk/4)-1) { //full clock
252 if (smplCnt > clk + (clk/4)+1) { //too many samples
253 errCnt++;
254 if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
255 BinStream[bitCnt++]=7;
256 } else if (waveHigh) {
257 BinStream[bitCnt++] = invert;
258 BinStream[bitCnt++] = invert;
259 } else if (!waveHigh) {
260 BinStream[bitCnt++] = invert ^ 1;
261 BinStream[bitCnt++] = invert ^ 1;
262 }
263 waveHigh ^= 1;
264 smplCnt = 0;
265 } else if (smplCnt > (clk/2) - (clk/4)-1) {
266 if (waveHigh) {
267 BinStream[bitCnt++] = invert;
268 } else if (!waveHigh) {
269 BinStream[bitCnt++] = invert ^ 1;
270 }
271 waveHigh ^= 1;
272 smplCnt = 0;
273 } else if (!bitCnt) {
274 //first bit
275 waveHigh = (BinStream[i] >= high);
276 smplCnt = 1;
277 } else {
278 smplCnt++;
279 //transition bit oops
280 }
281 } else { //haven't hit new high or new low yet
282 smplCnt++;
283 }
284 }
285 }
286 *size = bitCnt;
287 return errCnt;
288 }
289
290 //by marshmellow
291 void askAmp(uint8_t *BitStream, size_t size)
292 {
293 uint8_t Last = 128;
294 for(size_t i = 1; i<size; i++){
295 if (BitStream[i]-BitStream[i-1]>=30) //large jump up
296 Last = 255;
297 else if(BitStream[i-1]-BitStream[i]>=20) //large jump down
298 Last = 0;
299
300 BitStream[i-1] = Last;
301 }
302 return;
303 }
304
305 //by marshmellow
306 //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
307 int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType)
308 {
309 if (*size==0) return -1;
310 int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default
311 if (*clk==0 || start < 0) return -3;
312 if (*invert != 1) *invert = 0;
313 if (amp==1) askAmp(BinStream, *size);
314 if (g_debugMode==2) prnt("DEBUG ASK: clk %d, beststart %d, amp %d", *clk, start, amp);
315
316 uint8_t initLoopMax = 255;
317 if (initLoopMax > *size) initLoopMax = *size;
318 // Detect high and lows
319 //25% clip in case highs and lows aren't clipped [marshmellow]
320 int high, low;
321 if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1)
322 return -2; //just noise
323
324 size_t errCnt = 0;
325 // if clean clipped waves detected run alternate demod
326 if (DetectCleanAskWave(BinStream, *size, high, low)) {
327 if (g_debugMode==2) prnt("DEBUG ASK: Clean Wave Detected - using clean wave demod");
328 errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low);
329 if (askType) //askman
330 return manrawdecode(BinStream, size, 0);
331 else //askraw
332 return errCnt;
333 }
334 if (g_debugMode==2) prnt("DEBUG ASK: Weak Wave Detected - using weak wave demod");
335
336 int lastBit; //set first clock check - can go negative
337 size_t i, bitnum = 0; //output counter
338 uint8_t midBit = 0;
339 uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
340 if (*clk <= 32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
341 size_t MaxBits = 3072; //max bits to collect
342 lastBit = start - *clk;
343
344 for (i = start; i < *size; ++i) {
345 if (i-lastBit >= *clk-tol){
346 if (BinStream[i] >= high) {
347 BinStream[bitnum++] = *invert;
348 } else if (BinStream[i] <= low) {
349 BinStream[bitnum++] = *invert ^ 1;
350 } else if (i-lastBit >= *clk+tol) {
351 if (bitnum > 0) {
352 if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
353 BinStream[bitnum++]=7;
354 errCnt++;
355 }
356 } else { //in tolerance - looking for peak
357 continue;
358 }
359 midBit = 0;
360 lastBit += *clk;
361 } else if (i-lastBit >= (*clk/2-tol) && !midBit && !askType){
362 if (BinStream[i] >= high) {
363 BinStream[bitnum++] = *invert;
364 } else if (BinStream[i] <= low) {
365 BinStream[bitnum++] = *invert ^ 1;
366 } else if (i-lastBit >= *clk/2+tol) {
367 BinStream[bitnum] = BinStream[bitnum-1];
368 bitnum++;
369 } else { //in tolerance - looking for peak
370 continue;
371 }
372 midBit = 1;
373 }
374 if (bitnum >= MaxBits) break;
375 }
376 *size = bitnum;
377 return errCnt;
378 }
379
380 //by marshmellow
381 //take 10 and 01 and manchester decode
382 //run through 2 times and take least errCnt
383 int manrawdecode(uint8_t * BitStream, size_t *size, uint8_t invert)
384 {
385 uint16_t bitnum=0, MaxBits = 512, errCnt = 0;
386 size_t i, ii;
387 uint16_t bestErr = 1000, bestRun = 0;
388 if (*size < 16) return -1;
389 //find correct start position [alignment]
390 for (ii=0;ii<2;++ii){
391 for (i=ii; i<*size-3; i+=2)
392 if (BitStream[i]==BitStream[i+1])
393 errCnt++;
394
395 if (bestErr>errCnt){
396 bestErr=errCnt;
397 bestRun=ii;
398 }
399 errCnt=0;
400 }
401 //decode
402 for (i=bestRun; i < *size-3; i+=2){
403 if(BitStream[i] == 1 && (BitStream[i+1] == 0)){
404 BitStream[bitnum++]=invert;
405 } else if((BitStream[i] == 0) && BitStream[i+1] == 1){
406 BitStream[bitnum++]=invert^1;
407 } else {
408 BitStream[bitnum++]=7;
409 }
410 if(bitnum>MaxBits) break;
411 }
412 *size=bitnum;
413 return bestErr;
414 }
415
416 uint32_t manchesterEncode2Bytes(uint16_t datain) {
417 uint32_t output = 0;
418 uint8_t curBit = 0;
419 for (uint8_t i=0; i<16; i++) {
420 curBit = (datain >> (15-i) & 1);
421 output |= (1<<(((15-i)*2)+curBit));
422 }
423 return output;
424 }
425
426 //by marshmellow
427 //encode binary data into binary manchester
428 int ManchesterEncode(uint8_t *BitStream, size_t size)
429 {
430 size_t modIdx=20000, i=0;
431 if (size>modIdx) return -1;
432 for (size_t idx=0; idx < size; idx++){
433 BitStream[idx+modIdx++] = BitStream[idx];
434 BitStream[idx+modIdx++] = BitStream[idx]^1;
435 }
436 for (; i<(size*2); i++){
437 BitStream[i] = BitStream[i+20000];
438 }
439 return i;
440 }
441
442 //by marshmellow
443 //take 01 or 10 = 1 and 11 or 00 = 0
444 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
445 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
446 int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert)
447 {
448 uint16_t bitnum = 0;
449 uint16_t errCnt = 0;
450 size_t i = offset;
451 uint16_t MaxBits=512;
452 //if not enough samples - error
453 if (*size < 51) return -1;
454 //check for phase change faults - skip one sample if faulty
455 uint8_t offsetA = 1, offsetB = 1;
456 for (; i<48; i+=2){
457 if (BitStream[i+1]==BitStream[i+2]) offsetA=0;
458 if (BitStream[i+2]==BitStream[i+3]) offsetB=0;
459 }
460 if (!offsetA && offsetB) offset++;
461 for (i=offset; i<*size-3; i+=2){
462 //check for phase error
463 if (BitStream[i+1]==BitStream[i+2]) {
464 BitStream[bitnum++]=7;
465 errCnt++;
466 }
467 if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){
468 BitStream[bitnum++]=1^invert;
469 } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){
470 BitStream[bitnum++]=invert;
471 } else {
472 BitStream[bitnum++]=7;
473 errCnt++;
474 }
475 if(bitnum>MaxBits) break;
476 }
477 *size=bitnum;
478 return errCnt;
479 }
480
481 // by marshmellow
482 // demod gProxIIDemod
483 // error returns as -x
484 // success returns start position in BitStream
485 // BitStream must contain previously askrawdemod and biphasedemoded data
486 int gProxII_Demod(uint8_t BitStream[], size_t *size)
487 {
488 size_t startIdx=0;
489 uint8_t preamble[] = {1,1,1,1,1,0};
490
491 uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx);
492 if (errChk == 0) return -3; //preamble not found
493 if (*size != 96) return -2; //should have found 96 bits
494 //check first 6 spacer bits to verify format
495 if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){
496 //confirmed proper separator bits found
497 //return start position
498 return (int) startIdx;
499 }
500 return -5; //spacer bits not found - not a valid gproxII
501 }
502
503 //translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq])
504 size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow)
505 {
506 size_t last_transition = 0;
507 size_t idx = 1;
508 if (fchigh==0) fchigh=10;
509 if (fclow==0) fclow=8;
510 //set the threshold close to 0 (graph) or 128 std to avoid static
511 uint8_t threshold_value = 123;
512 size_t preLastSample = 0;
513 size_t LastSample = 0;
514 size_t currSample = 0;
515 if ( size < 1024 ) return 0; // not enough samples
516
517 //find start of modulating data in trace
518 idx = findModStart(dest, size, threshold_value, fchigh);
519
520 // Need to threshold first sample
521 if(dest[idx] < threshold_value) dest[0] = 0;
522 else dest[0] = 1;
523 idx++;
524
525 size_t numBits = 0;
526 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
527 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
528 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
529 // (could also be fc/5 && fc/7 for fsk1 = 4-9)
530 for(; idx < size-20; idx++) {
531 // threshold current value
532
533 if (dest[idx] < threshold_value) dest[idx] = 0;
534 else dest[idx] = 1;
535
536 // Check for 0->1 transition
537 if (dest[idx-1] < dest[idx]) {
538 preLastSample = LastSample;
539 LastSample = currSample;
540 currSample = idx-last_transition;
541 if (currSample < (fclow-2)) { //0-5 = garbage noise (or 0-3)
542 //do nothing with extra garbage
543 } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves (or 3-6 = 5)
544 //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5)
545 if (LastSample > (fchigh-2) && (preLastSample < (fchigh-1))){
546 dest[numBits-1]=1;
547 }
548 dest[numBits++]=1;
549
550 } else if (currSample > (fchigh+1) && numBits < 3) { //12 + and first two bit = unusable garbage
551 //do nothing with beginning garbage and reset.. should be rare..
552 numBits = 0;
553 } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's)
554 dest[numBits++]=1;
555 } else { //9+ = 10 sample waves (or 6+ = 7)
556 dest[numBits++]=0;
557 }
558 last_transition = idx;
559 }
560 }
561 return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
562 }
563
564 //translate 11111100000 to 10
565 //rfLen = clock, fchigh = larger field clock, fclow = smaller field clock
566 size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen,
567 uint8_t invert, uint8_t fchigh, uint8_t fclow)
568 {
569 uint8_t lastval=dest[0];
570 size_t idx=0;
571 size_t numBits=0;
572 uint32_t n=1;
573 for( idx=1; idx < size; idx++) {
574 n++;
575 if (dest[idx]==lastval) continue; //skip until we hit a transition
576
577 //find out how many bits (n) we collected
578 //if lastval was 1, we have a 1->0 crossing
579 if (dest[idx-1]==1) {
580 n = (n * fclow + rfLen/2) / rfLen;
581 } else {// 0->1 crossing
582 n = (n * fchigh + rfLen/2) / rfLen;
583 }
584 if (n == 0) n = 1;
585
586 //add to our destination the bits we collected
587 memset(dest+numBits, dest[idx-1]^invert , n);
588 numBits += n;
589 n=0;
590 lastval=dest[idx];
591 }//end for
592 // if valid extra bits at the end were all the same frequency - add them in
593 if (n > rfLen/fchigh) {
594 if (dest[idx-2]==1) {
595 n = (n * fclow + rfLen/2) / rfLen;
596 } else {
597 n = (n * fchigh + rfLen/2) / rfLen;
598 }
599 memset(dest+numBits, dest[idx-1]^invert , n);
600 numBits += n;
601 }
602 return numBits;
603 }
604
605 //by marshmellow (from holiman's base)
606 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
607 int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow)
608 {
609 // FSK demodulator
610 size = fsk_wave_demod(dest, size, fchigh, fclow);
611 size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow);
612 return size;
613 }
614
615 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
616 int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
617 {
618 if (justNoise(dest, *size)) return -1;
619
620 size_t numStart=0, size2=*size, startIdx=0;
621 // FSK demodulator
622 *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
623 if (*size < 96*2) return -2;
624 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
625 uint8_t preamble[] = {0,0,0,1,1,1,0,1};
626 // find bitstring in array
627 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
628 if (errChk == 0) return -3; //preamble not found
629
630 numStart = startIdx + sizeof(preamble);
631 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
632 for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
633 if (dest[idx] == dest[idx+1]){
634 return -4; //not manchester data
635 }
636 *hi2 = (*hi2<<1)|(*hi>>31);
637 *hi = (*hi<<1)|(*lo>>31);
638 //Then, shift in a 0 or one into low
639 if (dest[idx] && !dest[idx+1]) // 1 0
640 *lo=(*lo<<1)|1;
641 else // 0 1
642 *lo=(*lo<<1)|0;
643 }
644 return (int)startIdx;
645 }
646
647 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
648 int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
649 {
650 if (justNoise(dest, *size)) return -1;
651
652 size_t numStart=0, size2=*size, startIdx=0;
653 // FSK demodulator
654 *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
655 if (*size < 96) return -2;
656
657 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
658 uint8_t preamble[] = {0,0,0,0,1,1,1,1};
659
660 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
661 if (errChk == 0) return -3; //preamble not found
662
663 numStart = startIdx + sizeof(preamble);
664 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
665 for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
666 if (dest[idx] == dest[idx+1])
667 return -4; //not manchester data
668 *hi2 = (*hi2<<1)|(*hi>>31);
669 *hi = (*hi<<1)|(*lo>>31);
670 //Then, shift in a 0 or one into low
671 if (dest[idx] && !dest[idx+1]) // 1 0
672 *lo=(*lo<<1)|1;
673 else // 0 1
674 *lo=(*lo<<1)|0;
675 }
676 return (int)startIdx;
677 }
678
679 int IOdemodFSK(uint8_t *dest, size_t size)
680 {
681 if (justNoise(dest, size)) return -1;
682 //make sure buffer has data
683 if (size < 66*64) return -2;
684 // FSK demodulator
685 size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64
686 if (size < 65) return -3; //did we get a good demod?
687 //Index map
688 //0 10 20 30 40 50 60
689 //| | | | | | |
690 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
691 //-----------------------------------------------------------------------------
692 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
693 //
694 //XSF(version)facility:codeone+codetwo
695 //Handle the data
696 size_t startIdx = 0;
697 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1};
698 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx);
699 if (errChk == 0) return -4; //preamble not found
700
701 if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){
702 //confirmed proper separator bits found
703 //return start position
704 return (int) startIdx;
705 }
706 return -5;
707 }
708
709 // by marshmellow
710 // find viking preamble 0xF200 in already demoded data
711 int VikingDemod_AM(uint8_t *dest, size_t *size) {
712 //make sure buffer has data
713 if (*size < 64*2) return -2;
714
715 size_t startIdx = 0;
716 uint8_t preamble[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
717 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
718 if (errChk == 0) return -4; //preamble not found
719 uint32_t checkCalc = bytebits_to_byte(dest+startIdx,8) ^ bytebits_to_byte(dest+startIdx+8,8) ^ bytebits_to_byte(dest+startIdx+16,8)
720 ^ bytebits_to_byte(dest+startIdx+24,8) ^ bytebits_to_byte(dest+startIdx+32,8) ^ bytebits_to_byte(dest+startIdx+40,8)
721 ^ bytebits_to_byte(dest+startIdx+48,8) ^ bytebits_to_byte(dest+startIdx+56,8);
722 if ( checkCalc != 0xA8 ) return -5;
723 if (*size != 64) return -6;
724 //return start position
725 return (int) startIdx;
726 }
727
728 // find presco preamble 0x10D in already demoded data
729 int PrescoDemod(uint8_t *dest, size_t *size) {
730 //make sure buffer has data
731 if (*size < 64*2) return -2;
732
733 size_t startIdx = 0;
734 uint8_t preamble[] = {1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0};
735 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
736 if (errChk == 0) return -4; //preamble not found
737 //return start position
738 return (int) startIdx;
739 }
740
741 // Ask/Biphase Demod then try to locate an ISO 11784/85 ID
742 // BitStream must contain previously askrawdemod and biphasedemoded data
743 int FDXBdemodBI(uint8_t *dest, size_t *size)
744 {
745 //make sure buffer has enough data
746 if (*size < 128) return -1;
747
748 size_t startIdx = 0;
749 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1};
750
751 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
752 if (errChk == 0) return -2; //preamble not found
753 return (int)startIdx;
754 }
755
756 // by marshmellow
757 // FSK Demod then try to locate an AWID ID
758 int AWIDdemodFSK(uint8_t *dest, size_t *size)
759 {
760 //make sure buffer has enough data
761 if (*size < 96*50) return -1;
762
763 if (justNoise(dest, *size)) return -2;
764
765 // FSK demodulator
766 *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
767 if (*size < 96) return -3; //did we get a good demod?
768
769 uint8_t preamble[] = {0,0,0,0,0,0,0,1};
770 size_t startIdx = 0;
771 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
772 if (errChk == 0) return -4; //preamble not found
773 if (*size != 96) return -5;
774 return (int)startIdx;
775 }
776
777 // by marshmellow
778 // FSK Demod then try to locate a Farpointe Data (pyramid) ID
779 int PyramiddemodFSK(uint8_t *dest, size_t *size)
780 {
781 //make sure buffer has data
782 if (*size < 128*50) return -5;
783
784 //test samples are not just noise
785 if (justNoise(dest, *size)) return -1;
786
787 // FSK demodulator
788 *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
789 if (*size < 128) return -2; //did we get a good demod?
790
791 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
792 size_t startIdx = 0;
793 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
794 if (errChk == 0) return -4; //preamble not found
795 if (*size != 128) return -3;
796 return (int)startIdx;
797 }
798
799 // by marshmellow
800 // to detect a wave that has heavily clipped (clean) samples
801 uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
802 {
803 bool allArePeaks = true;
804 uint16_t cntPeaks=0;
805 size_t loopEnd = 512+160;
806 if (loopEnd > size) loopEnd = size;
807 for (size_t i=160; i<loopEnd; i++){
808 if (dest[i]>low && dest[i]<high)
809 allArePeaks = false;
810 else
811 cntPeaks++;
812 }
813 if (!allArePeaks){
814 if (cntPeaks > 300) return true;
815 }
816 return allArePeaks;
817 }
818 // by marshmellow
819 // to help detect clocks on heavily clipped samples
820 // based on count of low to low
821 int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
822 {
823 uint8_t fndClk[] = {8,16,32,40,50,64,128};
824 size_t startwave;
825 size_t i = 100;
826 size_t minClk = 255;
827 // get to first full low to prime loop and skip incomplete first pulse
828 while ((dest[i] < high) && (i < size))
829 ++i;
830 while ((dest[i] > low) && (i < size))
831 ++i;
832
833 // loop through all samples
834 while (i < size) {
835 // measure from low to low
836 while ((dest[i] > low) && (i < size))
837 ++i;
838 startwave= i;
839 while ((dest[i] < high) && (i < size))
840 ++i;
841 while ((dest[i] > low) && (i < size))
842 ++i;
843 //get minimum measured distance
844 if (i-startwave < minClk && i < size)
845 minClk = i - startwave;
846 }
847 // set clock
848 if (g_debugMode==2) prnt("DEBUG ASK: detectstrongASKclk smallest wave: %d",minClk);
849 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
850 if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1)
851 return fndClk[clkCnt];
852 }
853 return 0;
854 }
855
856 // by marshmellow
857 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
858 // maybe somehow adjust peak trimming value based on samples to fix?
859 // return start index of best starting position for that clock and return clock (by reference)
860 int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr)
861 {
862 size_t i=1;
863 uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255};
864 uint8_t clkEnd = 9;
865 uint8_t loopCnt = 255; //don't need to loop through entire array...
866 if (size <= loopCnt+60) return -1; //not enough samples
867 size -= 60; //sometimes there is a strange end wave - filter out this....
868 //if we already have a valid clock
869 uint8_t clockFnd=0;
870 for (;i<clkEnd;++i)
871 if (clk[i] == *clock) clockFnd = i;
872 //clock found but continue to find best startpos
873
874 //get high and low peak
875 int peak, low;
876 if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return -1;
877
878 //test for large clean peaks
879 if (!clockFnd){
880 if (DetectCleanAskWave(dest, size, peak, low)==1){
881 int ans = DetectStrongAskClock(dest, size, peak, low);
882 if (g_debugMode==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d",ans);
883 for (i=clkEnd-1; i>0; i--){
884 if (clk[i] == ans) {
885 *clock = ans;
886 //clockFnd = i;
887 return 0; // for strong waves i don't use the 'best start position' yet...
888 //break; //clock found but continue to find best startpos [not yet]
889 }
890 }
891 }
892 }
893 uint8_t ii;
894 uint8_t clkCnt, tol = 0;
895 uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
896 uint8_t bestStart[]={0,0,0,0,0,0,0,0,0};
897 size_t errCnt = 0;
898 size_t arrLoc, loopEnd;
899
900 if (clockFnd>0) {
901 clkCnt = clockFnd;
902 clkEnd = clockFnd+1;
903 }
904 else clkCnt=1;
905
906 //test each valid clock from smallest to greatest to see which lines up
907 for(; clkCnt < clkEnd; clkCnt++){
908 if (clk[clkCnt] <= 32){
909 tol=1;
910 }else{
911 tol=0;
912 }
913 //if no errors allowed - keep start within the first clock
914 if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128) loopCnt=clk[clkCnt]*2;
915 bestErr[clkCnt]=1000;
916 //try lining up the peaks by moving starting point (try first few clocks)
917 for (ii=0; ii < loopCnt; ii++){
918 if (dest[ii] < peak && dest[ii] > low) continue;
919
920 errCnt=0;
921 // now that we have the first one lined up test rest of wave array
922 loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1;
923 for (i=0; i < loopEnd; ++i){
924 arrLoc = ii + (i * clk[clkCnt]);
925 if (dest[arrLoc] >= peak || dest[arrLoc] <= low){
926 }else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){
927 }else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){
928 }else{ //error no peak detected
929 errCnt++;
930 }
931 }
932 //if we found no errors then we can stop here and a low clock (common clocks)
933 // this is correct one - return this clock
934 if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d",clk[clkCnt],errCnt,ii,i);
935 if(errCnt==0 && clkCnt<7) {
936 if (!clockFnd) *clock = clk[clkCnt];
937 return ii;
938 }
939 //if we found errors see if it is lowest so far and save it as best run
940 if(errCnt<bestErr[clkCnt]){
941 bestErr[clkCnt]=errCnt;
942 bestStart[clkCnt]=ii;
943 }
944 }
945 }
946 uint8_t iii;
947 uint8_t best=0;
948 for (iii=1; iii<clkEnd; ++iii){
949 if (bestErr[iii] < bestErr[best]){
950 if (bestErr[iii] == 0) bestErr[iii]=1;
951 // current best bit to error ratio vs new bit to error ratio
952 if ( (size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii] ){
953 best = iii;
954 }
955 }
956 if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d",clk[iii],bestErr[iii],clk[best],bestStart[best]);
957 }
958 if (!clockFnd) *clock = clk[best];
959 return bestStart[best];
960 }
961
962 //by marshmellow
963 //detect psk clock by reading each phase shift
964 // a phase shift is determined by measuring the sample length of each wave
965 int DetectPSKClock(uint8_t dest[], size_t size, int clock)
966 {
967 uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
968 uint16_t loopCnt = 4096; //don't need to loop through entire array...
969 if (size == 0) return 0;
970 if (size<loopCnt) loopCnt = size-20;
971
972 //if we already have a valid clock quit
973 size_t i=1;
974 for (; i < 8; ++i)
975 if (clk[i] == clock) return clock;
976
977 size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0;
978 uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1;
979 uint16_t peakcnt=0, errCnt=0, waveLenCnt=0;
980 uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
981 uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0};
982 fc = countFC(dest, size, 0);
983 if (fc!=2 && fc!=4 && fc!=8) return -1;
984 if (g_debugMode==2) prnt("DEBUG PSK: FC: %d",fc);
985
986 //find first full wave
987 for (i=160; i<loopCnt; i++){
988 if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
989 if (waveStart == 0) {
990 waveStart = i+1;
991 //prnt("DEBUG: waveStart: %d",waveStart);
992 } else {
993 waveEnd = i+1;
994 //prnt("DEBUG: waveEnd: %d",waveEnd);
995 waveLenCnt = waveEnd-waveStart;
996 if (waveLenCnt > fc){
997 firstFullWave = waveStart;
998 fullWaveLen=waveLenCnt;
999 break;
1000 }
1001 waveStart=0;
1002 }
1003 }
1004 }
1005 if (g_debugMode ==2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
1006
1007 //test each valid clock from greatest to smallest to see which lines up
1008 for(clkCnt=7; clkCnt >= 1 ; clkCnt--){
1009 lastClkBit = firstFullWave; //set end of wave as clock align
1010 waveStart = 0;
1011 errCnt=0;
1012 peakcnt=0;
1013 if (g_debugMode == 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
1014
1015 for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){
1016 //top edge of wave = start of new wave
1017 if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
1018 if (waveStart == 0) {
1019 waveStart = i+1;
1020 waveLenCnt=0;
1021 } else { //waveEnd
1022 waveEnd = i+1;
1023 waveLenCnt = waveEnd-waveStart;
1024 if (waveLenCnt > fc){
1025 //if this wave is a phase shift
1026 if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,fc);
1027 if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit
1028 peakcnt++;
1029 lastClkBit+=clk[clkCnt];
1030 } else if (i<lastClkBit+8){
1031 //noise after a phase shift - ignore
1032 } else { //phase shift before supposed to based on clock
1033 errCnt++;
1034 }
1035 } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){
1036 lastClkBit+=clk[clkCnt]; //no phase shift but clock bit
1037 }
1038 waveStart=i+1;
1039 }
1040 }
1041 }
1042 if (errCnt == 0){
1043 return clk[clkCnt];
1044 }
1045 if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
1046 if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt;
1047 }
1048 //all tested with errors
1049 //return the highest clk with the most peaks found
1050 uint8_t best=7;
1051 for (i=7; i>=1; i--){
1052 if (peaksdet[i] > peaksdet[best]) {
1053 best = i;
1054 }
1055 if (g_debugMode == 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[i],peaksdet[i],bestErr[i],clk[best]);
1056 }
1057 return clk[best];
1058 }
1059
1060 int DetectStrongNRZClk(uint8_t *dest, size_t size, int peak, int low){
1061 //find shortest transition from high to low
1062 size_t i = 0;
1063 size_t transition1 = 0;
1064 int lowestTransition = 255;
1065 bool lastWasHigh = false;
1066
1067 //find first valid beginning of a high or low wave
1068 while ((dest[i] >= peak || dest[i] <= low) && (i < size))
1069 ++i;
1070 while ((dest[i] < peak && dest[i] > low) && (i < size))
1071 ++i;
1072 lastWasHigh = (dest[i] >= peak);
1073
1074 if (i==size) return 0;
1075 transition1 = i;
1076
1077 for (;i < size; i++) {
1078 if ((dest[i] >= peak && !lastWasHigh) || (dest[i] <= low && lastWasHigh)) {
1079 lastWasHigh = (dest[i] >= peak);
1080 if (i-transition1 < lowestTransition) lowestTransition = i-transition1;
1081 transition1 = i;
1082 }
1083 }
1084 if (lowestTransition == 255) lowestTransition = 0;
1085 if (g_debugMode==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition);
1086 return lowestTransition;
1087 }
1088
1089 //by marshmellow
1090 //detect nrz clock by reading #peaks vs no peaks(or errors)
1091 int DetectNRZClock(uint8_t dest[], size_t size, int clock)
1092 {
1093 size_t i=0;
1094 uint8_t clk[]={8,16,32,40,50,64,100,128,255};
1095 size_t loopCnt = 4096; //don't need to loop through entire array...
1096 if (size == 0) return 0;
1097 if (size<loopCnt) loopCnt = size-20;
1098 //if we already have a valid clock quit
1099 for (; i < 8; ++i)
1100 if (clk[i] == clock) return clock;
1101
1102 //get high and low peak
1103 int peak, low;
1104 if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return 0;
1105
1106 int lowestTransition = DetectStrongNRZClk(dest, size-20, peak, low);
1107 size_t ii;
1108 uint8_t clkCnt;
1109 uint8_t tol = 0;
1110 uint16_t smplCnt = 0;
1111 int16_t peakcnt = 0;
1112 int16_t peaksdet[] = {0,0,0,0,0,0,0,0};
1113 uint16_t maxPeak = 255;
1114 bool firstpeak = false;
1115 //test for large clipped waves
1116 for (i=0; i<loopCnt; i++){
1117 if (dest[i] >= peak || dest[i] <= low){
1118 if (!firstpeak) continue;
1119 smplCnt++;
1120 } else {
1121 firstpeak=true;
1122 if (smplCnt > 6 ){
1123 if (maxPeak > smplCnt){
1124 maxPeak = smplCnt;
1125 //prnt("maxPk: %d",maxPeak);
1126 }
1127 peakcnt++;
1128 //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
1129 smplCnt=0;
1130 }
1131 }
1132 }
1133 bool errBitHigh = 0;
1134 bool bitHigh = 0;
1135 uint8_t ignoreCnt = 0;
1136 uint8_t ignoreWindow = 4;
1137 bool lastPeakHigh = 0;
1138 int lastBit = 0;
1139 peakcnt=0;
1140 //test each valid clock from smallest to greatest to see which lines up
1141 for(clkCnt=0; clkCnt < 8; ++clkCnt){
1142 //ignore clocks smaller than smallest peak
1143 if (clk[clkCnt] < maxPeak - (clk[clkCnt]/4)) continue;
1144 //try lining up the peaks by moving starting point (try first 256)
1145 for (ii=20; ii < loopCnt; ++ii){
1146 if ((dest[ii] >= peak) || (dest[ii] <= low)){
1147 peakcnt = 0;
1148 bitHigh = false;
1149 ignoreCnt = 0;
1150 lastBit = ii-clk[clkCnt];
1151 //loop through to see if this start location works
1152 for (i = ii; i < size-20; ++i) {
1153 //if we are at a clock bit
1154 if ((i >= lastBit + clk[clkCnt] - tol) && (i <= lastBit + clk[clkCnt] + tol)) {
1155 //test high/low
1156 if (dest[i] >= peak || dest[i] <= low) {
1157 //if same peak don't count it
1158 if ((dest[i] >= peak && !lastPeakHigh) || (dest[i] <= low && lastPeakHigh)) {
1159 peakcnt++;
1160 }
1161 lastPeakHigh = (dest[i] >= peak);
1162 bitHigh = true;
1163 errBitHigh = false;
1164 ignoreCnt = ignoreWindow;
1165 lastBit += clk[clkCnt];
1166 } else if (i == lastBit + clk[clkCnt] + tol) {
1167 lastBit += clk[clkCnt];
1168 }
1169 //else if not a clock bit and no peaks
1170 } else if (dest[i] < peak && dest[i] > low){
1171 if (ignoreCnt==0){
1172 bitHigh=false;
1173 if (errBitHigh==true) peakcnt--;
1174 errBitHigh=false;
1175 } else {
1176 ignoreCnt--;
1177 }
1178 // else if not a clock bit but we have a peak
1179 } else if ((dest[i]>=peak || dest[i]<=low) && (!bitHigh)) {
1180 //error bar found no clock...
1181 errBitHigh=true;
1182 }
1183 }
1184 if(peakcnt>peaksdet[clkCnt]) {
1185 peaksdet[clkCnt]=peakcnt;
1186 }
1187 }
1188 }
1189 }
1190 int iii=7;
1191 uint8_t best=0;
1192 for (iii=7; iii > 0; iii--){
1193 if ((peaksdet[iii] >= (peaksdet[best]-1)) && (peaksdet[iii] <= peaksdet[best]+1) && lowestTransition) {
1194 if (clk[iii] > (lowestTransition - (clk[iii]/8)) && clk[iii] < (lowestTransition + (clk[iii]/8))) {
1195 best = iii;
1196 }
1197 } else if (peaksdet[iii] > peaksdet[best]){
1198 best = iii;
1199 }
1200 if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],maxPeak, clk[best], lowestTransition);
1201 }
1202
1203 return clk[best];
1204 }
1205
1206 // by marshmellow
1207 // convert psk1 demod to psk2 demod
1208 // only transition waves are 1s
1209 void psk1TOpsk2(uint8_t *BitStream, size_t size)
1210 {
1211 size_t i=1;
1212 uint8_t lastBit=BitStream[0];
1213 for (; i<size; i++){
1214 if (BitStream[i]==7){
1215 //ignore errors
1216 } else if (lastBit!=BitStream[i]){
1217 lastBit=BitStream[i];
1218 BitStream[i]=1;
1219 } else {
1220 BitStream[i]=0;
1221 }
1222 }
1223 return;
1224 }
1225
1226 // by marshmellow
1227 // convert psk2 demod to psk1 demod
1228 // from only transition waves are 1s to phase shifts change bit
1229 void psk2TOpsk1(uint8_t *BitStream, size_t size)
1230 {
1231 uint8_t phase=0;
1232 for (size_t i=0; i<size; i++){
1233 if (BitStream[i]==1){
1234 phase ^=1;
1235 }
1236 BitStream[i]=phase;
1237 }
1238 return;
1239 }
1240
1241 // redesigned by marshmellow adjusted from existing decode functions
1242 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1243 int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
1244 {
1245 //26 bit 40134 format (don't know other formats)
1246 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
1247 uint8_t preamble_i[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0};
1248 size_t startidx = 0;
1249 if (!preambleSearch(bitStream, preamble, sizeof(preamble), size, &startidx)){
1250 // if didn't find preamble try again inverting
1251 if (!preambleSearch(bitStream, preamble_i, sizeof(preamble_i), size, &startidx)) return -1;
1252 *invert ^= 1;
1253 }
1254 if (*size != 64 && *size != 224) return -2;
1255 if (*invert==1)
1256 for (size_t i = startidx; i < *size; i++)
1257 bitStream[i] ^= 1;
1258
1259 return (int) startidx;
1260 }
1261
1262 // by marshmellow - demodulate NRZ wave - requires a read with strong signal
1263 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1264 int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert){
1265 if (justNoise(dest, *size)) return -1;
1266 *clk = DetectNRZClock(dest, *size, *clk);
1267 if (*clk==0) return -2;
1268 size_t i, gLen = 4096;
1269 if (gLen>*size) gLen = *size-20;
1270 int high, low;
1271 if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
1272
1273 uint8_t bit=0;
1274 //convert wave samples to 1's and 0's
1275 for(i=20; i < *size-20; i++){
1276 if (dest[i] >= high) bit = 1;
1277 if (dest[i] <= low) bit = 0;
1278 dest[i] = bit;
1279 }
1280 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1281 size_t lastBit = 0;
1282 size_t numBits = 0;
1283 for(i=21; i < *size-20; i++) {
1284 //if transition detected or large number of same bits - store the passed bits
1285 if (dest[i] != dest[i-1] || (i-lastBit) == (10 * *clk)) {
1286 memset(dest+numBits, dest[i-1] ^ *invert, (i - lastBit + (*clk/4)) / *clk);
1287 numBits += (i - lastBit + (*clk/4)) / *clk;
1288 lastBit = i-1;
1289 }
1290 }
1291 *size = numBits;
1292 return 0;
1293 }
1294
1295 //by marshmellow
1296 //detects the bit clock for FSK given the high and low Field Clocks
1297 uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow)
1298 {
1299 uint8_t clk[] = {8,16,32,40,50,64,100,128,0};
1300 uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1301 uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1302 uint8_t rfLensFnd = 0;
1303 uint8_t lastFCcnt = 0;
1304 uint16_t fcCounter = 0;
1305 uint16_t rfCounter = 0;
1306 uint8_t firstBitFnd = 0;
1307 size_t i;
1308 if (size == 0) return 0;
1309
1310 uint8_t fcTol = ((fcHigh*100 - fcLow*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
1311 rfLensFnd=0;
1312 fcCounter=0;
1313 rfCounter=0;
1314 firstBitFnd=0;
1315 //PrintAndLog("DEBUG: fcTol: %d",fcTol);
1316 // prime i to first peak / up transition
1317 for (i = 160; i < size-20; i++)
1318 if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1])
1319 break;
1320
1321 for (; i < size-20; i++){
1322 fcCounter++;
1323 rfCounter++;
1324
1325 if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1])
1326 continue;
1327 // else new peak
1328 // if we got less than the small fc + tolerance then set it to the small fc
1329 // if it is inbetween set it to the last counter
1330 if (fcCounter < fcHigh && fcCounter > fcLow)
1331 fcCounter = lastFCcnt;
1332 else if (fcCounter < fcLow+fcTol)
1333 fcCounter = fcLow;
1334 else //set it to the large fc
1335 fcCounter = fcHigh;
1336
1337 //look for bit clock (rf/xx)
1338 if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){
1339 //not the same size as the last wave - start of new bit sequence
1340 if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit
1341 for (int ii=0; ii<15; ii++){
1342 if (rfLens[ii] >= (rfCounter-4) && rfLens[ii] <= (rfCounter+4)){
1343 rfCnts[ii]++;
1344 rfCounter = 0;
1345 break;
1346 }
1347 }
1348 if (rfCounter > 0 && rfLensFnd < 15){
1349 //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1350 rfCnts[rfLensFnd]++;
1351 rfLens[rfLensFnd++] = rfCounter;
1352 }
1353 } else {
1354 firstBitFnd++;
1355 }
1356 rfCounter=0;
1357 lastFCcnt=fcCounter;
1358 }
1359 fcCounter=0;
1360 }
1361 uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15;
1362
1363 for (i=0; i<15; i++){
1364 //get highest 2 RF values (might need to get more values to compare or compare all?)
1365 if (rfCnts[i]>rfCnts[rfHighest]){
1366 rfHighest3=rfHighest2;
1367 rfHighest2=rfHighest;
1368 rfHighest=i;
1369 } else if(rfCnts[i]>rfCnts[rfHighest2]){
1370 rfHighest3=rfHighest2;
1371 rfHighest2=i;
1372 } else if(rfCnts[i]>rfCnts[rfHighest3]){
1373 rfHighest3=i;
1374 }
1375 if (g_debugMode==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens[i], rfCnts[i]);
1376 }
1377 // set allowed clock remainder tolerance to be 1 large field clock length+1
1378 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1379 uint8_t tol1 = fcHigh+1;
1380
1381 if (g_debugMode==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
1382
1383 // loop to find the highest clock that has a remainder less than the tolerance
1384 // compare samples counted divided by
1385 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
1386 int ii=7;
1387 for (; ii>=2; ii--){
1388 if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
1389 if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
1390 if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
1391 if (g_debugMode==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk[ii]);
1392 break;
1393 }
1394 }
1395 }
1396 }
1397
1398 if (ii<2) return 0; // oops we went too far
1399
1400 return clk[ii];
1401 }
1402
1403 //by marshmellow
1404 //countFC is to detect the field clock lengths.
1405 //counts and returns the 2 most common wave lengths
1406 //mainly used for FSK field clock detection
1407 uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj)
1408 {
1409 uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1410 uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1411 uint8_t fcLensFnd = 0;
1412 uint8_t lastFCcnt = 0;
1413 uint8_t fcCounter = 0;
1414 size_t i;
1415 if (size < 180) return 0;
1416
1417 // prime i to first up transition
1418 for (i = 160; i < size-20; i++)
1419 if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
1420 break;
1421
1422 for (; i < size-20; i++){
1423 if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
1424 // new up transition
1425 fcCounter++;
1426 if (fskAdj){
1427 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1428 if (lastFCcnt==5 && fcCounter==9) fcCounter--;
1429 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1430 if ((fcCounter==9) || fcCounter==4) fcCounter++;
1431 // save last field clock count (fc/xx)
1432 lastFCcnt = fcCounter;
1433 }
1434 // find which fcLens to save it to:
1435 for (int ii=0; ii<15; ii++){
1436 if (fcLens[ii]==fcCounter){
1437 fcCnts[ii]++;
1438 fcCounter=0;
1439 break;
1440 }
1441 }
1442 if (fcCounter>0 && fcLensFnd<15){
1443 //add new fc length
1444 fcCnts[fcLensFnd]++;
1445 fcLens[fcLensFnd++]=fcCounter;
1446 }
1447 fcCounter=0;
1448 } else {
1449 // count sample
1450 fcCounter++;
1451 }
1452 }
1453
1454 uint8_t best1=14, best2=14, best3=14;
1455 uint16_t maxCnt1=0;
1456 // go through fclens and find which ones are bigest 2
1457 for (i=0; i<15; i++){
1458 // get the 3 best FC values
1459 if (fcCnts[i]>maxCnt1) {
1460 best3=best2;
1461 best2=best1;
1462 maxCnt1=fcCnts[i];
1463 best1=i;
1464 } else if(fcCnts[i]>fcCnts[best2]){
1465 best3=best2;
1466 best2=i;
1467 } else if(fcCnts[i]>fcCnts[best3]){
1468 best3=i;
1469 }
1470 if (g_debugMode==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens[i],fcCnts[i],fcLens[best1],fcLens[best2]);
1471 }
1472 if (fcLens[best1]==0) return 0;
1473 uint8_t fcH=0, fcL=0;
1474 if (fcLens[best1]>fcLens[best2]){
1475 fcH=fcLens[best1];
1476 fcL=fcLens[best2];
1477 } else{
1478 fcH=fcLens[best2];
1479 fcL=fcLens[best1];
1480 }
1481 if ((size-180)/fcH/3 > fcCnts[best1]+fcCnts[best2]) {
1482 if (g_debugMode==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size-180)/fcH/3,fcCnts[best1]+fcCnts[best2]);
1483 return 0; //lots of waves not psk or fsk
1484 }
1485 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1486
1487 uint16_t fcs = (((uint16_t)fcH)<<8) | fcL;
1488 if (fskAdj) return fcs;
1489 return fcLens[best1];
1490 }
1491
1492 //by marshmellow - demodulate PSK1 wave
1493 //uses wave lengths (# Samples)
1494 int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert)
1495 {
1496 if (size == 0) return -1;
1497 uint16_t loopCnt = 4096; //don't need to loop through entire array...
1498 if (*size<loopCnt) loopCnt = *size;
1499
1500 size_t numBits=0;
1501 uint8_t curPhase = *invert;
1502 size_t i=0, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
1503 uint16_t fc=0, fullWaveLen=0, tol=1;
1504 uint16_t errCnt=0, waveLenCnt=0, errCnt2=0;
1505 fc = countFC(dest, *size, 1);
1506 uint8_t fc2 = fc >> 8;
1507 if (fc2 == 10) return -1; //fsk found - quit
1508 fc = fc & 0xFF;
1509 if (fc!=2 && fc!=4 && fc!=8) return -1;
1510 //PrintAndLog("DEBUG: FC: %d",fc);
1511 *clock = DetectPSKClock(dest, *size, *clock);
1512 if (*clock == 0) return -1;
1513
1514 //find start of modulating data in trace
1515 uint8_t threshold_value = 123; //-5
1516 i = findModStart(dest, *size, threshold_value, fc);
1517
1518 //find first phase shift
1519 int avgWaveVal=0, lastAvgWaveVal=0;
1520 waveStart = i;
1521 for (; i<loopCnt; i++) {
1522 // find peak
1523 if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
1524 waveEnd = i+1;
1525 if (g_debugMode == 2) prnt("DEBUG PSK: waveEnd: %u, waveStart: %u",waveEnd, waveStart);
1526 waveLenCnt = waveEnd-waveStart;
1527 if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+3)){ //not first peak and is a large wave but not out of whack
1528 lastAvgWaveVal = avgWaveVal/(waveLenCnt);
1529 firstFullWave = waveStart;
1530 fullWaveLen=waveLenCnt;
1531 //if average wave value is > graph 0 then it is an up wave or a 1 (could cause inverting)
1532 if (lastAvgWaveVal > threshold_value) curPhase ^= 1;
1533 break;
1534 }
1535 waveStart = i+1;
1536 avgWaveVal = 0;
1537 }
1538 avgWaveVal += dest[i+2];
1539 }
1540 if (firstFullWave == 0) {
1541 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1542 // so skip a little to ensure we are past any Start Signal
1543 firstFullWave = 160;
1544 memset(dest, curPhase, firstFullWave / *clock);
1545 } else {
1546 memset(dest, curPhase^1, firstFullWave / *clock);
1547 }
1548 //advance bits
1549 numBits += (firstFullWave / *clock);
1550 //set start of wave as clock align
1551 lastClkBit = firstFullWave;
1552 if (g_debugMode==2) prnt("DEBUG PSK: firstFullWave: %u, waveLen: %u",firstFullWave,fullWaveLen);
1553 if (g_debugMode==2) prnt("DEBUG PSK: clk: %d, lastClkBit: %u, fc: %u", *clock, lastClkBit,(unsigned int) fc);
1554 waveStart = 0;
1555 dest[numBits++] = curPhase; //set first read bit
1556 for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){
1557 //top edge of wave = start of new wave
1558 if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
1559 if (waveStart == 0) {
1560 waveStart = i+1;
1561 waveLenCnt = 0;
1562 avgWaveVal = dest[i+1];
1563 } else { //waveEnd
1564 waveEnd = i+1;
1565 waveLenCnt = waveEnd-waveStart;
1566 lastAvgWaveVal = avgWaveVal/waveLenCnt;
1567 if (waveLenCnt > fc){
1568 //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1569 //this wave is a phase shift
1570 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1571 if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit
1572 curPhase ^= 1;
1573 dest[numBits++] = curPhase;
1574 lastClkBit += *clock;
1575 } else if (i < lastClkBit+10+fc){
1576 //noise after a phase shift - ignore
1577 } else { //phase shift before supposed to based on clock
1578 errCnt++;
1579 dest[numBits++] = 7;
1580 }
1581 } else if (i+1 > lastClkBit + *clock + tol + fc){
1582 lastClkBit += *clock; //no phase shift but clock bit
1583 dest[numBits++] = curPhase;
1584 } else if (waveLenCnt < fc - 1) { //wave is smaller than field clock (shouldn't happen often)
1585 errCnt2++;
1586 if(errCnt2 > 101) return errCnt2;
1587 }
1588 avgWaveVal = 0;
1589 waveStart = i+1;
1590 }
1591 }
1592 avgWaveVal += dest[i+1];
1593 }
1594 *size = numBits;
1595 return errCnt;
1596 }
1597
1598 //by marshmellow
1599 //attempt to identify a Sequence Terminator in ASK modulated raw wave
1600 bool DetectST(uint8_t buffer[], size_t *size, int *foundclock) {
1601 size_t bufsize = *size;
1602 //need to loop through all samples and identify our clock, look for the ST pattern
1603 uint8_t fndClk[] = {8,16,32,40,50,64,128};
1604 int clk = 0;
1605 int tol = 0;
1606 int i, j, skip, start, end, low, high, minClk, waveStart;
1607 bool complete = false;
1608 int tmpbuff[bufsize / 32]; //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured
1609 int waveLen[bufsize / 32]; // if clock is larger then we waste memory in array size that is not needed...
1610 size_t testsize = (bufsize < 512) ? bufsize : 512;
1611 int phaseoff = 0;
1612 high = low = 128;
1613 memset(tmpbuff, 0, sizeof(tmpbuff));
1614
1615 if ( getHiLo(buffer, testsize, &high, &low, 80, 80) == -1 ) {
1616 if (g_debugMode==2) prnt("DEBUG STT: just noise detected - quitting");
1617 return false; //just noise
1618 }
1619 i = 0;
1620 j = 0;
1621 minClk = 255;
1622 // get to first full low to prime loop and skip incomplete first pulse
1623 while ((buffer[i] < high) && (i < bufsize))
1624 ++i;
1625 while ((buffer[i] > low) && (i < bufsize))
1626 ++i;
1627 skip = i;
1628
1629 // populate tmpbuff buffer with pulse lengths
1630 while (i < bufsize) {
1631 // measure from low to low
1632 while ((buffer[i] > low) && (i < bufsize))
1633 ++i;
1634 start= i;
1635 while ((buffer[i] < high) && (i < bufsize))
1636 ++i;
1637 //first high point for this wave
1638 waveStart = i;
1639 while ((buffer[i] > low) && (i < bufsize))
1640 ++i;
1641 if (j >= (bufsize/32)) {
1642 break;
1643 }
1644 waveLen[j] = i - waveStart; //first high to first low
1645 tmpbuff[j++] = i - start;
1646 if (i-start < minClk && i < bufsize) {
1647 minClk = i - start;
1648 }
1649 }
1650 // set clock - might be able to get this externally and remove this work...
1651 if (!clk) {
1652 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
1653 tol = fndClk[clkCnt]/8;
1654 if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
1655 clk=fndClk[clkCnt];
1656 break;
1657 }
1658 }
1659 // clock not found - ERROR
1660 if (!clk) {
1661 if (g_debugMode==2) prnt("DEBUG STT: clock not found - quitting");
1662 return false;
1663 }
1664 } else tol = clk/8;
1665
1666 *foundclock = clk;
1667
1668 // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2)
1669 start = -1;
1670 for (i = 0; i < j - 4; ++i) {
1671 skip += tmpbuff[i];
1672 if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior
1673 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2
1674 if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
1675 if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
1676 start = i + 3;
1677 break;
1678 }
1679 }
1680 }
1681 }
1682 }
1683 // first ST not found - ERROR
1684 if (start < 0) {
1685 if (g_debugMode==2) prnt("DEBUG STT: first STT not found - quitting");
1686 return false;
1687 } else {
1688 if (g_debugMode==2) prnt("DEBUG STT: first STT found at: %d, j=%d",start, j);
1689 }
1690 if (waveLen[i+2] > clk*1+tol)
1691 phaseoff = 0;
1692 else
1693 phaseoff = clk/2;
1694
1695 // skip over the remainder of ST
1696 skip += clk*7/2; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point
1697
1698 // now do it again to find the end
1699 end = skip;
1700 for (i += 3; i < j - 4; ++i) {
1701 end += tmpbuff[i];
1702 if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior
1703 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2
1704 if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
1705 if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
1706 complete = true;
1707 break;
1708 }
1709 }
1710 }
1711 }
1712 }
1713 end -= phaseoff;
1714 //didn't find second ST - ERROR
1715 if (!complete) {
1716 if (g_debugMode==2) prnt("DEBUG STT: second STT not found - quitting");
1717 return false;
1718 }
1719 if (g_debugMode==2) prnt("DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d", skip, end, end-skip, clk, (end-skip)/clk, phaseoff);
1720 //now begin to trim out ST so we can use normal demod cmds
1721 start = skip;
1722 size_t datalen = end - start;
1723 // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock
1724 if ( clk - (datalen % clk) <= clk/8) {
1725 // padd the amount off - could be problematic... but shouldn't happen often
1726 datalen += clk - (datalen % clk);
1727 } else if ( (datalen % clk) <= clk/8 ) {
1728 // padd the amount off - could be problematic... but shouldn't happen often
1729 datalen -= datalen % clk;
1730 } else {
1731 if (g_debugMode==2) prnt("DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting", datalen, clk, datalen % clk);
1732 return false;
1733 }
1734 // if datalen is less than one t55xx block - ERROR
1735 if (datalen/clk < 8*4) {
1736 if (g_debugMode==2) prnt("DEBUG STT: datalen is less than 1 full t55xx block - quitting");
1737 return false;
1738 }
1739 size_t dataloc = start;
1740 if (buffer[dataloc-(clk*4)-(clk/8)] <= low && buffer[dataloc] <= low && buffer[dataloc-(clk*4)] >= high) {
1741 //we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start
1742 for ( i=0; i <= (clk/8); ++i ) {
1743 if ( buffer[dataloc - (clk*4) - i] <= low ) {
1744 dataloc -= i;
1745 break;
1746 }
1747 }
1748 }
1749
1750 size_t newloc = 0;
1751 i=0;
1752 if (g_debugMode==2) prnt("DEBUG STT: Starting STT trim - start: %d, datalen: %d ",dataloc, datalen);
1753
1754 // warning - overwriting buffer given with raw wave data with ST removed...
1755 while ( dataloc < bufsize-(clk/2) ) {
1756 //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part)
1757 if (buffer[dataloc]<high && buffer[dataloc]>low && buffer[dataloc+3]<high && buffer[dataloc+3]>low) {
1758 for(i=0; i < clk/2-tol; ++i) {
1759 buffer[dataloc+i] = high+5;
1760 }
1761 }
1762 for (i=0; i<datalen; ++i) {
1763 if (i+newloc < bufsize) {
1764 if (i+newloc < dataloc)
1765 buffer[i+newloc] = buffer[dataloc];
1766
1767 dataloc++;
1768 }
1769 }
1770 newloc += i;
1771 //skip next ST - we just assume it will be there from now on...
1772 if (g_debugMode==2) prnt("DEBUG STT: skipping STT at %d to %d", dataloc, dataloc+(clk*4));
1773 dataloc += clk*4;
1774 }
1775 *size = newloc;
1776 return true;
1777 }
Impressum, Datenschutz