]>
cvs.zerfleddert.de Git - proxmark3-svn/blob - common/lfdemod.c
e748fddbb15865374b0d337e382710d23136c5c7
1 //-----------------------------------------------------------------------------
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
15 //un_comment to allow debug print calls when used not on device
16 void dummy ( char * fmt
, ...){}
20 #include "cmdparser.h"
22 #define prnt PrintAndLog
24 uint8_t g_debugMode
= 0 ;
28 uint8_t justNoise ( uint8_t * BitStream
, size_t size
)
30 static const uint8_t THRESHOLD
= 123 ;
31 //test samples are not just noise
32 uint8_t justNoise1
= 1 ;
33 for ( size_t idx
= 0 ; idx
< size
&& justNoise1
; idx
++){
34 justNoise1
= BitStream
[ idx
] < THRESHOLD
;
40 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
41 int getHiLo ( uint8_t * BitStream
, size_t size
, int * high
, int * low
, uint8_t fuzzHi
, uint8_t fuzzLo
)
45 // get high and low thresholds
46 for ( size_t i
= 0 ; i
< size
; i
++){
47 if ( BitStream
[ i
] > * high
) * high
= BitStream
[ i
];
48 if ( BitStream
[ i
] < * low
) * low
= BitStream
[ i
];
50 if (* high
< 123 ) return - 1 ; // just noise
51 * high
= ((* high
- 128 )* fuzzHi
+ 12800 )/ 100 ;
52 * low
= ((* low
- 128 )* fuzzLo
+ 12800 )/ 100 ;
57 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
58 // returns 1 if passed
59 uint8_t parityTest ( uint32_t bits
, uint8_t bitLen
, uint8_t pType
)
62 for ( uint8_t i
= 0 ; i
< bitLen
; i
++){
63 ans
^= (( bits
>> i
) & 1 );
65 //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
66 return ( ans
== pType
);
70 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
71 // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run)
72 size_t removeParity ( uint8_t * BitStream
, size_t startIdx
, uint8_t pLen
, uint8_t pType
, size_t bLen
)
74 uint32_t parityWd
= 0 ;
75 size_t j
= 0 , bitCnt
= 0 ;
76 for ( int word
= 0 ; word
< ( bLen
); word
+= pLen
){
77 for ( int bit
= 0 ; bit
< pLen
; bit
++){
78 parityWd
= ( parityWd
<< 1 ) | BitStream
[ startIdx
+ word
+ bit
];
79 BitStream
[ j
++] = ( BitStream
[ startIdx
+ word
+ bit
]);
81 j
--; // overwrite parity with next data
82 // if parity fails then return 0
84 case 3 : if ( BitStream
[ j
]== 1 ) return 0 ; break ; //should be 0 spacer bit
85 case 2 : if ( BitStream
[ j
]== 0 ) return 0 ; break ; //should be 1 spacer bit
86 default : //test parity
87 if ( parityTest ( parityWd
, pLen
, pType
) == 0 )
94 // if we got here then all the parities passed
95 //return ID start index and size
100 // takes a array of binary values, length of bits per parity (includes parity bit),
101 // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run)
102 // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added
103 size_t addParity ( uint8_t * BitSource
, uint8_t * dest
, uint8_t sourceLen
, uint8_t pLen
, uint8_t pType
)
105 uint32_t parityWd
= 0 ;
106 size_t j
= 0 , bitCnt
= 0 ;
107 for ( int word
= 0 ; word
< sourceLen
; word
+= pLen
- 1 ) {
108 for ( int bit
= 0 ; bit
< pLen
- 1 ; bit
++){
109 parityWd
= ( parityWd
<< 1 ) | BitSource
[ word
+ bit
];
110 dest
[ j
++] = ( BitSource
[ word
+ bit
]);
113 // if parity fails then return 0
115 case 3 : dest
[ j
++]= 0 ; break ; // marker bit which should be a 0
116 case 2 : dest
[ j
++]= 1 ; break ; // marker bit which should be a 1
118 dest
[ j
++] = parityTest ( parityWd
, pLen
- 1 , pType
) ^ 1 ;
124 // if we got here then all the parities passed
125 //return ID start index and size
129 uint32_t bytebits_to_byte ( uint8_t * src
, size_t numbits
)
132 for ( int i
= 0 ; i
< numbits
; i
++) {
133 num
= ( num
<< 1 ) | (* src
);
139 //least significant bit first
140 uint32_t bytebits_to_byteLSBF ( uint8_t * src
, size_t numbits
)
143 for ( int i
= 0 ; i
< numbits
; i
++) {
144 num
= ( num
<< 1 ) | *( src
+ ( numbits
-( i
+ 1 )));
150 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
151 uint8_t preambleSearch ( uint8_t * BitStream
, uint8_t * preamble
, size_t pLen
, size_t * size
, size_t * startIdx
)
153 // Sanity check. If preamble length is bigger than bitstream length.
154 if ( * size
<= pLen
) return 0 ;
156 uint8_t foundCnt
= 0 ;
157 for ( int idx
= 0 ; idx
< * size
- pLen
; idx
++){
158 if ( memcmp ( BitStream
+ idx
, preamble
, pLen
) == 0 ){
165 * size
= idx
- * startIdx
;
174 //takes 1s and 0s and searches for EM410x format - output EM ID
175 uint8_t Em410xDecode ( uint8_t * BitStream
, size_t * size
, size_t * startIdx
, uint32_t * hi
, uint64_t * lo
)
177 //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
178 // otherwise could be a void with no arguments
181 if ( BitStream
[ 1 ]> 1 ) return 0 ; //allow only 1s and 0s
183 // 111111111 bit pattern represent start of frame
184 // include 0 in front to help get start pos
185 uint8_t preamble
[] = { 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 };
187 uint32_t parityBits
= 0 ;
191 errChk
= preambleSearch ( BitStream
, preamble
, sizeof ( preamble
), size
, startIdx
);
192 if ( errChk
== 0 || * size
< 64 ) return 0 ;
193 if (* size
> 64 ) FmtLen
= 22 ;
194 * startIdx
+= 1 ; //get rid of 0 from preamble
196 for ( i
= 0 ; i
< FmtLen
; i
++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
197 parityBits
= bytebits_to_byte ( BitStream
+( i
* 5 )+ idx
, 5 );
198 //check even parity - quit if failed
199 if ( parityTest ( parityBits
, 5 , 0 ) == 0 ) return 0 ;
200 //set uint64 with ID from BitStream
201 for ( uint8_t ii
= 0 ; ii
< 4 ; ii
++){
202 * hi
= (* hi
<< 1 ) | (* lo
>> 63 );
203 * lo
= (* lo
<< 1 ) | ( BitStream
[( i
* 5 )+ ii
+ idx
]);
206 if ( errChk
!= 0 ) return 1 ;
207 //skip last 5 bit parity test for simplicity.
213 //demodulates strong heavily clipped samples
214 int cleanAskRawDemod ( uint8_t * BinStream
, size_t * size
, int clk
, int invert
, int high
, int low
)
216 size_t bitCnt
= 0 , smplCnt
= 0 , errCnt
= 0 ;
217 uint8_t waveHigh
= 0 ;
218 for ( size_t i
= 0 ; i
< * size
; i
++){
219 if ( BinStream
[ i
] >= high
&& waveHigh
){
221 } else if ( BinStream
[ i
] <= low
&& ! waveHigh
){
223 } else { //transition
224 if (( BinStream
[ i
] >= high
&& ! waveHigh
) || ( BinStream
[ i
] <= low
&& waveHigh
)){
225 if ( smplCnt
> clk
-( clk
/ 4 )- 1 ) { //full clock
226 if ( smplCnt
> clk
+ ( clk
/ 4 )+ 1 ) { //too many samples
228 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Modulation Error at: %u" , i
);
229 BinStream
[ bitCnt
++]= 7 ;
230 } else if ( waveHigh
) {
231 BinStream
[ bitCnt
++] = invert
;
232 BinStream
[ bitCnt
++] = invert
;
233 } else if (! waveHigh
) {
234 BinStream
[ bitCnt
++] = invert
^ 1 ;
235 BinStream
[ bitCnt
++] = invert
^ 1 ;
239 } else if ( smplCnt
> ( clk
/ 2 ) - ( clk
/ 4 )- 1 ) {
241 BinStream
[ bitCnt
++] = invert
;
242 } else if (! waveHigh
) {
243 BinStream
[ bitCnt
++] = invert
^ 1 ;
247 } else if (! bitCnt
) {
249 waveHigh
= ( BinStream
[ i
] >= high
);
253 //transition bit oops
255 } else { //haven't hit new high or new low yet
265 void askAmp ( uint8_t * BitStream
, size_t size
)
268 for ( size_t i
= 1 ; i
< size
; ++ i
){
269 if ( BitStream
[ i
]- BitStream
[ i
- 1 ] >= 30 ) //large jump up
271 else if ( BitStream
[ i
- 1 ] - BitStream
[ i
] >= 20 ) //large jump down
279 //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
280 int askdemod ( uint8_t * BinStream
, size_t * size
, int * clk
, int * invert
, int maxErr
, uint8_t amp
, uint8_t askType
)
282 if (* size
== 0 ) return - 1 ;
283 int start
= DetectASKClock ( BinStream
, * size
, clk
, maxErr
); //clock default
284 if (* clk
== 0 || start
< 0 ) return - 3 ;
285 if (* invert
!= 1 ) * invert
= 0 ;
286 if ( amp
== 1 ) askAmp ( BinStream
, * size
);
287 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, beststart %d" , * clk
, start
);
289 uint8_t initLoopMax
= 255 ;
290 if ( initLoopMax
> * size
) initLoopMax
= * size
;
291 // Detect high and lows
292 //25% clip in case highs and lows aren't clipped [marshmellow]
294 if ( getHiLo ( BinStream
, initLoopMax
, & high
, & low
, 75 , 75 ) < 1 )
295 return - 2 ; //just noise
298 // if clean clipped waves detected run alternate demod
299 if ( DetectCleanAskWave ( BinStream
, * size
, high
, low
)) {
300 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Clean Wave Detected - using clean wave demod" );
301 errCnt
= cleanAskRawDemod ( BinStream
, size
, * clk
, * invert
, high
, low
);
302 if ( askType
) //askman
303 return manrawdecode ( BinStream
, size
, 0 );
307 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Weak Wave Detected - using weak wave demod" );
309 int lastBit
; //set first clock check - can go negative
310 size_t i
, bitnum
= 0 ; //output counter
312 uint8_t tol
= 0 ; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
313 if (* clk
<= 32 ) tol
= 1 ; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
314 size_t MaxBits
= 3072 ; //max bits to collect
315 lastBit
= start
- * clk
;
317 for ( i
= start
; i
< * size
; ++ i
) {
318 if ( i
- lastBit
>= * clk
- tol
){
319 if ( BinStream
[ i
] >= high
) {
320 BinStream
[ bitnum
++] = * invert
;
321 } else if ( BinStream
[ i
] <= low
) {
322 BinStream
[ bitnum
++] = * invert
^ 1 ;
323 } else if ( i
- lastBit
>= * clk
+ tol
) {
325 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Modulation Error at: %u" , i
);
326 BinStream
[ bitnum
++]= 7 ;
329 } else { //in tolerance - looking for peak
334 } else if ( i
- lastBit
>= (* clk
/ 2 - tol
) && ! midBit
&& ! askType
){
335 if ( BinStream
[ i
] >= high
) {
336 BinStream
[ bitnum
++] = * invert
;
337 } else if ( BinStream
[ i
] <= low
) {
338 BinStream
[ bitnum
++] = * invert
^ 1 ;
339 } else if ( i
- lastBit
>= * clk
/ 2 + tol
) {
340 BinStream
[ bitnum
] = BinStream
[ bitnum
- 1 ];
342 } else { //in tolerance - looking for peak
347 if ( bitnum
>= MaxBits
) break ;
354 //take 10 and 01 and manchester decode
355 //run through 2 times and take least errCnt
356 int manrawdecode ( uint8_t * BitStream
, size_t * size
, uint8_t invert
)
358 uint16_t bitnum
= 0 , MaxBits
= 512 , errCnt
= 0 ;
360 uint16_t bestErr
= 1000 , bestRun
= 0 ;
361 if (* size
< 16 ) return - 1 ;
362 //find correct start position [alignment]
363 for ( ii
= 0 ; ii
< 2 ;++ ii
){
364 for ( i
= ii
; i
<* size
- 3 ; i
+= 2 )
365 if ( BitStream
[ i
]== BitStream
[ i
+ 1 ])
375 for ( i
= bestRun
; i
< * size
- 3 ; i
+= 2 ){
376 if ( BitStream
[ i
] == 1 && ( BitStream
[ i
+ 1 ] == 0 )){
377 BitStream
[ bitnum
++]= invert
;
378 } else if (( BitStream
[ i
] == 0 ) && BitStream
[ i
+ 1 ] == 1 ){
379 BitStream
[ bitnum
++]= invert
^ 1 ;
381 BitStream
[ bitnum
++]= 7 ;
383 if ( bitnum
> MaxBits
) break ;
389 uint32_t manchesterEncode2Bytes ( uint16_t datain
) {
392 for ( uint8_t i
= 0 ; i
< 16 ; i
++) {
393 curBit
= ( datain
>> ( 15 - i
) & 1 );
394 output
|= ( 1 <<((( 15 - i
)* 2 )+ curBit
));
400 //encode binary data into binary manchester
401 int ManchesterEncode ( uint8_t * BitStream
, size_t size
)
403 size_t modIdx
= 20000 , i
= 0 ;
404 if ( size
> modIdx
) return - 1 ;
405 for ( size_t idx
= 0 ; idx
< size
; idx
++){
406 BitStream
[ idx
+ modIdx
++] = BitStream
[ idx
];
407 BitStream
[ idx
+ modIdx
++] = BitStream
[ idx
]^ 1 ;
409 for (; i
<( size
* 2 ); i
++){
410 BitStream
[ i
] = BitStream
[ i
+ 20000 ];
416 //take 01 or 10 = 1 and 11 or 00 = 0
417 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
418 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
419 int BiphaseRawDecode ( uint8_t * BitStream
, size_t * size
, int offset
, int invert
)
424 uint16_t MaxBits
= 512 ;
425 //if not enough samples - error
426 if (* size
< 51 ) return - 1 ;
427 //check for phase change faults - skip one sample if faulty
428 uint8_t offsetA
= 1 , offsetB
= 1 ;
430 if ( BitStream
[ i
+ 1 ]== BitStream
[ i
+ 2 ]) offsetA
= 0 ;
431 if ( BitStream
[ i
+ 2 ]== BitStream
[ i
+ 3 ]) offsetB
= 0 ;
433 if (! offsetA
&& offsetB
) offset
++;
434 for ( i
= offset
; i
<* size
- 3 ; i
+= 2 ){
435 //check for phase error
436 if ( BitStream
[ i
+ 1 ]== BitStream
[ i
+ 2 ]) {
437 BitStream
[ bitnum
++]= 7 ;
440 if (( BitStream
[ i
]== 1 && BitStream
[ i
+ 1 ]== 0 ) || ( BitStream
[ i
]== 0 && BitStream
[ i
+ 1 ]== 1 )){
441 BitStream
[ bitnum
++]= 1 ^ invert
;
442 } else if (( BitStream
[ i
]== 0 && BitStream
[ i
+ 1 ]== 0 ) || ( BitStream
[ i
]== 1 && BitStream
[ i
+ 1 ]== 1 )){
443 BitStream
[ bitnum
++]= invert
;
445 BitStream
[ bitnum
++]= 7 ;
448 if ( bitnum
> MaxBits
) break ;
455 // demod gProxIIDemod
456 // error returns as -x
457 // success returns start position in BitStream
458 // BitStream must contain previously askrawdemod and biphasedemoded data
459 int gProxII_Demod ( uint8_t BitStream
[], size_t * size
)
462 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 1 , 0 };
464 uint8_t errChk
= preambleSearch ( BitStream
, preamble
, sizeof ( preamble
), size
, & startIdx
);
465 if ( errChk
== 0 ) return - 3 ; //preamble not found
466 if (* size
!= 96 ) return - 2 ; //should have found 96 bits
467 //check first 6 spacer bits to verify format
468 if (! BitStream
[ startIdx
+ 5 ] && ! BitStream
[ startIdx
+ 10 ] && ! BitStream
[ startIdx
+ 15 ] && ! BitStream
[ startIdx
+ 20 ] && ! BitStream
[ startIdx
+ 25 ] && ! BitStream
[ startIdx
+ 30 ]){
469 //confirmed proper separator bits found
470 //return start position
471 return ( int ) startIdx
;
473 return - 5 ; //spacer bits not found - not a valid gproxII
476 //translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq])
477 size_t fsk_wave_demod ( uint8_t * dest
, size_t size
, uint8_t fchigh
, uint8_t fclow
)
479 size_t last_transition
= 0 ;
482 if ( fchigh
== 0 ) fchigh
= 10 ;
483 if ( fclow
== 0 ) fclow
= 8 ;
484 //set the threshold close to 0 (graph) or 128 std to avoid static
485 uint8_t threshold_value
= 123 ;
486 size_t preLastSample
= 0 ;
487 size_t LastSample
= 0 ;
488 size_t currSample
= 0 ;
489 // sync to first lo-hi transition, and threshold
491 // Need to threshold first sample
492 // skip 160 samples to allow antenna/samples to settle
493 if ( dest
[ 160 ] < threshold_value
) dest
[ 0 ] = 0 ;
497 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
498 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
499 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
500 // (could also be fc/5 && fc/7 for fsk1 = 4-9)
501 for ( idx
= 161 ; idx
< size
- 20 ; idx
++) {
502 // threshold current value
504 if ( dest
[ idx
] < threshold_value
) dest
[ idx
] = 0 ;
507 // Check for 0->1 transition
508 if ( dest
[ idx
- 1 ] < dest
[ idx
]) {
509 preLastSample
= LastSample
;
510 LastSample
= currSample
;
511 currSample
= idx
- last_transition
;
512 if ( currSample
< ( fclow
- 2 )){ //0-5 = garbage noise (or 0-3)
513 //do nothing with extra garbage
514 } else if ( currSample
< ( fchigh
- 1 )) { //6-8 = 8 sample waves (or 3-6 = 5)
515 //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5)
516 if ( LastSample
> ( fchigh
- 2 ) && ( preLastSample
< ( fchigh
- 1 ) || preLastSample
== 0 )){
521 } else if ( currSample
> ( fchigh
) && ! numBits
) { //12 + and first bit = unusable garbage
522 //do nothing with beginning garbage
523 } else if ( currSample
== ( fclow
+ 1 ) && LastSample
== ( fclow
- 1 )) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's)
525 } else { //9+ = 10 sample waves (or 6+ = 7)
528 last_transition
= idx
;
531 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
534 //translate 11111100000 to 10
535 //rfLen = clock, fchigh = larger field clock, fclow = smaller field clock
536 size_t aggregate_bits ( uint8_t * dest
, size_t size
, uint8_t rfLen
,
537 uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
539 uint8_t lastval
= dest
[ 0 ];
543 for ( idx
= 1 ; idx
< size
; idx
++) {
545 if ( dest
[ idx
]== lastval
) continue ;
547 //find out how many bits (n) we collected
548 //if lastval was 1, we have a 1->0 crossing
549 if ( dest
[ idx
- 1 ]== 1 ) {
550 n
= ( n
* fclow
+ rfLen
/ 2 ) / rfLen
;
551 } else { // 0->1 crossing
552 n
= ( n
* fchigh
+ rfLen
/ 2 ) / rfLen
;
556 //add to our destination the bits we collected
557 memset ( dest
+ numBits
, dest
[ idx
- 1 ]^ invert
, n
);
562 // if valid extra bits at the end were all the same frequency - add them in
563 if ( n
> rfLen
/ fchigh
) {
564 if ( dest
[ idx
- 2 ]== 1 ) {
565 n
= ( n
* fclow
+ rfLen
/ 2 ) / rfLen
;
567 n
= ( n
* fchigh
+ rfLen
/ 2 ) / rfLen
;
569 memset ( dest
+ numBits
, dest
[ idx
- 1 ]^ invert
, n
);
575 //by marshmellow (from holiman's base)
576 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
577 int fskdemod ( uint8_t * dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
580 size
= fsk_wave_demod ( dest
, size
, fchigh
, fclow
);
581 size
= aggregate_bits ( dest
, size
, rfLen
, invert
, fchigh
, fclow
);
585 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
586 int HIDdemodFSK ( uint8_t * dest
, size_t * size
, uint32_t * hi2
, uint32_t * hi
, uint32_t * lo
)
588 if ( justNoise ( dest
, * size
)) return - 1 ;
590 size_t numStart
= 0 , size2
= * size
, startIdx
= 0 ;
592 * size
= fskdemod ( dest
, size2
, 50 , 1 , 10 , 8 ); //fsk2a
593 if (* size
< 96 * 2 ) return - 2 ;
594 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
595 uint8_t preamble
[] = { 0 , 0 , 0 , 1 , 1 , 1 , 0 , 1 };
596 // find bitstring in array
597 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
598 if ( errChk
== 0 ) return - 3 ; //preamble not found
600 numStart
= startIdx
+ sizeof ( preamble
);
601 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
602 for ( size_t idx
= numStart
; ( idx
- numStart
) < * size
- sizeof ( preamble
); idx
+= 2 ){
603 if ( dest
[ idx
] == dest
[ idx
+ 1 ]){
604 return - 4 ; //not manchester data
606 * hi2
= (* hi2
<< 1 )|(* hi
>> 31 );
607 * hi
= (* hi
<< 1 )|(* lo
>> 31 );
608 //Then, shift in a 0 or one into low
609 if ( dest
[ idx
] && ! dest
[ idx
+ 1 ]) // 1 0
614 return ( int ) startIdx
;
617 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
618 int ParadoxdemodFSK ( uint8_t * dest
, size_t * size
, uint32_t * hi2
, uint32_t * hi
, uint32_t * lo
)
620 if ( justNoise ( dest
, * size
)) return - 1 ;
622 size_t numStart
= 0 , size2
= * size
, startIdx
= 0 ;
624 * size
= fskdemod ( dest
, size2
, 50 , 1 , 10 , 8 ); //fsk2a
625 if (* size
< 96 ) return - 2 ;
627 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
628 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 };
630 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
631 if ( errChk
== 0 ) return - 3 ; //preamble not found
633 numStart
= startIdx
+ sizeof ( preamble
);
634 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
635 for ( size_t idx
= numStart
; ( idx
- numStart
) < * size
- sizeof ( preamble
); idx
+= 2 ){
636 if ( dest
[ idx
] == dest
[ idx
+ 1 ])
637 return - 4 ; //not manchester data
638 * hi2
= (* hi2
<< 1 )|(* hi
>> 31 );
639 * hi
= (* hi
<< 1 )|(* lo
>> 31 );
640 //Then, shift in a 0 or one into low
641 if ( dest
[ idx
] && ! dest
[ idx
+ 1 ]) // 1 0
646 return ( int ) startIdx
;
649 int IOdemodFSK ( uint8_t * dest
, size_t size
)
651 if ( justNoise ( dest
, size
)) return - 1 ;
652 //make sure buffer has data
653 if ( size
< 66 * 64 ) return - 2 ;
655 size
= fskdemod ( dest
, size
, 64 , 1 , 10 , 8 ); // FSK2a RF/64
656 if ( size
< 65 ) return - 3 ; //did we get a good demod?
658 //0 10 20 30 40 50 60
660 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
661 //-----------------------------------------------------------------------------
662 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
664 //XSF(version)facility:codeone+codetwo
667 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
668 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), & size
, & startIdx
);
669 if ( errChk
== 0 ) return - 4 ; //preamble not found
671 if (! dest
[ startIdx
+ 8 ] && dest
[ startIdx
+ 17 ]== 1 && dest
[ startIdx
+ 26 ]== 1 && dest
[ startIdx
+ 35 ]== 1 && dest
[ startIdx
+ 44 ]== 1 && dest
[ startIdx
+ 53 ]== 1 ){
672 //confirmed proper separator bits found
673 //return start position
674 return ( int ) startIdx
;
680 // find viking preamble 0xF200 in already demoded data
681 int VikingDemod_AM ( uint8_t * dest
, size_t * size
) {
682 //make sure buffer has data
683 if (* size
< 64 * 2 ) return - 2 ;
686 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
687 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
688 if ( errChk
== 0 ) return - 4 ; //preamble not found
689 uint32_t checkCalc
= bytebits_to_byte ( dest
+ startIdx
, 8 ) ^
690 bytebits_to_byte ( dest
+ startIdx
+ 8 , 8 ) ^
691 bytebits_to_byte ( dest
+ startIdx
+ 16 , 8 ) ^
692 bytebits_to_byte ( dest
+ startIdx
+ 24 , 8 ) ^
693 bytebits_to_byte ( dest
+ startIdx
+ 32 , 8 ) ^
694 bytebits_to_byte ( dest
+ startIdx
+ 40 , 8 ) ^
695 bytebits_to_byte ( dest
+ startIdx
+ 48 , 8 ) ^
696 bytebits_to_byte ( dest
+ startIdx
+ 56 , 8 );
697 if ( checkCalc
!= 0xA8 ) return - 5 ;
698 if (* size
!= 64 ) return - 6 ;
699 //return start position
700 return ( int ) startIdx
;
703 // find presco preamble 0x10D in already demoded data
704 int PrescoDemod ( uint8_t * dest
, size_t * size
) {
705 //make sure buffer has data
706 if (* size
< 64 * 2 ) return - 2 ;
709 uint8_t preamble
[] = { 1 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
710 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
711 if ( errChk
== 0 ) return - 4 ; //preamble not found
712 //return start position
713 return ( int ) startIdx
;
716 // Ask/Biphase Demod then try to locate an ISO 11784/85 ID
717 // BitStream must contain previously askrawdemod and biphasedemoded data
718 int FDXBdemodBI ( uint8_t * dest
, size_t * size
)
720 //make sure buffer has enough data
721 if (* size
< 128 ) return - 1 ;
724 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
726 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
727 if ( errChk
== 0 ) return - 2 ; //preamble not found
728 return ( int ) startIdx
;
731 // ASK/Diphase fc/64 (inverted Biphase)
732 // Note: this i s not a demod, this is only a detection
733 // the parameter *dest needs to be demoded before call
734 int JablotronDemod ( uint8_t * dest
, size_t * size
){
735 //make sure buffer has enough data
736 if (* size
< 64 ) return - 1 ;
739 // 0xFFFF preamble, 64bits
740 uint8_t preamble
[] = {
748 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
749 if ( errChk
== 0 ) return - 4 ; //preamble not found
750 if (* size
!= 64 ) return - 3 ;
752 uint8_t checkchksum
= 0 ;
753 for ( int i
= 16 ; i
< 56 ; i
+= 8 ) {
754 checkchksum
+= bytebits_to_byte ( dest
+ startIdx
+ i
, 8 );
758 uint8_t crc
= bytebits_to_byte ( dest
+ startIdx
+ 56 , 8 );
760 if ( checkchksum
!= crc
) return - 5 ;
761 return ( int ) startIdx
;
765 // FSK Demod then try to locate an AWID ID
766 int AWIDdemodFSK ( uint8_t * dest
, size_t * size
)
768 //make sure buffer has enough data
769 if (* size
< 96 * 50 ) return - 1 ;
771 if ( justNoise ( dest
, * size
)) return - 2 ;
774 * size
= fskdemod ( dest
, * size
, 50 , 1 , 10 , 8 ); // fsk2a RF/50
775 if (* size
< 96 ) return - 3 ; //did we get a good demod?
777 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
779 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
780 if ( errChk
== 0 ) return - 4 ; //preamble not found
781 if (* size
!= 96 ) return - 5 ;
782 return ( int ) startIdx
;
786 // FSK Demod then try to locate a Farpointe Data (pyramid) ID
787 int PyramiddemodFSK ( uint8_t * dest
, size_t * size
)
789 //make sure buffer has data
790 if (* size
< 128 * 50 ) return - 5 ;
792 //test samples are not just noise
793 if ( justNoise ( dest
, * size
)) return - 1 ;
796 * size
= fskdemod ( dest
, * size
, 50 , 1 , 10 , 8 ); // fsk2a RF/50
797 if (* size
< 128 ) return - 2 ; //did we get a good demod?
799 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
801 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
802 if ( errChk
== 0 ) return - 4 ; //preamble not found
803 if (* size
!= 128 ) return - 3 ;
804 return ( int ) startIdx
;
807 // find nedap preamble in already demoded data
808 int NedapDemod ( uint8_t * dest
, size_t * size
) {
809 //make sure buffer has data
810 if (* size
< 128 ) return - 3 ;
813 //uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0,0,0,1};
814 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 };
815 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
816 if ( errChk
== 0 ) return - 4 ; //preamble not found
817 return ( int ) startIdx
;
821 // to detect a wave that has heavily clipped (clean) samples
822 uint8_t DetectCleanAskWave ( uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
)
824 bool allArePeaks
= true ;
826 size_t loopEnd
= 512 + 160 ;
827 if ( loopEnd
> size
) loopEnd
= size
;
828 for ( size_t i
= 160 ; i
< loopEnd
; i
++){
829 if ( dest
[ i
]> low
&& dest
[ i
]< high
)
835 if ( cntPeaks
> 300 ) return true ;
840 // to help detect clocks on heavily clipped samples
841 // based on count of low to low
842 int DetectStrongAskClock ( uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
)
844 uint8_t fndClk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 128 };
848 // get to first full low to prime loop and skip incomplete first pulse
849 while (( dest
[ i
] < high
) && ( i
< size
))
851 while (( dest
[ i
] > low
) && ( i
< size
))
854 // loop through all samples
856 // measure from low to low
857 while (( dest
[ i
] > low
) && ( i
< size
))
860 while (( dest
[ i
] < high
) && ( i
< size
))
862 while (( dest
[ i
] > low
) && ( i
< size
))
864 //get minimum measured distance
865 if ( i
- startwave
< minClk
&& i
< size
)
866 minClk
= i
- startwave
;
869 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: detectstrongASKclk smallest wave: %d" , minClk
);
870 for ( uint8_t clkCnt
= 0 ; clkCnt
< 7 ; clkCnt
++) {
871 if ( minClk
>= fndClk
[ clkCnt
]-( fndClk
[ clkCnt
]/ 8 ) && minClk
<= fndClk
[ clkCnt
]+ 1 )
872 return fndClk
[ clkCnt
];
878 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
879 // maybe somehow adjust peak trimming value based on samples to fix?
880 // return start index of best starting position for that clock and return clock (by reference)
881 int DetectASKClock ( uint8_t dest
[], size_t size
, int * clock
, int maxErr
)
884 uint8_t clk
[] = { 255 , 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 };
886 uint8_t loopCnt
= 255 ; //don't need to loop through entire array...
887 if ( size
<= loopCnt
+ 60 ) return - 1 ; //not enough samples
888 size
-= 60 ; //sometimes there is a strange end wave - filter out this....
889 //if we already have a valid clock
892 if ( clk
[ i
] == * clock
) clockFnd
= i
;
893 //clock found but continue to find best startpos
895 //get high and low peak
897 if ( getHiLo ( dest
, loopCnt
, & peak
, & low
, 75 , 75 ) < 1 ) return - 1 ;
899 //test for large clean peaks
901 if ( DetectCleanAskWave ( dest
, size
, peak
, low
)== 1 ){
902 int ans
= DetectStrongAskClock ( dest
, size
, peak
, low
);
903 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d" , ans
);
904 for ( i
= clkEnd
- 1 ; i
> 0 ; i
--){
908 return 0 ; // for strong waves i don't use the 'best start position' yet...
909 //break; //clock found but continue to find best startpos [not yet]
915 uint8_t clkCnt
, tol
= 0 ;
916 uint16_t bestErr
[]={ 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 };
917 uint8_t bestStart
[]={ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
919 size_t arrLoc
, loopEnd
;
927 //test each valid clock from smallest to greatest to see which lines up
928 for (; clkCnt
< clkEnd
; clkCnt
++){
929 if ( clk
[ clkCnt
] <= 32 ){
934 //if no errors allowed - keep start within the first clock
935 if (! maxErr
&& size
> clk
[ clkCnt
]* 2 + tol
&& clk
[ clkCnt
]< 128 ) loopCnt
= clk
[ clkCnt
]* 2 ;
936 bestErr
[ clkCnt
]= 1000 ;
937 //try lining up the peaks by moving starting point (try first few clocks)
938 for ( ii
= 0 ; ii
< loopCnt
; ii
++){
939 if ( dest
[ ii
] < peak
&& dest
[ ii
] > low
) continue ;
942 // now that we have the first one lined up test rest of wave array
943 loopEnd
= (( size
- ii
- tol
) / clk
[ clkCnt
]) - 1 ;
944 for ( i
= 0 ; i
< loopEnd
; ++ i
){
945 arrLoc
= ii
+ ( i
* clk
[ clkCnt
]);
946 if ( dest
[ arrLoc
] >= peak
|| dest
[ arrLoc
] <= low
){
947 } else if ( dest
[ arrLoc
- tol
] >= peak
|| dest
[ arrLoc
- tol
] <= low
){
948 } else if ( dest
[ arrLoc
+ tol
] >= peak
|| dest
[ arrLoc
+ tol
] <= low
){
949 } else { //error no peak detected
953 //if we found no errors then we can stop here and a low clock (common clocks)
954 // this is correct one - return this clock
955 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, err %d, startpos %d, endpos %d" , clk
[ clkCnt
], errCnt
, ii
, i
);
956 if ( errCnt
== 0 && clkCnt
< 7 ) {
957 if (! clockFnd
) * clock
= clk
[ clkCnt
];
960 //if we found errors see if it is lowest so far and save it as best run
961 if ( errCnt
< bestErr
[ clkCnt
]){
962 bestErr
[ clkCnt
]= errCnt
;
963 bestStart
[ clkCnt
]= ii
;
969 for ( iii
= 1 ; iii
< clkEnd
; ++ iii
){
970 if ( bestErr
[ iii
] < bestErr
[ best
]){
971 if ( bestErr
[ iii
] == 0 ) bestErr
[ iii
]= 1 ;
972 // current best bit to error ratio vs new bit to error ratio
973 if ( ( size
/ clk
[ best
])/ bestErr
[ best
] < ( size
/ clk
[ iii
])/ bestErr
[ iii
] ){
977 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d" , clk
[ iii
], bestErr
[ iii
], clk
[ best
], bestStart
[ best
]);
979 if (! clockFnd
) * clock
= clk
[ best
];
980 return bestStart
[ best
];
984 //detect psk clock by reading each phase shift
985 // a phase shift is determined by measuring the sample length of each wave
986 int DetectPSKClock ( uint8_t dest
[], size_t size
, int clock
)
988 uint8_t clk
[]={ 255 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 }; //255 is not a valid clock
989 uint16_t loopCnt
= 4096 ; //don't need to loop through entire array...
990 if ( size
== 0 ) return 0 ;
991 if ( size
< loopCnt
) loopCnt
= size
- 20 ;
993 //if we already have a valid clock quit
996 if ( clk
[ i
] == clock
) return clock
;
998 size_t waveStart
= 0 , waveEnd
= 0 , firstFullWave
= 0 , lastClkBit
= 0 ;
999 uint8_t clkCnt
, fc
= 0 , fullWaveLen
= 0 , tol
= 1 ;
1000 uint16_t peakcnt
= 0 , errCnt
= 0 , waveLenCnt
= 0 ;
1001 uint16_t bestErr
[]={ 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 };
1002 uint16_t peaksdet
[]={ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1003 fc
= countFC ( dest
, size
, 0 );
1004 if ( fc
!= 2 && fc
!= 4 && fc
!= 8 ) return - 1 ;
1005 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: FC: %d" , fc
);
1007 //find first full wave
1008 for ( i
= 160 ; i
< loopCnt
; i
++){
1009 if ( dest
[ i
] < dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1010 if ( waveStart
== 0 ) {
1012 //prnt("DEBUG: waveStart: %d",waveStart);
1015 //prnt("DEBUG: waveEnd: %d",waveEnd);
1016 waveLenCnt
= waveEnd
- waveStart
;
1017 if ( waveLenCnt
> fc
){
1018 firstFullWave
= waveStart
;
1019 fullWaveLen
= waveLenCnt
;
1026 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: firstFullWave: %d, waveLen: %d" , firstFullWave
, fullWaveLen
);
1028 //test each valid clock from greatest to smallest to see which lines up
1029 for ( clkCnt
= 7 ; clkCnt
>= 1 ; clkCnt
--){
1030 lastClkBit
= firstFullWave
; //set end of wave as clock align
1034 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: clk: %d, lastClkBit: %d" , clk
[ clkCnt
], lastClkBit
);
1036 for ( i
= firstFullWave
+ fullWaveLen
- 1 ; i
< loopCnt
- 2 ; i
++){
1037 //top edge of wave = start of new wave
1038 if ( dest
[ i
] < dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1039 if ( waveStart
== 0 ) {
1044 waveLenCnt
= waveEnd
- waveStart
;
1045 if ( waveLenCnt
> fc
){
1046 //if this wave is a phase shift
1047 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d" , waveStart
, waveLenCnt
, lastClkBit
+ clk
[ clkCnt
]- tol
, i
+ 1 , fc
);
1048 if ( i
+ 1 >= lastClkBit
+ clk
[ clkCnt
] - tol
){ //should be a clock bit
1050 lastClkBit
+= clk
[ clkCnt
];
1051 } else if ( i
< lastClkBit
+ 8 ){
1052 //noise after a phase shift - ignore
1053 } else { //phase shift before supposed to based on clock
1056 } else if ( i
+ 1 > lastClkBit
+ clk
[ clkCnt
] + tol
+ fc
){
1057 lastClkBit
+= clk
[ clkCnt
]; //no phase shift but clock bit
1066 if ( errCnt
<= bestErr
[ clkCnt
]) bestErr
[ clkCnt
]= errCnt
;
1067 if ( peakcnt
> peaksdet
[ clkCnt
]) peaksdet
[ clkCnt
]= peakcnt
;
1069 //all tested with errors
1070 //return the highest clk with the most peaks found
1072 for ( i
= 7 ; i
>= 1 ; i
--){
1073 if ( peaksdet
[ i
] > peaksdet
[ best
]) {
1076 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d" , clk
[ i
], peaksdet
[ i
], bestErr
[ i
], clk
[ best
]);
1081 int DetectStrongNRZClk ( uint8_t * dest
, size_t size
, int peak
, int low
){
1082 //find shortest transition from high to low
1084 size_t transition1
= 0 ;
1085 int lowestTransition
= 255 ;
1086 bool lastWasHigh
= false ;
1088 //find first valid beginning of a high or low wave
1089 while (( dest
[ i
] >= peak
|| dest
[ i
] <= low
) && ( i
< size
))
1091 while (( dest
[ i
] < peak
&& dest
[ i
] > low
) && ( i
< size
))
1093 lastWasHigh
= ( dest
[ i
] >= peak
);
1095 if ( i
== size
) return 0 ;
1098 for (; i
< size
; i
++) {
1099 if (( dest
[ i
] >= peak
&& ! lastWasHigh
) || ( dest
[ i
] <= low
&& lastWasHigh
)) {
1100 lastWasHigh
= ( dest
[ i
] >= peak
);
1101 if ( i
- transition1
< lowestTransition
) lowestTransition
= i
- transition1
;
1105 if ( lowestTransition
== 255 ) lowestTransition
= 0 ;
1106 if ( g_debugMode
== 2 ) prnt ( "DEBUG NRZ: detectstrongNRZclk smallest wave: %d" , lowestTransition
);
1107 return lowestTransition
;
1111 //detect nrz clock by reading #peaks vs no peaks(or errors)
1112 int DetectNRZClock ( uint8_t dest
[], size_t size
, int clock
)
1115 uint8_t clk
[]={ 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 };
1116 size_t loopCnt
= 4096 ; //don't need to loop through entire array...
1117 if ( size
== 0 ) return 0 ;
1118 if ( size
< loopCnt
) loopCnt
= size
- 20 ;
1119 //if we already have a valid clock quit
1121 if ( clk
[ i
] == clock
) return clock
;
1123 //get high and low peak
1125 if ( getHiLo ( dest
, loopCnt
, & peak
, & low
, 75 , 75 ) < 1 ) return 0 ;
1127 int lowestTransition
= DetectStrongNRZClk ( dest
, size
- 20 , peak
, low
);
1131 uint16_t smplCnt
= 0 ;
1132 int16_t peakcnt
= 0 ;
1133 int16_t peaksdet
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1134 uint16_t maxPeak
= 255 ;
1135 bool firstpeak
= false ;
1136 //test for large clipped waves
1137 for ( i
= 0 ; i
< loopCnt
; i
++){
1138 if ( dest
[ i
] >= peak
|| dest
[ i
] <= low
){
1139 if (! firstpeak
) continue ;
1144 if ( maxPeak
> smplCnt
){
1146 //prnt("maxPk: %d",maxPeak);
1149 //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
1154 bool errBitHigh
= 0 ;
1156 uint8_t ignoreCnt
= 0 ;
1157 uint8_t ignoreWindow
= 4 ;
1158 bool lastPeakHigh
= 0 ;
1161 //test each valid clock from smallest to greatest to see which lines up
1162 for ( clkCnt
= 0 ; clkCnt
< 8 ; ++ clkCnt
){
1163 //ignore clocks smaller than smallest peak
1164 if ( clk
[ clkCnt
] < maxPeak
- ( clk
[ clkCnt
]/ 4 )) continue ;
1165 //try lining up the peaks by moving starting point (try first 256)
1166 for ( ii
= 20 ; ii
< loopCnt
; ++ ii
){
1167 if (( dest
[ ii
] >= peak
) || ( dest
[ ii
] <= low
)){
1171 lastBit
= ii
- clk
[ clkCnt
];
1172 //loop through to see if this start location works
1173 for ( i
= ii
; i
< size
- 20 ; ++ i
) {
1174 //if we are at a clock bit
1175 if (( i
>= lastBit
+ clk
[ clkCnt
] - tol
) && ( i
<= lastBit
+ clk
[ clkCnt
] + tol
)) {
1177 if ( dest
[ i
] >= peak
|| dest
[ i
] <= low
) {
1178 //if same peak don't count it
1179 if (( dest
[ i
] >= peak
&& ! lastPeakHigh
) || ( dest
[ i
] <= low
&& lastPeakHigh
)) {
1182 lastPeakHigh
= ( dest
[ i
] >= peak
);
1185 ignoreCnt
= ignoreWindow
;
1186 lastBit
+= clk
[ clkCnt
];
1187 } else if ( i
== lastBit
+ clk
[ clkCnt
] + tol
) {
1188 lastBit
+= clk
[ clkCnt
];
1190 //else if not a clock bit and no peaks
1191 } else if ( dest
[ i
] < peak
&& dest
[ i
] > low
){
1194 if ( errBitHigh
== true ) peakcnt
--;
1199 // else if not a clock bit but we have a peak
1200 } else if (( dest
[ i
]>= peak
|| dest
[ i
]<= low
) && (! bitHigh
)) {
1201 //error bar found no clock...
1205 if ( peakcnt
> peaksdet
[ clkCnt
]) {
1206 peaksdet
[ clkCnt
]= peakcnt
;
1213 for ( iii
= 7 ; iii
> 0 ; iii
--){
1214 if (( peaksdet
[ iii
] >= ( peaksdet
[ best
]- 1 )) && ( peaksdet
[ iii
] <= peaksdet
[ best
]+ 1 ) && lowestTransition
) {
1215 if ( clk
[ iii
] > ( lowestTransition
- ( clk
[ iii
]/ 8 )) && clk
[ iii
] < ( lowestTransition
+ ( clk
[ iii
]/ 8 ))) {
1218 } else if ( peaksdet
[ iii
] > peaksdet
[ best
]){
1221 if ( g_debugMode
== 2 ) prnt ( "DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d" , clk
[ iii
], peaksdet
[ iii
], maxPeak
, clk
[ best
], lowestTransition
);
1228 // convert psk1 demod to psk2 demod
1229 // only transition waves are 1s
1230 void psk1TOpsk2 ( uint8_t * BitStream
, size_t size
)
1233 uint8_t lastBit
= BitStream
[ 0 ];
1234 for (; i
< size
; i
++){
1235 if ( BitStream
[ i
]== 7 ){
1237 } else if ( lastBit
!= BitStream
[ i
]){
1238 lastBit
= BitStream
[ i
];
1248 // convert psk2 demod to psk1 demod
1249 // from only transition waves are 1s to phase shifts change bit
1250 void psk2TOpsk1 ( uint8_t * BitStream
, size_t size
)
1253 for ( size_t i
= 0 ; i
< size
; i
++){
1254 if ( BitStream
[ i
]== 1 ){
1262 // redesigned by marshmellow adjusted from existing decode functions
1263 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1264 int indala26decode ( uint8_t * bitStream
, size_t * size
, uint8_t * invert
)
1266 //26 bit 40134 format (don't know other formats)
1267 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
1268 uint8_t preamble_i
[] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 };
1269 size_t startidx
= 0 ;
1270 if (! preambleSearch ( bitStream
, preamble
, sizeof ( preamble
), size
, & startidx
)){
1271 // if didn't find preamble try again inverting
1272 if (! preambleSearch ( bitStream
, preamble_i
, sizeof ( preamble_i
), size
, & startidx
)) return - 1 ;
1275 if (* size
!= 64 && * size
!= 224 ) return - 2 ;
1277 for ( size_t i
= startidx
; i
< * size
; i
++)
1280 return ( int ) startidx
;
1283 // by marshmellow - demodulate NRZ wave - requires a read with strong signal
1284 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1285 int nrzRawDemod ( uint8_t * dest
, size_t * size
, int * clk
, int * invert
){
1286 if ( justNoise ( dest
, * size
)) return - 1 ;
1287 * clk
= DetectNRZClock ( dest
, * size
, * clk
);
1288 if (* clk
== 0 ) return - 2 ;
1289 size_t i
, gLen
= 4096 ;
1290 if ( gLen
>* size
) gLen
= * size
- 20 ;
1292 if ( getHiLo ( dest
, gLen
, & high
, & low
, 75 , 75 ) < 1 ) return - 3 ; //25% fuzz on high 25% fuzz on low
1295 //convert wave samples to 1's and 0's
1296 for ( i
= 20 ; i
< * size
- 20 ; i
++){
1297 if ( dest
[ i
] >= high
) bit
= 1 ;
1298 if ( dest
[ i
] <= low
) bit
= 0 ;
1301 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1304 for ( i
= 21 ; i
< * size
- 20 ; i
++) {
1305 //if transition detected or large number of same bits - store the passed bits
1306 if ( dest
[ i
] != dest
[ i
- 1 ] || ( i
- lastBit
) == ( 10 * * clk
)) {
1307 memset ( dest
+ numBits
, dest
[ i
- 1 ] ^ * invert
, ( i
- lastBit
+ (* clk
/ 4 )) / * clk
);
1308 numBits
+= ( i
- lastBit
+ (* clk
/ 4 )) / * clk
;
1317 //detects the bit clock for FSK given the high and low Field Clocks
1318 uint8_t detectFSKClk ( uint8_t * BitStream
, size_t size
, uint8_t fcHigh
, uint8_t fcLow
)
1320 uint8_t clk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 0 };
1321 uint16_t rfLens
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1322 uint8_t rfCnts
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1323 uint8_t rfLensFnd
= 0 ;
1324 uint8_t lastFCcnt
= 0 ;
1325 uint16_t fcCounter
= 0 ;
1326 uint16_t rfCounter
= 0 ;
1327 uint8_t firstBitFnd
= 0 ;
1329 if ( size
== 0 ) return 0 ;
1331 uint8_t fcTol
= (( fcHigh
* 100 - fcLow
* 100 )/ 2 + 50 )/ 100 ; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
1336 //PrintAndLog("DEBUG: fcTol: %d",fcTol);
1337 // prime i to first peak / up transition
1338 for ( i
= 160 ; i
< size
- 20 ; i
++)
1339 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
]>= BitStream
[ i
+ 1 ])
1342 for (; i
< size
- 20 ; i
++){
1346 if ( BitStream
[ i
] <= BitStream
[ i
- 1 ] || BitStream
[ i
] < BitStream
[ i
+ 1 ])
1349 // if we got less than the small fc + tolerance then set it to the small fc
1350 if ( fcCounter
< fcLow
+ fcTol
)
1352 else //set it to the large fc
1355 //look for bit clock (rf/xx)
1356 if (( fcCounter
< lastFCcnt
|| fcCounter
> lastFCcnt
)){
1357 //not the same size as the last wave - start of new bit sequence
1358 if ( firstBitFnd
> 1 ){ //skip first wave change - probably not a complete bit
1359 for ( int ii
= 0 ; ii
< 15 ; ii
++){
1360 if ( rfLens
[ ii
] >= ( rfCounter
- 4 ) && rfLens
[ ii
] <= ( rfCounter
+ 4 )){
1366 if ( rfCounter
> 0 && rfLensFnd
< 15 ){
1367 //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1368 rfCnts
[ rfLensFnd
]++;
1369 rfLens
[ rfLensFnd
++] = rfCounter
;
1375 lastFCcnt
= fcCounter
;
1379 uint8_t rfHighest
= 15 , rfHighest2
= 15 , rfHighest3
= 15 ;
1381 for ( i
= 0 ; i
< 15 ; i
++){
1382 //get highest 2 RF values (might need to get more values to compare or compare all?)
1383 if ( rfCnts
[ i
]> rfCnts
[ rfHighest
]){
1384 rfHighest3
= rfHighest2
;
1385 rfHighest2
= rfHighest
;
1387 } else if ( rfCnts
[ i
]> rfCnts
[ rfHighest2
]){
1388 rfHighest3
= rfHighest2
;
1390 } else if ( rfCnts
[ i
]> rfCnts
[ rfHighest3
]){
1393 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: RF %d, cnts %d" , rfLens
[ i
], rfCnts
[ i
]);
1395 // set allowed clock remainder tolerance to be 1 large field clock length+1
1396 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1397 uint8_t tol1
= fcHigh
+ 1 ;
1399 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d" , rfLens
[ rfHighest
], rfLens
[ rfHighest2
], rfLens
[ rfHighest3
]);
1401 // loop to find the highest clock that has a remainder less than the tolerance
1402 // compare samples counted divided by
1403 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
1405 for (; ii
>= 2 ; ii
--){
1406 if ( rfLens
[ rfHighest
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest
] % clk
[ ii
] > clk
[ ii
]- tol1
){
1407 if ( rfLens
[ rfHighest2
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest2
] % clk
[ ii
] > clk
[ ii
]- tol1
){
1408 if ( rfLens
[ rfHighest3
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest3
] % clk
[ ii
] > clk
[ ii
]- tol1
){
1409 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: clk %d divides into the 3 most rf values within tolerance" , clk
[ ii
]);
1416 if ( ii
< 0 ) return 0 ; // oops we went too far
1422 //countFC is to detect the field clock lengths.
1423 //counts and returns the 2 most common wave lengths
1424 //mainly used for FSK field clock detection
1425 uint16_t countFC ( uint8_t * BitStream
, size_t size
, uint8_t fskAdj
)
1427 uint8_t fcLens
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1428 uint16_t fcCnts
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1429 uint8_t fcLensFnd
= 0 ;
1430 uint8_t lastFCcnt
= 0 ;
1431 uint8_t fcCounter
= 0 ;
1433 if ( size
== 0 ) return 0 ;
1435 // prime i to first up transition
1436 for ( i
= 160 ; i
< size
- 20 ; i
++)
1437 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
] >= BitStream
[ i
+ 1 ])
1440 for (; i
< size
- 20 ; i
++){
1441 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
] >= BitStream
[ i
+ 1 ]){
1442 // new up transition
1445 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1446 if ( lastFCcnt
== 5 && fcCounter
== 9 ) fcCounter
--;
1447 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1448 if (( fcCounter
== 9 ) || fcCounter
== 4 ) fcCounter
++;
1449 // save last field clock count (fc/xx)
1450 lastFCcnt
= fcCounter
;
1452 // find which fcLens to save it to:
1453 for ( int ii
= 0 ; ii
< 15 ; ii
++){
1454 if ( fcLens
[ ii
]== fcCounter
){
1460 if ( fcCounter
> 0 && fcLensFnd
< 15 ){
1462 fcCnts
[ fcLensFnd
]++;
1463 fcLens
[ fcLensFnd
++]= fcCounter
;
1472 uint8_t best1
= 14 , best2
= 14 , best3
= 14 ;
1474 // go through fclens and find which ones are bigest 2
1475 for ( i
= 0 ; i
< 15 ; i
++){
1476 // get the 3 best FC values
1477 if ( fcCnts
[ i
]> maxCnt1
) {
1482 } else if ( fcCnts
[ i
]> fcCnts
[ best2
]){
1485 } else if ( fcCnts
[ i
]> fcCnts
[ best3
]){
1488 if ( g_debugMode
== 2 ) prnt ( "DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u" , fcLens
[ i
], fcCnts
[ i
], fcLens
[ best1
], fcLens
[ best2
]);
1490 if ( fcLens
[ best1
]== 0 ) return 0 ;
1491 uint8_t fcH
= 0 , fcL
= 0 ;
1492 if ( fcLens
[ best1
]> fcLens
[ best2
]){
1499 if (( size
- 180 )/ fcH
/ 3 > fcCnts
[ best1
]+ fcCnts
[ best2
]) {
1500 if ( g_debugMode
== 2 ) prnt ( "DEBUG countfc: fc is too large: %u > %u. Not psk or fsk" ,( size
- 180 )/ fcH
/ 3 , fcCnts
[ best1
]+ fcCnts
[ best2
]);
1501 return 0 ; //lots of waves not psk or fsk
1503 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1505 uint16_t fcs
= ((( uint16_t ) fcH
)<< 8 ) | fcL
;
1506 if ( fskAdj
) return fcs
;
1507 return fcLens
[ best1
];
1510 //by marshmellow - demodulate PSK1 wave
1511 //uses wave lengths (# Samples)
1512 int pskRawDemod ( uint8_t dest
[], size_t * size
, int * clock
, int * invert
)
1514 if ( size
== 0 ) return - 1 ;
1515 uint16_t loopCnt
= 4096 ; //don't need to loop through entire array...
1516 if (* size
< loopCnt
) loopCnt
= * size
;
1519 uint8_t curPhase
= * invert
;
1520 size_t i
, waveStart
= 1 , waveEnd
= 0 , firstFullWave
= 0 , lastClkBit
= 0 ;
1521 uint8_t fc
= 0 , fullWaveLen
= 0 , tol
= 1 ;
1522 uint16_t errCnt
= 0 , waveLenCnt
= 0 ;
1523 fc
= countFC ( dest
, * size
, 0 );
1524 if ( fc
!= 2 && fc
!= 4 && fc
!= 8 ) return - 1 ;
1525 //PrintAndLog("DEBUG: FC: %d",fc);
1526 * clock
= DetectPSKClock ( dest
, * size
, * clock
);
1527 if (* clock
== 0 ) return - 1 ;
1528 int avgWaveVal
= 0 , lastAvgWaveVal
= 0 ;
1529 //find first phase shift
1530 for ( i
= 0 ; i
< loopCnt
; i
++){
1531 if ( dest
[ i
]+ fc
< dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1533 //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
1534 waveLenCnt
= waveEnd
- waveStart
;
1535 if ( waveLenCnt
> fc
&& waveStart
> fc
&& !( waveLenCnt
> fc
+ 2 )){ //not first peak and is a large wave but not out of whack
1536 lastAvgWaveVal
= avgWaveVal
/( waveLenCnt
);
1537 firstFullWave
= waveStart
;
1538 fullWaveLen
= waveLenCnt
;
1539 //if average wave value is > graph 0 then it is an up wave or a 1
1540 if ( lastAvgWaveVal
> 123 ) curPhase
^= 1 ; //fudge graph 0 a little 123 vs 128
1546 avgWaveVal
+= dest
[ i
+ 2 ];
1548 if ( firstFullWave
== 0 ) {
1549 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1550 // so skip a little to ensure we are past any Start Signal
1551 firstFullWave
= 160 ;
1552 memset ( dest
, curPhase
, firstFullWave
/ * clock
);
1554 memset ( dest
, curPhase
^ 1 , firstFullWave
/ * clock
);
1557 numBits
+= ( firstFullWave
/ * clock
);
1558 //set start of wave as clock align
1559 lastClkBit
= firstFullWave
;
1560 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: firstFullWave: %u, waveLen: %u" , firstFullWave
, fullWaveLen
);
1561 if ( g_debugMode
== 2 ) prnt ( "DEBUG: clk: %d, lastClkBit: %u, fc: %u" , * clock
, lastClkBit
,( unsigned int ) fc
);
1563 dest
[ numBits
++] = curPhase
; //set first read bit
1564 for ( i
= firstFullWave
+ fullWaveLen
- 1 ; i
< * size
- 3 ; i
++){
1565 //top edge of wave = start of new wave
1566 if ( dest
[ i
]+ fc
< dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1567 if ( waveStart
== 0 ) {
1570 avgWaveVal
= dest
[ i
+ 1 ];
1573 waveLenCnt
= waveEnd
- waveStart
;
1574 lastAvgWaveVal
= avgWaveVal
/ waveLenCnt
;
1575 if ( waveLenCnt
> fc
){
1576 //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1577 //this wave is a phase shift
1578 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1579 if ( i
+ 1 >= lastClkBit
+ * clock
- tol
){ //should be a clock bit
1581 dest
[ numBits
++] = curPhase
;
1582 lastClkBit
+= * clock
;
1583 } else if ( i
< lastClkBit
+ 10 + fc
){
1584 //noise after a phase shift - ignore
1585 } else { //phase shift before supposed to based on clock
1587 dest
[ numBits
++] = 7 ;
1589 } else if ( i
+ 1 > lastClkBit
+ * clock
+ tol
+ fc
){
1590 lastClkBit
+= * clock
; //no phase shift but clock bit
1591 dest
[ numBits
++] = curPhase
;
1597 avgWaveVal
+= dest
[ i
+ 1 ];
1604 //attempt to identify a Sequence Terminator in ASK modulated raw wave
1605 bool DetectST ( uint8_t buffer
[], size_t * size
, int * foundclock
) {
1606 size_t bufsize
= * size
;
1607 //need to loop through all samples and identify our clock, look for the ST pattern
1608 uint8_t fndClk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 128 };
1611 int i
, j
, skip
, start
, end
, low
, high
, minClk
, waveStart
;
1612 bool complete
= false ;
1613 int tmpbuff
[ bufsize
/ 64 ];
1614 int waveLen
[ bufsize
/ 64 ];
1615 size_t testsize
= ( bufsize
< 512 ) ? bufsize
: 512 ;
1618 memset ( tmpbuff
, 0 , sizeof ( tmpbuff
));
1620 if ( getHiLo ( buffer
, testsize
, & high
, & low
, 80 , 80 ) == - 1 ) {
1621 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: just noise detected - quitting" );
1622 return false ; //just noise
1627 // get to first full low to prime loop and skip incomplete first pulse
1628 while (( buffer
[ i
] < high
) && ( i
< bufsize
))
1630 while (( buffer
[ i
] > low
) && ( i
< bufsize
))
1634 // populate tmpbuff buffer with pulse lengths
1635 while ( i
< bufsize
) {
1636 // measure from low to low
1637 while (( buffer
[ i
] > low
) && ( i
< bufsize
))
1640 while (( buffer
[ i
] < high
) && ( i
< bufsize
))
1642 //first high point for this wave
1644 while (( buffer
[ i
] > low
) && ( i
< bufsize
))
1646 if ( j
>= ( bufsize
/ 64 )) {
1649 waveLen
[ j
] = i
- waveStart
; //first high to first low
1650 tmpbuff
[ j
++] = i
- start
;
1651 if ( i
- start
< minClk
&& i
< bufsize
) {
1655 // set clock - might be able to get this externally and remove this work...
1657 for ( uint8_t clkCnt
= 0 ; clkCnt
< 7 ; clkCnt
++) {
1658 tol
= fndClk
[ clkCnt
]/ 8 ;
1659 if ( minClk
>= fndClk
[ clkCnt
]- tol
&& minClk
<= fndClk
[ clkCnt
]+ 1 ) {
1664 // clock not found - ERROR
1666 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: clock not found - quitting" );
1673 // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2)
1675 for ( i
= 0 ; i
< j
- 4 ; ++ i
) {
1677 if ( tmpbuff
[ i
] >= clk
* 1 - tol
&& tmpbuff
[ i
] <= ( clk
* 2 )+ tol
&& waveLen
[ i
] < clk
+ tol
) { //1 to 2 clocks depending on 2 bits prior
1678 if ( tmpbuff
[ i
+ 1 ] >= clk
* 2 - tol
&& tmpbuff
[ i
+ 1 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 1 ] > clk
* 3 / 2 - tol
) { //2 clocks and wave size is 1 1/2
1679 if ( tmpbuff
[ i
+ 2 ] >= ( clk
* 3 )/ 2 - tol
&& tmpbuff
[ i
+ 2 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 2 ] > clk
- tol
) { //1 1/2 to 2 clocks and at least one full clock wave
1680 if ( tmpbuff
[ i
+ 3 ] >= clk
* 1 - tol
&& tmpbuff
[ i
+ 3 ] <= clk
* 2 + tol
) { //1 to 2 clocks for end of ST + first bit
1688 // first ST not found - ERROR
1690 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: first STT not found - quitting" );
1693 if ( waveLen
[ i
+ 2 ] > clk
* 1 + tol
)
1698 // skip over the remainder of ST
1699 skip
+= clk
* 7 / 2 ; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point
1701 // now do it again to find the end
1703 for ( i
+= 3 ; i
< j
- 4 ; ++ i
) {
1705 if ( tmpbuff
[ i
] >= clk
* 1 - tol
&& tmpbuff
[ i
] <= ( clk
* 2 )+ tol
) { //1 to 2 clocks depending on 2 bits prior
1706 if ( tmpbuff
[ i
+ 1 ] >= clk
* 2 - tol
&& tmpbuff
[ i
+ 1 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 1 ] > clk
* 3 / 2 - tol
) { //2 clocks and wave size is 1 1/2
1707 if ( tmpbuff
[ i
+ 2 ] >= ( clk
* 3 )/ 2 - tol
&& tmpbuff
[ i
+ 2 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 2 ] > clk
- tol
) { //1 1/2 to 2 clocks and at least one full clock wave
1708 if ( tmpbuff
[ i
+ 3 ] >= clk
* 1 - tol
&& tmpbuff
[ i
+ 3 ] <= clk
* 2 + tol
) { //1 to 2 clocks for end of ST + first bit
1717 //didn't find second ST - ERROR
1719 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: second STT not found - quitting" );
1722 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d" , skip
, end
, end
- skip
, clk
, ( end
- skip
)/ clk
, phaseoff
);
1723 //now begin to trim out ST so we can use normal demod cmds
1725 size_t datalen
= end
- start
;
1726 // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock
1727 if ( datalen
% clk
> clk
/ 8 ) {
1728 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting" , datalen
, clk
, datalen
% clk
);
1731 // padd the amount off - could be problematic... but shouldn't happen often
1732 datalen
+= datalen
% clk
;
1734 // if datalen is less than one t55xx block - ERROR
1735 if ( datalen
/ clk
< 8 * 4 ) {
1736 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: datalen is less than 1 full t55xx block - quitting" );
1739 size_t dataloc
= start
;
1742 // warning - overwriting buffer given with raw wave data with ST removed...
1743 while ( dataloc
< bufsize
-( clk
/ 2 ) ) {
1744 //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part)
1745 if ( buffer
[ dataloc
]< high
&& buffer
[ dataloc
]> low
&& buffer
[ dataloc
+ 3 ]< high
&& buffer
[ dataloc
+ 3 ]> low
) {
1746 for ( i
= 0 ; i
< clk
/ 2 - tol
; ++ i
) {
1747 buffer
[ dataloc
+ i
] = high
+ 5 ;
1750 for ( i
= 0 ; i
< datalen
; ++ i
) {
1751 if ( i
+ newloc
< bufsize
) {
1752 if ( i
+ newloc
< dataloc
)
1753 buffer
[ i
+ newloc
] = buffer
[ dataloc
];
1759 //skip next ST - we just assume it will be there from now on...