1 //----------------------------------------------------------------------------- 
   2 // This code is licensed to you under the terms of the GNU GPL, version 2 or, 
   3 // at your option, any later version. See the LICENSE.txt file for the text of 
   5 //----------------------------------------------------------------------------- 
   6 // Miscellaneous routines for low frequency tag operations. 
   7 // Tags supported here so far are Texas Instruments (TI), HID 
   8 // Also routines for raw mode reading/simulating of LF waveform 
   9 //----------------------------------------------------------------------------- 
  11 #include "proxmark3.h" 
  18 #include "lfsampling.h" 
  19 #include "protocols.h" 
  20 #include "usb_cdc.h" //test 
  23  * Function to do a modulation and then get samples. 
  29 void ModThenAcquireRawAdcSamples125k(uint32_t delay_off
, uint32_t period_0
, uint32_t period_1
, uint8_t *command
) 
  32         int divisor_used 
= 95; // 125 KHz 
  33         // see if 'h' was specified 
  35         if (command
[strlen((char *) command
) - 1] == 'h') 
  36                 divisor_used 
= 88; // 134.8 KHz 
  38         sample_config sc 
= { 0,0,1, divisor_used
, 0}; 
  39         setSamplingConfig(&sc
); 
  41         /* Make sure the tag is reset */ 
  42         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
  43         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
  46         LFSetupFPGAForADC(sc
.divisor
, 1); 
  48         // And a little more time for the tag to fully power up 
  51         // now modulate the reader field 
  52         while(*command 
!= '\0' && *command 
!= ' ') { 
  53                 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
  55                 SpinDelayUs(delay_off
); 
  56                 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
); 
  58                 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
  60                 if(*(command
++) == '0') 
  61                         SpinDelayUs(period_0
); 
  63                         SpinDelayUs(period_1
); 
  65         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
  67         SpinDelayUs(delay_off
); 
  68         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
); 
  70         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
  73         DoAcquisition_config(false); 
  76 /* blank r/w tag data stream 
  77 ...0000000000000000 01111111 
  78 1010101010101010101010101010101010101010101010101010101010101010 
  81 101010101010101[0]000... 
  83 [5555fe852c5555555555555555fe0000] 
  87         // some hardcoded initial params 
  88         // when we read a TI tag we sample the zerocross line at 2Mhz 
  89         // TI tags modulate a 1 as 16 cycles of 123.2Khz 
  90         // TI tags modulate a 0 as 16 cycles of 134.2Khz 
  91         #define FSAMPLE 2000000 
  95         signed char *dest 
= (signed char *)BigBuf_get_addr(); 
  96         uint16_t n 
= BigBuf_max_traceLen(); 
  97         // 128 bit shift register [shift3:shift2:shift1:shift0] 
  98         uint32_t shift3 
= 0, shift2 
= 0, shift1 
= 0, shift0 
= 0; 
 100         int i
, cycles
=0, samples
=0; 
 101         // how many sample points fit in 16 cycles of each frequency 
 102         uint32_t sampleslo 
= (FSAMPLE
<<4)/FREQLO
, sampleshi 
= (FSAMPLE
<<4)/FREQHI
; 
 103         // when to tell if we're close enough to one freq or another 
 104         uint32_t threshold 
= (sampleslo 
- sampleshi 
+ 1)>>1; 
 106         // TI tags charge at 134.2Khz 
 107         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 108         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz 
 110         // Place FPGA in passthrough mode, in this mode the CROSS_LO line 
 111         // connects to SSP_DIN and the SSP_DOUT logic level controls 
 112         // whether we're modulating the antenna (high) 
 113         // or listening to the antenna (low) 
 114         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
); 
 116         // get TI tag data into the buffer 
 119         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 121         for (i
=0; i
<n
-1; i
++) { 
 122                 // count cycles by looking for lo to hi zero crossings 
 123                 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) { 
 125                         // after 16 cycles, measure the frequency 
 128                                 samples
=i
-samples
; // number of samples in these 16 cycles 
 130                                 // TI bits are coming to us lsb first so shift them 
 131                                 // right through our 128 bit right shift register 
 132                                 shift0 
= (shift0
>>1) | (shift1 
<< 31); 
 133                                 shift1 
= (shift1
>>1) | (shift2 
<< 31); 
 134                                 shift2 
= (shift2
>>1) | (shift3 
<< 31); 
 137                                 // check if the cycles fall close to the number 
 138                                 // expected for either the low or high frequency 
 139                                 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) { 
 140                                         // low frequency represents a 1 
 142                                 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) { 
 143                                         // high frequency represents a 0 
 145                                         // probably detected a gay waveform or noise 
 146                                         // use this as gaydar or discard shift register and start again 
 147                                         shift3 
= shift2 
= shift1 
= shift0 
= 0; 
 151                                 // for each bit we receive, test if we've detected a valid tag 
 153                                 // if we see 17 zeroes followed by 6 ones, we might have a tag 
 154                                 // remember the bits are backwards 
 155                                 if ( ((shift0 
& 0x7fffff) == 0x7e0000) ) { 
 156                                         // if start and end bytes match, we have a tag so break out of the loop 
 157                                         if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) { 
 158                                                 cycles 
= 0xF0B; //use this as a flag (ugly but whatever) 
 166         // if flag is set we have a tag 
 168                 DbpString("Info: No valid tag detected."); 
 170                 // put 64 bit data into shift1 and shift0 
 171                 shift0 
= (shift0
>>24) | (shift1 
<< 8); 
 172                 shift1 
= (shift1
>>24) | (shift2 
<< 8); 
 174                 // align 16 bit crc into lower half of shift2 
 175                 shift2 
= ((shift2
>>24) | (shift3 
<< 8)) & 0x0ffff; 
 177                 // if r/w tag, check ident match 
 178                 if (shift3 
& (1<<15) ) { 
 179                         DbpString("Info: TI tag is rewriteable"); 
 180                         // only 15 bits compare, last bit of ident is not valid 
 181                         if (((shift3 
>> 16) ^ shift0
) & 0x7fff ) { 
 182                                 DbpString("Error: Ident mismatch!"); 
 184                                 DbpString("Info: TI tag ident is valid"); 
 187                         DbpString("Info: TI tag is readonly"); 
 190                 // WARNING the order of the bytes in which we calc crc below needs checking 
 191                 // i'm 99% sure the crc algorithm is correct, but it may need to eat the 
 192                 // bytes in reverse or something 
 196                 crc 
= update_crc16(crc
, (shift0
)&0xff); 
 197                 crc 
= update_crc16(crc
, (shift0
>>8)&0xff); 
 198                 crc 
= update_crc16(crc
, (shift0
>>16)&0xff); 
 199                 crc 
= update_crc16(crc
, (shift0
>>24)&0xff); 
 200                 crc 
= update_crc16(crc
, (shift1
)&0xff); 
 201                 crc 
= update_crc16(crc
, (shift1
>>8)&0xff); 
 202                 crc 
= update_crc16(crc
, (shift1
>>16)&0xff); 
 203                 crc 
= update_crc16(crc
, (shift1
>>24)&0xff); 
 205                 Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2 
& 0xFFFF); 
 206                 if (crc 
!= (shift2
&0xffff)) { 
 207                         Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
); 
 209                         DbpString("Info: CRC is good"); 
 214 void WriteTIbyte(uint8_t b
) 
 218         // modulate 8 bits out to the antenna 
 222                         // stop modulating antenna 
 229                         // stop modulating antenna 
 239 void AcquireTiType(void) 
 242         // tag transmission is <20ms, sampling at 2M gives us 40K samples max 
 243         // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t 
 244         #define TIBUFLEN 1250 
 247         uint32_t *buf 
= (uint32_t *)BigBuf_get_addr(); 
 249         //clear buffer now so it does not interfere with timing later 
 250         BigBuf_Clear_ext(false); 
 252         // Set up the synchronous serial port 
 253         AT91C_BASE_PIOA
->PIO_PDR 
= GPIO_SSC_DIN
; 
 254         AT91C_BASE_PIOA
->PIO_ASR 
= GPIO_SSC_DIN
; 
 256         // steal this pin from the SSP and use it to control the modulation 
 257         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 258         AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 260         AT91C_BASE_SSC
->SSC_CR 
= AT91C_SSC_SWRST
; 
 261         AT91C_BASE_SSC
->SSC_CR 
= AT91C_SSC_RXEN 
| AT91C_SSC_TXEN
; 
 263         // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long 
 264         // 48/2 = 24 MHz clock must be divided by 12 
 265         AT91C_BASE_SSC
->SSC_CMR 
= 12; 
 267         AT91C_BASE_SSC
->SSC_RCMR 
= SSC_CLOCK_MODE_SELECT(0); 
 268         AT91C_BASE_SSC
->SSC_RFMR 
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
; 
 269         AT91C_BASE_SSC
->SSC_TCMR 
= 0; 
 270         AT91C_BASE_SSC
->SSC_TFMR 
= 0; 
 277         // Charge TI tag for 50ms. 
 280         // stop modulating antenna and listen 
 287                 if(AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
 288                         buf
[i
] = AT91C_BASE_SSC
->SSC_RHR
;       // store 32 bit values in buffer 
 289                         i
++; if(i 
>= TIBUFLEN
) break; 
 294         // return stolen pin to SSP 
 295         AT91C_BASE_PIOA
->PIO_PDR 
= GPIO_SSC_DOUT
; 
 296         AT91C_BASE_PIOA
->PIO_ASR 
= GPIO_SSC_DIN 
| GPIO_SSC_DOUT
; 
 298         char *dest 
= (char *)BigBuf_get_addr(); 
 302         for (i 
= TIBUFLEN
-1; i 
>= 0; i
--) { 
 303                 for (j 
= 0; j 
< 32; j
++) { 
 304                         if(buf
[i
] & (1 << j
)) { 
 313 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc 
 314 // if crc provided, it will be written with the data verbatim (even if bogus) 
 315 // if not provided a valid crc will be computed from the data and written. 
 316 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
) 
 318         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 320                 crc 
= update_crc16(crc
, (idlo
)&0xff); 
 321                 crc 
= update_crc16(crc
, (idlo
>>8)&0xff); 
 322                 crc 
= update_crc16(crc
, (idlo
>>16)&0xff); 
 323                 crc 
= update_crc16(crc
, (idlo
>>24)&0xff); 
 324                 crc 
= update_crc16(crc
, (idhi
)&0xff); 
 325                 crc 
= update_crc16(crc
, (idhi
>>8)&0xff); 
 326                 crc 
= update_crc16(crc
, (idhi
>>16)&0xff); 
 327                 crc 
= update_crc16(crc
, (idhi
>>24)&0xff); 
 329         Dbprintf("Writing to tag: %x%08x, crc=%x",      (unsigned int) idhi
, (unsigned int) idlo
, crc
); 
 331         // TI tags charge at 134.2Khz 
 332         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz 
 333         // Place FPGA in passthrough mode, in this mode the CROSS_LO line 
 334         // connects to SSP_DIN and the SSP_DOUT logic level controls 
 335         // whether we're modulating the antenna (high) 
 336         // or listening to the antenna (low) 
 337         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
); 
 340         // steal this pin from the SSP and use it to control the modulation 
 341         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 342         AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 344         // writing algorithm: 
 345         // a high bit consists of a field off for 1ms and field on for 1ms 
 346         // a low bit consists of a field off for 0.3ms and field on for 1.7ms 
 347         // initiate a charge time of 50ms (field on) then immediately start writing bits 
 348         // start by writing 0xBB (keyword) and 0xEB (password) 
 349         // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) 
 350         // finally end with 0x0300 (write frame) 
 351         // all data is sent lsb first 
 352         // finish with 15ms programming time 
 356         SpinDelay(50);  // charge time 
 358         WriteTIbyte(0xbb); // keyword 
 359         WriteTIbyte(0xeb); // password 
 360         WriteTIbyte( (idlo    
)&0xff ); 
 361         WriteTIbyte( (idlo
>>8 )&0xff ); 
 362         WriteTIbyte( (idlo
>>16)&0xff ); 
 363         WriteTIbyte( (idlo
>>24)&0xff ); 
 364         WriteTIbyte( (idhi    
)&0xff ); 
 365         WriteTIbyte( (idhi
>>8 )&0xff ); 
 366         WriteTIbyte( (idhi
>>16)&0xff ); 
 367         WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo 
 368         WriteTIbyte( (crc     
)&0xff ); // crc lo 
 369         WriteTIbyte( (crc
>>8  )&0xff ); // crc hi 
 370         WriteTIbyte(0x00); // write frame lo 
 371         WriteTIbyte(0x03); // write frame hi 
 373         SpinDelay(50);  // programming time 
 377         // get TI tag data into the buffer 
 380         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 381         DbpString("Now use 'lf ti read' to check"); 
 384 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
) 
 387         uint8_t *tab 
= BigBuf_get_addr(); 
 389         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 390         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
); 
 392         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT 
| GPIO_SSC_CLK
; 
 393         AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 394         AT91C_BASE_PIOA
->PIO_ODR 
= GPIO_SSC_CLK
; 
 396  #define SHORT_COIL()   LOW(GPIO_SSC_DOUT) 
 397  #define OPEN_COIL()    HIGH(GPIO_SSC_DOUT) 
 401                 //wait until SSC_CLK goes HIGH 
 402                 while(!(AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_CLK
)) { 
 403                         if(BUTTON_PRESS() || (usb_poll_validate_length() )) { 
 404                                 DbpString("Stopped"); 
 409                 if (ledcontrol
) LED_D_ON(); 
 416                 if (ledcontrol
) LED_D_OFF(); 
 418                 //wait until SSC_CLK goes LOW 
 419                 while(AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_CLK
) { 
 421                                 DbpString("Stopped"); 
 439 #define DEBUG_FRAME_CONTENTS 1 
 440 void SimulateTagLowFrequencyBidir(int divisor
, int t0
) 
 444 // compose fc/8 fc/10 waveform (FSK2) 
 445 static void fc(int c
, int *n
) 
 447         uint8_t *dest 
= BigBuf_get_addr(); 
 450         // for when we want an fc8 pattern every 4 logical bits 
 462         //      an fc/8  encoded bit is a bit pattern of  11110000  x6 = 48 samples 
 464                 for (idx
=0; idx
<6; idx
++) { 
 476         //      an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples 
 478                 for (idx
=0; idx
<5; idx
++) { 
 492 // compose fc/X fc/Y waveform (FSKx) 
 493 static void fcAll(uint8_t fc
, int *n
, uint8_t clock
, uint16_t *modCnt
)  
 495         uint8_t *dest 
= BigBuf_get_addr(); 
 496         uint8_t halfFC 
= fc
/2; 
 497         uint8_t wavesPerClock 
= clock
/fc
; 
 498         uint8_t mod 
= clock 
% fc
;    //modifier 
 499         uint8_t modAdj 
= fc
/mod
;     //how often to apply modifier 
 500         bool modAdjOk 
= !(fc 
% mod
); //if (fc % mod==0) modAdjOk=TRUE; 
 501         // loop through clock - step field clock 
 502         for (uint8_t idx
=0; idx 
< wavesPerClock
; idx
++){ 
 503                 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave) 
 504                 memset(dest
+(*n
), 0, fc
-halfFC
);  //in case of odd number use extra here 
 505                 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
); 
 508         if (mod
>0) (*modCnt
)++; 
 509         if ((mod
>0) && modAdjOk
){  //fsk2  
 510                 if ((*modCnt 
% modAdj
) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave 
 511                         memset(dest
+(*n
), 0, fc
-halfFC
); 
 512                         memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
); 
 516         if (mod
>0 && !modAdjOk
){  //fsk1 
 517                 memset(dest
+(*n
), 0, mod
-(mod
/2)); 
 518                 memset(dest
+(*n
)+(mod
-(mod
/2)), 1, mod
/2); 
 523 // prepare a waveform pattern in the buffer based on the ID given then 
 524 // simulate a HID tag until the button is pressed 
 525 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
) 
 529          HID tag bitstream format 
 530          The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits 
 531          A 1 bit is represented as 6 fc8 and 5 fc10 patterns 
 532          A 0 bit is represented as 5 fc10 and 6 fc8 patterns 
 533          A fc8 is inserted before every 4 bits 
 534          A special start of frame pattern is used consisting a0b0 where a and b are neither 0 
 535          nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) 
 539                 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags"); 
 543         // special start of frame marker containing invalid bit sequences 
 544         fc(8,  &n
);     fc(8,  &n
); // invalid 
 545         fc(8,  &n
);     fc(10, &n
); // logical 0 
 546         fc(10, &n
);     fc(10, &n
); // invalid 
 547         fc(8,  &n
);     fc(10, &n
); // logical 0 
 550         // manchester encode bits 43 to 32 
 551         for (i
=11; i
>=0; i
--) { 
 552                 if ((i%4
)==3) fc(0,&n
); 
 554                         fc(10, &n
); fc(8,  &n
);         // low-high transition 
 556                         fc(8,  &n
); fc(10, &n
);         // high-low transition 
 561         // manchester encode bits 31 to 0 
 562         for (i
=31; i
>=0; i
--) { 
 563                 if ((i%4
)==3) fc(0,&n
); 
 565                         fc(10, &n
); fc(8,  &n
);         // low-high transition 
 567                         fc(8,  &n
); fc(10, &n
);         // high-low transition 
 571         if (ledcontrol
) LED_A_ON(); 
 572         SimulateTagLowFrequency(n
, 0, ledcontrol
); 
 573         if (ledcontrol
) LED_A_OFF(); 
 576 // prepare a waveform pattern in the buffer based on the ID given then 
 577 // simulate a FSK tag until the button is pressed 
 578 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock 
 579 void CmdFSKsimTAG(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
) 
 583         uint8_t fcHigh 
= arg1 
>> 8; 
 584         uint8_t fcLow 
= arg1 
& 0xFF; 
 586         uint8_t clk 
= arg2 
& 0xFF; 
 587         uint8_t invert 
= (arg2 
>> 8) & 1; 
 589         for (i
=0; i
<size
; i
++){ 
 590                 if (BitStream
[i
] == invert
){ 
 591                         fcAll(fcLow
, &n
, clk
, &modCnt
); 
 593                         fcAll(fcHigh
, &n
, clk
, &modCnt
); 
 596         Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh
, fcLow
, clk
, invert
, n
); 
 597         /*Dbprintf("DEBUG: First 32:"); 
 598         uint8_t *dest = BigBuf_get_addr(); 
 600         Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 602         Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 607         SimulateTagLowFrequency(n
, 0, ledcontrol
); 
 613 // compose ask waveform for one bit(ASK) 
 614 static void askSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t manchester
) 
 616         uint8_t *dest 
= BigBuf_get_addr(); 
 617         uint8_t halfClk 
= clock
/2; 
 618         // c = current bit 1 or 0 
 620                 memset(dest
+(*n
), c
, halfClk
); 
 621                 memset(dest
+(*n
) + halfClk
, c
^1, halfClk
); 
 623                 memset(dest
+(*n
), c
, clock
); 
 628 static void biphaseSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t *phase
) 
 630         uint8_t *dest 
= BigBuf_get_addr(); 
 631         uint8_t halfClk 
= clock
/2; 
 633                 memset(dest
+(*n
), c 
^ 1 ^ *phase
, halfClk
); 
 634                 memset(dest
+(*n
) + halfClk
, c 
^ *phase
, halfClk
); 
 636                 memset(dest
+(*n
), c 
^ *phase
, clock
); 
 642 // args clock, ask/man or askraw, invert, transmission separator 
 643 void CmdASKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
) 
 647         uint8_t clk 
= (arg1 
>> 8) & 0xFF; 
 648         uint8_t encoding 
= arg1 
& 0xFF; 
 649         uint8_t separator 
= arg2 
& 1; 
 650         uint8_t invert 
= (arg2 
>> 8) & 1; 
 652         if (encoding
==2){  //biphase 
 654                 for (i
=0; i
<size
; i
++){ 
 655                         biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
); 
 657                 if (BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted to keep phase in check 
 658                         for (i
=0; i
<size
; i
++){ 
 659                                 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
); 
 662         } else {  // ask/manchester || ask/raw 
 663                 for (i
=0; i
<size
; i
++){ 
 664                         askSimBit(BitStream
[i
]^invert
, &n
, clk
, encoding
); 
 666                 if (encoding
==0 && BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted (for biphase phase) 
 667                         for (i
=0; i
<size
; i
++){ 
 668                                 askSimBit(BitStream
[i
]^invert
^1, &n
, clk
, encoding
); 
 673         if (separator
==1) Dbprintf("sorry but separator option not yet available");  
 675         Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk
, invert
, encoding
, separator
, n
); 
 677         if (ledcontrol
) LED_A_ON(); 
 678         SimulateTagLowFrequency(n
, 0, ledcontrol
); 
 679         if (ledcontrol
) LED_A_OFF(); 
 682 //carrier can be 2,4 or 8 
 683 static void pskSimBit(uint8_t waveLen
, int *n
, uint8_t clk
, uint8_t *curPhase
, bool phaseChg
) 
 685         uint8_t *dest 
= BigBuf_get_addr(); 
 686         uint8_t halfWave 
= waveLen
/2; 
 690                 // write phase change 
 691                 memset(dest
+(*n
), *curPhase
^1, halfWave
); 
 692                 memset(dest
+(*n
) + halfWave
, *curPhase
, halfWave
); 
 697         //write each normal clock wave for the clock duration 
 698         for (; i 
< clk
; i
+=waveLen
){ 
 699                 memset(dest
+(*n
), *curPhase
, halfWave
); 
 700                 memset(dest
+(*n
) + halfWave
, *curPhase
^1, halfWave
); 
 705 // args clock, carrier, invert, 
 706 void CmdPSKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
) 
 710         uint8_t clk 
= arg1 
>> 8; 
 711         uint8_t carrier 
= arg1 
& 0xFF; 
 712         uint8_t invert 
= arg2 
& 0xFF; 
 713         uint8_t curPhase 
= 0; 
 714         for (i
=0; i
<size
; i
++){ 
 715                 if (BitStream
[i
] == curPhase
){ 
 716                         pskSimBit(carrier
, &n
, clk
, &curPhase
, FALSE
); 
 718                         pskSimBit(carrier
, &n
, clk
, &curPhase
, TRUE
); 
 721         Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier
, clk
, invert
, n
); 
 723         if (ledcontrol
) LED_A_ON(); 
 724         SimulateTagLowFrequency(n
, 0, ledcontrol
); 
 725         if (ledcontrol
) LED_A_OFF(); 
 728 // loop to get raw HID waveform then FSK demodulate the TAG ID from it 
 729 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
) 
 731         uint8_t *dest 
= BigBuf_get_addr(); 
 733         uint32_t hi2
=0, hi
=0, lo
=0; 
 735         // Configure to go in 125Khz listen mode 
 736         LFSetupFPGAForADC(95, true); 
 738         while(!BUTTON_PRESS() && !usb_poll_validate_length()) { 
 741                 if (ledcontrol
) LED_A_ON(); 
 743                 DoAcquisition_default(-1,true); 
 745                 size 
= 50*128*2; //big enough to catch 2 sequences of largest format 
 746                 idx 
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
); 
 748                 if (idx
>0 && lo
>0 && (size
==96 || size
==192)){ 
 749                         // go over previously decoded manchester data and decode into usable tag ID 
 750                         if (hi2 
!= 0){ //extra large HID tags  88/192 bits 
 751                                 Dbprintf("TAG ID: %x%08x%08x (%d)", 
 755                                   (unsigned int) (lo
>>1) & 0xFFFF 
 757                         }else {  //standard HID tags 44/96 bits 
 760                                 uint32_t cardnum 
= 0; 
 762                                 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used 
 764                                         lo2
=(((hi 
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit 
 766                                         while(lo2 
> 1){ //find last bit set to 1 (format len bit) 
 774                                                 cardnum 
= (lo
>>1)&0xFFFF; 
 778                                                 cardnum 
= (lo
>>1)&0x7FFFF; 
 779                                                 fc 
= ((hi
&0xF)<<12)|(lo
>>20); 
 782                                                 cardnum 
= (lo
>>1)&0xFFFF; 
 783                                                 fc
= ((hi
&1)<<15)|(lo
>>17); 
 786                                                 cardnum 
= (lo
>>1)&0xFFFFF; 
 787                                                 fc 
= ((hi
&1)<<11)|(lo
>>21); 
 790                                 else { //if bit 38 is not set then 37 bit format is used 
 795                                                 cardnum 
= (lo
>>1)&0x7FFFF; 
 796                                                 fc 
= ((hi
&0xF)<<12)|(lo
>>20); 
 799                                 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", 
 802                                                  (unsigned int) (lo
>>1) & 0xFFFF, 
 803                                                  (unsigned int) bitlen
, 
 805                                                  (unsigned int) cardnum
); 
 808                                 if (ledcontrol
) LED_A_OFF(); 
 815                 hi2 
= hi 
= lo 
= idx 
= 0; 
 818         DbpString("Stopped"); 
 819         if (ledcontrol
) LED_A_OFF(); 
 822 // loop to get raw HID waveform then FSK demodulate the TAG ID from it 
 823 void CmdAWIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
) 
 825         uint8_t *dest 
= BigBuf_get_addr(); 
 828         // Configure to go in 125Khz listen mode 
 829         LFSetupFPGAForADC(95, true); 
 831         while(!BUTTON_PRESS() && !usb_poll_validate_length()) { 
 834                 if (ledcontrol
) LED_A_ON(); 
 836                 DoAcquisition_default(-1,true); 
 838                 size 
= 50*128*2; //big enough to catch 2 sequences of largest format 
 839                 idx 
= AWIDdemodFSK(dest
, &size
); 
 841                 if (idx
<=0 || size
!=96) continue; 
 843                 // 0            10            20            30              40            50              60 
 845                 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96 
 846                 // ----------------------------------------------------------------------------- 
 847                 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1 
 848                 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96 
 849                 //          |---26 bit---|    |-----117----||-------------142-------------| 
 850                 // b = format bit len, o = odd parity of last 3 bits 
 851                 // f = facility code, c = card number 
 852                 // w = wiegand parity 
 853                 // (26 bit format shown) 
 855                 //get raw ID before removing parities 
 856                 uint32_t rawLo 
= bytebits_to_byte(dest
+idx
+64,32); 
 857                 uint32_t rawHi 
= bytebits_to_byte(dest
+idx
+32,32); 
 858                 uint32_t rawHi2 
= bytebits_to_byte(dest
+idx
,32); 
 860                 size 
= removeParity(dest
, idx
+8, 4, 1, 88); 
 861                 if (size 
!= 66) continue; 
 862                 // ok valid card found! 
 865                 // 0           10         20        30          40        50        60 
 867                 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456 
 868                 // ----------------------------------------------------------------------------- 
 869                 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000 
 870                 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
 871                 // |26 bit|   |-117--| |-----142------| 
 872                 // b = format bit len, o = odd parity of last 3 bits 
 873                 // f = facility code, c = card number 
 874                 // w = wiegand parity 
 875                 // (26 bit format shown) 
 878                 uint32_t cardnum 
= 0; 
 881                 uint8_t fmtLen 
= bytebits_to_byte(dest
,8); 
 883                         fc 
= bytebits_to_byte(dest
+9, 8); 
 884                         cardnum 
= bytebits_to_byte(dest
+17, 16); 
 885                         code1 
= bytebits_to_byte(dest
+8,fmtLen
); 
 886                         Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, fc
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
); 
 888                         cardnum 
= bytebits_to_byte(dest
+8+(fmtLen
-17), 16); 
 890                         code1 
= bytebits_to_byte(dest
+8,fmtLen
-32); 
 891                         code2 
= bytebits_to_byte(dest
+8+(fmtLen
-32),32); 
 892                         Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, code2
, rawHi2
, rawHi
, rawLo
); 
 894                         code1 
= bytebits_to_byte(dest
+8,fmtLen
); 
 895                         Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
); 
 899                                 if (ledcontrol
) LED_A_OFF(); 
 906         DbpString("Stopped"); 
 907         if (ledcontrol
) LED_A_OFF(); 
 910 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
) 
 912         uint8_t *dest 
= BigBuf_get_addr(); 
 914         size_t size
=0, idx
=0; 
 915         int clk
=0, invert
=0, errCnt
=0, maxErr
=20; 
 918         // Configure to go in 125Khz listen mode 
 919         LFSetupFPGAForADC(95, true); 
 921         while(!BUTTON_PRESS() && !usb_poll_validate_length()) { 
 924                 if (ledcontrol
) LED_A_ON(); 
 926                 DoAcquisition_default(-1,true); 
 927                 size  
= BigBuf_max_traceLen(); 
 928                 //askdemod and manchester decode 
 929                 if (size 
> 16385) size 
= 16385; //big enough to catch 2 sequences of largest format 
 930                 errCnt 
= askdemod(dest
, &size
, &clk
, &invert
, maxErr
, 0, 1); 
 933                 if (errCnt
<0) continue; 
 935                         errCnt 
= Em410xDecode(dest
, &size
, &idx
, &hi
, &lo
); 
 938                                         Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)", 
 942                                           (uint32_t)(lo
&0xFFFF), 
 943                                           (uint32_t)((lo
>>16LL) & 0xFF), 
 944                                           (uint32_t)(lo 
& 0xFFFFFF)); 
 946                                         Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)", 
 949                                           (uint32_t)(lo
&0xFFFF), 
 950                                           (uint32_t)((lo
>>16LL) & 0xFF), 
 951                                           (uint32_t)(lo 
& 0xFFFFFF)); 
 955                                 if (ledcontrol
) LED_A_OFF(); 
 957                                 *low
=lo 
& 0xFFFFFFFF; 
 962                 hi 
= lo 
= size 
= idx 
= 0; 
 963                 clk 
= invert 
= errCnt 
= 0; 
 965         DbpString("Stopped"); 
 966         if (ledcontrol
) LED_A_OFF(); 
 969 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
) 
 971         uint8_t *dest 
= BigBuf_get_addr(); 
 973         uint32_t code
=0, code2
=0; 
 975         uint8_t facilitycode
=0; 
 978         uint16_t calccrc 
= 0; 
 979         // Configure to go in 125Khz listen mode 
 980         LFSetupFPGAForADC(95, true); 
 982         while(!BUTTON_PRESS() && !usb_poll_validate_length()) { 
 984                 if (ledcontrol
) LED_A_ON(); 
 985                 DoAcquisition_default(-1,true); 
 986                 //fskdemod and get start index 
 988                 idx 
= IOdemodFSK(dest
, BigBuf_max_traceLen()); 
 993                         //0           10          20          30          40          50          60 
 995                         //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 
 996                         //----------------------------------------------------------------------------- 
 997             //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11 
1000                         //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11 
1001                         //preamble      F0         E0         01         03         B6         75 
1002                         // How to calc checksum, 
1003                         // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6 
1004                         //   F0 + E0 + 01 + 03 + B6 = 28A 
1008                         //XSF(version)facility:codeone+codetwo 
1010                         if(findone
){ //only print binary if we are doing one 
1011                                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
],   dest
[idx
+1],   dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]); 
1012                                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]); 
1013                                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]); 
1014                                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]); 
1015                                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]); 
1016                                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]); 
1017                                 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]); 
1019                         code 
= bytebits_to_byte(dest
+idx
,32); 
1020                         code2 
= bytebits_to_byte(dest
+idx
+32,32); 
1021                         version 
= bytebits_to_byte(dest
+idx
+27,8); //14,4 
1022                         facilitycode 
= bytebits_to_byte(dest
+idx
+18,8); 
1023                         number 
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9 
1025                         crc 
= bytebits_to_byte(dest
+idx
+54,8); 
1026                         for (uint8_t i
=1; i
<6; ++i
) 
1027                                 calccrc 
+= bytebits_to_byte(dest
+idx
+9*i
,8); 
1029                         calccrc 
= 0xff - calccrc
; 
1031                         char *crcStr 
= (crc 
== calccrc
) ? "ok":"!crc"; 
1033             Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x)  [%02x %s]",version
,facilitycode
,number
,code
,code2
, crc
, crcStr
); 
1034                         // if we're only looking for one tag 
1036                                 if (ledcontrol
) LED_A_OFF(); 
1042                         version
=facilitycode
=0; 
1048         DbpString("Stopped"); 
1049         if (ledcontrol
) LED_A_OFF(); 
1052 /*------------------------------ 
1053  * T5555/T5557/T5567/T5577 routines 
1054  *------------------------------ 
1055  * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h  
1057  * Relevant communication times in microsecond 
1058  * To compensate antenna falling times shorten the write times 
1059  * and enlarge the gap ones. 
1060  * Q5 tags seems to have issues when these values changes.  
1063 #define START_GAP 31*8 // was 250 // SPEC:  1*8 to 50*8 - typ 15*8 (or 15fc) 
1064 #define WRITE_GAP 20*8 // was 160 // SPEC:  1*8 to 20*8 - typ 10*8 (or 10fc) 
1065 #define WRITE_0   18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc) 
1066 #define WRITE_1   50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc)  432 for T55x7; 448 for E5550 
1067 #define READ_GAP  15*8  
1069 //  VALUES TAKEN FROM EM4x function: SendForward 
1070 //  START_GAP = 440;       (55*8) cycles at 125Khz (8us = 1cycle) 
1071 //  WRITE_GAP = 128;       (16*8) 
1072 //  WRITE_1   = 256 32*8;  (32*8)  
1074 //  These timings work for 4469/4269/4305 (with the 55*8 above) 
1075 //  WRITE_0 = 23*8 , 9*8  SpinDelayUs(23*8);  
1077 // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK) 
1078 // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz 
1079 // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier) 
1080 // T0 = TIMER_CLOCK1 / 125000 = 192 
1081 // 1 Cycle = 8 microseconds(us)  == 1 field clock 
1083 void TurnReadLFOn(int delay
) { 
1084         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1085         // Give it a bit of time for the resonant antenna to settle. 
1087         // measure antenna strength. 
1088         //int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10); 
1094 // Write one bit to card 
1095 void T55xxWriteBit(int bit
) { 
1097                 TurnReadLFOn(WRITE_0
); 
1099                 TurnReadLFOn(WRITE_1
); 
1100         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1101         SpinDelayUs(WRITE_GAP
); 
1104 // Send T5577 reset command then read stream (see if we can identify the start of the stream) 
1105 void T55xxResetRead(void) { 
1107         //clear buffer now so it does not interfere with timing later 
1108         BigBuf_Clear_ext(false); 
1110         // Set up FPGA, 125kHz 
1111         LFSetupFPGAForADC(95, true); 
1113         // Trigger T55x7 in mode. 
1114         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1115         SpinDelayUs(START_GAP
); 
1117         // reset tag - op code 00 
1121         // Turn field on to read the response 
1122         TurnReadLFOn(READ_GAP
); 
1125         doT55x7Acquisition(BigBuf_max_traceLen()); 
1127         // Turn the field off 
1128         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1129         cmd_send(CMD_ACK
,0,0,0,0,0);     
1133 // Write one card block in page 0, no lock 
1134 void T55xxWriteBlockExt(uint32_t Data
, uint8_t Block
, uint32_t Pwd
, uint8_t arg
) { 
1136         bool PwdMode 
= arg 
& 0x1; 
1137         uint8_t Page 
= (arg 
& 0x2)>>1; 
1140         // Set up FPGA, 125kHz 
1141         LFSetupFPGAForADC(95, true); 
1143         // Trigger T55x7 in mode. 
1144         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1145         SpinDelayUs(START_GAP
); 
1149         T55xxWriteBit(Page
); //Page 0 
1152                 for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
1153                         T55xxWriteBit(Pwd 
& i
); 
1159         for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
1160                 T55xxWriteBit(Data 
& i
); 
1162         // Send Block number 
1163         for (i 
= 0x04; i 
!= 0; i 
>>= 1) 
1164                 T55xxWriteBit(Block 
& i
); 
1166         // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, 
1167         // so wait a little more) 
1168         TurnReadLFOn(20 * 1000); 
1169                 //could attempt to do a read to confirm write took 
1170                 // as the tag should repeat back the new block  
1171                 // until it is reset, but to confirm it we would  
1172                 // need to know the current block 0 config mode 
1175         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1179 // Write one card block in page 0, no lock 
1180 void T55xxWriteBlock(uint32_t Data
, uint8_t Block
, uint32_t Pwd
, uint8_t arg
) { 
1181         T55xxWriteBlockExt(Data
, Block
, Pwd
, arg
); 
1182         cmd_send(CMD_ACK
,0,0,0,0,0); 
1185 // Read one card block in page [page] 
1186 void T55xxReadBlock(uint16_t arg0
, uint8_t Block
, uint32_t Pwd
) { 
1188         bool PwdMode 
= arg0 
& 0x1; 
1189         uint8_t Page 
= (arg0 
& 0x2) >> 1; 
1191         bool RegReadMode 
= (Block 
== 0xFF); 
1193         //clear buffer now so it does not interfere with timing later 
1194         BigBuf_Clear_ext(false); 
1196         //make sure block is at max 7 
1199         // Set up FPGA, 125kHz to power up the tag 
1200         LFSetupFPGAForADC(95, true); 
1202         // Trigger T55x7 Direct Access Mode with start gap 
1203         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1204         SpinDelayUs(START_GAP
); 
1208         T55xxWriteBit(Page
); //Page 0 
1212                 for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
1213                         T55xxWriteBit(Pwd 
& i
); 
1215         // Send a zero bit separation 
1218         // Send Block number (if direct access mode) 
1220         for (i 
= 0x04; i 
!= 0; i 
>>= 1) 
1221                 T55xxWriteBit(Block 
& i
); 
1223         // Turn field on to read the response 
1224         TurnReadLFOn(READ_GAP
); 
1227         doT55x7Acquisition(12000); 
1229         // Turn the field off 
1230         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1231         cmd_send(CMD_ACK
,0,0,0,0,0);     
1235 void T55xxWakeUp(uint32_t Pwd
){ 
1239         // Set up FPGA, 125kHz 
1240         LFSetupFPGAForADC(95, true); 
1242         // Trigger T55x7 Direct Access Mode 
1243         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1244         SpinDelayUs(START_GAP
); 
1248         T55xxWriteBit(0); //Page 0 
1251         for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
1252                 T55xxWriteBit(Pwd 
& i
); 
1254         // Turn and leave field on to let the begin repeating transmission 
1255         TurnReadLFOn(20*1000); 
1258 /*-------------- Cloning routines -----------*/ 
1260 void WriteT55xx(uint32_t *blockdata
, uint8_t startblock
, uint8_t numblocks
) { 
1261         // write last block first and config block last (if included) 
1262         for (uint8_t i 
= numblocks
+startblock
; i 
> startblock
; i
--) 
1263                 T55xxWriteBlockExt(blockdata
[i
-1], i
-1, 0, 0); 
1266 // Copy HID id to card and setup block 0 config 
1267 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
) { 
1268         uint32_t data
[] = {0,0,0,0,0,0,0}; 
1269         uint8_t last_block 
= 0; 
1272                 // Ensure no more than 84 bits supplied 
1274                         DbpString("Tags can only have 84 bits."); 
1277                 // Build the 6 data blocks for supplied 84bit ID 
1279                 // load preamble (1D) & long format identifier (9E manchester encoded) 
1280                 data
[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 
>> 16) & 0xF) & 0xFF); 
1281                 // load raw id from hi2, hi, lo to data blocks (manchester encoded) 
1282                 data
[2] = manchesterEncode2Bytes(hi2 
& 0xFFFF); 
1283                 data
[3] = manchesterEncode2Bytes(hi 
>> 16); 
1284                 data
[4] = manchesterEncode2Bytes(hi 
& 0xFFFF); 
1285                 data
[5] = manchesterEncode2Bytes(lo 
>> 16); 
1286                 data
[6] = manchesterEncode2Bytes(lo 
& 0xFFFF); 
1288                 // Ensure no more than 44 bits supplied 
1290                         DbpString("Tags can only have 44 bits."); 
1293                 // Build the 3 data blocks for supplied 44bit ID 
1296                 data
[1] = 0x1D000000 | (manchesterEncode2Bytes(hi
) & 0xFFFFFF); 
1297                 data
[2] = manchesterEncode2Bytes(lo 
>> 16); 
1298                 data
[3] = manchesterEncode2Bytes(lo 
& 0xFFFF); 
1300         // load chip config block 
1301         data
[0] = T55x7_BITRATE_RF_50 
| T55x7_MODULATION_FSK2a 
| last_block 
<< T55x7_MAXBLOCK_SHIFT
; 
1303         //TODO add selection of chip for Q5 or T55x7 
1304         // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT; 
1307         // Program the data blocks for supplied ID 
1308         // and the block 0 for HID format 
1309         WriteT55xx(data
, 0, last_block
+1); 
1316 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
) { 
1317         uint32_t data
[] = {T55x7_BITRATE_RF_64 
| T55x7_MODULATION_FSK2a 
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
}; 
1318         //TODO add selection of chip for Q5 or T55x7 
1319         // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT; 
1322         // Program the data blocks for supplied ID 
1323         // and the block 0 config 
1324         WriteT55xx(data
, 0, 3); 
1331 // Clone Indala 64-bit tag by UID to T55x7 
1332 void CopyIndala64toT55x7(uint32_t hi
, uint32_t lo
) { 
1333         //Program the 2 data blocks for supplied 64bit UID 
1334         // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2) 
1335         uint32_t data
[] = { T55x7_BITRATE_RF_32 
| T55x7_MODULATION_PSK1 
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
}; 
1336         //TODO add selection of chip for Q5 or T55x7 
1337         // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT; 
1339         WriteT55xx(data
, 0, 3); 
1340         //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) 
1341         //      T5567WriteBlock(0x603E1042,0); 
1344 // Clone Indala 224-bit tag by UID to T55x7 
1345 void CopyIndala224toT55x7(uint32_t uid1
, uint32_t uid2
, uint32_t uid3
, uint32_t uid4
, uint32_t uid5
, uint32_t uid6
, uint32_t uid7
) { 
1346         //Program the 7 data blocks for supplied 224bit UID 
1347         uint32_t data
[] = {0, uid1
, uid2
, uid3
, uid4
, uid5
, uid6
, uid7
}; 
1348         // and the block 0 for Indala224 format  
1349         //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) 
1350         data
[0] = T55x7_BITRATE_RF_32 
| T55x7_MODULATION_PSK1 
| (7 << T55x7_MAXBLOCK_SHIFT
); 
1351         //TODO add selection of chip for Q5 or T55x7 
1352         // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT; 
1353         WriteT55xx(data
, 0, 8); 
1354         //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) 
1355         //      T5567WriteBlock(0x603E10E2,0); 
1358 // clone viking tag to T55xx 
1359 void CopyVikingtoT55xx(uint32_t block1
, uint32_t block2
, uint8_t Q5
) { 
1360         uint32_t data
[] = {T55x7_BITRATE_RF_32 
| T55x7_MODULATION_MANCHESTER 
| (2 << T55x7_MAXBLOCK_SHIFT
), block1
, block2
}; 
1361         if (Q5
) data
[0] = (32 << T5555_BITRATE_SHIFT
) | T5555_MODULATION_MANCHESTER 
| 2 << T5555_MAXBLOCK_SHIFT
; 
1362         // Program the data blocks for supplied ID and the block 0 config 
1363         WriteT55xx(data
, 0, 3); 
1365         cmd_send(CMD_ACK
,0,0,0,0,0); 
1368 // Define 9bit header for EM410x tags 
1369 #define EM410X_HEADER           0x1FF 
1370 #define EM410X_ID_LENGTH        40 
1372 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
) { 
1374         uint64_t id 
= EM410X_HEADER
; 
1375         uint64_t rev_id 
= 0;    // reversed ID 
1376         int c_parity
[4];        // column parity 
1377         int r_parity 
= 0;       // row parity 
1380         // Reverse ID bits given as parameter (for simpler operations) 
1381         for (i 
= 0; i 
< EM410X_ID_LENGTH
; ++i
) { 
1383                         rev_id 
= (rev_id 
<< 1) | (id_lo 
& 1); 
1386                         rev_id 
= (rev_id 
<< 1) | (id_hi 
& 1); 
1391         for (i 
= 0; i 
< EM410X_ID_LENGTH
; ++i
) { 
1392                 id_bit 
= rev_id 
& 1; 
1395                         // Don't write row parity bit at start of parsing 
1397                                 id 
= (id 
<< 1) | r_parity
; 
1398                         // Start counting parity for new row 
1405                 // First elements in column? 
1407                         // Fill out first elements 
1408                         c_parity
[i
] = id_bit
; 
1410                         // Count column parity 
1411                         c_parity
[i 
% 4] ^= id_bit
; 
1414                 id 
= (id 
<< 1) | id_bit
; 
1418         // Insert parity bit of last row 
1419         id 
= (id 
<< 1) | r_parity
; 
1421         // Fill out column parity at the end of tag 
1422         for (i 
= 0; i 
< 4; ++i
) 
1423                 id 
= (id 
<< 1) | c_parity
[i
]; 
1428         Dbprintf("Started writing %s tag ...", card 
? "T55x7":"T5555"); 
1432         uint32_t data
[] = {0, (uint32_t)(id
>>32), id 
& 0xFFFFFFFF}; 
1434         clock 
= (card 
& 0xFF00) >> 8; 
1435         clock 
= (clock 
== 0) ? 64 : clock
; 
1436         Dbprintf("Clock rate: %d", clock
); 
1437         if (card 
& 0xFF) { //t55x7 
1438                 clock 
= GetT55xxClockBit(clock
); 
1440                         Dbprintf("Invalid clock rate: %d", clock
); 
1443                 data
[0] = clock 
| T55x7_MODULATION_MANCHESTER 
| (2 << T55x7_MAXBLOCK_SHIFT
); 
1444         } else { //t5555 (Q5) 
1445                 clock 
= (clock
-2)>>1;  //n = (RF-2)/2 
1446                 data
[0] = (clock 
<< T5555_BITRATE_SHIFT
) | T5555_MODULATION_MANCHESTER 
| (2 << T5555_MAXBLOCK_SHIFT
); 
1449         WriteT55xx(data
, 0, 3); 
1452         Dbprintf("Tag %s written with 0x%08x%08x\n", 
1453                         card 
? "T55x7":"T5555", 
1454                         (uint32_t)(id 
>> 32), 
1458 //----------------------------------- 
1459 // EM4469 / EM4305 routines 
1460 //----------------------------------- 
1461 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored 
1462 #define FWD_CMD_WRITE 0xA 
1463 #define FWD_CMD_READ 0x9 
1464 #define FWD_CMD_DISABLE 0x5 
1466 uint8_t forwardLink_data
[64]; //array of forwarded bits 
1467 uint8_t * forward_ptr
; //ptr for forward message preparation 
1468 uint8_t fwd_bit_sz
; //forwardlink bit counter 
1469 uint8_t * fwd_write_ptr
; //forwardlink bit pointer 
1471 //==================================================================== 
1472 // prepares command bits 
1474 //==================================================================== 
1475 //-------------------------------------------------------------------- 
1476 //  VALUES TAKEN FROM EM4x function: SendForward 
1477 //  START_GAP = 440;       (55*8) cycles at 125Khz (8us = 1cycle) 
1478 //  WRITE_GAP = 128;       (16*8) 
1479 //  WRITE_1   = 256 32*8;  (32*8)  
1481 //  These timings work for 4469/4269/4305 (with the 55*8 above) 
1482 //  WRITE_0 = 23*8 , 9*8  SpinDelayUs(23*8);  
1484 uint8_t Prepare_Cmd( uint8_t cmd 
) { 
1486         *forward_ptr
++ = 0; //start bit 
1487         *forward_ptr
++ = 0; //second pause for 4050 code 
1489         *forward_ptr
++ = cmd
; 
1491         *forward_ptr
++ = cmd
; 
1493         *forward_ptr
++ = cmd
; 
1495         *forward_ptr
++ = cmd
; 
1497         return 6; //return number of emited bits 
1500 //==================================================================== 
1501 // prepares address bits 
1503 //==================================================================== 
1504 uint8_t Prepare_Addr( uint8_t addr 
) { 
1506         register uint8_t line_parity
; 
1511                 *forward_ptr
++ = addr
; 
1512                 line_parity 
^= addr
; 
1516         *forward_ptr
++ = (line_parity 
& 1); 
1518         return 7; //return number of emited bits 
1521 //==================================================================== 
1522 // prepares data bits intreleaved with parity bits 
1524 //==================================================================== 
1525 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) { 
1527         register uint8_t line_parity
; 
1528         register uint8_t column_parity
; 
1529         register uint8_t i
, j
; 
1530         register uint16_t data
; 
1535         for(i
=0; i
<4; i
++) { 
1537                 for(j
=0; j
<8; j
++) { 
1538                         line_parity 
^= data
; 
1539                         column_parity 
^= (data 
& 1) << j
; 
1540                         *forward_ptr
++ = data
; 
1543                 *forward_ptr
++ = line_parity
; 
1548         for(j
=0; j
<8; j
++) { 
1549                 *forward_ptr
++ = column_parity
; 
1550                 column_parity 
>>= 1; 
1554         return 45; //return number of emited bits 
1557 //==================================================================== 
1558 // Forward Link send function 
1559 // Requires: forwarLink_data filled with valid bits (1 bit per byte) 
1560 // fwd_bit_count set with number of bits to be sent 
1561 //==================================================================== 
1562 void SendForward(uint8_t fwd_bit_count
) { 
1564         fwd_write_ptr 
= forwardLink_data
; 
1565         fwd_bit_sz 
= fwd_bit_count
; 
1569         // Set up FPGA, 125kHz 
1570         LFSetupFPGAForADC(95, true); 
1572         // force 1st mod pulse (start gap must be longer for 4305) 
1573         fwd_bit_sz
--; //prepare next bit modulation 
1575         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1576         SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 
1577         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
);//field on 
1578         SpinDelayUs(16*8); //16 cycles on (8us each) 
1580         // now start writting 
1581         while(fwd_bit_sz
-- > 0) { //prepare next bit modulation 
1582                 if(((*fwd_write_ptr
++) & 1) == 1) 
1583                         SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) 
1585                         //These timings work for 4469/4269/4305 (with the 55*8 above) 
1586                         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1587                         SpinDelayUs(23*8); //16-4 cycles off (8us each) 
1588                         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
);//field on 
1589                         SpinDelayUs(9*8); //16 cycles on (8us each) 
1594 void EM4xLogin(uint32_t Password
) { 
1596         uint8_t fwd_bit_count
; 
1598         forward_ptr 
= forwardLink_data
; 
1599         fwd_bit_count 
= Prepare_Cmd( FWD_CMD_LOGIN 
); 
1600         fwd_bit_count 
+= Prepare_Data( Password
&0xFFFF, Password
>>16 ); 
1602         SendForward(fwd_bit_count
); 
1604         //Wait for command to complete 
1608 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) { 
1610         uint8_t fwd_bit_count
; 
1611         uint8_t *dest 
= BigBuf_get_addr(); 
1612         uint16_t bufsize 
= BigBuf_max_traceLen(); 
1615         //clear buffer now so it does not interfere with timing later 
1616         BigBuf_Clear_ext(false); 
1618         //If password mode do login 
1619         if (PwdMode 
== 1) EM4xLogin(Pwd
); 
1621         forward_ptr 
= forwardLink_data
; 
1622         fwd_bit_count 
= Prepare_Cmd( FWD_CMD_READ 
); 
1623         fwd_bit_count 
+= Prepare_Addr( Address 
); 
1625         // Connect the A/D to the peak-detected low-frequency path. 
1626         SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); 
1627         // Now set up the SSC to get the ADC samples that are now streaming at us. 
1630         SendForward(fwd_bit_count
); 
1632         // Now do the acquisition 
1635                 if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
1636                         AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
1638                 if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
1639                         dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
1641                         if (i 
>= bufsize
) break; 
1645         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off     
1646         cmd_send(CMD_ACK
,0,0,0,0,0); 
1650 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) { 
1652         uint8_t fwd_bit_count
; 
1654         //If password mode do login 
1655         if (PwdMode 
== 1) EM4xLogin(Pwd
); 
1657         forward_ptr 
= forwardLink_data
; 
1658         fwd_bit_count 
= Prepare_Cmd( FWD_CMD_WRITE 
); 
1659         fwd_bit_count 
+= Prepare_Addr( Address 
); 
1660         fwd_bit_count 
+= Prepare_Data( Data
&0xFFFF, Data
>>16 ); 
1662         SendForward(fwd_bit_count
); 
1664         //Wait for write to complete 
1666         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off