]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
ead92c4865e9e5d77e2b20f8c4b0d4a9695584f7
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12 #include "usb_cdc.h"
13 //#include "cmd.h"
14 #include "proxmark3.h"
15 #include "apps.h"
16 #include "util.h"
17 #include "printf.h"
18 #include "string.h"
19 #include <stdarg.h>
20 #include "legicrf.h"
21 #include "hitag2.h"
22 #include "hitagS.h"
23 #include "lfsampling.h"
24 #include "BigBuf.h"
25 #include "mifareutil.h"
26 #include "pcf7931.h"
27
28 #ifdef WITH_LCD
29 #include "LCD.h"
30 #endif
31
32 // Craig Young - 14a stand-alone code
33 #ifdef WITH_ISO14443a_StandAlone
34 #include "iso14443a.h"
35 #include "protocols.h"
36 #endif
37
38 //=============================================================================
39 // A buffer where we can queue things up to be sent through the FPGA, for
40 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
41 // is the order in which they go out on the wire.
42 //=============================================================================
43
44 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
45 uint8_t ToSend[TOSEND_BUFFER_SIZE];
46 int ToSendMax = 0;
47 static int ToSendBit;
48 struct common_area common_area __attribute__((section(".commonarea")));
49
50 void ToSendReset(void)
51 {
52 ToSendMax = -1;
53 ToSendBit = 8;
54 }
55
56 void ToSendStuffBit(int b) {
57 if(ToSendBit >= 8) {
58 ++ToSendMax;
59 ToSend[ToSendMax] = 0;
60 ToSendBit = 0;
61 }
62
63 if(b)
64 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
65
66 ++ToSendBit;
67
68 if(ToSendMax >= sizeof(ToSend)) {
69 ToSendBit = 0;
70 DbpString("ToSendStuffBit overflowed!");
71 }
72 }
73
74 void PrintToSendBuffer(void){
75 DbpString("Printing ToSendBuffer:");
76 Dbhexdump(ToSendMax, ToSend, 0);
77 }
78
79 //=============================================================================
80 // Debug print functions, to go out over USB, to the usual PC-side client.
81 //=============================================================================
82
83 void DbpStringEx(char *str, uint32_t cmd){
84 byte_t len = strlen(str);
85 cmd_send(CMD_DEBUG_PRINT_STRING,len, cmd,0,(byte_t*)str,len);
86 }
87
88 void DbpString(char *str) {
89 DbpStringEx(str, 0);
90 }
91
92 #if 0
93 void DbpIntegers(int x1, int x2, int x3) {
94 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
95 }
96 #endif
97 void DbprintfEx(uint32_t cmd, const char *fmt, ...) {
98 // should probably limit size here; oh well, let's just use a big buffer
99 char output_string[128] = {0x00};
100 va_list ap;
101
102 va_start(ap, fmt);
103 kvsprintf(fmt, output_string, 10, ap);
104 va_end(ap);
105
106 DbpStringEx(output_string, cmd);
107 }
108
109 void Dbprintf(const char *fmt, ...) {
110 // should probably limit size here; oh well, let's just use a big buffer
111 char output_string[128] = {0x00};
112 va_list ap;
113
114 va_start(ap, fmt);
115 kvsprintf(fmt, output_string, 10, ap);
116 va_end(ap);
117
118 DbpString(output_string);
119 }
120
121 // prints HEX & ASCII
122 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
123 int l=0, i;
124 char ascii[9];
125
126 while (len>0) {
127
128 l = (len>8) ? 8 : len;
129
130 memcpy(ascii,d,l);
131 ascii[l]=0;
132
133 // filter safe ascii
134 for (i=0; i<l; ++i)
135 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
136
137 if (bAsci)
138 Dbprintf("%-8s %*D",ascii,l,d," ");
139 else
140 Dbprintf("%*D",l,d," ");
141
142 len -= 8;
143 d += 8;
144 }
145 }
146
147 //-----------------------------------------------------------------------------
148 // Read an ADC channel and block till it completes, then return the result
149 // in ADC units (0 to 1023). Also a routine to average 32 samples and
150 // return that.
151 //-----------------------------------------------------------------------------
152 static int ReadAdc(int ch)
153 {
154 uint32_t d;
155
156 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
157 AT91C_BASE_ADC->ADC_MR =
158 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
159 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
160 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
161
162 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
163 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
164 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
165 //
166 // The maths are:
167 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
168 //
169 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
170 //
171 // Note: with the "historic" values in the comments above, the error was 34% !!!
172
173 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
174
175 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
176
177 while (!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) ;
178
179 d = AT91C_BASE_ADC->ADC_CDR[ch];
180 return d;
181 }
182
183 int AvgAdc(int ch) // was static - merlok
184 {
185 int i;
186 int a = 0;
187
188 for(i = 0; i < 32; ++i)
189 a += ReadAdc(ch);
190
191 return (a + 15) >> 5;
192 }
193
194
195 void MeasureAntennaTuning(void) {
196
197 uint8_t* LF_Results = BigBuf_malloc(256);
198 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0;
199 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
200 LED_B_ON();
201
202 /*
203 * Sweeps the useful LF range of the proxmark from
204 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
205 * read the voltage in the antenna, the result left
206 * in the buffer is a graph which should clearly show
207 * the resonating frequency of your LF antenna
208 * ( hopefully around 95 if it is tuned to 125kHz!)
209 */
210
211 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
212 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
213
214 for (i = 255; i >= 19; i--) {
215 WDT_HIT();
216 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
217 SpinDelay(20);
218 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
219 if (i==95) vLf125 = adcval; // voltage at 125Khz
220 if (i==89) vLf134 = adcval; // voltage at 134Khz
221
222 LF_Results[i] = adcval >> 8; // scale int to fit in byte for graphing purposes
223 if(LF_Results[i] > peak) {
224 peakv = adcval;
225 peak = LF_Results[i];
226 peakf = i;
227 }
228 }
229
230 // for (i = 18; i >= 0; i--)
231 // LF_Results[i] = 0;
232
233 LED_A_ON();
234 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
235 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
236 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
237 SpinDelay(20);
238 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
239
240 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134 << 16), vHf, peakf | (peakv << 16), LF_Results, 256);
241 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
242
243 BigBuf_free(); BigBuf_Clear_ext(false);
244 LEDsoff();
245 }
246
247 void MeasureAntennaTuningHf(void) {
248 int vHf = 0; // in mV
249 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
250 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
251 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
252
253 while ( !BUTTON_PRESS() ){
254 SpinDelay(20);
255 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
256 //Dbprintf("%d mV",vHf);
257 DbprintfEx(CMD_MEASURE_ANTENNA_TUNING_HF, "%d mV",vHf);
258 }
259 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
260 DbpString("cancelled");
261 }
262
263
264 void ReadMem(int addr) {
265 const uint8_t *data = ((uint8_t *)addr);
266
267 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
268 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
269 }
270
271 /* osimage version information is linked in */
272 extern struct version_information version_information;
273 /* bootrom version information is pointed to from _bootphase1_version_pointer */
274 extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
275 void SendVersion(void)
276 {
277 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
278 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
279
280 /* Try to find the bootrom version information. Expect to find a pointer at
281 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
282 * pointer, then use it.
283 */
284 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
285
286 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
287 strcat(VersionString, "bootrom version information appears invalid\n");
288 } else {
289 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
290 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
291 }
292
293 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
294 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
295
296 FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
297 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
298
299 FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
300 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
301
302 // Send Chip ID and used flash memory
303 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
304 uint32_t compressed_data_section_size = common_area.arg1;
305 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
306 }
307
308 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
309 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
310 void printUSBSpeed(void)
311 {
312 Dbprintf("USB Speed:");
313 Dbprintf(" Sending USB packets to client...");
314
315 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
316 uint8_t *test_data = BigBuf_get_addr();
317 uint32_t end_time;
318
319 uint32_t start_time = end_time = GetTickCount();
320 uint32_t bytes_transferred = 0;
321
322 LED_B_ON();
323 while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
324 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
325 end_time = GetTickCount();
326 bytes_transferred += USB_CMD_DATA_SIZE;
327 }
328 LED_B_OFF();
329
330 Dbprintf(" Time elapsed: %dms", end_time - start_time);
331 Dbprintf(" Bytes transferred: %d", bytes_transferred);
332 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
333 1000 * bytes_transferred / (end_time - start_time));
334
335 }
336
337 /**
338 * Prints runtime information about the PM3.
339 **/
340 void SendStatus(void) {
341 BigBuf_print_status();
342 Fpga_print_status();
343 printConfig(); //LF Sampling config
344 printUSBSpeed();
345 Dbprintf("Various");
346 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL);
347 Dbprintf(" ToSendMax..........%d", ToSendMax);
348 Dbprintf(" ToSendBit..........%d", ToSendBit);
349 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE);
350
351 cmd_send(CMD_ACK,1,0,0,0,0);
352 }
353
354 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
355
356 #define OPTS 2
357 void StandAloneMode()
358 {
359 DbpString("Stand-alone mode! No PC necessary.");
360 // Oooh pretty -- notify user we're in elite samy mode now
361 LED(LED_RED, 200);
362 LED(LED_ORANGE, 200);
363 LED(LED_GREEN, 200);
364 LED(LED_ORANGE, 200);
365 LED(LED_RED, 200);
366 LED(LED_ORANGE, 200);
367 LED(LED_GREEN, 200);
368 LED(LED_ORANGE, 200);
369 LED(LED_RED, 200);
370 }
371 #endif
372
373 #ifdef WITH_ISO14443a_StandAlone
374 void StandAloneMode14a()
375 {
376 StandAloneMode();
377 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
378
379 int selected = 0;
380 int playing = 0, iGotoRecord = 0, iGotoClone = 0;
381 int cardRead[OPTS] = {0};
382 uint8_t readUID[10] = {0};
383 uint32_t uid_1st[OPTS]={0};
384 uint32_t uid_2nd[OPTS]={0};
385 uint32_t uid_tmp1 = 0;
386 uint32_t uid_tmp2 = 0;
387 iso14a_card_select_t hi14a_card[OPTS];
388
389 uint8_t params = (MAGIC_SINGLE | MAGIC_DATAIN);
390
391 LED(selected + 1, 0);
392
393 for (;;)
394 {
395 usb_poll();
396 WDT_HIT();
397 SpinDelay(300);
398
399 if (iGotoRecord == 1 || cardRead[selected] == 0)
400 {
401 iGotoRecord = 0;
402 LEDsoff();
403 LED(selected + 1, 0);
404 LED(LED_RED2, 0);
405
406 // record
407 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
408 /* need this delay to prevent catching some weird data */
409 SpinDelay(500);
410 /* Code for reading from 14a tag */
411 uint8_t uid[10] = {0};
412 uint32_t cuid = 0;
413 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
414
415 for ( ; ; )
416 {
417 WDT_HIT();
418 if (BUTTON_PRESS()) {
419 if (cardRead[selected]) {
420 Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
421 break;
422 }
423 else if (cardRead[(selected+1)%OPTS]) {
424 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
425 selected = (selected+1)%OPTS;
426 break; // playing = 1;
427 }
428 else {
429 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
430 SpinDelay(300);
431 }
432 }
433 if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid, true, 0))
434 continue;
435 else
436 {
437 Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
438 memcpy(readUID,uid,10*sizeof(uint8_t));
439 uint8_t *dst = (uint8_t *)&uid_tmp1;
440 // Set UID byte order
441 for (int i=0; i<4; i++)
442 dst[i] = uid[3-i];
443 dst = (uint8_t *)&uid_tmp2;
444 for (int i=0; i<4; i++)
445 dst[i] = uid[7-i];
446 if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
447 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
448 }
449 else {
450 if (uid_tmp2) {
451 Dbprintf("Bank[%d] received a 7-byte UID",selected);
452 uid_1st[selected] = (uid_tmp1)>>8;
453 uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
454 }
455 else {
456 Dbprintf("Bank[%d] received a 4-byte UID",selected);
457 uid_1st[selected] = uid_tmp1;
458 uid_2nd[selected] = uid_tmp2;
459 }
460 break;
461 }
462 }
463 }
464 Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
465 Dbprintf("SAK = %02X",hi14a_card[selected].sak);
466 LEDsoff();
467 LED(LED_GREEN, 200);
468 LED(LED_ORANGE, 200);
469 LED(LED_GREEN, 200);
470 LED(LED_ORANGE, 200);
471
472 LEDsoff();
473 LED(selected + 1, 0);
474
475 // Next state is replay:
476 playing = 1;
477
478 cardRead[selected] = 1;
479 }
480 /* MF Classic UID clone */
481 else if (iGotoClone==1)
482 {
483 iGotoClone=0;
484 LEDsoff();
485 LED(selected + 1, 0);
486 LED(LED_ORANGE, 250);
487
488 // record
489 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
490
491 // wait for button to be released
492 // Delay cloning until card is in place
493 while(BUTTON_PRESS())
494 WDT_HIT();
495
496 Dbprintf("Starting clone. [Bank: %u]", selected);
497 // need this delay to prevent catching some weird data
498 SpinDelay(500);
499 // Begin clone function here:
500 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
501 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
502 memcpy(c.d.asBytes, data, 16);
503 SendCommand(&c);
504
505 Block read is similar:
506 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
507 We need to imitate that call with blockNo 0 to set a uid.
508
509 The get and set commands are handled in this file:
510 // Work with "magic Chinese" card
511 case CMD_MIFARE_CSETBLOCK:
512 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
513 break;
514 case CMD_MIFARE_CGETBLOCK:
515 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
516 break;
517
518 mfCSetUID provides example logic for UID set workflow:
519 -Read block0 from card in field with MifareCGetBlock()
520 -Configure new values without replacing reserved bytes
521 memcpy(block0, uid, 4); // Copy UID bytes from byte array
522 // Mifare UID BCC
523 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
524 Bytes 5-7 are reserved SAK and ATQA for mifare classic
525 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
526 */
527 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
528 // arg0 = Flags, arg1=blockNo
529 MifareCGetBlock(params, 0, oldBlock0);
530 if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
531 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
532 playing = 1;
533 }
534 else {
535 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
536 memcpy(newBlock0,oldBlock0,16);
537 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
538
539 newBlock0[0] = uid_1st[selected]>>24;
540 newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
541 newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
542 newBlock0[3] = 0xFF & (uid_1st[selected]);
543 newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
544
545 // arg0 = workFlags, arg1 = blockNo, datain
546 MifareCSetBlock(params, 0, newBlock0);
547 MifareCGetBlock(params, 0, testBlock0);
548
549 if (memcmp(testBlock0, newBlock0, 16)==0) {
550 DbpString("Cloned successfull!");
551 cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it
552 playing = 0;
553 iGotoRecord = 1;
554 selected = (selected + 1) % OPTS;
555 } else {
556 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
557 playing = 1;
558 }
559 }
560 LEDsoff();
561 LED(selected + 1, 0);
562 }
563 // Change where to record (or begin playing)
564 else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
565 {
566 LEDsoff();
567 LED(selected + 1, 0);
568
569 // Begin transmitting
570 if (playing)
571 {
572 LED(LED_GREEN, 0);
573 DbpString("Playing");
574 for ( ; ; ) {
575 WDT_HIT();
576 int button_action = BUTTON_HELD(1000);
577 if (button_action == 0) { // No button action, proceed with sim
578 uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
579 uint8_t flags = ( uid_2nd[selected] > 0x00 ) ? FLAG_7B_UID_IN_DATA : FLAG_4B_UID_IN_DATA;
580 num_to_bytes(uid_1st[selected], 3, data);
581 num_to_bytes(uid_2nd[selected], 4, data);
582
583 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
584 if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
585 DbpString("Mifare Classic");
586 SimulateIso14443aTag(1, flags, data); // Mifare Classic
587 }
588 else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
589 DbpString("Mifare Ultralight");
590 SimulateIso14443aTag(2, flags, data); // Mifare Ultralight
591 }
592 else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
593 DbpString("Mifare DESFire");
594 SimulateIso14443aTag(3, flags, data); // Mifare DESFire
595 }
596 else {
597 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
598 SimulateIso14443aTag(1, flags, data);
599 }
600 }
601 else if (button_action == BUTTON_SINGLE_CLICK) {
602 selected = (selected + 1) % OPTS;
603 Dbprintf("Done playing. Switching to record mode on bank %d",selected);
604 iGotoRecord = 1;
605 break;
606 }
607 else if (button_action == BUTTON_HOLD) {
608 Dbprintf("Playtime over. Begin cloning...");
609 iGotoClone = 1;
610 break;
611 }
612 WDT_HIT();
613 }
614
615 /* We pressed a button so ignore it here with a delay */
616 SpinDelay(300);
617 LEDsoff();
618 LED(selected + 1, 0);
619 }
620 else
621 while(BUTTON_PRESS())
622 WDT_HIT();
623 }
624 }
625 }
626 #elif WITH_LF
627 // samy's sniff and repeat routine
628 void SamyRun()
629 {
630 StandAloneMode();
631 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
632
633 int high[OPTS], low[OPTS];
634 int selected = 0;
635 int playing = 0;
636 int cardRead = 0;
637
638 // Turn on selected LED
639 LED(selected + 1, 0);
640
641 for (;;) {
642 usb_poll();
643 WDT_HIT();
644
645 // Was our button held down or pressed?
646 int button_pressed = BUTTON_HELD(1000);
647 SpinDelay(300);
648
649 // Button was held for a second, begin recording
650 if (button_pressed > 0 && cardRead == 0)
651 {
652 LEDsoff();
653 LED(selected + 1, 0);
654 LED(LED_RED2, 0);
655
656 // record
657 DbpString("Starting recording");
658
659 // wait for button to be released
660 while(BUTTON_PRESS())
661 WDT_HIT();
662
663 /* need this delay to prevent catching some weird data */
664 SpinDelay(500);
665
666 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
667 Dbprintf("Recorded %x %x %08x", selected, high[selected], low[selected]);
668
669 LEDsoff();
670 LED(selected + 1, 0);
671 // Finished recording
672 // If we were previously playing, set playing off
673 // so next button push begins playing what we recorded
674 playing = 0;
675 cardRead = 1;
676 }
677 else if (button_pressed > 0 && cardRead == 1) {
678 LEDsoff();
679 LED(selected + 1, 0);
680 LED(LED_ORANGE, 0);
681
682 // record
683 Dbprintf("Cloning %x %x %08x", selected, high[selected], low[selected]);
684
685 // wait for button to be released
686 while(BUTTON_PRESS())
687 WDT_HIT();
688
689 /* need this delay to prevent catching some weird data */
690 SpinDelay(500);
691
692 CopyHIDtoT55x7(0, high[selected], low[selected], 0);
693 Dbprintf("Cloned %x %x %08x", selected, high[selected], low[selected]);
694
695 LEDsoff();
696 LED(selected + 1, 0);
697 // Finished recording
698
699 // If we were previously playing, set playing off
700 // so next button push begins playing what we recorded
701 playing = 0;
702 cardRead = 0;
703 }
704
705 // Change where to record (or begin playing)
706 else if (button_pressed) {
707 // Next option if we were previously playing
708 if (playing)
709 selected = (selected + 1) % OPTS;
710 playing = !playing;
711
712 LEDsoff();
713 LED(selected + 1, 0);
714
715 // Begin transmitting
716 if (playing)
717 {
718 LED(LED_GREEN, 0);
719 DbpString("Playing");
720 // wait for button to be released
721 while(BUTTON_PRESS())
722 WDT_HIT();
723
724 Dbprintf("%x %x %08x", selected, high[selected], low[selected]);
725 CmdHIDsimTAG(high[selected], low[selected], 0);
726 DbpString("Done playing");
727
728 if (BUTTON_HELD(1000) > 0) {
729 DbpString("Exiting");
730 LEDsoff();
731 return;
732 }
733
734 /* We pressed a button so ignore it here with a delay */
735 SpinDelay(300);
736
737 // when done, we're done playing, move to next option
738 selected = (selected + 1) % OPTS;
739 playing = !playing;
740 LEDsoff();
741 LED(selected + 1, 0);
742 }
743 else
744 while(BUTTON_PRESS())
745 WDT_HIT();
746 }
747 }
748 }
749
750 #endif
751 /*
752 OBJECTIVE
753 Listen and detect an external reader. Determine the best location
754 for the antenna.
755
756 INSTRUCTIONS:
757 Inside the ListenReaderField() function, there is two mode.
758 By default, when you call the function, you will enter mode 1.
759 If you press the PM3 button one time, you will enter mode 2.
760 If you press the PM3 button a second time, you will exit the function.
761
762 DESCRIPTION OF MODE 1:
763 This mode just listens for an external reader field and lights up green
764 for HF and/or red for LF. This is the original mode of the detectreader
765 function.
766
767 DESCRIPTION OF MODE 2:
768 This mode will visually represent, using the LEDs, the actual strength of the
769 current compared to the maximum current detected. Basically, once you know
770 what kind of external reader is present, it will help you spot the best location to place
771 your antenna. You will probably not get some good results if there is a LF and a HF reader
772 at the same place! :-)
773
774 LIGHT SCHEME USED:
775 */
776 static const char LIGHT_SCHEME[] = {
777 0x0, /* ---- | No field detected */
778 0x1, /* X--- | 14% of maximum current detected */
779 0x2, /* -X-- | 29% of maximum current detected */
780 0x4, /* --X- | 43% of maximum current detected */
781 0x8, /* ---X | 57% of maximum current detected */
782 0xC, /* --XX | 71% of maximum current detected */
783 0xE, /* -XXX | 86% of maximum current detected */
784 0xF, /* XXXX | 100% of maximum current detected */
785 };
786 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
787
788 void ListenReaderField(int limit) {
789 #define LF_ONLY 1
790 #define HF_ONLY 2
791 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
792
793 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
794 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
795 int mode=1, display_val, display_max, i;
796
797 // switch off FPGA - we don't want to measure our own signal
798 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
799 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
800
801 LEDsoff();
802
803 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
804
805 if(limit != HF_ONLY) {
806 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
807 lf_baseline = lf_av;
808 }
809
810 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
811
812 if (limit != LF_ONLY) {
813 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
814 hf_baseline = hf_av;
815 }
816
817 for(;;) {
818 if (BUTTON_PRESS()) {
819 SpinDelay(500);
820 switch (mode) {
821 case 1:
822 mode=2;
823 DbpString("Signal Strength Mode");
824 break;
825 case 2:
826 default:
827 DbpString("Stopped");
828 LEDsoff();
829 return;
830 break;
831 }
832 }
833 WDT_HIT();
834
835 if (limit != HF_ONLY) {
836 if(mode == 1) {
837 if (ABS(lf_av - lf_baseline) > REPORT_CHANGE)
838 LED_D_ON();
839 else
840 LED_D_OFF();
841 }
842
843 lf_av_new = AvgAdc(ADC_CHAN_LF);
844 // see if there's a significant change
845 if(ABS(lf_av - lf_av_new) > REPORT_CHANGE) {
846 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
847 lf_av = lf_av_new;
848 if (lf_av > lf_max)
849 lf_max = lf_av;
850 }
851 }
852
853 if (limit != LF_ONLY) {
854 if (mode == 1){
855 if (ABS(hf_av - hf_baseline) > REPORT_CHANGE)
856 LED_B_ON();
857 else
858 LED_B_OFF();
859 }
860
861 hf_av_new = AvgAdc(ADC_CHAN_HF);
862 // see if there's a significant change
863 if(ABS(hf_av - hf_av_new) > REPORT_CHANGE) {
864 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
865 hf_av = hf_av_new;
866 if (hf_av > hf_max)
867 hf_max = hf_av;
868 }
869 }
870
871 if(mode == 2) {
872 if (limit == LF_ONLY) {
873 display_val = lf_av;
874 display_max = lf_max;
875 } else if (limit == HF_ONLY) {
876 display_val = hf_av;
877 display_max = hf_max;
878 } else { /* Pick one at random */
879 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
880 display_val = hf_av;
881 display_max = hf_max;
882 } else {
883 display_val = lf_av;
884 display_max = lf_max;
885 }
886 }
887 for (i=0; i<LIGHT_LEN; i++) {
888 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
889 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
890 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
891 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
892 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
893 break;
894 }
895 }
896 }
897 }
898 }
899
900 void UsbPacketReceived(uint8_t *packet, int len)
901 {
902 UsbCommand *c = (UsbCommand *)packet;
903
904 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
905
906 switch(c->cmd) {
907 #ifdef WITH_LF
908 case CMD_SET_LF_SAMPLING_CONFIG:
909 setSamplingConfig((sample_config *) c->d.asBytes);
910 break;
911 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
912 cmd_send(CMD_ACK, SampleLF(c->arg[0]),0,0,0,0);
913 break;
914 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
915 ModThenAcquireRawAdcSamples125k(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
916 break;
917 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
918 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
919 break;
920 case CMD_HID_DEMOD_FSK:
921 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
922 break;
923 case CMD_HID_SIM_TAG:
924 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
925 break;
926 case CMD_FSK_SIM_TAG:
927 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
928 break;
929 case CMD_ASK_SIM_TAG:
930 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
931 break;
932 case CMD_PSK_SIM_TAG:
933 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
934 break;
935 case CMD_HID_CLONE_TAG:
936 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
937 break;
938 case CMD_IO_DEMOD_FSK:
939 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
940 break;
941 case CMD_IO_CLONE_TAG:
942 CopyIOtoT55x7(c->arg[0], c->arg[1]);
943 break;
944 case CMD_EM410X_DEMOD:
945 CmdEM410xdemod(c->arg[0], 0, 0, 1);
946 break;
947 case CMD_EM410X_WRITE_TAG:
948 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
949 break;
950 case CMD_READ_TI_TYPE:
951 ReadTItag();
952 break;
953 case CMD_WRITE_TI_TYPE:
954 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
955 break;
956 case CMD_SIMULATE_TAG_125K:
957 LED_A_ON();
958 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
959 LED_A_OFF();
960 break;
961 case CMD_LF_SIMULATE_BIDIR:
962 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
963 break;
964 case CMD_INDALA_CLONE_TAG:
965 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
966 break;
967 case CMD_INDALA_CLONE_TAG_L:
968 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
969 break;
970 case CMD_T55XX_READ_BLOCK:
971 T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
972 break;
973 case CMD_T55XX_WRITE_BLOCK:
974 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
975 break;
976 case CMD_T55XX_WAKEUP:
977 T55xxWakeUp(c->arg[0]);
978 break;
979 case CMD_T55XX_RESET_READ:
980 T55xxResetRead();
981 break;
982 case CMD_PCF7931_READ:
983 ReadPCF7931();
984 break;
985 case CMD_PCF7931_WRITE:
986 WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
987 break;
988 case CMD_EM4X_READ_WORD:
989 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
990 break;
991 case CMD_EM4X_WRITE_WORD:
992 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
993 break;
994 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
995 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
996 break;
997 case CMD_VIKING_CLONE_TAG:
998 CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]);
999 break;
1000 #endif
1001
1002 #ifdef WITH_HITAG
1003 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
1004 SnoopHitag(c->arg[0]);
1005 break;
1006 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
1007 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1008 break;
1009 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
1010 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1011 break;
1012 case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content
1013 SimulateHitagSTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1014 break;
1015 case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file
1016 check_challenges((bool)c->arg[0],(byte_t*)c->d.asBytes);
1017 break;
1018 case CMD_READ_HITAG_S: //Reader for only Hitag S tags, args = key or challenge
1019 ReadHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1020 break;
1021 case CMD_WR_HITAG_S: //writer for Hitag tags args=data to write,page and key or challenge
1022 WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]);
1023 break;
1024 #endif
1025
1026 #ifdef WITH_ISO15693
1027 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
1028 AcquireRawAdcSamplesIso15693();
1029 break;
1030 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
1031 RecordRawAdcSamplesIso15693();
1032 break;
1033
1034 case CMD_ISO_15693_COMMAND:
1035 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1036 break;
1037
1038 case CMD_ISO_15693_FIND_AFI:
1039 BruteforceIso15693Afi(c->arg[0]);
1040 break;
1041
1042 case CMD_ISO_15693_DEBUG:
1043 SetDebugIso15693(c->arg[0]);
1044 break;
1045
1046 case CMD_READER_ISO_15693:
1047 ReaderIso15693(c->arg[0]);
1048 break;
1049 case CMD_SIMTAG_ISO_15693:
1050 SimTagIso15693(c->arg[0], c->d.asBytes);
1051 break;
1052 #endif
1053
1054 #ifdef WITH_LEGICRF
1055 case CMD_SIMULATE_TAG_LEGIC_RF:
1056 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
1057 break;
1058
1059 case CMD_WRITER_LEGIC_RF:
1060 LegicRfWriter( c->arg[0], c->arg[1], c->arg[2]);
1061 break;
1062
1063 case CMD_RAW_WRITER_LEGIC_RF:
1064 LegicRfRawWriter(c->arg[0], c->arg[1], c->arg[2]);
1065 break;
1066
1067 case CMD_READER_LEGIC_RF:
1068 LegicRfReader(c->arg[0], c->arg[1], c->arg[2]);
1069 break;
1070 #endif
1071
1072 #ifdef WITH_ISO14443b
1073 case CMD_READ_SRI_TAG:
1074 ReadSTMemoryIso14443b(c->arg[0]);
1075 break;
1076 case CMD_SNOOP_ISO_14443B:
1077 SnoopIso14443b();
1078 break;
1079 case CMD_SIMULATE_TAG_ISO_14443B:
1080 SimulateIso14443bTag(c->arg[0]);
1081 break;
1082 case CMD_ISO_14443B_COMMAND:
1083 //SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1084 SendRawCommand14443B_Ex(c);
1085 break;
1086 #endif
1087
1088 #ifdef WITH_ISO14443a
1089 case CMD_SNOOP_ISO_14443a:
1090 SniffIso14443a(c->arg[0]);
1091 break;
1092 case CMD_READER_ISO_14443a:
1093 ReaderIso14443a(c);
1094 break;
1095 case CMD_SIMULATE_TAG_ISO_14443a:
1096 SimulateIso14443aTag(c->arg[0], c->arg[1], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
1097 break;
1098 case CMD_EPA_PACE_COLLECT_NONCE:
1099 EPA_PACE_Collect_Nonce(c);
1100 break;
1101 case CMD_EPA_PACE_REPLAY:
1102 EPA_PACE_Replay(c);
1103 break;
1104 case CMD_READER_MIFARE:
1105 ReaderMifare(c->arg[0], c->arg[1], c->arg[2]);
1106 break;
1107 case CMD_MIFARE_READBL:
1108 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1109 break;
1110 case CMD_MIFAREU_READBL:
1111 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
1112 break;
1113 case CMD_MIFAREUC_AUTH:
1114 MifareUC_Auth(c->arg[0],c->d.asBytes);
1115 break;
1116 case CMD_MIFAREU_READCARD:
1117 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1118 break;
1119 case CMD_MIFAREUC_SETPWD:
1120 MifareUSetPwd(c->arg[0], c->d.asBytes);
1121 break;
1122 case CMD_MIFARE_READSC:
1123 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1124 break;
1125 case CMD_MIFARE_WRITEBL:
1126 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1127 break;
1128 //case CMD_MIFAREU_WRITEBL_COMPAT:
1129 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1130 //break;
1131 case CMD_MIFAREU_WRITEBL:
1132 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
1133 break;
1134 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES:
1135 MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1136 break;
1137 case CMD_MIFARE_NESTED:
1138 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1139 break;
1140 case CMD_MIFARE_CHKKEYS:
1141 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1142 break;
1143 case CMD_SIMULATE_MIFARE_CARD:
1144 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1145 break;
1146
1147 // emulator
1148 case CMD_MIFARE_SET_DBGMODE:
1149 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1150 break;
1151 case CMD_MIFARE_EML_MEMCLR:
1152 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1153 break;
1154 case CMD_MIFARE_EML_MEMSET:
1155 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1156 break;
1157 case CMD_MIFARE_EML_MEMGET:
1158 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1159 break;
1160 case CMD_MIFARE_EML_CARDLOAD:
1161 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1162 break;
1163
1164 // Work with "magic Chinese" card
1165 case CMD_MIFARE_CSETBLOCK:
1166 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
1167 break;
1168 case CMD_MIFARE_CGETBLOCK:
1169 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
1170 break;
1171 case CMD_MIFARE_CIDENT:
1172 MifareCIdent();
1173 break;
1174
1175 // mifare sniffer
1176 case CMD_MIFARE_SNIFFER:
1177 SniffMifare(c->arg[0]);
1178 break;
1179
1180 //mifare desfire
1181 case CMD_MIFARE_DESFIRE_READBL: break;
1182 case CMD_MIFARE_DESFIRE_WRITEBL: break;
1183 case CMD_MIFARE_DESFIRE_AUTH1:
1184 MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1185 break;
1186 case CMD_MIFARE_DESFIRE_AUTH2:
1187 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1188 break;
1189 case CMD_MIFARE_DES_READER:
1190 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1191 break;
1192 case CMD_MIFARE_DESFIRE_INFO:
1193 MifareDesfireGetInformation();
1194 break;
1195 case CMD_MIFARE_DESFIRE:
1196 MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes);
1197 break;
1198
1199 case CMD_MIFARE_COLLECT_NONCES:
1200 break;
1201 #endif
1202 #ifdef WITH_EMV
1203 case CMD_EMV_TRANSACTION:
1204 EMVTransaction();
1205 break;
1206 case CMD_EMV_GET_RANDOM_NUM:
1207 //EMVgetUDOL();
1208 break;
1209 case CMD_EMV_LOAD_VALUE:
1210 EMVloadvalue(c->arg[0], c->d.asBytes);
1211 break;
1212 case CMD_EMV_DUMP_CARD:
1213 EMVdumpcard();
1214 #endif
1215 #ifdef WITH_ICLASS
1216 // Makes use of ISO14443a FPGA Firmware
1217 case CMD_SNOOP_ICLASS:
1218 SnoopIClass();
1219 break;
1220 case CMD_SIMULATE_TAG_ICLASS:
1221 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1222 break;
1223 case CMD_READER_ICLASS:
1224 ReaderIClass(c->arg[0]);
1225 break;
1226 case CMD_READER_ICLASS_REPLAY:
1227 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
1228 break;
1229 case CMD_ICLASS_EML_MEMSET:
1230 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1231 break;
1232 case CMD_ICLASS_WRITEBLOCK:
1233 iClass_WriteBlock(c->arg[0], c->d.asBytes);
1234 break;
1235 case CMD_ICLASS_READCHECK: // auth step 1
1236 iClass_ReadCheck(c->arg[0], c->arg[1]);
1237 break;
1238 case CMD_ICLASS_READBLOCK:
1239 iClass_ReadBlk(c->arg[0]);
1240 break;
1241 case CMD_ICLASS_AUTHENTICATION: //check
1242 iClass_Authentication(c->d.asBytes);
1243 break;
1244 case CMD_ICLASS_DUMP:
1245 iClass_Dump(c->arg[0], c->arg[1]);
1246 break;
1247 case CMD_ICLASS_CLONE:
1248 iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
1249 break;
1250 #endif
1251 #ifdef WITH_HFSNOOP
1252 case CMD_HF_SNIFFER:
1253 HfSnoop(c->arg[0], c->arg[1]);
1254 break;
1255 #endif
1256
1257 case CMD_BUFF_CLEAR:
1258 BigBuf_Clear();
1259 break;
1260
1261 case CMD_MEASURE_ANTENNA_TUNING:
1262 MeasureAntennaTuning();
1263 break;
1264
1265 case CMD_MEASURE_ANTENNA_TUNING_HF:
1266 MeasureAntennaTuningHf();
1267 break;
1268
1269 case CMD_LISTEN_READER_FIELD:
1270 ListenReaderField(c->arg[0]);
1271 break;
1272
1273 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1274 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1275 SpinDelay(200);
1276 LED_D_OFF(); // LED D indicates field ON or OFF
1277 break;
1278
1279 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {
1280 LED_B_ON();
1281 uint8_t *BigBuf = BigBuf_get_addr();
1282 size_t len = 0;
1283 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
1284 len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
1285 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1286 }
1287 // Trigger a finish downloading signal with an ACK frame
1288 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
1289 LED_B_OFF();
1290 break;
1291 }
1292 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
1293 uint8_t *b = BigBuf_get_addr();
1294 memcpy( b + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1295 cmd_send(CMD_ACK,0,0,0,0,0);
1296 break;
1297 }
1298 case CMD_DOWNLOAD_EML_BIGBUF: {
1299 LED_B_ON();
1300 uint8_t *cardmem = BigBuf_get_EM_addr();
1301 size_t len = 0;
1302 for(size_t i=0; i < c->arg[1]; i += USB_CMD_DATA_SIZE) {
1303 len = MIN((c->arg[1] - i), USB_CMD_DATA_SIZE);
1304 cmd_send(CMD_DOWNLOADED_EML_BIGBUF, i, len, CARD_MEMORY_SIZE, cardmem + c->arg[0] + i, len);
1305 }
1306 // Trigger a finish downloading signal with an ACK frame
1307 cmd_send(CMD_ACK, 1, 0, CARD_MEMORY_SIZE, 0, 0);
1308 LED_B_OFF();
1309 break;
1310 }
1311 case CMD_READ_MEM:
1312 ReadMem(c->arg[0]);
1313 break;
1314
1315 case CMD_SET_LF_DIVISOR:
1316 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1317 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1318 break;
1319
1320 case CMD_SET_ADC_MUX:
1321 switch(c->arg[0]) {
1322 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1323 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1324 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1325 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1326 }
1327 break;
1328
1329 case CMD_VERSION:
1330 SendVersion();
1331 break;
1332 case CMD_STATUS:
1333 SendStatus();
1334 break;
1335 case CMD_PING:
1336 cmd_send(CMD_ACK,0,0,0,0,0);
1337 break;
1338 #ifdef WITH_LCD
1339 case CMD_LCD_RESET:
1340 LCDReset();
1341 break;
1342 case CMD_LCD:
1343 LCDSend(c->arg[0]);
1344 break;
1345 #endif
1346 case CMD_SETUP_WRITE:
1347 case CMD_FINISH_WRITE:
1348 case CMD_HARDWARE_RESET:
1349 usb_disable();
1350 SpinDelay(2000);
1351 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1352 for(;;) {
1353 // We're going to reset, and the bootrom will take control.
1354 }
1355 break;
1356
1357 case CMD_START_FLASH:
1358 if(common_area.flags.bootrom_present) {
1359 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1360 }
1361 usb_disable();
1362 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1363 for(;;);
1364 break;
1365
1366 case CMD_DEVICE_INFO: {
1367 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1368 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1369 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1370 break;
1371 }
1372 default:
1373 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1374 break;
1375 }
1376 }
1377
1378 void __attribute__((noreturn)) AppMain(void)
1379 {
1380 SpinDelay(100);
1381 clear_trace();
1382 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1383 /* Initialize common area */
1384 memset(&common_area, 0, sizeof(common_area));
1385 common_area.magic = COMMON_AREA_MAGIC;
1386 common_area.version = 1;
1387 }
1388 common_area.flags.osimage_present = 1;
1389
1390 LEDsoff();
1391
1392 // Init USB device
1393 usb_enable();
1394
1395 // The FPGA gets its clock from us from PCK0 output, so set that up.
1396 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1397 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1398 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1399 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1400 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK | AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1401 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1402
1403 // Reset SPI
1404 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1405 // Reset SSC
1406 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1407
1408 // Load the FPGA image, which we have stored in our flash.
1409 // (the HF version by default)
1410 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1411
1412 StartTickCount();
1413
1414 #ifdef WITH_LCD
1415 LCDInit();
1416 #endif
1417
1418 byte_t rx[sizeof(UsbCommand)];
1419 size_t rx_len;
1420
1421 for(;;) {
1422 if ( usb_poll_validate_length() ) {
1423 rx_len = usb_read(rx, sizeof(UsbCommand));
1424
1425 if (rx_len)
1426 UsbPacketReceived(rx, rx_len);
1427 }
1428 WDT_HIT();
1429
1430 #ifdef WITH_LF
1431 #ifndef WITH_ISO14443a_StandAlone
1432 if (BUTTON_HELD(1000) > 0)
1433 SamyRun();
1434 #endif
1435 #endif
1436 #ifdef WITH_ISO14443a
1437 #ifdef WITH_ISO14443a_StandAlone
1438 if (BUTTON_HELD(1000) > 0)
1439 StandAloneMode14a();
1440 #endif
1441 #endif
1442 }
1443 }
Impressum, Datenschutz