1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
14 #include "proxmark3.h"
23 #include "lfsampling.h"
25 #include "mifareutil.h"
32 // Craig Young - 14a stand-alone code
33 #ifdef WITH_ISO14443a_StandAlone
34 #include "iso14443a.h"
35 #include "protocols.h"
38 //=============================================================================
39 // A buffer where we can queue things up to be sent through the FPGA, for
40 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
41 // is the order in which they go out on the wire.
42 //=============================================================================
44 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
45 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
48 struct common_area common_area
__attribute__((section(".commonarea")));
50 void ToSendReset(void)
56 void ToSendStuffBit(int b
) {
59 ToSend
[ToSendMax
] = 0;
64 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
68 if(ToSendMax
>= sizeof(ToSend
)) {
70 DbpString("ToSendStuffBit overflowed!");
74 void PrintToSendBuffer(void){
75 DbpString("Printing ToSendBuffer:");
76 Dbhexdump(ToSendMax
, ToSend
, 0);
79 //=============================================================================
80 // Debug print functions, to go out over USB, to the usual PC-side client.
81 //=============================================================================
83 void DbpStringEx(char *str
, uint32_t cmd
){
84 byte_t len
= strlen(str
);
85 cmd_send(CMD_DEBUG_PRINT_STRING
,len
, cmd
,0,(byte_t
*)str
,len
);
88 void DbpString(char *str
) {
93 void DbpIntegers(int x1
, int x2
, int x3
) {
94 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
97 void DbprintfEx(uint32_t cmd
, const char *fmt
, ...) {
98 // should probably limit size here; oh well, let's just use a big buffer
99 char output_string
[128] = {0x00};
103 kvsprintf(fmt
, output_string
, 10, ap
);
106 DbpStringEx(output_string
, cmd
);
109 void Dbprintf(const char *fmt
, ...) {
110 // should probably limit size here; oh well, let's just use a big buffer
111 char output_string
[128] = {0x00};
115 kvsprintf(fmt
, output_string
, 10, ap
);
118 DbpString(output_string
);
121 // prints HEX & ASCII
122 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
128 l
= (len
>8) ? 8 : len
;
135 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
138 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
140 Dbprintf("%*D",l
,d
," ");
147 //-----------------------------------------------------------------------------
148 // Read an ADC channel and block till it completes, then return the result
149 // in ADC units (0 to 1023). Also a routine to average 32 samples and
151 //-----------------------------------------------------------------------------
152 static int ReadAdc(int ch
)
156 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
157 AT91C_BASE_ADC
->ADC_MR
=
158 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
159 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
160 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
162 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
163 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
164 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
167 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
169 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
171 // Note: with the "historic" values in the comments above, the error was 34% !!!
173 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
175 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
177 while (!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) ;
179 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
183 int AvgAdc(int ch
) // was static - merlok
188 for(i
= 0; i
< 32; ++i
)
191 return (a
+ 15) >> 5;
195 void MeasureAntennaTuning(void) {
197 uint8_t* LF_Results
= BigBuf_malloc(256);
198 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0;
199 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
203 * Sweeps the useful LF range of the proxmark from
204 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
205 * read the voltage in the antenna, the result left
206 * in the buffer is a graph which should clearly show
207 * the resonating frequency of your LF antenna
208 * ( hopefully around 95 if it is tuned to 125kHz!)
211 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
212 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
214 for (i
= 255; i
>= 19; i
--) {
216 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
218 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
219 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
220 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
222 LF_Results
[i
] = adcval
>> 8; // scale int to fit in byte for graphing purposes
223 if(LF_Results
[i
] > peak
) {
225 peak
= LF_Results
[i
];
230 // for (i = 18; i >= 0; i--)
231 // LF_Results[i] = 0;
234 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
235 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
236 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
238 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
240 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<< 16), vHf
, peakf
| (peakv
<< 16), LF_Results
, 256);
241 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
243 BigBuf_free(); BigBuf_Clear_ext(false);
247 void MeasureAntennaTuningHf(void) {
248 int vHf
= 0; // in mV
249 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
250 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
251 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
253 while ( !BUTTON_PRESS() ){
255 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
256 //Dbprintf("%d mV",vHf);
257 DbprintfEx(CMD_MEASURE_ANTENNA_TUNING_HF
, "%d mV",vHf
);
259 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
260 DbpString("cancelled");
264 void ReadMem(int addr
) {
265 const uint8_t *data
= ((uint8_t *)addr
);
267 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
268 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
271 /* osimage version information is linked in */
272 extern struct version_information version_information
;
273 /* bootrom version information is pointed to from _bootphase1_version_pointer */
274 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
275 void SendVersion(void)
277 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
278 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
280 /* Try to find the bootrom version information. Expect to find a pointer at
281 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
282 * pointer, then use it.
284 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
286 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
287 strcat(VersionString
, "bootrom version information appears invalid\n");
289 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
290 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
293 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
294 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
296 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
297 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
299 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
300 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
302 // Send Chip ID and used flash memory
303 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
304 uint32_t compressed_data_section_size
= common_area
.arg1
;
305 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
308 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
309 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
310 void printUSBSpeed(void)
312 Dbprintf("USB Speed:");
313 Dbprintf(" Sending USB packets to client...");
315 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
316 uint8_t *test_data
= BigBuf_get_addr();
319 uint32_t start_time
= end_time
= GetTickCount();
320 uint32_t bytes_transferred
= 0;
323 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
324 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
325 end_time
= GetTickCount();
326 bytes_transferred
+= USB_CMD_DATA_SIZE
;
330 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
331 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
332 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
333 1000 * bytes_transferred
/ (end_time
- start_time
));
338 * Prints runtime information about the PM3.
340 void SendStatus(void) {
341 BigBuf_print_status();
343 printConfig(); //LF Sampling config
346 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
347 Dbprintf(" ToSendMax..........%d", ToSendMax
);
348 Dbprintf(" ToSendBit..........%d", ToSendBit
);
349 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE
);
351 cmd_send(CMD_ACK
,1,0,0,0,0);
354 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
357 void StandAloneMode()
359 DbpString("Stand-alone mode! No PC necessary.");
360 // Oooh pretty -- notify user we're in elite samy mode now
362 LED(LED_ORANGE
, 200);
364 LED(LED_ORANGE
, 200);
366 LED(LED_ORANGE
, 200);
368 LED(LED_ORANGE
, 200);
373 #ifdef WITH_ISO14443a_StandAlone
374 void StandAloneMode14a()
377 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
380 int playing
= 0, iGotoRecord
= 0, iGotoClone
= 0;
381 int cardRead
[OPTS
] = {0};
382 uint8_t readUID
[10] = {0};
383 uint32_t uid_1st
[OPTS
]={0};
384 uint32_t uid_2nd
[OPTS
]={0};
385 uint32_t uid_tmp1
= 0;
386 uint32_t uid_tmp2
= 0;
387 iso14a_card_select_t hi14a_card
[OPTS
];
389 uint8_t params
= (MAGIC_SINGLE
| MAGIC_DATAIN
);
391 LED(selected
+ 1, 0);
399 if (iGotoRecord
== 1 || cardRead
[selected
] == 0)
403 LED(selected
+ 1, 0);
407 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
408 /* need this delay to prevent catching some weird data */
410 /* Code for reading from 14a tag */
411 uint8_t uid
[10] = {0};
413 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
418 if (BUTTON_PRESS()) {
419 if (cardRead
[selected
]) {
420 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
423 else if (cardRead
[(selected
+1)%OPTS
]) {
424 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
425 selected
= (selected
+1)%OPTS
;
426 break; // playing = 1;
429 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
433 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0))
437 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
438 memcpy(readUID
,uid
,10*sizeof(uint8_t));
439 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
440 // Set UID byte order
441 for (int i
=0; i
<4; i
++)
443 dst
= (uint8_t *)&uid_tmp2
;
444 for (int i
=0; i
<4; i
++)
446 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
447 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
451 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
452 uid_1st
[selected
] = (uid_tmp1
)>>8;
453 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
456 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
457 uid_1st
[selected
] = uid_tmp1
;
458 uid_2nd
[selected
] = uid_tmp2
;
464 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
465 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
468 LED(LED_ORANGE
, 200);
470 LED(LED_ORANGE
, 200);
473 LED(selected
+ 1, 0);
475 // Next state is replay:
478 cardRead
[selected
] = 1;
480 /* MF Classic UID clone */
481 else if (iGotoClone
==1)
485 LED(selected
+ 1, 0);
486 LED(LED_ORANGE
, 250);
489 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
491 // wait for button to be released
492 // Delay cloning until card is in place
493 while(BUTTON_PRESS())
496 Dbprintf("Starting clone. [Bank: %u]", selected
);
497 // need this delay to prevent catching some weird data
499 // Begin clone function here:
500 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
501 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
502 memcpy(c.d.asBytes, data, 16);
505 Block read is similar:
506 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
507 We need to imitate that call with blockNo 0 to set a uid.
509 The get and set commands are handled in this file:
510 // Work with "magic Chinese" card
511 case CMD_MIFARE_CSETBLOCK:
512 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
514 case CMD_MIFARE_CGETBLOCK:
515 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
518 mfCSetUID provides example logic for UID set workflow:
519 -Read block0 from card in field with MifareCGetBlock()
520 -Configure new values without replacing reserved bytes
521 memcpy(block0, uid, 4); // Copy UID bytes from byte array
523 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
524 Bytes 5-7 are reserved SAK and ATQA for mifare classic
525 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
527 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
528 // arg0 = Flags, arg1=blockNo
529 MifareCGetBlock(params
, 0, oldBlock0
);
530 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
531 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
535 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
536 memcpy(newBlock0
,oldBlock0
,16);
537 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
539 newBlock0
[0] = uid_1st
[selected
]>>24;
540 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
541 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
542 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
543 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
545 // arg0 = workFlags, arg1 = blockNo, datain
546 MifareCSetBlock(params
, 0, newBlock0
);
547 MifareCGetBlock(params
, 0, testBlock0
);
549 if (memcmp(testBlock0
, newBlock0
, 16)==0) {
550 DbpString("Cloned successfull!");
551 cardRead
[selected
] = 0; // Only if the card was cloned successfully should we clear it
554 selected
= (selected
+ 1) % OPTS
;
556 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
561 LED(selected
+ 1, 0);
563 // Change where to record (or begin playing)
564 else if (playing
==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
567 LED(selected
+ 1, 0);
569 // Begin transmitting
573 DbpString("Playing");
576 int button_action
= BUTTON_HELD(1000);
577 if (button_action
== 0) { // No button action, proceed with sim
578 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
579 uint8_t flags
= ( uid_2nd
[selected
] > 0x00 ) ? FLAG_7B_UID_IN_DATA
: FLAG_4B_UID_IN_DATA
;
580 num_to_bytes(uid_1st
[selected
], 3, data
);
581 num_to_bytes(uid_2nd
[selected
], 4, data
);
583 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
584 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
585 DbpString("Mifare Classic");
586 SimulateIso14443aTag(1, flags
, data
); // Mifare Classic
588 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
589 DbpString("Mifare Ultralight");
590 SimulateIso14443aTag(2, flags
, data
); // Mifare Ultralight
592 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
593 DbpString("Mifare DESFire");
594 SimulateIso14443aTag(3, flags
, data
); // Mifare DESFire
597 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
598 SimulateIso14443aTag(1, flags
, data
);
601 else if (button_action
== BUTTON_SINGLE_CLICK
) {
602 selected
= (selected
+ 1) % OPTS
;
603 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
607 else if (button_action
== BUTTON_HOLD
) {
608 Dbprintf("Playtime over. Begin cloning...");
615 /* We pressed a button so ignore it here with a delay */
618 LED(selected
+ 1, 0);
621 while(BUTTON_PRESS())
627 // samy's sniff and repeat routine
631 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
633 int high
[OPTS
], low
[OPTS
];
638 // Turn on selected LED
639 LED(selected
+ 1, 0);
645 // Was our button held down or pressed?
646 int button_pressed
= BUTTON_HELD(1000);
649 // Button was held for a second, begin recording
650 if (button_pressed
> 0 && cardRead
== 0)
653 LED(selected
+ 1, 0);
657 DbpString("Starting recording");
659 // wait for button to be released
660 while(BUTTON_PRESS())
663 /* need this delay to prevent catching some weird data */
666 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
667 Dbprintf("Recorded %x %x %08x", selected
, high
[selected
], low
[selected
]);
670 LED(selected
+ 1, 0);
671 // Finished recording
672 // If we were previously playing, set playing off
673 // so next button push begins playing what we recorded
677 else if (button_pressed
> 0 && cardRead
== 1) {
679 LED(selected
+ 1, 0);
683 Dbprintf("Cloning %x %x %08x", selected
, high
[selected
], low
[selected
]);
685 // wait for button to be released
686 while(BUTTON_PRESS())
689 /* need this delay to prevent catching some weird data */
692 CopyHIDtoT55x7(0, high
[selected
], low
[selected
], 0);
693 Dbprintf("Cloned %x %x %08x", selected
, high
[selected
], low
[selected
]);
696 LED(selected
+ 1, 0);
697 // Finished recording
699 // If we were previously playing, set playing off
700 // so next button push begins playing what we recorded
705 // Change where to record (or begin playing)
706 else if (button_pressed
) {
707 // Next option if we were previously playing
709 selected
= (selected
+ 1) % OPTS
;
713 LED(selected
+ 1, 0);
715 // Begin transmitting
719 DbpString("Playing");
720 // wait for button to be released
721 while(BUTTON_PRESS())
724 Dbprintf("%x %x %08x", selected
, high
[selected
], low
[selected
]);
725 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
726 DbpString("Done playing");
728 if (BUTTON_HELD(1000) > 0) {
729 DbpString("Exiting");
734 /* We pressed a button so ignore it here with a delay */
737 // when done, we're done playing, move to next option
738 selected
= (selected
+ 1) % OPTS
;
741 LED(selected
+ 1, 0);
744 while(BUTTON_PRESS())
753 Listen and detect an external reader. Determine the best location
757 Inside the ListenReaderField() function, there is two mode.
758 By default, when you call the function, you will enter mode 1.
759 If you press the PM3 button one time, you will enter mode 2.
760 If you press the PM3 button a second time, you will exit the function.
762 DESCRIPTION OF MODE 1:
763 This mode just listens for an external reader field and lights up green
764 for HF and/or red for LF. This is the original mode of the detectreader
767 DESCRIPTION OF MODE 2:
768 This mode will visually represent, using the LEDs, the actual strength of the
769 current compared to the maximum current detected. Basically, once you know
770 what kind of external reader is present, it will help you spot the best location to place
771 your antenna. You will probably not get some good results if there is a LF and a HF reader
772 at the same place! :-)
776 static const char LIGHT_SCHEME
[] = {
777 0x0, /* ---- | No field detected */
778 0x1, /* X--- | 14% of maximum current detected */
779 0x2, /* -X-- | 29% of maximum current detected */
780 0x4, /* --X- | 43% of maximum current detected */
781 0x8, /* ---X | 57% of maximum current detected */
782 0xC, /* --XX | 71% of maximum current detected */
783 0xE, /* -XXX | 86% of maximum current detected */
784 0xF, /* XXXX | 100% of maximum current detected */
786 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
788 void ListenReaderField(int limit
) {
791 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
793 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
794 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
795 int mode
=1, display_val
, display_max
, i
;
797 // switch off FPGA - we don't want to measure our own signal
798 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
799 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
803 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
805 if(limit
!= HF_ONLY
) {
806 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
810 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
812 if (limit
!= LF_ONLY
) {
813 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
818 if (BUTTON_PRESS()) {
823 DbpString("Signal Strength Mode");
827 DbpString("Stopped");
835 if (limit
!= HF_ONLY
) {
837 if (ABS(lf_av
- lf_baseline
) > REPORT_CHANGE
)
843 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
844 // see if there's a significant change
845 if(ABS(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
846 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
853 if (limit
!= LF_ONLY
) {
855 if (ABS(hf_av
- hf_baseline
) > REPORT_CHANGE
)
861 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
862 // see if there's a significant change
863 if(ABS(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
864 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
872 if (limit
== LF_ONLY
) {
874 display_max
= lf_max
;
875 } else if (limit
== HF_ONLY
) {
877 display_max
= hf_max
;
878 } else { /* Pick one at random */
879 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
881 display_max
= hf_max
;
884 display_max
= lf_max
;
887 for (i
=0; i
<LIGHT_LEN
; i
++) {
888 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
889 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
890 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
891 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
892 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
900 void UsbPacketReceived(uint8_t *packet
, int len
)
902 UsbCommand
*c
= (UsbCommand
*)packet
;
904 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
908 case CMD_SET_LF_SAMPLING_CONFIG
:
909 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
911 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
912 cmd_send(CMD_ACK
, SampleLF(c
->arg
[0]),0,0,0,0);
914 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
915 ModThenAcquireRawAdcSamples125k(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
917 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
918 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
920 case CMD_HID_DEMOD_FSK
:
921 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
923 case CMD_HID_SIM_TAG
:
924 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
926 case CMD_FSK_SIM_TAG
:
927 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
929 case CMD_ASK_SIM_TAG
:
930 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
932 case CMD_PSK_SIM_TAG
:
933 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
935 case CMD_HID_CLONE_TAG
:
936 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
938 case CMD_IO_DEMOD_FSK
:
939 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
941 case CMD_IO_CLONE_TAG
:
942 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
944 case CMD_EM410X_DEMOD
:
945 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
947 case CMD_EM410X_WRITE_TAG
:
948 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
950 case CMD_READ_TI_TYPE
:
953 case CMD_WRITE_TI_TYPE
:
954 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
956 case CMD_SIMULATE_TAG_125K
:
958 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
961 case CMD_LF_SIMULATE_BIDIR
:
962 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
964 case CMD_INDALA_CLONE_TAG
:
965 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
967 case CMD_INDALA_CLONE_TAG_L
:
968 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
970 case CMD_T55XX_READ_BLOCK
:
971 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
973 case CMD_T55XX_WRITE_BLOCK
:
974 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
976 case CMD_T55XX_WAKEUP
:
977 T55xxWakeUp(c
->arg
[0]);
979 case CMD_T55XX_RESET_READ
:
982 case CMD_PCF7931_READ
:
985 case CMD_PCF7931_WRITE
:
986 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
988 case CMD_EM4X_READ_WORD
:
989 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
991 case CMD_EM4X_WRITE_WORD
:
992 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
994 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
995 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
997 case CMD_VIKING_CLONE_TAG
:
998 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1003 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1004 SnoopHitag(c
->arg
[0]);
1006 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1007 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1009 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1010 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1012 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1013 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1015 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1016 check_challenges((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1018 case CMD_READ_HITAG_S
: //Reader for only Hitag S tags, args = key or challenge
1019 ReadHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1021 case CMD_WR_HITAG_S
: //writer for Hitag tags args=data to write,page and key or challenge
1022 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1026 #ifdef WITH_ISO15693
1027 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1028 AcquireRawAdcSamplesIso15693();
1030 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1031 RecordRawAdcSamplesIso15693();
1034 case CMD_ISO_15693_COMMAND
:
1035 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1038 case CMD_ISO_15693_FIND_AFI
:
1039 BruteforceIso15693Afi(c
->arg
[0]);
1042 case CMD_ISO_15693_DEBUG
:
1043 SetDebugIso15693(c
->arg
[0]);
1046 case CMD_READER_ISO_15693
:
1047 ReaderIso15693(c
->arg
[0]);
1049 case CMD_SIMTAG_ISO_15693
:
1050 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1055 case CMD_SIMULATE_TAG_LEGIC_RF
:
1056 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1059 case CMD_WRITER_LEGIC_RF
:
1060 LegicRfWriter( c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1063 case CMD_RAW_WRITER_LEGIC_RF
:
1064 LegicRfRawWriter(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1067 case CMD_READER_LEGIC_RF
:
1068 LegicRfReader(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1072 #ifdef WITH_ISO14443b
1073 case CMD_READ_SRI_TAG
:
1074 ReadSTMemoryIso14443b(c
->arg
[0]);
1076 case CMD_SNOOP_ISO_14443B
:
1079 case CMD_SIMULATE_TAG_ISO_14443B
:
1080 SimulateIso14443bTag(c
->arg
[0]);
1082 case CMD_ISO_14443B_COMMAND
:
1083 //SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1084 SendRawCommand14443B_Ex(c
);
1088 #ifdef WITH_ISO14443a
1089 case CMD_SNOOP_ISO_14443a
:
1090 SniffIso14443a(c
->arg
[0]);
1092 case CMD_READER_ISO_14443a
:
1095 case CMD_SIMULATE_TAG_ISO_14443a
:
1096 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1098 case CMD_EPA_PACE_COLLECT_NONCE
:
1099 EPA_PACE_Collect_Nonce(c
);
1101 case CMD_EPA_PACE_REPLAY
:
1104 case CMD_READER_MIFARE
:
1105 ReaderMifare(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1107 case CMD_MIFARE_READBL
:
1108 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1110 case CMD_MIFAREU_READBL
:
1111 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1113 case CMD_MIFAREUC_AUTH
:
1114 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1116 case CMD_MIFAREU_READCARD
:
1117 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1119 case CMD_MIFAREUC_SETPWD
:
1120 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1122 case CMD_MIFARE_READSC
:
1123 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1125 case CMD_MIFARE_WRITEBL
:
1126 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1128 //case CMD_MIFAREU_WRITEBL_COMPAT:
1129 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1131 case CMD_MIFAREU_WRITEBL
:
1132 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1134 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1135 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1137 case CMD_MIFARE_NESTED
:
1138 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1140 case CMD_MIFARE_CHKKEYS
:
1141 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1143 case CMD_SIMULATE_MIFARE_CARD
:
1144 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1148 case CMD_MIFARE_SET_DBGMODE
:
1149 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1151 case CMD_MIFARE_EML_MEMCLR
:
1152 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1154 case CMD_MIFARE_EML_MEMSET
:
1155 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1157 case CMD_MIFARE_EML_MEMGET
:
1158 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1160 case CMD_MIFARE_EML_CARDLOAD
:
1161 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1164 // Work with "magic Chinese" card
1165 case CMD_MIFARE_CSETBLOCK
:
1166 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1168 case CMD_MIFARE_CGETBLOCK
:
1169 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1171 case CMD_MIFARE_CIDENT
:
1176 case CMD_MIFARE_SNIFFER
:
1177 SniffMifare(c
->arg
[0]);
1181 case CMD_MIFARE_DESFIRE_READBL
: break;
1182 case CMD_MIFARE_DESFIRE_WRITEBL
: break;
1183 case CMD_MIFARE_DESFIRE_AUTH1
:
1184 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1186 case CMD_MIFARE_DESFIRE_AUTH2
:
1187 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1189 case CMD_MIFARE_DES_READER
:
1190 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1192 case CMD_MIFARE_DESFIRE_INFO
:
1193 MifareDesfireGetInformation();
1195 case CMD_MIFARE_DESFIRE
:
1196 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1199 case CMD_MIFARE_COLLECT_NONCES
:
1203 case CMD_EMV_TRANSACTION
:
1206 case CMD_EMV_GET_RANDOM_NUM
:
1209 case CMD_EMV_LOAD_VALUE
:
1210 EMVloadvalue(c
->arg
[0], c
->d
.asBytes
);
1212 case CMD_EMV_DUMP_CARD
:
1216 // Makes use of ISO14443a FPGA Firmware
1217 case CMD_SNOOP_ICLASS
:
1220 case CMD_SIMULATE_TAG_ICLASS
:
1221 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1223 case CMD_READER_ICLASS
:
1224 ReaderIClass(c
->arg
[0]);
1226 case CMD_READER_ICLASS_REPLAY
:
1227 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1229 case CMD_ICLASS_EML_MEMSET
:
1230 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1232 case CMD_ICLASS_WRITEBLOCK
:
1233 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1235 case CMD_ICLASS_READCHECK
: // auth step 1
1236 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1238 case CMD_ICLASS_READBLOCK
:
1239 iClass_ReadBlk(c
->arg
[0]);
1241 case CMD_ICLASS_AUTHENTICATION
: //check
1242 iClass_Authentication(c
->d
.asBytes
);
1244 case CMD_ICLASS_DUMP
:
1245 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1247 case CMD_ICLASS_CLONE
:
1248 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1252 case CMD_HF_SNIFFER
:
1253 HfSnoop(c
->arg
[0], c
->arg
[1]);
1257 case CMD_BUFF_CLEAR
:
1261 case CMD_MEASURE_ANTENNA_TUNING
:
1262 MeasureAntennaTuning();
1265 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1266 MeasureAntennaTuningHf();
1269 case CMD_LISTEN_READER_FIELD
:
1270 ListenReaderField(c
->arg
[0]);
1273 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1274 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1276 LED_D_OFF(); // LED D indicates field ON or OFF
1279 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
: {
1281 uint8_t *BigBuf
= BigBuf_get_addr();
1283 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1284 len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1285 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1287 // Trigger a finish downloading signal with an ACK frame
1288 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1292 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1293 uint8_t *b
= BigBuf_get_addr();
1294 memcpy( b
+ c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1295 cmd_send(CMD_ACK
,0,0,0,0,0);
1298 case CMD_DOWNLOAD_EML_BIGBUF
: {
1300 uint8_t *cardmem
= BigBuf_get_EM_addr();
1302 for(size_t i
=0; i
< c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1303 len
= MIN((c
->arg
[1] - i
), USB_CMD_DATA_SIZE
);
1304 cmd_send(CMD_DOWNLOADED_EML_BIGBUF
, i
, len
, CARD_MEMORY_SIZE
, cardmem
+ c
->arg
[0] + i
, len
);
1306 // Trigger a finish downloading signal with an ACK frame
1307 cmd_send(CMD_ACK
, 1, 0, CARD_MEMORY_SIZE
, 0, 0);
1315 case CMD_SET_LF_DIVISOR
:
1316 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1317 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1320 case CMD_SET_ADC_MUX
:
1322 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1323 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1324 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1325 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1336 cmd_send(CMD_ACK
,0,0,0,0,0);
1346 case CMD_SETUP_WRITE
:
1347 case CMD_FINISH_WRITE
:
1348 case CMD_HARDWARE_RESET
:
1351 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1353 // We're going to reset, and the bootrom will take control.
1357 case CMD_START_FLASH
:
1358 if(common_area
.flags
.bootrom_present
) {
1359 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1362 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1366 case CMD_DEVICE_INFO
: {
1367 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1368 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1369 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1373 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1378 void __attribute__((noreturn
)) AppMain(void)
1382 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1383 /* Initialize common area */
1384 memset(&common_area
, 0, sizeof(common_area
));
1385 common_area
.magic
= COMMON_AREA_MAGIC
;
1386 common_area
.version
= 1;
1388 common_area
.flags
.osimage_present
= 1;
1395 // The FPGA gets its clock from us from PCK0 output, so set that up.
1396 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1397 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1398 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1399 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1400 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
| AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1401 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1404 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1406 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1408 // Load the FPGA image, which we have stored in our flash.
1409 // (the HF version by default)
1410 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1418 byte_t rx
[sizeof(UsbCommand
)];
1422 if ( usb_poll_validate_length() ) {
1423 rx_len
= usb_read(rx
, sizeof(UsbCommand
));
1426 UsbPacketReceived(rx
, rx_len
);
1431 #ifndef WITH_ISO14443a_StandAlone
1432 if (BUTTON_HELD(1000) > 0)
1436 #ifdef WITH_ISO14443a
1437 #ifdef WITH_ISO14443a_StandAlone
1438 if (BUTTON_HELD(1000) > 0)
1439 StandAloneMode14a();