]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
ec686b130767eccbedbe9638836fd6150c0f7e0b
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include "usb_cdc.h"
14 #include "cmd.h"
15
16 #include "proxmark3.h"
17 #include "apps.h"
18 #include "util.h"
19 #include "printf.h"
20 #include "string.h"
21
22 #include <stdarg.h>
23
24 #include "legicrf.h"
25 #include <hitag2.h>
26 #include "lfsampling.h"
27 #include "BigBuf.h"
28 #include "mifareutil.h"
29 #include "pcf7931.h"
30 #ifdef WITH_LCD
31 #include "LCD.h"
32 #endif
33
34 // Craig Young - 14a stand-alone code
35 #ifdef WITH_ISO14443a_StandAlone
36 #include "iso14443a.h"
37 #endif
38
39 #define abs(x) ( ((x)<0) ? -(x) : (x) )
40
41 //=============================================================================
42 // A buffer where we can queue things up to be sent through the FPGA, for
43 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
44 // is the order in which they go out on the wire.
45 //=============================================================================
46
47 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
48 uint8_t ToSend[TOSEND_BUFFER_SIZE];
49 int ToSendMax = 0;
50 static int ToSendBit;
51 struct common_area common_area __attribute__((section(".commonarea")));
52
53 void ToSendReset(void)
54 {
55 ToSendMax = -1;
56 ToSendBit = 8;
57 }
58
59 void ToSendStuffBit(int b)
60 {
61 if(ToSendBit >= 8) {
62 ToSendMax++;
63 ToSend[ToSendMax] = 0;
64 ToSendBit = 0;
65 }
66
67 if(b) {
68 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
69 }
70
71 ToSendBit++;
72
73 if(ToSendMax >= sizeof(ToSend)) {
74 ToSendBit = 0;
75 DbpString("ToSendStuffBit overflowed!");
76 }
77 }
78
79 //=============================================================================
80 // Debug print functions, to go out over USB, to the usual PC-side client.
81 //=============================================================================
82
83 void DbpString(char *str)
84 {
85 byte_t len = strlen(str);
86 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
87 }
88
89 #if 0
90 void DbpIntegers(int x1, int x2, int x3)
91 {
92 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
93 }
94 #endif
95
96 void Dbprintf(const char *fmt, ...) {
97 // should probably limit size here; oh well, let's just use a big buffer
98 char output_string[128];
99 va_list ap;
100
101 va_start(ap, fmt);
102 kvsprintf(fmt, output_string, 10, ap);
103 va_end(ap);
104
105 DbpString(output_string);
106 }
107
108 // prints HEX & ASCII
109 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
110 int l=0,i;
111 char ascii[9];
112
113 while (len>0) {
114 if (len>8) l=8;
115 else l=len;
116
117 memcpy(ascii,d,l);
118 ascii[l]=0;
119
120 // filter safe ascii
121 for (i=0;i<l;i++)
122 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
123
124 if (bAsci) {
125 Dbprintf("%-8s %*D",ascii,l,d," ");
126 } else {
127 Dbprintf("%*D",l,d," ");
128 }
129
130 len-=8;
131 d+=8;
132 }
133 }
134
135 //-----------------------------------------------------------------------------
136 // Read an ADC channel and block till it completes, then return the result
137 // in ADC units (0 to 1023). Also a routine to average 32 samples and
138 // return that.
139 //-----------------------------------------------------------------------------
140 static int ReadAdc(int ch)
141 {
142 uint32_t d;
143
144 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
145 AT91C_BASE_ADC->ADC_MR =
146 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
147 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
148 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
149
150 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
151 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
152 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
153 //
154 // The maths are:
155 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
156 //
157 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
158 //
159 // Note: with the "historic" values in the comments above, the error was 34% !!!
160
161 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
162
163 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
164
165 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
166 ;
167 d = AT91C_BASE_ADC->ADC_CDR[ch];
168
169 return d;
170 }
171
172 int AvgAdc(int ch) // was static - merlok
173 {
174 int i;
175 int a = 0;
176
177 for(i = 0; i < 32; i++) {
178 a += ReadAdc(ch);
179 }
180
181 return (a + 15) >> 5;
182 }
183
184 void MeasureAntennaTuning(void)
185 {
186 uint8_t LF_Results[256];
187 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
188 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
189
190 LED_B_ON();
191
192 /*
193 * Sweeps the useful LF range of the proxmark from
194 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
195 * read the voltage in the antenna, the result left
196 * in the buffer is a graph which should clearly show
197 * the resonating frequency of your LF antenna
198 * ( hopefully around 95 if it is tuned to 125kHz!)
199 */
200
201 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
202 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
203 for (i=255; i>=19; i--) {
204 WDT_HIT();
205 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
206 SpinDelay(20);
207 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
208 if (i==95) vLf125 = adcval; // voltage at 125Khz
209 if (i==89) vLf134 = adcval; // voltage at 134Khz
210
211 LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
212 if(LF_Results[i] > peak) {
213 peakv = adcval;
214 peak = LF_Results[i];
215 peakf = i;
216 //ptr = i;
217 }
218 }
219
220 for (i=18; i >= 0; i--) LF_Results[i] = 0;
221
222 LED_A_ON();
223 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
224 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
225 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
226 SpinDelay(20);
227 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
228
229 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
230 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
231 LED_A_OFF();
232 LED_B_OFF();
233 return;
234 }
235
236 void MeasureAntennaTuningHf(void)
237 {
238 int vHf = 0; // in mV
239
240 DbpString("Measuring HF antenna, press button to exit");
241
242 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
243 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
244 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
245
246 for (;;) {
247 SpinDelay(20);
248 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
249
250 Dbprintf("%d mV",vHf);
251 if (BUTTON_PRESS()) break;
252 }
253 DbpString("cancelled");
254
255 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
256
257 }
258
259
260 void ReadMem(int addr)
261 {
262 const uint8_t *data = ((uint8_t *)addr);
263
264 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
265 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
266 }
267
268 /* osimage version information is linked in */
269 extern struct version_information version_information;
270 /* bootrom version information is pointed to from _bootphase1_version_pointer */
271 extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
272 void SendVersion(void)
273 {
274 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
275 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
276
277 /* Try to find the bootrom version information. Expect to find a pointer at
278 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
279 * pointer, then use it.
280 */
281 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
282 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
283 strcat(VersionString, "bootrom version information appears invalid\n");
284 } else {
285 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
286 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
287 }
288
289 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
290 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
291
292 FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
293 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
294 FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
295 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
296
297 // Send Chip ID and used flash memory
298 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
299 uint32_t compressed_data_section_size = common_area.arg1;
300 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
301 }
302
303 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
304 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
305 void printUSBSpeed(void)
306 {
307 Dbprintf("USB Speed:");
308 Dbprintf(" Sending USB packets to client...");
309
310 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
311 uint8_t *test_data = BigBuf_get_addr();
312 uint32_t end_time;
313
314 uint32_t start_time = end_time = GetTickCount();
315 uint32_t bytes_transferred = 0;
316
317 LED_B_ON();
318 while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
319 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
320 end_time = GetTickCount();
321 bytes_transferred += USB_CMD_DATA_SIZE;
322 }
323 LED_B_OFF();
324
325 Dbprintf(" Time elapsed: %dms", end_time - start_time);
326 Dbprintf(" Bytes transferred: %d", bytes_transferred);
327 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
328 1000 * bytes_transferred / (end_time - start_time));
329
330 }
331
332 /**
333 * Prints runtime information about the PM3.
334 **/
335 void SendStatus(void)
336 {
337 BigBuf_print_status();
338 Fpga_print_status();
339 printConfig(); //LF Sampling config
340 printUSBSpeed();
341 Dbprintf("Various");
342 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL);
343 Dbprintf(" ToSendMax..........%d", ToSendMax);
344 Dbprintf(" ToSendBit..........%d", ToSendBit);
345 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE);
346
347 cmd_send(CMD_ACK,1,0,0,0,0);
348 }
349
350 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
351
352 #define OPTS 2
353
354 void StandAloneMode()
355 {
356 DbpString("Stand-alone mode! No PC necessary.");
357 // Oooh pretty -- notify user we're in elite samy mode now
358 LED(LED_RED, 200);
359 LED(LED_ORANGE, 200);
360 LED(LED_GREEN, 200);
361 LED(LED_ORANGE, 200);
362 LED(LED_RED, 200);
363 LED(LED_ORANGE, 200);
364 LED(LED_GREEN, 200);
365 LED(LED_ORANGE, 200);
366 LED(LED_RED, 200);
367
368 }
369
370 #endif
371
372
373
374 #ifdef WITH_ISO14443a_StandAlone
375 void StandAloneMode14a()
376 {
377 StandAloneMode();
378 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
379
380 int selected = 0;
381 int playing = 0, iGotoRecord = 0, iGotoClone = 0;
382 int cardRead[OPTS] = {0};
383 uint8_t readUID[10] = {0};
384 uint32_t uid_1st[OPTS]={0};
385 uint32_t uid_2nd[OPTS]={0};
386 uint32_t uid_tmp1 = 0;
387 uint32_t uid_tmp2 = 0;
388 iso14a_card_select_t hi14a_card[OPTS];
389
390 LED(selected + 1, 0);
391
392 for (;;)
393 {
394 usb_poll();
395 WDT_HIT();
396 SpinDelay(300);
397
398 if (iGotoRecord == 1 || cardRead[selected] == 0)
399 {
400 iGotoRecord = 0;
401 LEDsoff();
402 LED(selected + 1, 0);
403 LED(LED_RED2, 0);
404
405 // record
406 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
407 /* need this delay to prevent catching some weird data */
408 SpinDelay(500);
409 /* Code for reading from 14a tag */
410 uint8_t uid[10] ={0};
411 uint32_t cuid;
412 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
413
414 for ( ; ; )
415 {
416 WDT_HIT();
417 if (BUTTON_PRESS()) {
418 if (cardRead[selected]) {
419 Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
420 break;
421 }
422 else if (cardRead[(selected+1)%OPTS]) {
423 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
424 selected = (selected+1)%OPTS;
425 break; // playing = 1;
426 }
427 else {
428 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
429 SpinDelay(300);
430 }
431 }
432 if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid))
433 continue;
434 else
435 {
436 Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
437 memcpy(readUID,uid,10*sizeof(uint8_t));
438 uint8_t *dst = (uint8_t *)&uid_tmp1;
439 // Set UID byte order
440 for (int i=0; i<4; i++)
441 dst[i] = uid[3-i];
442 dst = (uint8_t *)&uid_tmp2;
443 for (int i=0; i<4; i++)
444 dst[i] = uid[7-i];
445 if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
446 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
447 }
448 else {
449 if (uid_tmp2) {
450 Dbprintf("Bank[%d] received a 7-byte UID",selected);
451 uid_1st[selected] = (uid_tmp1)>>8;
452 uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
453 }
454 else {
455 Dbprintf("Bank[%d] received a 4-byte UID",selected);
456 uid_1st[selected] = uid_tmp1;
457 uid_2nd[selected] = uid_tmp2;
458 }
459 break;
460 }
461 }
462 }
463 Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
464 Dbprintf("SAK = %02X",hi14a_card[selected].sak);
465 LEDsoff();
466 LED(LED_GREEN, 200);
467 LED(LED_ORANGE, 200);
468 LED(LED_GREEN, 200);
469 LED(LED_ORANGE, 200);
470
471 LEDsoff();
472 LED(selected + 1, 0);
473
474 // Next state is replay:
475 playing = 1;
476
477 cardRead[selected] = 1;
478 }
479 /* MF Classic UID clone */
480 else if (iGotoClone==1)
481 {
482 iGotoClone=0;
483 LEDsoff();
484 LED(selected + 1, 0);
485 LED(LED_ORANGE, 250);
486
487
488 // record
489 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
490
491 // wait for button to be released
492 while(BUTTON_PRESS())
493 {
494 // Delay cloning until card is in place
495 WDT_HIT();
496 }
497 Dbprintf("Starting clone. [Bank: %u]", selected);
498 // need this delay to prevent catching some weird data
499 SpinDelay(500);
500 // Begin clone function here:
501 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
502 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
503 memcpy(c.d.asBytes, data, 16);
504 SendCommand(&c);
505
506 Block read is similar:
507 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
508 We need to imitate that call with blockNo 0 to set a uid.
509
510 The get and set commands are handled in this file:
511 // Work with "magic Chinese" card
512 case CMD_MIFARE_CSETBLOCK:
513 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
514 break;
515 case CMD_MIFARE_CGETBLOCK:
516 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
517 break;
518
519 mfCSetUID provides example logic for UID set workflow:
520 -Read block0 from card in field with MifareCGetBlock()
521 -Configure new values without replacing reserved bytes
522 memcpy(block0, uid, 4); // Copy UID bytes from byte array
523 // Mifare UID BCC
524 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
525 Bytes 5-7 are reserved SAK and ATQA for mifare classic
526 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
527 */
528 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
529 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
530 MifareCGetBlock(0x3F, 1, 0, oldBlock0);
531 if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
532 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
533 playing = 1;
534 }
535 else {
536 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
537 memcpy(newBlock0,oldBlock0,16);
538 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
539
540 newBlock0[0] = uid_1st[selected]>>24;
541 newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
542 newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
543 newBlock0[3] = 0xFF & (uid_1st[selected]);
544 newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
545 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
546 MifareCSetBlock(0, 0xFF,0, newBlock0);
547 MifareCGetBlock(0x3F, 1, 0, testBlock0);
548 if (memcmp(testBlock0,newBlock0,16)==0)
549 {
550 DbpString("Cloned successfull!");
551 cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it
552 playing = 0;
553 iGotoRecord = 1;
554 selected = (selected + 1) % OPTS;
555 }
556 else {
557 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
558 playing = 1;
559 }
560 }
561 LEDsoff();
562 LED(selected + 1, 0);
563
564 }
565 // Change where to record (or begin playing)
566 else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
567 {
568 LEDsoff();
569 LED(selected + 1, 0);
570
571 // Begin transmitting
572 if (playing)
573 {
574 LED(LED_GREEN, 0);
575 DbpString("Playing");
576 for ( ; ; ) {
577 WDT_HIT();
578 int button_action = BUTTON_HELD(1000);
579 if (button_action == 0) { // No button action, proceed with sim
580 uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
581 uint8_t flags = ( uid_2nd[selected] > 0x00 ) ? FLAG_7B_UID_IN_DATA : FLAG_4B_UID_IN_DATA;
582 num_to_bytes(uid_1st[selected], 3, data);
583 num_to_bytes(uid_2nd[selected], 4, data);
584
585 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
586 if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
587 DbpString("Mifare Classic");
588 SimulateIso14443aTag(1, flags, data); // Mifare Classic
589 }
590 else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
591 DbpString("Mifare Ultralight");
592 SimulateIso14443aTag(2, flags, data); // Mifare Ultralight
593 }
594 else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
595 DbpString("Mifare DESFire");
596 SimulateIso14443aTag(3, flags, data); // Mifare DESFire
597 }
598 else {
599 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
600 SimulateIso14443aTag(1, flags, data);
601 }
602 }
603 else if (button_action == BUTTON_SINGLE_CLICK) {
604 selected = (selected + 1) % OPTS;
605 Dbprintf("Done playing. Switching to record mode on bank %d",selected);
606 iGotoRecord = 1;
607 break;
608 }
609 else if (button_action == BUTTON_HOLD) {
610 Dbprintf("Playtime over. Begin cloning...");
611 iGotoClone = 1;
612 break;
613 }
614 WDT_HIT();
615 }
616
617 /* We pressed a button so ignore it here with a delay */
618 SpinDelay(300);
619 LEDsoff();
620 LED(selected + 1, 0);
621 }
622 else
623 while(BUTTON_PRESS())
624 WDT_HIT();
625 }
626 }
627 }
628 #elif WITH_LF
629 // samy's sniff and repeat routine
630 void SamyRun()
631 {
632 StandAloneMode();
633 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
634
635 int high[OPTS], low[OPTS];
636 int selected = 0;
637 int playing = 0;
638 int cardRead = 0;
639
640 // Turn on selected LED
641 LED(selected + 1, 0);
642
643 for (;;)
644 {
645 usb_poll();
646 WDT_HIT();
647
648 // Was our button held down or pressed?
649 int button_pressed = BUTTON_HELD(1000);
650 SpinDelay(300);
651
652 // Button was held for a second, begin recording
653 if (button_pressed > 0 && cardRead == 0)
654 {
655 LEDsoff();
656 LED(selected + 1, 0);
657 LED(LED_RED2, 0);
658
659 // record
660 DbpString("Starting recording");
661
662 // wait for button to be released
663 while(BUTTON_PRESS())
664 WDT_HIT();
665
666 /* need this delay to prevent catching some weird data */
667 SpinDelay(500);
668
669 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
670 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
671
672 LEDsoff();
673 LED(selected + 1, 0);
674 // Finished recording
675
676 // If we were previously playing, set playing off
677 // so next button push begins playing what we recorded
678 playing = 0;
679
680 cardRead = 1;
681
682 }
683
684 else if (button_pressed > 0 && cardRead == 1)
685 {
686 LEDsoff();
687 LED(selected + 1, 0);
688 LED(LED_ORANGE, 0);
689
690 // record
691 Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
692
693 // wait for button to be released
694 while(BUTTON_PRESS())
695 WDT_HIT();
696
697 /* need this delay to prevent catching some weird data */
698 SpinDelay(500);
699
700 CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
701 Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
702
703 LEDsoff();
704 LED(selected + 1, 0);
705 // Finished recording
706
707 // If we were previously playing, set playing off
708 // so next button push begins playing what we recorded
709 playing = 0;
710
711 cardRead = 0;
712
713 }
714
715 // Change where to record (or begin playing)
716 else if (button_pressed)
717 {
718 // Next option if we were previously playing
719 if (playing)
720 selected = (selected + 1) % OPTS;
721 playing = !playing;
722
723 LEDsoff();
724 LED(selected + 1, 0);
725
726 // Begin transmitting
727 if (playing)
728 {
729 LED(LED_GREEN, 0);
730 DbpString("Playing");
731 // wait for button to be released
732 while(BUTTON_PRESS())
733 WDT_HIT();
734 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
735 CmdHIDsimTAG(high[selected], low[selected], 0);
736 DbpString("Done playing");
737 if (BUTTON_HELD(1000) > 0)
738 {
739 DbpString("Exiting");
740 LEDsoff();
741 return;
742 }
743
744 /* We pressed a button so ignore it here with a delay */
745 SpinDelay(300);
746
747 // when done, we're done playing, move to next option
748 selected = (selected + 1) % OPTS;
749 playing = !playing;
750 LEDsoff();
751 LED(selected + 1, 0);
752 }
753 else
754 while(BUTTON_PRESS())
755 WDT_HIT();
756 }
757 }
758 }
759
760 #endif
761 /*
762 OBJECTIVE
763 Listen and detect an external reader. Determine the best location
764 for the antenna.
765
766 INSTRUCTIONS:
767 Inside the ListenReaderField() function, there is two mode.
768 By default, when you call the function, you will enter mode 1.
769 If you press the PM3 button one time, you will enter mode 2.
770 If you press the PM3 button a second time, you will exit the function.
771
772 DESCRIPTION OF MODE 1:
773 This mode just listens for an external reader field and lights up green
774 for HF and/or red for LF. This is the original mode of the detectreader
775 function.
776
777 DESCRIPTION OF MODE 2:
778 This mode will visually represent, using the LEDs, the actual strength of the
779 current compared to the maximum current detected. Basically, once you know
780 what kind of external reader is present, it will help you spot the best location to place
781 your antenna. You will probably not get some good results if there is a LF and a HF reader
782 at the same place! :-)
783
784 LIGHT SCHEME USED:
785 */
786 static const char LIGHT_SCHEME[] = {
787 0x0, /* ---- | No field detected */
788 0x1, /* X--- | 14% of maximum current detected */
789 0x2, /* -X-- | 29% of maximum current detected */
790 0x4, /* --X- | 43% of maximum current detected */
791 0x8, /* ---X | 57% of maximum current detected */
792 0xC, /* --XX | 71% of maximum current detected */
793 0xE, /* -XXX | 86% of maximum current detected */
794 0xF, /* XXXX | 100% of maximum current detected */
795 };
796 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
797
798 void ListenReaderField(int limit)
799 {
800 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
801 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
802 int mode=1, display_val, display_max, i;
803
804 #define LF_ONLY 1
805 #define HF_ONLY 2
806 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
807
808
809 // switch off FPGA - we don't want to measure our own signal
810 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
811 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
812
813 LEDsoff();
814
815 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
816
817 if(limit != HF_ONLY) {
818 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
819 lf_baseline = lf_av;
820 }
821
822 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
823
824 if (limit != LF_ONLY) {
825 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
826 hf_baseline = hf_av;
827 }
828
829 for(;;) {
830 if (BUTTON_PRESS()) {
831 SpinDelay(500);
832 switch (mode) {
833 case 1:
834 mode=2;
835 DbpString("Signal Strength Mode");
836 break;
837 case 2:
838 default:
839 DbpString("Stopped");
840 LEDsoff();
841 return;
842 break;
843 }
844 }
845 WDT_HIT();
846
847 if (limit != HF_ONLY) {
848 if(mode == 1) {
849 if (abs(lf_av - lf_baseline) > REPORT_CHANGE)
850 LED_D_ON();
851 else
852 LED_D_OFF();
853 }
854
855 lf_av_new = AvgAdc(ADC_CHAN_LF);
856 // see if there's a significant change
857 if(abs(lf_av - lf_av_new) > REPORT_CHANGE) {
858 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
859 lf_av = lf_av_new;
860 if (lf_av > lf_max)
861 lf_max = lf_av;
862 }
863 }
864
865 if (limit != LF_ONLY) {
866 if (mode == 1){
867 if (abs(hf_av - hf_baseline) > REPORT_CHANGE)
868 LED_B_ON();
869 else
870 LED_B_OFF();
871 }
872
873 hf_av_new = AvgAdc(ADC_CHAN_HF);
874 // see if there's a significant change
875 if(abs(hf_av - hf_av_new) > REPORT_CHANGE) {
876 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
877 hf_av = hf_av_new;
878 if (hf_av > hf_max)
879 hf_max = hf_av;
880 }
881 }
882
883 if(mode == 2) {
884 if (limit == LF_ONLY) {
885 display_val = lf_av;
886 display_max = lf_max;
887 } else if (limit == HF_ONLY) {
888 display_val = hf_av;
889 display_max = hf_max;
890 } else { /* Pick one at random */
891 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
892 display_val = hf_av;
893 display_max = hf_max;
894 } else {
895 display_val = lf_av;
896 display_max = lf_max;
897 }
898 }
899 for (i=0; i<LIGHT_LEN; i++) {
900 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
901 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
902 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
903 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
904 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
905 break;
906 }
907 }
908 }
909 }
910 }
911
912 void UsbPacketReceived(uint8_t *packet, int len)
913 {
914 UsbCommand *c = (UsbCommand *)packet;
915
916 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
917
918 switch(c->cmd) {
919 #ifdef WITH_LF
920 case CMD_SET_LF_SAMPLING_CONFIG:
921 setSamplingConfig((sample_config *) c->d.asBytes);
922 break;
923 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
924 cmd_send(CMD_ACK, SampleLF(c->arg[0]),0,0,0,0);
925 break;
926 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
927 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
928 break;
929 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
930 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
931 break;
932 case CMD_HID_DEMOD_FSK:
933 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
934 break;
935 case CMD_HID_SIM_TAG:
936 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
937 break;
938 case CMD_FSK_SIM_TAG:
939 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
940 break;
941 case CMD_ASK_SIM_TAG:
942 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
943 break;
944 case CMD_PSK_SIM_TAG:
945 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
946 break;
947 case CMD_HID_CLONE_TAG:
948 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
949 break;
950 case CMD_IO_DEMOD_FSK:
951 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
952 break;
953 case CMD_IO_CLONE_TAG:
954 CopyIOtoT55x7(c->arg[0], c->arg[1]);
955 break;
956 case CMD_EM410X_DEMOD:
957 CmdEM410xdemod(c->arg[0], 0, 0, 1);
958 break;
959 case CMD_EM410X_WRITE_TAG:
960 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
961 break;
962 case CMD_READ_TI_TYPE:
963 ReadTItag();
964 break;
965 case CMD_WRITE_TI_TYPE:
966 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
967 break;
968 case CMD_SIMULATE_TAG_125K:
969 LED_A_ON();
970 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
971 LED_A_OFF();
972 break;
973 case CMD_LF_SIMULATE_BIDIR:
974 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
975 break;
976 case CMD_INDALA_CLONE_TAG:
977 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
978 break;
979 case CMD_INDALA_CLONE_TAG_L:
980 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
981 break;
982 case CMD_T55XX_READ_BLOCK:
983 T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
984 break;
985 case CMD_T55XX_WRITE_BLOCK:
986 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
987 break;
988 case CMD_T55XX_WAKEUP:
989 T55xxWakeUp(c->arg[0]);
990 break;
991 case CMD_T55XX_RESET_READ:
992 T55xxResetRead();
993 break;
994 case CMD_PCF7931_READ:
995 ReadPCF7931();
996 break;
997 case CMD_PCF7931_WRITE:
998 WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
999 break;
1000 case CMD_EM4X_READ_WORD:
1001 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
1002 break;
1003 case CMD_EM4X_WRITE_WORD:
1004 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
1005 break;
1006 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
1007 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
1008 break;
1009 case CMD_VIKING_CLONE_TAG:
1010 CopyViKingtoT55x7(c->arg[0],c->arg[1]);
1011 break;
1012
1013
1014 #endif
1015
1016 #ifdef WITH_HITAG
1017 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
1018 SnoopHitag(c->arg[0]);
1019 break;
1020 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
1021 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1022 break;
1023 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
1024 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1025 break;
1026 #endif
1027
1028 #ifdef WITH_ISO15693
1029 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
1030 AcquireRawAdcSamplesIso15693();
1031 break;
1032 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
1033 RecordRawAdcSamplesIso15693();
1034 break;
1035
1036 case CMD_ISO_15693_COMMAND:
1037 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1038 break;
1039
1040 case CMD_ISO_15693_FIND_AFI:
1041 BruteforceIso15693Afi(c->arg[0]);
1042 break;
1043
1044 case CMD_ISO_15693_DEBUG:
1045 SetDebugIso15693(c->arg[0]);
1046 break;
1047
1048 case CMD_READER_ISO_15693:
1049 ReaderIso15693(c->arg[0]);
1050 break;
1051 case CMD_SIMTAG_ISO_15693:
1052 SimTagIso15693(c->arg[0], c->d.asBytes);
1053 break;
1054 #endif
1055
1056 #ifdef WITH_LEGICRF
1057 case CMD_SIMULATE_TAG_LEGIC_RF:
1058 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
1059 break;
1060
1061 case CMD_WRITER_LEGIC_RF:
1062 LegicRfWriter(c->arg[1], c->arg[0]);
1063 break;
1064
1065 case CMD_READER_LEGIC_RF:
1066 LegicRfReader(c->arg[0], c->arg[1]);
1067 break;
1068 #endif
1069
1070 #ifdef WITH_ISO14443b
1071 case CMD_READ_SRI512_TAG:
1072 ReadSTMemoryIso14443b(0x0F);
1073 break;
1074 case CMD_READ_SRIX4K_TAG:
1075 ReadSTMemoryIso14443b(0x7F);
1076 break;
1077 case CMD_SNOOP_ISO_14443B:
1078 SnoopIso14443b();
1079 break;
1080 case CMD_SIMULATE_TAG_ISO_14443B:
1081 SimulateIso14443bTag();
1082 break;
1083 case CMD_ISO_14443B_COMMAND:
1084 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1085 break;
1086 #endif
1087
1088 #ifdef WITH_ISO14443a
1089 case CMD_SNOOP_ISO_14443a:
1090 SniffIso14443a(c->arg[0]);
1091 break;
1092 case CMD_READER_ISO_14443a:
1093 ReaderIso14443a(c);
1094 break;
1095 case CMD_SIMULATE_TAG_ISO_14443a:
1096 SimulateIso14443aTag(c->arg[0], c->arg[1], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
1097 break;
1098
1099 case CMD_EPA_PACE_COLLECT_NONCE:
1100 EPA_PACE_Collect_Nonce(c);
1101 break;
1102 case CMD_EPA_PACE_REPLAY:
1103 EPA_PACE_Replay(c);
1104 break;
1105
1106 case CMD_READER_MIFARE:
1107 ReaderMifare(c->arg[0]);
1108 break;
1109 case CMD_MIFARE_READBL:
1110 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1111 break;
1112 case CMD_MIFAREU_READBL:
1113 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
1114 break;
1115 case CMD_MIFAREUC_AUTH:
1116 MifareUC_Auth(c->arg[0],c->d.asBytes);
1117 break;
1118 case CMD_MIFAREU_READCARD:
1119 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1120 break;
1121 case CMD_MIFAREUC_SETPWD:
1122 MifareUSetPwd(c->arg[0], c->d.asBytes);
1123 break;
1124 case CMD_MIFARE_READSC:
1125 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1126 break;
1127 case CMD_MIFARE_WRITEBL:
1128 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1129 break;
1130 //case CMD_MIFAREU_WRITEBL_COMPAT:
1131 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1132 //break;
1133 case CMD_MIFAREU_WRITEBL:
1134 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
1135 break;
1136 case CMD_MIFARE_NESTED:
1137 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1138 break;
1139 case CMD_MIFARE_CHKKEYS:
1140 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1141 break;
1142 case CMD_SIMULATE_MIFARE_CARD:
1143 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1144 break;
1145
1146 // emulator
1147 case CMD_MIFARE_SET_DBGMODE:
1148 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1149 break;
1150 case CMD_MIFARE_EML_MEMCLR:
1151 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1152 break;
1153 case CMD_MIFARE_EML_MEMSET:
1154 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1155 break;
1156 case CMD_MIFARE_EML_MEMGET:
1157 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1158 break;
1159 case CMD_MIFARE_EML_CARDLOAD:
1160 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1161 break;
1162
1163 // Work with "magic Chinese" card
1164 case CMD_MIFARE_CSETBLOCK:
1165 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1166 break;
1167 case CMD_MIFARE_CGETBLOCK:
1168 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1169 break;
1170 case CMD_MIFARE_CIDENT:
1171 MifareCIdent();
1172 break;
1173
1174 // mifare sniffer
1175 case CMD_MIFARE_SNIFFER:
1176 SniffMifare(c->arg[0]);
1177 break;
1178
1179 //mifare desfire
1180 case CMD_MIFARE_DESFIRE_READBL: break;
1181 case CMD_MIFARE_DESFIRE_WRITEBL: break;
1182 case CMD_MIFARE_DESFIRE_AUTH1:
1183 MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1184 break;
1185 case CMD_MIFARE_DESFIRE_AUTH2:
1186 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1187 break;
1188 case CMD_MIFARE_DES_READER:
1189 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1190 break;
1191 case CMD_MIFARE_DESFIRE_INFO:
1192 MifareDesfireGetInformation();
1193 break;
1194 case CMD_MIFARE_DESFIRE:
1195 MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes);
1196 break;
1197
1198 case CMD_MIFARE_COLLECT_NONCES:
1199 MifareCollectNonces(c->arg[0], c->arg[1]);
1200 break;
1201 #endif
1202
1203 #ifdef WITH_ICLASS
1204 // Makes use of ISO14443a FPGA Firmware
1205 case CMD_SNOOP_ICLASS:
1206 SnoopIClass();
1207 break;
1208 case CMD_SIMULATE_TAG_ICLASS:
1209 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1210 break;
1211 case CMD_READER_ICLASS:
1212 ReaderIClass(c->arg[0]);
1213 break;
1214 case CMD_READER_ICLASS_REPLAY:
1215 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
1216 break;
1217 case CMD_ICLASS_EML_MEMSET:
1218 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1219 break;
1220 case CMD_ICLASS_WRITEBLOCK:
1221 iClass_WriteBlock(c->arg[0], c->d.asBytes);
1222 break;
1223 case CMD_ICLASS_READCHECK: // auth step 1
1224 iClass_ReadCheck(c->arg[0], c->arg[1]);
1225 break;
1226 case CMD_ICLASS_READBLOCK:
1227 iClass_ReadBlk(c->arg[0]);
1228 break;
1229 case CMD_ICLASS_AUTHENTICATION: //check
1230 iClass_Authentication(c->d.asBytes);
1231 break;
1232 case CMD_ICLASS_DUMP:
1233 iClass_Dump(c->arg[0], c->arg[1]);
1234 break;
1235 case CMD_ICLASS_CLONE:
1236 iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
1237 break;
1238 #endif
1239 #ifdef WITH_HFSNOOP
1240 case CMD_HF_SNIFFER:
1241 HfSnoop(c->arg[0], c->arg[1]);
1242 break;
1243 #endif
1244
1245 case CMD_BUFF_CLEAR:
1246 BigBuf_Clear();
1247 break;
1248
1249 case CMD_MEASURE_ANTENNA_TUNING:
1250 MeasureAntennaTuning();
1251 break;
1252
1253 case CMD_MEASURE_ANTENNA_TUNING_HF:
1254 MeasureAntennaTuningHf();
1255 break;
1256
1257 case CMD_LISTEN_READER_FIELD:
1258 ListenReaderField(c->arg[0]);
1259 break;
1260
1261 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1262 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1263 SpinDelay(200);
1264 LED_D_OFF(); // LED D indicates field ON or OFF
1265 break;
1266
1267 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
1268
1269 LED_B_ON();
1270 uint8_t *BigBuf = BigBuf_get_addr();
1271 size_t len = 0;
1272 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
1273 len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
1274 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1275 }
1276 // Trigger a finish downloading signal with an ACK frame
1277 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
1278 LED_B_OFF();
1279 break;
1280
1281 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
1282 uint8_t *b = BigBuf_get_addr();
1283 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1284 cmd_send(CMD_ACK,0,0,0,0,0);
1285 break;
1286 }
1287 case CMD_READ_MEM:
1288 ReadMem(c->arg[0]);
1289 break;
1290
1291 case CMD_SET_LF_DIVISOR:
1292 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1293 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1294 break;
1295
1296 case CMD_SET_ADC_MUX:
1297 switch(c->arg[0]) {
1298 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1299 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1300 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1301 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1302 }
1303 break;
1304
1305 case CMD_VERSION:
1306 SendVersion();
1307 break;
1308 case CMD_STATUS:
1309 SendStatus();
1310 break;
1311 case CMD_PING:
1312 cmd_send(CMD_ACK,0,0,0,0,0);
1313 break;
1314 #ifdef WITH_LCD
1315 case CMD_LCD_RESET:
1316 LCDReset();
1317 break;
1318 case CMD_LCD:
1319 LCDSend(c->arg[0]);
1320 break;
1321 #endif
1322 case CMD_SETUP_WRITE:
1323 case CMD_FINISH_WRITE:
1324 case CMD_HARDWARE_RESET:
1325 usb_disable();
1326 SpinDelay(2000);
1327 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1328 for(;;) {
1329 // We're going to reset, and the bootrom will take control.
1330 }
1331 break;
1332
1333 case CMD_START_FLASH:
1334 if(common_area.flags.bootrom_present) {
1335 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1336 }
1337 usb_disable();
1338 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1339 for(;;);
1340 break;
1341
1342 case CMD_DEVICE_INFO: {
1343 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1344 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1345 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1346 break;
1347 }
1348 default:
1349 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1350 break;
1351 }
1352 }
1353
1354 void __attribute__((noreturn)) AppMain(void)
1355 {
1356 SpinDelay(100);
1357 clear_trace();
1358 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1359 /* Initialize common area */
1360 memset(&common_area, 0, sizeof(common_area));
1361 common_area.magic = COMMON_AREA_MAGIC;
1362 common_area.version = 1;
1363 }
1364 common_area.flags.osimage_present = 1;
1365
1366 LED_D_OFF();
1367 LED_C_OFF();
1368 LED_B_OFF();
1369 LED_A_OFF();
1370
1371 // Init USB device
1372 usb_enable();
1373
1374 // The FPGA gets its clock from us from PCK0 output, so set that up.
1375 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1376 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1377 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1378 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1379 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1380 AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1381 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1382
1383 // Reset SPI
1384 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1385 // Reset SSC
1386 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1387
1388 // Load the FPGA image, which we have stored in our flash.
1389 // (the HF version by default)
1390 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1391
1392 StartTickCount();
1393
1394 #ifdef WITH_LCD
1395 LCDInit();
1396 #endif
1397
1398 byte_t rx[sizeof(UsbCommand)];
1399 size_t rx_len;
1400
1401 for(;;) {
1402 if (usb_poll()) {
1403 rx_len = usb_read(rx,sizeof(UsbCommand));
1404 if (rx_len) {
1405 UsbPacketReceived(rx,rx_len);
1406 }
1407 }
1408 WDT_HIT();
1409
1410 #ifdef WITH_LF
1411 #ifndef WITH_ISO14443a_StandAlone
1412 if (BUTTON_HELD(1000) > 0)
1413 SamyRun();
1414 #endif
1415 #endif
1416 #ifdef WITH_ISO14443a
1417 #ifdef WITH_ISO14443a_StandAlone
1418 if (BUTTON_HELD(1000) > 0)
1419 StandAloneMode14a();
1420 #endif
1421 #endif
1422 }
1423 }
Impressum, Datenschutz