]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso14443b.c
ee7f18f2927506a177e0ba500b1536594c927034
[proxmark3-svn] / armsrc / iso14443b.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, split Nov 2006
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Routines to support ISO 14443B. This includes both the reader software and
9 // the `fake tag' modes.
10 //-----------------------------------------------------------------------------
11
12 #include "proxmark3.h"
13 #include "apps.h"
14 #include "util.h"
15 #include "string.h"
16
17 #include "iso14443crc.h"
18
19 #define RECEIVE_SAMPLES_TIMEOUT 2000
20 #define ISO14443B_DMA_BUFFER_SIZE 256
21
22 //=============================================================================
23 // An ISO 14443 Type B tag. We listen for commands from the reader, using
24 // a UART kind of thing that's implemented in software. When we get a
25 // frame (i.e., a group of bytes between SOF and EOF), we check the CRC.
26 // If it's good, then we can do something appropriate with it, and send
27 // a response.
28 //=============================================================================
29
30 //-----------------------------------------------------------------------------
31 // Code up a string of octets at layer 2 (including CRC, we don't generate
32 // that here) so that they can be transmitted to the reader. Doesn't transmit
33 // them yet, just leaves them ready to send in ToSend[].
34 //-----------------------------------------------------------------------------
35 static void CodeIso14443bAsTag(const uint8_t *cmd, int len)
36 {
37 int i;
38
39 ToSendReset();
40
41 // Transmit a burst of ones, as the initial thing that lets the
42 // reader get phase sync. This (TR1) must be > 80/fs, per spec,
43 // but tag that I've tried (a Paypass) exceeds that by a fair bit,
44 // so I will too.
45 for(i = 0; i < 20; i++) {
46 ToSendStuffBit(1);
47 ToSendStuffBit(1);
48 ToSendStuffBit(1);
49 ToSendStuffBit(1);
50 }
51
52 // Send SOF.
53 for(i = 0; i < 10; i++) {
54 ToSendStuffBit(0);
55 ToSendStuffBit(0);
56 ToSendStuffBit(0);
57 ToSendStuffBit(0);
58 }
59 for(i = 0; i < 2; i++) {
60 ToSendStuffBit(1);
61 ToSendStuffBit(1);
62 ToSendStuffBit(1);
63 ToSendStuffBit(1);
64 }
65
66 for(i = 0; i < len; i++) {
67 int j;
68 uint8_t b = cmd[i];
69
70 // Start bit
71 ToSendStuffBit(0);
72 ToSendStuffBit(0);
73 ToSendStuffBit(0);
74 ToSendStuffBit(0);
75
76 // Data bits
77 for(j = 0; j < 8; j++) {
78 if(b & 1) {
79 ToSendStuffBit(1);
80 ToSendStuffBit(1);
81 ToSendStuffBit(1);
82 ToSendStuffBit(1);
83 } else {
84 ToSendStuffBit(0);
85 ToSendStuffBit(0);
86 ToSendStuffBit(0);
87 ToSendStuffBit(0);
88 }
89 b >>= 1;
90 }
91
92 // Stop bit
93 ToSendStuffBit(1);
94 ToSendStuffBit(1);
95 ToSendStuffBit(1);
96 ToSendStuffBit(1);
97 }
98
99 // Send EOF.
100 for(i = 0; i < 10; i++) {
101 ToSendStuffBit(0);
102 ToSendStuffBit(0);
103 ToSendStuffBit(0);
104 ToSendStuffBit(0);
105 }
106 for(i = 0; i < 2; i++) {
107 ToSendStuffBit(1);
108 ToSendStuffBit(1);
109 ToSendStuffBit(1);
110 ToSendStuffBit(1);
111 }
112
113 // Convert from last byte pos to length
114 ToSendMax++;
115 }
116
117 //-----------------------------------------------------------------------------
118 // The software UART that receives commands from the reader, and its state
119 // variables.
120 //-----------------------------------------------------------------------------
121 static struct {
122 enum {
123 STATE_UNSYNCD,
124 STATE_GOT_FALLING_EDGE_OF_SOF,
125 STATE_AWAITING_START_BIT,
126 STATE_RECEIVING_DATA
127 } state;
128 uint16_t shiftReg;
129 int bitCnt;
130 int byteCnt;
131 int byteCntMax;
132 int posCnt;
133 uint8_t *output;
134 } Uart;
135
136 /* Receive & handle a bit coming from the reader.
137 *
138 * This function is called 4 times per bit (every 2 subcarrier cycles).
139 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
140 *
141 * LED handling:
142 * LED A -> ON once we have received the SOF and are expecting the rest.
143 * LED A -> OFF once we have received EOF or are in error state or unsynced
144 *
145 * Returns: true if we received a EOF
146 * false if we are still waiting for some more
147 */
148 static RAMFUNC int Handle14443bUartBit(uint8_t bit)
149 {
150 switch(Uart.state) {
151 case STATE_UNSYNCD:
152 if(!bit) {
153 // we went low, so this could be the beginning
154 // of an SOF
155 Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
156 Uart.posCnt = 0;
157 Uart.bitCnt = 0;
158 }
159 break;
160
161 case STATE_GOT_FALLING_EDGE_OF_SOF:
162 Uart.posCnt++;
163 if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
164 if(bit) {
165 if(Uart.bitCnt > 9) {
166 // we've seen enough consecutive
167 // zeros that it's a valid SOF
168 Uart.posCnt = 0;
169 Uart.byteCnt = 0;
170 Uart.state = STATE_AWAITING_START_BIT;
171 LED_A_ON(); // Indicate we got a valid SOF
172 } else {
173 // didn't stay down long enough
174 // before going high, error
175 Uart.state = STATE_UNSYNCD;
176 }
177 } else {
178 // do nothing, keep waiting
179 }
180 Uart.bitCnt++;
181 }
182 if(Uart.posCnt >= 4) Uart.posCnt = 0;
183 if(Uart.bitCnt > 12) {
184 // Give up if we see too many zeros without
185 // a one, too.
186 LED_A_OFF();
187 Uart.state = STATE_UNSYNCD;
188 }
189 break;
190
191 case STATE_AWAITING_START_BIT:
192 Uart.posCnt++;
193 if(bit) {
194 if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
195 // stayed high for too long between
196 // characters, error
197 Uart.state = STATE_UNSYNCD;
198 }
199 } else {
200 // falling edge, this starts the data byte
201 Uart.posCnt = 0;
202 Uart.bitCnt = 0;
203 Uart.shiftReg = 0;
204 Uart.state = STATE_RECEIVING_DATA;
205 }
206 break;
207
208 case STATE_RECEIVING_DATA:
209 Uart.posCnt++;
210 if(Uart.posCnt == 2) {
211 // time to sample a bit
212 Uart.shiftReg >>= 1;
213 if(bit) {
214 Uart.shiftReg |= 0x200;
215 }
216 Uart.bitCnt++;
217 }
218 if(Uart.posCnt >= 4) {
219 Uart.posCnt = 0;
220 }
221 if(Uart.bitCnt == 10) {
222 if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
223 {
224 // this is a data byte, with correct
225 // start and stop bits
226 Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
227 Uart.byteCnt++;
228
229 if(Uart.byteCnt >= Uart.byteCntMax) {
230 // Buffer overflowed, give up
231 LED_A_OFF();
232 Uart.state = STATE_UNSYNCD;
233 } else {
234 // so get the next byte now
235 Uart.posCnt = 0;
236 Uart.state = STATE_AWAITING_START_BIT;
237 }
238 } else if (Uart.shiftReg == 0x000) {
239 // this is an EOF byte
240 LED_A_OFF(); // Finished receiving
241 Uart.state = STATE_UNSYNCD;
242 if (Uart.byteCnt != 0) {
243 return TRUE;
244 }
245 } else {
246 // this is an error
247 LED_A_OFF();
248 Uart.state = STATE_UNSYNCD;
249 }
250 }
251 break;
252
253 default:
254 LED_A_OFF();
255 Uart.state = STATE_UNSYNCD;
256 break;
257 }
258
259 return FALSE;
260 }
261
262
263 static void UartReset()
264 {
265 Uart.byteCntMax = MAX_FRAME_SIZE;
266 Uart.state = STATE_UNSYNCD;
267 Uart.byteCnt = 0;
268 Uart.bitCnt = 0;
269 }
270
271
272 static void UartInit(uint8_t *data)
273 {
274 Uart.output = data;
275 UartReset();
276 }
277
278
279 //-----------------------------------------------------------------------------
280 // Receive a command (from the reader to us, where we are the simulated tag),
281 // and store it in the given buffer, up to the given maximum length. Keeps
282 // spinning, waiting for a well-framed command, until either we get one
283 // (returns TRUE) or someone presses the pushbutton on the board (FALSE).
284 //
285 // Assume that we're called with the SSC (to the FPGA) and ADC path set
286 // correctly.
287 //-----------------------------------------------------------------------------
288 static int GetIso14443bCommandFromReader(uint8_t *received, uint16_t *len)
289 {
290 // Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen
291 // only, since we are receiving, not transmitting).
292 // Signal field is off with the appropriate LED
293 LED_D_OFF();
294 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
295
296 // Now run a `software UART' on the stream of incoming samples.
297 UartInit(received);
298
299 for(;;) {
300 WDT_HIT();
301
302 if(BUTTON_PRESS()) return FALSE;
303
304 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
305 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
306 for(uint8_t mask = 0x80; mask != 0x00; mask >>= 1) {
307 if(Handle14443bUartBit(b & mask)) {
308 *len = Uart.byteCnt;
309 return TRUE;
310 }
311 }
312 }
313 }
314
315 return FALSE;
316 }
317
318 //-----------------------------------------------------------------------------
319 // Main loop of simulated tag: receive commands from reader, decide what
320 // response to send, and send it.
321 //-----------------------------------------------------------------------------
322 void SimulateIso14443bTag(void)
323 {
324 // the only commands we understand is REQB, AFI=0, Select All, N=0:
325 static const uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
326 // ... and REQB, AFI=0, Normal Request, N=0:
327 static const uint8_t cmd2[] = { 0x05, 0x00, 0x00, 0x71, 0xFF };
328
329 // ... and we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922,
330 // supports only 106kBit/s in both directions, max frame size = 32Bytes,
331 // supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported:
332 static const uint8_t response1[] = {
333 0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22,
334 0x00, 0x21, 0x85, 0x5e, 0xd7
335 };
336
337 uint8_t parity[MAX_PARITY_SIZE];
338
339 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
340
341 clear_trace();
342 set_tracing(TRUE);
343
344 const uint8_t *resp;
345 uint8_t *respCode;
346 uint16_t respLen, respCodeLen;
347
348 // allocate command receive buffer
349 BigBuf_free();
350 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
351
352 uint16_t len;
353 uint16_t cmdsRecvd = 0;
354
355 // prepare the (only one) tag answer:
356 CodeIso14443bAsTag(response1, sizeof(response1));
357 uint8_t *resp1Code = BigBuf_malloc(ToSendMax);
358 memcpy(resp1Code, ToSend, ToSendMax);
359 uint16_t resp1CodeLen = ToSendMax;
360
361 // We need to listen to the high-frequency, peak-detected path.
362 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
363 FpgaSetupSsc();
364
365 cmdsRecvd = 0;
366
367 for(;;) {
368
369 if(!GetIso14443bCommandFromReader(receivedCmd, &len)) {
370 Dbprintf("button pressed, received %d commands", cmdsRecvd);
371 break;
372 }
373
374 if (tracing) {
375 LogTrace(receivedCmd, len, 0, 0, parity, TRUE);
376 }
377
378 // Good, look at the command now.
379 if ( (len == sizeof(cmd1) && memcmp(receivedCmd, cmd1, len) == 0)
380 || (len == sizeof(cmd2) && memcmp(receivedCmd, cmd2, len) == 0) ) {
381 resp = response1;
382 respLen = sizeof(response1);
383 respCode = resp1Code;
384 respCodeLen = resp1CodeLen;
385 } else {
386 Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len, cmdsRecvd);
387 // And print whether the CRC fails, just for good measure
388 uint8_t b1, b2;
389 ComputeCrc14443(CRC_14443_B, receivedCmd, len-2, &b1, &b2);
390 if(b1 != receivedCmd[len-2] || b2 != receivedCmd[len-1]) {
391 // Not so good, try again.
392 DbpString("+++CRC fail");
393 } else {
394 DbpString("CRC passes");
395 }
396 break;
397 }
398
399 cmdsRecvd++;
400
401 if(cmdsRecvd > 0x30) {
402 DbpString("many commands later...");
403 break;
404 }
405
406 if(respCodeLen <= 0) continue;
407
408 // Modulate BPSK
409 // Signal field is off with the appropriate LED
410 LED_D_OFF();
411 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK);
412 AT91C_BASE_SSC->SSC_THR = 0xff;
413 FpgaSetupSsc();
414
415 uint8_t c;
416 // clear receiving shift register and holding register
417 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
418 c = AT91C_BASE_SSC->SSC_RHR; (void) c;
419 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
420 c = AT91C_BASE_SSC->SSC_RHR; (void) c;
421
422 // Clear TXRDY:
423 AT91C_BASE_SSC->SSC_THR = 0x00;
424
425 // Transmit the response.
426 uint16_t FpgaSendQueueDelay = 0;
427 uint16_t i = 0;
428 for(;i < respCodeLen; ) {
429 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
430 AT91C_BASE_SSC->SSC_THR = respCode[i++];
431 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
432 }
433 if(BUTTON_PRESS()) break;
434 }
435
436 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
437 uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
438 for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
439 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
440 AT91C_BASE_SSC->SSC_THR = 0x00;
441 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
442 i++;
443 }
444 }
445
446 // trace the response:
447 if (tracing) LogTrace(resp, respLen, 0, 0, parity, FALSE);
448 }
449 //FpgaDisableSscDma();
450 }
451
452 //=============================================================================
453 // An ISO 14443 Type B reader. We take layer two commands, code them
454 // appropriately, and then send them to the tag. We then listen for the
455 // tag's response, which we leave in the buffer to be demodulated on the
456 // PC side.
457 //=============================================================================
458
459 static struct {
460 enum {
461 DEMOD_UNSYNCD,
462 DEMOD_PHASE_REF_TRAINING,
463 DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
464 DEMOD_GOT_FALLING_EDGE_OF_SOF,
465 DEMOD_AWAITING_START_BIT,
466 DEMOD_RECEIVING_DATA
467 } state;
468 int bitCount;
469 int posCount;
470 int thisBit;
471 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
472 int metric;
473 int metricN;
474 */
475 uint16_t shiftReg;
476 uint8_t *output;
477 int len;
478 int sumI;
479 int sumQ;
480 } Demod;
481
482 /*
483 * Handles reception of a bit from the tag
484 *
485 * This function is called 2 times per bit (every 4 subcarrier cycles).
486 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us
487 *
488 * LED handling:
489 * LED C -> ON once we have received the SOF and are expecting the rest.
490 * LED C -> OFF once we have received EOF or are unsynced
491 *
492 * Returns: true if we received a EOF
493 * false if we are still waiting for some more
494 *
495 */
496 static RAMFUNC int Handle14443bSamplesDemod(int ci, int cq)
497 {
498 int v;
499
500 // The soft decision on the bit uses an estimate of just the
501 // quadrant of the reference angle, not the exact angle.
502 #define MAKE_SOFT_DECISION() { \
503 if(Demod.sumI > 0) { \
504 v = ci; \
505 } else { \
506 v = -ci; \
507 } \
508 if(Demod.sumQ > 0) { \
509 v += cq; \
510 } else { \
511 v -= cq; \
512 } \
513 }
514
515 #define SUBCARRIER_DETECT_THRESHOLD 8
516
517 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by abs(ci) + abs(cq)
518 /* #define CHECK_FOR_SUBCARRIER() { \
519 v = ci; \
520 if(v < 0) v = -v; \
521 if(cq > 0) { \
522 v += cq; \
523 } else { \
524 v -= cq; \
525 } \
526 }
527 */
528 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
529 #define CHECK_FOR_SUBCARRIER() { \
530 if(ci < 0) { \
531 if(cq < 0) { /* ci < 0, cq < 0 */ \
532 if (cq < ci) { \
533 v = -cq - (ci >> 1); \
534 } else { \
535 v = -ci - (cq >> 1); \
536 } \
537 } else { /* ci < 0, cq >= 0 */ \
538 if (cq < -ci) { \
539 v = -ci + (cq >> 1); \
540 } else { \
541 v = cq - (ci >> 1); \
542 } \
543 } \
544 } else { \
545 if(cq < 0) { /* ci >= 0, cq < 0 */ \
546 if (-cq < ci) { \
547 v = ci - (cq >> 1); \
548 } else { \
549 v = -cq + (ci >> 1); \
550 } \
551 } else { /* ci >= 0, cq >= 0 */ \
552 if (cq < ci) { \
553 v = ci + (cq >> 1); \
554 } else { \
555 v = cq + (ci >> 1); \
556 } \
557 } \
558 } \
559 }
560
561 switch(Demod.state) {
562 case DEMOD_UNSYNCD:
563 CHECK_FOR_SUBCARRIER();
564 if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected
565 Demod.state = DEMOD_PHASE_REF_TRAINING;
566 Demod.sumI = ci;
567 Demod.sumQ = cq;
568 Demod.posCount = 1;
569 }
570 break;
571
572 case DEMOD_PHASE_REF_TRAINING:
573 if(Demod.posCount < 8) {
574 CHECK_FOR_SUBCARRIER();
575 if (v > SUBCARRIER_DETECT_THRESHOLD) {
576 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
577 // note: synchronization time > 80 1/fs
578 Demod.sumI += ci;
579 Demod.sumQ += cq;
580 Demod.posCount++;
581 } else { // subcarrier lost
582 Demod.state = DEMOD_UNSYNCD;
583 }
584 } else {
585 Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
586 }
587 break;
588
589 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
590 MAKE_SOFT_DECISION();
591 if(v < 0) { // logic '0' detected
592 Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
593 Demod.posCount = 0; // start of SOF sequence
594 } else {
595 if(Demod.posCount > 200/4) { // maximum length of TR1 = 200 1/fs
596 Demod.state = DEMOD_UNSYNCD;
597 }
598 }
599 Demod.posCount++;
600 break;
601
602 case DEMOD_GOT_FALLING_EDGE_OF_SOF:
603 Demod.posCount++;
604 MAKE_SOFT_DECISION();
605 if(v > 0) {
606 if(Demod.posCount < 9*2) { // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
607 Demod.state = DEMOD_UNSYNCD;
608 } else {
609 LED_C_ON(); // Got SOF
610 Demod.state = DEMOD_AWAITING_START_BIT;
611 Demod.posCount = 0;
612 Demod.len = 0;
613 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
614 Demod.metricN = 0;
615 Demod.metric = 0;
616 */
617 }
618 } else {
619 if(Demod.posCount > 12*2) { // low phase of SOF too long (> 12 etu)
620 Demod.state = DEMOD_UNSYNCD;
621 LED_C_OFF();
622 }
623 }
624 break;
625
626 case DEMOD_AWAITING_START_BIT:
627 Demod.posCount++;
628 MAKE_SOFT_DECISION();
629 if(v > 0) {
630 if(Demod.posCount > 3*2) { // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
631 Demod.state = DEMOD_UNSYNCD;
632 LED_C_OFF();
633 }
634 } else { // start bit detected
635 Demod.bitCount = 0;
636 Demod.posCount = 1; // this was the first half
637 Demod.thisBit = v;
638 Demod.shiftReg = 0;
639 Demod.state = DEMOD_RECEIVING_DATA;
640 }
641 break;
642
643 case DEMOD_RECEIVING_DATA:
644 MAKE_SOFT_DECISION();
645 if(Demod.posCount == 0) { // first half of bit
646 Demod.thisBit = v;
647 Demod.posCount = 1;
648 } else { // second half of bit
649 Demod.thisBit += v;
650
651 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
652 if(Demod.thisBit > 0) {
653 Demod.metric += Demod.thisBit;
654 } else {
655 Demod.metric -= Demod.thisBit;
656 }
657 (Demod.metricN)++;
658 */
659
660 Demod.shiftReg >>= 1;
661 if(Demod.thisBit > 0) { // logic '1'
662 Demod.shiftReg |= 0x200;
663 }
664
665 Demod.bitCount++;
666 if(Demod.bitCount == 10) {
667 uint16_t s = Demod.shiftReg;
668 if((s & 0x200) && !(s & 0x001)) { // stop bit == '1', start bit == '0'
669 uint8_t b = (s >> 1);
670 Demod.output[Demod.len] = b;
671 Demod.len++;
672 Demod.state = DEMOD_AWAITING_START_BIT;
673 } else {
674 Demod.state = DEMOD_UNSYNCD;
675 LED_C_OFF();
676 if(s == 0x000) {
677 // This is EOF (start, stop and all data bits == '0'
678 return TRUE;
679 }
680 }
681 }
682 Demod.posCount = 0;
683 }
684 break;
685
686 default:
687 Demod.state = DEMOD_UNSYNCD;
688 LED_C_OFF();
689 break;
690 }
691
692 return FALSE;
693 }
694
695
696 static void DemodReset()
697 {
698 // Clear out the state of the "UART" that receives from the tag.
699 Demod.len = 0;
700 Demod.state = DEMOD_UNSYNCD;
701 Demod.posCount = 0;
702 memset(Demod.output, 0x00, MAX_FRAME_SIZE);
703 }
704
705
706 static void DemodInit(uint8_t *data)
707 {
708 Demod.output = data;
709 DemodReset();
710 }
711
712
713 /*
714 * Demodulate the samples we received from the tag, also log to tracebuffer
715 * quiet: set to 'TRUE' to disable debug output
716 */
717 static void GetSamplesFor14443bDemod(int n, bool quiet)
718 {
719 int max = 0;
720 bool gotFrame = FALSE;
721 int lastRxCounter, ci, cq, samples = 0;
722
723 // Allocate memory from BigBuf for some buffers
724 // free all previous allocations first
725 BigBuf_free();
726
727 // The response (tag -> reader) that we're receiving.
728 uint8_t *resp = BigBuf_malloc(MAX_FRAME_SIZE);
729
730 // The DMA buffer, used to stream samples from the FPGA
731 int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE);
732
733 // Set up the demodulator for tag -> reader responses.
734 DemodInit(resp);
735
736 // Setup and start DMA.
737 FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE);
738
739 int8_t *upTo = dmaBuf;
740 lastRxCounter = ISO14443B_DMA_BUFFER_SIZE;
741
742 // Signal field is ON with the appropriate LED:
743 LED_D_ON();
744 // And put the FPGA in the appropriate mode
745 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
746 SpinDelayUs(151); // T0 time between reader send, tag answer. 151us.
747
748 for(;;) {
749 int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
750 if(behindBy > max) max = behindBy;
751
752 while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO14443B_DMA_BUFFER_SIZE-1)) > 2) {
753 ci = upTo[0];
754 cq = upTo[1];
755 upTo += 2;
756 if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) {
757 upTo = dmaBuf;
758 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
759 AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE;
760 }
761 lastRxCounter -= 2;
762 if(lastRxCounter <= 0) {
763 lastRxCounter += ISO14443B_DMA_BUFFER_SIZE;
764 }
765
766 samples += 2;
767
768 if(Handle14443bSamplesDemod(ci, cq)) {
769 gotFrame = TRUE;
770 break;
771 }
772 }
773
774 if(samples > n || gotFrame) {
775 break;
776 }
777 }
778
779 AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
780
781 if (!quiet) Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", max, samples, gotFrame, Demod.len, Demod.sumI, Demod.sumQ);
782 //Tracing
783 if (tracing && Demod.len > 0) {
784 uint8_t parity[MAX_PARITY_SIZE];
785 LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE);
786 }
787 }
788
789
790 //-----------------------------------------------------------------------------
791 // Transmit the command (to the tag) that was placed in ToSend[].
792 //-----------------------------------------------------------------------------
793 static void TransmitFor14443b(void)
794 {
795 int c;
796
797 FpgaSetupSsc();
798
799 while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
800 AT91C_BASE_SSC->SSC_THR = 0xff;
801 }
802
803 // Signal field is ON with the appropriate Red LED
804 LED_D_ON();
805 // Signal we are transmitting with the Green LED
806 LED_B_ON();
807 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
808
809 for(c = 0; c < 10;) {
810 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
811 AT91C_BASE_SSC->SSC_THR = 0xff;
812 c++;
813 }
814 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
815 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
816 (void)r;
817 }
818 WDT_HIT();
819 }
820
821 c = 0;
822 for(;;) {
823 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
824 AT91C_BASE_SSC->SSC_THR = ToSend[c];
825 c++;
826 if(c >= ToSendMax) {
827 break;
828 }
829 }
830 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
831 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
832 (void)r;
833 }
834 WDT_HIT();
835 }
836 LED_B_OFF(); // Finished sending
837 }
838
839
840 //-----------------------------------------------------------------------------
841 // Code a layer 2 command (string of octets, including CRC) into ToSend[],
842 // so that it is ready to transmit to the tag using TransmitFor14443b().
843 //-----------------------------------------------------------------------------
844 static void CodeIso14443bAsReader(const uint8_t *cmd, int len)
845 {
846 int i, j;
847 uint8_t b;
848
849 ToSendReset();
850
851 // Establish initial reference level
852 for(i = 0; i < 40; i++) {
853 ToSendStuffBit(1);
854 }
855 // Send SOF
856 for(i = 0; i < 10; i++) {
857 ToSendStuffBit(0);
858 }
859
860 for(i = 0; i < len; i++) {
861 // Stop bits/EGT
862 ToSendStuffBit(1);
863 ToSendStuffBit(1);
864 // Start bit
865 ToSendStuffBit(0);
866 // Data bits
867 b = cmd[i];
868 for(j = 0; j < 8; j++) {
869 if(b & 1) {
870 ToSendStuffBit(1);
871 } else {
872 ToSendStuffBit(0);
873 }
874 b >>= 1;
875 }
876 }
877 // Send EOF
878 ToSendStuffBit(1);
879 for(i = 0; i < 10; i++) {
880 ToSendStuffBit(0);
881 }
882 for(i = 0; i < 8; i++) {
883 ToSendStuffBit(1);
884 }
885
886 // And then a little more, to make sure that the last character makes
887 // it out before we switch to rx mode.
888 for(i = 0; i < 24; i++) {
889 ToSendStuffBit(1);
890 }
891
892 // Convert from last character reference to length
893 ToSendMax++;
894 }
895
896
897 /**
898 Convenience function to encode, transmit and trace iso 14443b comms
899 **/
900 static void CodeAndTransmit14443bAsReader(const uint8_t *cmd, int len)
901 {
902 CodeIso14443bAsReader(cmd, len);
903 TransmitFor14443b();
904 if (tracing) {
905 uint8_t parity[MAX_PARITY_SIZE];
906 LogTrace(cmd,len, 0, 0, parity, TRUE);
907 }
908 }
909
910
911 //-----------------------------------------------------------------------------
912 // Read a SRI512 ISO 14443B tag.
913 //
914 // SRI512 tags are just simple memory tags, here we're looking at making a dump
915 // of the contents of the memory. No anticollision algorithm is done, we assume
916 // we have a single tag in the field.
917 //
918 // I tried to be systematic and check every answer of the tag, every CRC, etc...
919 //-----------------------------------------------------------------------------
920 void ReadSTMemoryIso14443b(uint32_t dwLast)
921 {
922 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
923 BigBuf_free();
924
925 clear_trace();
926 set_tracing(TRUE);
927
928 uint8_t i = 0x00;
929
930 // Make sure that we start from off, since the tags are stateful;
931 // confusing things will happen if we don't reset them between reads.
932 LED_D_OFF();
933 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
934 SpinDelay(200);
935
936 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
937 FpgaSetupSsc();
938
939 // Now give it time to spin up.
940 // Signal field is on with the appropriate LED
941 LED_D_ON();
942 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
943 SpinDelay(200);
944
945 // First command: wake up the tag using the INITIATE command
946 uint8_t cmd1[] = {0x06, 0x00, 0x97, 0x5b};
947 CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
948 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
949
950 if (Demod.len == 0) {
951 DbpString("No response from tag");
952 return;
953 } else {
954 Dbprintf("Randomly generated Chip ID (+ 2 byte CRC): %02x %02x %02x",
955 Demod.output[0], Demod.output[1], Demod.output[2]);
956 }
957
958 // There is a response, SELECT the uid
959 DbpString("Now SELECT tag:");
960 cmd1[0] = 0x0E; // 0x0E is SELECT
961 cmd1[1] = Demod.output[0];
962 ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]);
963 CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
964 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
965 if (Demod.len != 3) {
966 Dbprintf("Expected 3 bytes from tag, got %d", Demod.len);
967 return;
968 }
969 // Check the CRC of the answer:
970 ComputeCrc14443(CRC_14443_B, Demod.output, 1 , &cmd1[2], &cmd1[3]);
971 if(cmd1[2] != Demod.output[1] || cmd1[3] != Demod.output[2]) {
972 DbpString("CRC Error reading select response.");
973 return;
974 }
975 // Check response from the tag: should be the same UID as the command we just sent:
976 if (cmd1[1] != Demod.output[0]) {
977 Dbprintf("Bad response to SELECT from Tag, aborting: %02x %02x", cmd1[1], Demod.output[0]);
978 return;
979 }
980
981 // Tag is now selected,
982 // First get the tag's UID:
983 cmd1[0] = 0x0B;
984 ComputeCrc14443(CRC_14443_B, cmd1, 1 , &cmd1[1], &cmd1[2]);
985 CodeAndTransmit14443bAsReader(cmd1, 3); // Only first three bytes for this one
986 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
987 if (Demod.len != 10) {
988 Dbprintf("Expected 10 bytes from tag, got %d", Demod.len);
989 return;
990 }
991 // The check the CRC of the answer (use cmd1 as temporary variable):
992 ComputeCrc14443(CRC_14443_B, Demod.output, 8, &cmd1[2], &cmd1[3]);
993 if(cmd1[2] != Demod.output[8] || cmd1[3] != Demod.output[9]) {
994 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
995 (cmd1[2]<<8)+cmd1[3], (Demod.output[8]<<8)+Demod.output[9]);
996 // Do not return;, let's go on... (we should retry, maybe ?)
997 }
998 Dbprintf("Tag UID (64 bits): %08x %08x",
999 (Demod.output[7]<<24) + (Demod.output[6]<<16) + (Demod.output[5]<<8) + Demod.output[4],
1000 (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0]);
1001
1002 // Now loop to read all 16 blocks, address from 0 to last block
1003 Dbprintf("Tag memory dump, block 0 to %d", dwLast);
1004 cmd1[0] = 0x08;
1005 i = 0x00;
1006 dwLast++;
1007 for (;;) {
1008 if (i == dwLast) {
1009 DbpString("System area block (0xff):");
1010 i = 0xff;
1011 }
1012 cmd1[1] = i;
1013 ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]);
1014 CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
1015 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
1016 if (Demod.len != 6) { // Check if we got an answer from the tag
1017 DbpString("Expected 6 bytes from tag, got less...");
1018 return;
1019 }
1020 // The check the CRC of the answer (use cmd1 as temporary variable):
1021 ComputeCrc14443(CRC_14443_B, Demod.output, 4, &cmd1[2], &cmd1[3]);
1022 if(cmd1[2] != Demod.output[4] || cmd1[3] != Demod.output[5]) {
1023 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
1024 (cmd1[2]<<8)+cmd1[3], (Demod.output[4]<<8)+Demod.output[5]);
1025 // Do not return;, let's go on... (we should retry, maybe ?)
1026 }
1027 // Now print out the memory location:
1028 Dbprintf("Address=%02x, Contents=%08x, CRC=%04x", i,
1029 (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0],
1030 (Demod.output[4]<<8)+Demod.output[5]);
1031 if (i == 0xff) {
1032 break;
1033 }
1034 i++;
1035 }
1036 }
1037
1038
1039 //=============================================================================
1040 // Finally, the `sniffer' combines elements from both the reader and
1041 // simulated tag, to show both sides of the conversation.
1042 //=============================================================================
1043
1044 //-----------------------------------------------------------------------------
1045 // Record the sequence of commands sent by the reader to the tag, with
1046 // triggering so that we start recording at the point that the tag is moved
1047 // near the reader.
1048 //-----------------------------------------------------------------------------
1049 /*
1050 * Memory usage for this function, (within BigBuf)
1051 * Last Received command (reader->tag) - MAX_FRAME_SIZE
1052 * Last Received command (tag->reader) - MAX_FRAME_SIZE
1053 * DMA Buffer - ISO14443B_DMA_BUFFER_SIZE
1054 * Demodulated samples received - all the rest
1055 */
1056 void RAMFUNC SnoopIso14443b(void)
1057 {
1058 // We won't start recording the frames that we acquire until we trigger;
1059 // a good trigger condition to get started is probably when we see a
1060 // response from the tag.
1061 int triggered = TRUE; // TODO: set and evaluate trigger condition
1062
1063 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1064 BigBuf_free();
1065
1066 clear_trace();
1067 set_tracing(TRUE);
1068
1069 // The DMA buffer, used to stream samples from the FPGA
1070 int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE);
1071 int lastRxCounter;
1072 int8_t *upTo;
1073 int ci, cq;
1074 int maxBehindBy = 0;
1075
1076 // Count of samples received so far, so that we can include timing
1077 // information in the trace buffer.
1078 int samples = 0;
1079
1080 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
1081 UartInit(BigBuf_malloc(MAX_FRAME_SIZE));
1082
1083 // Print some debug information about the buffer sizes
1084 Dbprintf("Snooping buffers initialized:");
1085 Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
1086 Dbprintf(" Reader -> tag: %i bytes", MAX_FRAME_SIZE);
1087 Dbprintf(" tag -> Reader: %i bytes", MAX_FRAME_SIZE);
1088 Dbprintf(" DMA: %i bytes", ISO14443B_DMA_BUFFER_SIZE);
1089
1090 // Signal field is off, no reader signal, no tag signal
1091 LEDsoff();
1092
1093 // And put the FPGA in the appropriate mode
1094 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
1095 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1096
1097 // Setup for the DMA.
1098 FpgaSetupSsc();
1099 upTo = dmaBuf;
1100 lastRxCounter = ISO14443B_DMA_BUFFER_SIZE;
1101 FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE);
1102 uint8_t parity[MAX_PARITY_SIZE];
1103
1104 bool TagIsActive = FALSE;
1105 bool ReaderIsActive = FALSE;
1106
1107 // And now we loop, receiving samples.
1108 for(;;) {
1109 int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
1110 (ISO14443B_DMA_BUFFER_SIZE-1);
1111 if(behindBy > maxBehindBy) {
1112 maxBehindBy = behindBy;
1113 }
1114
1115 if(behindBy < 2) continue;
1116
1117 ci = upTo[0];
1118 cq = upTo[1];
1119 upTo += 2;
1120 lastRxCounter -= 2;
1121 if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) {
1122 upTo = dmaBuf;
1123 lastRxCounter += ISO14443B_DMA_BUFFER_SIZE;
1124 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
1125 AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE;
1126 WDT_HIT();
1127 if(behindBy > (9*ISO14443B_DMA_BUFFER_SIZE/10)) { // TODO: understand whether we can increase/decrease as we want or not?
1128 Dbprintf("blew circular buffer! behindBy=%d", behindBy);
1129 break;
1130 }
1131 if(!tracing) {
1132 DbpString("Reached trace limit");
1133 break;
1134 }
1135 if(BUTTON_PRESS()) {
1136 DbpString("cancelled");
1137 break;
1138 }
1139 }
1140
1141 samples += 2;
1142
1143 if (!TagIsActive) { // no need to try decoding reader data if the tag is sending
1144 if(Handle14443bUartBit(ci & 0x01)) {
1145 if(triggered && tracing) {
1146 LogTrace(Uart.output, Uart.byteCnt, samples, samples, parity, TRUE);
1147 }
1148 /* And ready to receive another command. */
1149 UartReset();
1150 /* And also reset the demod code, which might have been */
1151 /* false-triggered by the commands from the reader. */
1152 DemodReset();
1153 }
1154 if(Handle14443bUartBit(cq & 0x01)) {
1155 if(triggered && tracing) {
1156 LogTrace(Uart.output, Uart.byteCnt, samples, samples, parity, TRUE);
1157 }
1158 /* And ready to receive another command. */
1159 UartReset();
1160 /* And also reset the demod code, which might have been */
1161 /* false-triggered by the commands from the reader. */
1162 DemodReset();
1163 }
1164 ReaderIsActive = (Uart.state > STATE_GOT_FALLING_EDGE_OF_SOF);
1165 }
1166
1167 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
1168 if(Handle14443bSamplesDemod(ci | 0x01, cq | 0x01)) {
1169
1170 //Use samples as a time measurement
1171 if(tracing)
1172 {
1173 //uint8_t parity[MAX_PARITY_SIZE];
1174 LogTrace(Demod.output, Demod.len, samples, samples, parity, FALSE);
1175 }
1176 triggered = TRUE;
1177
1178 // And ready to receive another response.
1179 DemodReset();
1180 }
1181 TagIsActive = (Demod.state > DEMOD_GOT_FALLING_EDGE_OF_SOF);
1182 }
1183
1184 }
1185
1186 FpgaDisableSscDma();
1187 LEDsoff();
1188 AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
1189 DbpString("Snoop statistics:");
1190 Dbprintf(" Max behind by: %i", maxBehindBy);
1191 Dbprintf(" Uart State: %x", Uart.state);
1192 Dbprintf(" Uart ByteCnt: %i", Uart.byteCnt);
1193 Dbprintf(" Uart ByteCntMax: %i", Uart.byteCntMax);
1194 Dbprintf(" Trace length: %i", BigBuf_get_traceLen());
1195 }
1196
1197
1198 /*
1199 * Send raw command to tag ISO14443B
1200 * @Input
1201 * datalen len of buffer data
1202 * recv bool when true wait for data from tag and send to client
1203 * powerfield bool leave the field on when true
1204 * data buffer with byte to send
1205 *
1206 * @Output
1207 * none
1208 *
1209 */
1210 void SendRawCommand14443B(uint32_t datalen, uint32_t recv, uint8_t powerfield, uint8_t data[])
1211 {
1212 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1213 BigBuf_free();
1214 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1215 FpgaSetupSsc();
1216
1217 if ( datalen == 0 && recv == 0 && powerfield == 0){
1218 clear_trace();
1219 } else {
1220 set_tracing(TRUE);
1221 CodeAndTransmit14443bAsReader(data, datalen);
1222 }
1223
1224 if(recv) {
1225 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
1226 uint16_t iLen = MIN(Demod.len, USB_CMD_DATA_SIZE);
1227 cmd_send(CMD_ACK, iLen, 0, 0, Demod.output, iLen);
1228 }
1229
1230 if(!powerfield) {
1231 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1232 LED_D_OFF();
1233 }
1234
1235 FpgaDisableSscDma();
1236 }
1237
Impressum, Datenschutz