]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso14443a.c
efe6bfc429b7f0fefcd292870cd61d8f847174b8
[proxmark3-svn] / armsrc / iso14443a.c
1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // Routines to support ISO 14443 type A.
10 //-----------------------------------------------------------------------------
11
12 #include "proxmark3.h"
13 #include "apps.h"
14 #include "util.h"
15 #include "string.h"
16
17 #include "iso14443crc.h"
18 #include "iso14443a.h"
19 #include "crapto1.h"
20 #include "mifareutil.h"
21
22 static uint8_t *trace = (uint8_t *) BigBuf;
23 static int traceLen = 0;
24 static int rsamples = 0;
25 static int tracing = TRUE;
26 static uint32_t iso14a_timeout;
27
28 // CARD TO READER
29 // Sequence D: 11110000 modulation with subcarrier during first half
30 // Sequence E: 00001111 modulation with subcarrier during second half
31 // Sequence F: 00000000 no modulation with subcarrier
32 // READER TO CARD
33 // Sequence X: 00001100 drop after half a period
34 // Sequence Y: 00000000 no drop
35 // Sequence Z: 11000000 drop at start
36 #define SEC_D 0xf0
37 #define SEC_E 0x0f
38 #define SEC_F 0x00
39 #define SEC_X 0x0c
40 #define SEC_Y 0x00
41 #define SEC_Z 0xc0
42
43 static const uint8_t OddByteParity[256] = {
44 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
45 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
46 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
47 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
48 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
49 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
50 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
51 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
52 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
53 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
54 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
55 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
56 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
57 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
58 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
59 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
60 };
61
62 // BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT
63 #define RECV_CMD_OFFSET 3032
64 #define RECV_RES_OFFSET 3096
65 #define DMA_BUFFER_OFFSET 3160
66 #define DMA_BUFFER_SIZE 4096
67 #define TRACE_LENGTH 3000
68
69 uint8_t trigger = 0;
70 void iso14a_set_trigger(int enable) {
71 trigger = enable;
72 }
73
74 //-----------------------------------------------------------------------------
75 // Generate the parity value for a byte sequence
76 //
77 //-----------------------------------------------------------------------------
78 byte_t oddparity (const byte_t bt)
79 {
80 return OddByteParity[bt];
81 }
82
83 uint32_t GetParity(const uint8_t * pbtCmd, int iLen)
84 {
85 int i;
86 uint32_t dwPar = 0;
87
88 // Generate the encrypted data
89 for (i = 0; i < iLen; i++) {
90 // Save the encrypted parity bit
91 dwPar |= ((OddByteParity[pbtCmd[i]]) << i);
92 }
93 return dwPar;
94 }
95
96 void AppendCrc14443a(uint8_t* data, int len)
97 {
98 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
99 }
100
101 int LogTrace(const uint8_t * btBytes, int iLen, int iSamples, uint32_t dwParity, int bReader)
102 {
103 // Return when trace is full
104 if (traceLen >= TRACE_LENGTH) return FALSE;
105
106 // Trace the random, i'm curious
107 rsamples += iSamples;
108 trace[traceLen++] = ((rsamples >> 0) & 0xff);
109 trace[traceLen++] = ((rsamples >> 8) & 0xff);
110 trace[traceLen++] = ((rsamples >> 16) & 0xff);
111 trace[traceLen++] = ((rsamples >> 24) & 0xff);
112 if (!bReader) {
113 trace[traceLen - 1] |= 0x80;
114 }
115 trace[traceLen++] = ((dwParity >> 0) & 0xff);
116 trace[traceLen++] = ((dwParity >> 8) & 0xff);
117 trace[traceLen++] = ((dwParity >> 16) & 0xff);
118 trace[traceLen++] = ((dwParity >> 24) & 0xff);
119 trace[traceLen++] = iLen;
120 memcpy(trace + traceLen, btBytes, iLen);
121 traceLen += iLen;
122 return TRUE;
123 }
124
125 //-----------------------------------------------------------------------------
126 // The software UART that receives commands from the reader, and its state
127 // variables.
128 //-----------------------------------------------------------------------------
129 static struct {
130 enum {
131 STATE_UNSYNCD,
132 STATE_START_OF_COMMUNICATION,
133 STATE_MILLER_X,
134 STATE_MILLER_Y,
135 STATE_MILLER_Z,
136 STATE_ERROR_WAIT
137 } state;
138 uint16_t shiftReg;
139 int bitCnt;
140 int byteCnt;
141 int byteCntMax;
142 int posCnt;
143 int syncBit;
144 int parityBits;
145 int samples;
146 int highCnt;
147 int bitBuffer;
148 enum {
149 DROP_NONE,
150 DROP_FIRST_HALF,
151 DROP_SECOND_HALF
152 } drop;
153 uint8_t *output;
154 } Uart;
155
156 static RAMFUNC int MillerDecoding(int bit)
157 {
158 int error = 0;
159 int bitright;
160
161 if(!Uart.bitBuffer) {
162 Uart.bitBuffer = bit ^ 0xFF0;
163 return FALSE;
164 }
165 else {
166 Uart.bitBuffer <<= 4;
167 Uart.bitBuffer ^= bit;
168 }
169
170 int EOC = FALSE;
171
172 if(Uart.state != STATE_UNSYNCD) {
173 Uart.posCnt++;
174
175 if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
176 bit = 0x00;
177 }
178 else {
179 bit = 0x01;
180 }
181 if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
182 bitright = 0x00;
183 }
184 else {
185 bitright = 0x01;
186 }
187 if(bit != bitright) { bit = bitright; }
188
189 if(Uart.posCnt == 1) {
190 // measurement first half bitperiod
191 if(!bit) {
192 Uart.drop = DROP_FIRST_HALF;
193 }
194 }
195 else {
196 // measurement second half bitperiod
197 if(!bit & (Uart.drop == DROP_NONE)) {
198 Uart.drop = DROP_SECOND_HALF;
199 }
200 else if(!bit) {
201 // measured a drop in first and second half
202 // which should not be possible
203 Uart.state = STATE_ERROR_WAIT;
204 error = 0x01;
205 }
206
207 Uart.posCnt = 0;
208
209 switch(Uart.state) {
210 case STATE_START_OF_COMMUNICATION:
211 Uart.shiftReg = 0;
212 if(Uart.drop == DROP_SECOND_HALF) {
213 // error, should not happen in SOC
214 Uart.state = STATE_ERROR_WAIT;
215 error = 0x02;
216 }
217 else {
218 // correct SOC
219 Uart.state = STATE_MILLER_Z;
220 }
221 break;
222
223 case STATE_MILLER_Z:
224 Uart.bitCnt++;
225 Uart.shiftReg >>= 1;
226 if(Uart.drop == DROP_NONE) {
227 // logic '0' followed by sequence Y
228 // end of communication
229 Uart.state = STATE_UNSYNCD;
230 EOC = TRUE;
231 }
232 // if(Uart.drop == DROP_FIRST_HALF) {
233 // Uart.state = STATE_MILLER_Z; stay the same
234 // we see a logic '0' }
235 if(Uart.drop == DROP_SECOND_HALF) {
236 // we see a logic '1'
237 Uart.shiftReg |= 0x100;
238 Uart.state = STATE_MILLER_X;
239 }
240 break;
241
242 case STATE_MILLER_X:
243 Uart.shiftReg >>= 1;
244 if(Uart.drop == DROP_NONE) {
245 // sequence Y, we see a '0'
246 Uart.state = STATE_MILLER_Y;
247 Uart.bitCnt++;
248 }
249 if(Uart.drop == DROP_FIRST_HALF) {
250 // Would be STATE_MILLER_Z
251 // but Z does not follow X, so error
252 Uart.state = STATE_ERROR_WAIT;
253 error = 0x03;
254 }
255 if(Uart.drop == DROP_SECOND_HALF) {
256 // We see a '1' and stay in state X
257 Uart.shiftReg |= 0x100;
258 Uart.bitCnt++;
259 }
260 break;
261
262 case STATE_MILLER_Y:
263 Uart.bitCnt++;
264 Uart.shiftReg >>= 1;
265 if(Uart.drop == DROP_NONE) {
266 // logic '0' followed by sequence Y
267 // end of communication
268 Uart.state = STATE_UNSYNCD;
269 EOC = TRUE;
270 }
271 if(Uart.drop == DROP_FIRST_HALF) {
272 // we see a '0'
273 Uart.state = STATE_MILLER_Z;
274 }
275 if(Uart.drop == DROP_SECOND_HALF) {
276 // We see a '1' and go to state X
277 Uart.shiftReg |= 0x100;
278 Uart.state = STATE_MILLER_X;
279 }
280 break;
281
282 case STATE_ERROR_WAIT:
283 // That went wrong. Now wait for at least two bit periods
284 // and try to sync again
285 if(Uart.drop == DROP_NONE) {
286 Uart.highCnt = 6;
287 Uart.state = STATE_UNSYNCD;
288 }
289 break;
290
291 default:
292 Uart.state = STATE_UNSYNCD;
293 Uart.highCnt = 0;
294 break;
295 }
296
297 Uart.drop = DROP_NONE;
298
299 // should have received at least one whole byte...
300 if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) {
301 return TRUE;
302 }
303
304 if(Uart.bitCnt == 9) {
305 Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
306 Uart.byteCnt++;
307
308 Uart.parityBits <<= 1;
309 Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01);
310
311 if(EOC) {
312 // when End of Communication received and
313 // all data bits processed..
314 return TRUE;
315 }
316 Uart.bitCnt = 0;
317 }
318
319 /*if(error) {
320 Uart.output[Uart.byteCnt] = 0xAA;
321 Uart.byteCnt++;
322 Uart.output[Uart.byteCnt] = error & 0xFF;
323 Uart.byteCnt++;
324 Uart.output[Uart.byteCnt] = 0xAA;
325 Uart.byteCnt++;
326 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
327 Uart.byteCnt++;
328 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
329 Uart.byteCnt++;
330 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
331 Uart.byteCnt++;
332 Uart.output[Uart.byteCnt] = 0xAA;
333 Uart.byteCnt++;
334 return TRUE;
335 }*/
336 }
337
338 }
339 else {
340 bit = Uart.bitBuffer & 0xf0;
341 bit >>= 4;
342 bit ^= 0x0F;
343 if(bit) {
344 // should have been high or at least (4 * 128) / fc
345 // according to ISO this should be at least (9 * 128 + 20) / fc
346 if(Uart.highCnt == 8) {
347 // we went low, so this could be start of communication
348 // it turns out to be safer to choose a less significant
349 // syncbit... so we check whether the neighbour also represents the drop
350 Uart.posCnt = 1; // apparently we are busy with our first half bit period
351 Uart.syncBit = bit & 8;
352 Uart.samples = 3;
353 if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
354 else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
355 if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
356 else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
357 if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
358 if(Uart.syncBit && (Uart.bitBuffer & 8)) {
359 Uart.syncBit = 8;
360
361 // the first half bit period is expected in next sample
362 Uart.posCnt = 0;
363 Uart.samples = 3;
364 }
365 }
366 else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
367
368 Uart.syncBit <<= 4;
369 Uart.state = STATE_START_OF_COMMUNICATION;
370 Uart.drop = DROP_FIRST_HALF;
371 Uart.bitCnt = 0;
372 Uart.byteCnt = 0;
373 Uart.parityBits = 0;
374 error = 0;
375 }
376 else {
377 Uart.highCnt = 0;
378 }
379 }
380 else {
381 if(Uart.highCnt < 8) {
382 Uart.highCnt++;
383 }
384 }
385 }
386
387 return FALSE;
388 }
389
390 //=============================================================================
391 // ISO 14443 Type A - Manchester
392 //=============================================================================
393
394 static struct {
395 enum {
396 DEMOD_UNSYNCD,
397 DEMOD_START_OF_COMMUNICATION,
398 DEMOD_MANCHESTER_D,
399 DEMOD_MANCHESTER_E,
400 DEMOD_MANCHESTER_F,
401 DEMOD_ERROR_WAIT
402 } state;
403 int bitCount;
404 int posCount;
405 int syncBit;
406 int parityBits;
407 uint16_t shiftReg;
408 int buffer;
409 int buff;
410 int samples;
411 int len;
412 enum {
413 SUB_NONE,
414 SUB_FIRST_HALF,
415 SUB_SECOND_HALF
416 } sub;
417 uint8_t *output;
418 } Demod;
419
420 static RAMFUNC int ManchesterDecoding(int v)
421 {
422 int bit;
423 int modulation;
424 int error = 0;
425
426 if(!Demod.buff) {
427 Demod.buff = 1;
428 Demod.buffer = v;
429 return FALSE;
430 }
431 else {
432 bit = Demod.buffer;
433 Demod.buffer = v;
434 }
435
436 if(Demod.state==DEMOD_UNSYNCD) {
437 Demod.output[Demod.len] = 0xfa;
438 Demod.syncBit = 0;
439 //Demod.samples = 0;
440 Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
441
442 if(bit & 0x08) {
443 Demod.syncBit = 0x08;
444 }
445
446 if(bit & 0x04) {
447 if(Demod.syncBit) {
448 bit <<= 4;
449 }
450 Demod.syncBit = 0x04;
451 }
452
453 if(bit & 0x02) {
454 if(Demod.syncBit) {
455 bit <<= 2;
456 }
457 Demod.syncBit = 0x02;
458 }
459
460 if(bit & 0x01 && Demod.syncBit) {
461 Demod.syncBit = 0x01;
462 }
463
464 if(Demod.syncBit) {
465 Demod.len = 0;
466 Demod.state = DEMOD_START_OF_COMMUNICATION;
467 Demod.sub = SUB_FIRST_HALF;
468 Demod.bitCount = 0;
469 Demod.shiftReg = 0;
470 Demod.parityBits = 0;
471 Demod.samples = 0;
472 if(Demod.posCount) {
473 if(trigger) LED_A_OFF();
474 switch(Demod.syncBit) {
475 case 0x08: Demod.samples = 3; break;
476 case 0x04: Demod.samples = 2; break;
477 case 0x02: Demod.samples = 1; break;
478 case 0x01: Demod.samples = 0; break;
479 }
480 }
481 error = 0;
482 }
483 }
484 else {
485 //modulation = bit & Demod.syncBit;
486 modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
487
488 Demod.samples += 4;
489
490 if(Demod.posCount==0) {
491 Demod.posCount = 1;
492 if(modulation) {
493 Demod.sub = SUB_FIRST_HALF;
494 }
495 else {
496 Demod.sub = SUB_NONE;
497 }
498 }
499 else {
500 Demod.posCount = 0;
501 if(modulation && (Demod.sub == SUB_FIRST_HALF)) {
502 if(Demod.state!=DEMOD_ERROR_WAIT) {
503 Demod.state = DEMOD_ERROR_WAIT;
504 Demod.output[Demod.len] = 0xaa;
505 error = 0x01;
506 }
507 }
508 else if(modulation) {
509 Demod.sub = SUB_SECOND_HALF;
510 }
511
512 switch(Demod.state) {
513 case DEMOD_START_OF_COMMUNICATION:
514 if(Demod.sub == SUB_FIRST_HALF) {
515 Demod.state = DEMOD_MANCHESTER_D;
516 }
517 else {
518 Demod.output[Demod.len] = 0xab;
519 Demod.state = DEMOD_ERROR_WAIT;
520 error = 0x02;
521 }
522 break;
523
524 case DEMOD_MANCHESTER_D:
525 case DEMOD_MANCHESTER_E:
526 if(Demod.sub == SUB_FIRST_HALF) {
527 Demod.bitCount++;
528 Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
529 Demod.state = DEMOD_MANCHESTER_D;
530 }
531 else if(Demod.sub == SUB_SECOND_HALF) {
532 Demod.bitCount++;
533 Demod.shiftReg >>= 1;
534 Demod.state = DEMOD_MANCHESTER_E;
535 }
536 else {
537 Demod.state = DEMOD_MANCHESTER_F;
538 }
539 break;
540
541 case DEMOD_MANCHESTER_F:
542 // Tag response does not need to be a complete byte!
543 if(Demod.len > 0 || Demod.bitCount > 0) {
544 if(Demod.bitCount > 0) {
545 Demod.shiftReg >>= (9 - Demod.bitCount);
546 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
547 Demod.len++;
548 // No parity bit, so just shift a 0
549 Demod.parityBits <<= 1;
550 }
551
552 Demod.state = DEMOD_UNSYNCD;
553 return TRUE;
554 }
555 else {
556 Demod.output[Demod.len] = 0xad;
557 Demod.state = DEMOD_ERROR_WAIT;
558 error = 0x03;
559 }
560 break;
561
562 case DEMOD_ERROR_WAIT:
563 Demod.state = DEMOD_UNSYNCD;
564 break;
565
566 default:
567 Demod.output[Demod.len] = 0xdd;
568 Demod.state = DEMOD_UNSYNCD;
569 break;
570 }
571
572 if(Demod.bitCount>=9) {
573 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
574 Demod.len++;
575
576 Demod.parityBits <<= 1;
577 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
578
579 Demod.bitCount = 0;
580 Demod.shiftReg = 0;
581 }
582
583 /*if(error) {
584 Demod.output[Demod.len] = 0xBB;
585 Demod.len++;
586 Demod.output[Demod.len] = error & 0xFF;
587 Demod.len++;
588 Demod.output[Demod.len] = 0xBB;
589 Demod.len++;
590 Demod.output[Demod.len] = bit & 0xFF;
591 Demod.len++;
592 Demod.output[Demod.len] = Demod.buffer & 0xFF;
593 Demod.len++;
594 Demod.output[Demod.len] = Demod.syncBit & 0xFF;
595 Demod.len++;
596 Demod.output[Demod.len] = 0xBB;
597 Demod.len++;
598 return TRUE;
599 }*/
600
601 }
602
603 } // end (state != UNSYNCED)
604
605 return FALSE;
606 }
607
608 //=============================================================================
609 // Finally, a `sniffer' for ISO 14443 Type A
610 // Both sides of communication!
611 //=============================================================================
612
613 //-----------------------------------------------------------------------------
614 // Record the sequence of commands sent by the reader to the tag, with
615 // triggering so that we start recording at the point that the tag is moved
616 // near the reader.
617 //-----------------------------------------------------------------------------
618 void RAMFUNC SnoopIso14443a(void)
619 {
620 // #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values
621 // #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values
622 // #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values
623 // #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values
624 // #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values
625
626 // We won't start recording the frames that we acquire until we trigger;
627 // a good trigger condition to get started is probably when we see a
628 // response from the tag.
629 int triggered = FALSE; // FALSE to wait first for card
630
631 // The command (reader -> tag) that we're receiving.
632 // The length of a received command will in most cases be no more than 18 bytes.
633 // So 32 should be enough!
634 uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
635 // The response (tag -> reader) that we're receiving.
636 uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
637
638 // As we receive stuff, we copy it from receivedCmd or receivedResponse
639 // into trace, along with its length and other annotations.
640 //uint8_t *trace = (uint8_t *)BigBuf;
641
642 traceLen = 0; // uncommented to fix ISSUE 15 - gerhard - jan2011
643
644 // The DMA buffer, used to stream samples from the FPGA
645 int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
646 int lastRxCounter;
647 int8_t *upTo;
648 int smpl;
649 int maxBehindBy = 0;
650
651 // Count of samples received so far, so that we can include timing
652 // information in the trace buffer.
653 int samples = 0;
654 int rsamples = 0;
655
656 memset(trace, 0x44, RECV_CMD_OFFSET);
657
658 // Set up the demodulator for tag -> reader responses.
659 Demod.output = receivedResponse;
660 Demod.len = 0;
661 Demod.state = DEMOD_UNSYNCD;
662
663 // Setup for the DMA.
664 FpgaSetupSsc();
665 upTo = dmaBuf;
666 lastRxCounter = DMA_BUFFER_SIZE;
667 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
668
669 // And the reader -> tag commands
670 memset(&Uart, 0, sizeof(Uart));
671 Uart.output = receivedCmd;
672 Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
673 Uart.state = STATE_UNSYNCD;
674
675 // And put the FPGA in the appropriate mode
676 // Signal field is off with the appropriate LED
677 LED_D_OFF();
678 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
679 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
680
681
682 // And now we loop, receiving samples.
683 for(;;) {
684 LED_A_ON();
685 WDT_HIT();
686 int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
687 (DMA_BUFFER_SIZE-1);
688 if(behindBy > maxBehindBy) {
689 maxBehindBy = behindBy;
690 if(behindBy > 400) {
691 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
692 goto done;
693 }
694 }
695 if(behindBy < 1) continue;
696
697 LED_A_OFF();
698 smpl = upTo[0];
699 upTo++;
700 lastRxCounter -= 1;
701 if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
702 upTo -= DMA_BUFFER_SIZE;
703 lastRxCounter += DMA_BUFFER_SIZE;
704 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
705 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
706 }
707
708 samples += 4;
709 if(MillerDecoding((smpl & 0xF0) >> 4)) {
710 rsamples = samples - Uart.samples;
711 LED_C_ON();
712 if(triggered) {
713 trace[traceLen++] = ((rsamples >> 0) & 0xff);
714 trace[traceLen++] = ((rsamples >> 8) & 0xff);
715 trace[traceLen++] = ((rsamples >> 16) & 0xff);
716 trace[traceLen++] = ((rsamples >> 24) & 0xff);
717 trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff);
718 trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff);
719 trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff);
720 trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff);
721 trace[traceLen++] = Uart.byteCnt;
722 memcpy(trace+traceLen, receivedCmd, Uart.byteCnt);
723 traceLen += Uart.byteCnt;
724 if(traceLen > TRACE_LENGTH) break;
725 }
726 /* And ready to receive another command. */
727 Uart.state = STATE_UNSYNCD;
728 /* And also reset the demod code, which might have been */
729 /* false-triggered by the commands from the reader. */
730 Demod.state = DEMOD_UNSYNCD;
731 LED_B_OFF();
732 }
733
734 if(ManchesterDecoding(smpl & 0x0F)) {
735 rsamples = samples - Demod.samples;
736 LED_B_ON();
737
738 // timestamp, as a count of samples
739 trace[traceLen++] = ((rsamples >> 0) & 0xff);
740 trace[traceLen++] = ((rsamples >> 8) & 0xff);
741 trace[traceLen++] = ((rsamples >> 16) & 0xff);
742 trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);
743 trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);
744 trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);
745 trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);
746 trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);
747 // length
748 trace[traceLen++] = Demod.len;
749 memcpy(trace+traceLen, receivedResponse, Demod.len);
750 traceLen += Demod.len;
751 if(traceLen > TRACE_LENGTH) break;
752
753 triggered = TRUE;
754
755 // And ready to receive another response.
756 memset(&Demod, 0, sizeof(Demod));
757 Demod.output = receivedResponse;
758 Demod.state = DEMOD_UNSYNCD;
759 LED_C_OFF();
760 }
761
762 if(BUTTON_PRESS()) {
763 DbpString("cancelled_a");
764 goto done;
765 }
766 }
767
768 DbpString("COMMAND FINISHED");
769
770 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
771 Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
772
773 done:
774 AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
775 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
776 Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
777 LED_A_OFF();
778 LED_B_OFF();
779 LED_C_OFF();
780 LED_D_OFF();
781 }
782
783 //-----------------------------------------------------------------------------
784 // Prepare tag messages
785 //-----------------------------------------------------------------------------
786 static void CodeIso14443aAsTag(const uint8_t *cmd, int len)
787 {
788 int i;
789 int oddparity;
790
791 ToSendReset();
792
793 // Correction bit, might be removed when not needed
794 ToSendStuffBit(0);
795 ToSendStuffBit(0);
796 ToSendStuffBit(0);
797 ToSendStuffBit(0);
798 ToSendStuffBit(1); // 1
799 ToSendStuffBit(0);
800 ToSendStuffBit(0);
801 ToSendStuffBit(0);
802
803 // Send startbit
804 ToSend[++ToSendMax] = SEC_D;
805
806 for(i = 0; i < len; i++) {
807 int j;
808 uint8_t b = cmd[i];
809
810 // Data bits
811 oddparity = 0x01;
812 for(j = 0; j < 8; j++) {
813 oddparity ^= (b & 1);
814 if(b & 1) {
815 ToSend[++ToSendMax] = SEC_D;
816 } else {
817 ToSend[++ToSendMax] = SEC_E;
818 }
819 b >>= 1;
820 }
821
822 // Parity bit
823 if(oddparity) {
824 ToSend[++ToSendMax] = SEC_D;
825 } else {
826 ToSend[++ToSendMax] = SEC_E;
827 }
828 }
829
830 // Send stopbit
831 ToSend[++ToSendMax] = SEC_F;
832
833 // Flush the buffer in FPGA!!
834 for(i = 0; i < 5; i++) {
835 ToSend[++ToSendMax] = SEC_F;
836 }
837
838 // Convert from last byte pos to length
839 ToSendMax++;
840
841 // Add a few more for slop
842 ToSend[ToSendMax++] = 0x00;
843 ToSend[ToSendMax++] = 0x00;
844 //ToSendMax += 2;
845 }
846
847 //-----------------------------------------------------------------------------
848 // This is to send a NACK kind of answer, its only 3 bits, I know it should be 4
849 //-----------------------------------------------------------------------------
850 static void CodeStrangeAnswer()
851 {
852 int i;
853
854 ToSendReset();
855
856 // Correction bit, might be removed when not needed
857 ToSendStuffBit(0);
858 ToSendStuffBit(0);
859 ToSendStuffBit(0);
860 ToSendStuffBit(0);
861 ToSendStuffBit(1); // 1
862 ToSendStuffBit(0);
863 ToSendStuffBit(0);
864 ToSendStuffBit(0);
865
866 // Send startbit
867 ToSend[++ToSendMax] = SEC_D;
868
869 // 0
870 ToSend[++ToSendMax] = SEC_E;
871
872 // 0
873 ToSend[++ToSendMax] = SEC_E;
874
875 // 1
876 ToSend[++ToSendMax] = SEC_D;
877
878 // Send stopbit
879 ToSend[++ToSendMax] = SEC_F;
880
881 // Flush the buffer in FPGA!!
882 for(i = 0; i < 5; i++) {
883 ToSend[++ToSendMax] = SEC_F;
884 }
885
886 // Convert from last byte pos to length
887 ToSendMax++;
888
889 // Add a few more for slop
890 ToSend[ToSendMax++] = 0x00;
891 ToSend[ToSendMax++] = 0x00;
892 //ToSendMax += 2;
893 }
894
895 //-----------------------------------------------------------------------------
896 // Wait for commands from reader
897 // Stop when button is pressed
898 // Or return TRUE when command is captured
899 //-----------------------------------------------------------------------------
900 static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen)
901 {
902 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
903 // only, since we are receiving, not transmitting).
904 // Signal field is off with the appropriate LED
905 LED_D_OFF();
906 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
907
908 // Now run a `software UART' on the stream of incoming samples.
909 Uart.output = received;
910 Uart.byteCntMax = maxLen;
911 Uart.state = STATE_UNSYNCD;
912
913 for(;;) {
914 WDT_HIT();
915
916 if(BUTTON_PRESS()) return FALSE;
917
918 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
919 AT91C_BASE_SSC->SSC_THR = 0x00;
920 }
921 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
922 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
923 if(MillerDecoding((b & 0xf0) >> 4)) {
924 *len = Uart.byteCnt;
925 return TRUE;
926 }
927 if(MillerDecoding(b & 0x0f)) {
928 *len = Uart.byteCnt;
929 return TRUE;
930 }
931 }
932 }
933 }
934
935 //-----------------------------------------------------------------------------
936 // Main loop of simulated tag: receive commands from reader, decide what
937 // response to send, and send it.
938 //-----------------------------------------------------------------------------
939 void SimulateIso14443aTag(int tagType, int TagUid)
940 {
941 // This function contains the tag emulation
942
943 // Prepare protocol messages
944 // static const uint8_t cmd1[] = { 0x26 };
945 // static const uint8_t response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg
946 //
947 static const uint8_t response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me
948 // static const uint8_t response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me
949
950 // UID response
951 // static const uint8_t cmd2[] = { 0x93, 0x20 };
952 //static const uint8_t response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg
953
954 // my desfire
955 static const uint8_t response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips
956
957
958 // When reader selects us during cascade1 it will send cmd3
959 //uint8_t response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE)
960 uint8_t response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire)
961 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
962
963 // send cascade2 2nd half of UID
964 static const uint8_t response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck
965 // NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID
966
967 // When reader selects us during cascade2 it will send cmd3a
968 //uint8_t response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE)
969 uint8_t response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire)
970 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
971
972 static const uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
973
974 uint8_t *resp;
975 int respLen;
976
977 // Longest possible response will be 16 bytes + 2 CRC = 18 bytes
978 // This will need
979 // 144 data bits (18 * 8)
980 // 18 parity bits
981 // 2 Start and stop
982 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
983 // 1 just for the case
984 // ----------- +
985 // 166
986 //
987 // 166 bytes, since every bit that needs to be send costs us a byte
988 //
989
990 // Respond with card type
991 uint8_t *resp1 = (((uint8_t *)BigBuf) + 800);
992 int resp1Len;
993
994 // Anticollision cascade1 - respond with uid
995 uint8_t *resp2 = (((uint8_t *)BigBuf) + 970);
996 int resp2Len;
997
998 // Anticollision cascade2 - respond with 2nd half of uid if asked
999 // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88
1000 uint8_t *resp2a = (((uint8_t *)BigBuf) + 1140);
1001 int resp2aLen;
1002
1003 // Acknowledge select - cascade 1
1004 uint8_t *resp3 = (((uint8_t *)BigBuf) + 1310);
1005 int resp3Len;
1006
1007 // Acknowledge select - cascade 2
1008 uint8_t *resp3a = (((uint8_t *)BigBuf) + 1480);
1009 int resp3aLen;
1010
1011 // Response to a read request - not implemented atm
1012 uint8_t *resp4 = (((uint8_t *)BigBuf) + 1550);
1013 int resp4Len;
1014
1015 // Authenticate response - nonce
1016 uint8_t *resp5 = (((uint8_t *)BigBuf) + 1720);
1017 int resp5Len;
1018
1019 uint8_t *receivedCmd = (uint8_t *)BigBuf;
1020 int len;
1021
1022 int i;
1023 int u;
1024 uint8_t b;
1025
1026 // To control where we are in the protocol
1027 int order = 0;
1028 int lastorder;
1029
1030 // Just to allow some checks
1031 int happened = 0;
1032 int happened2 = 0;
1033
1034 int cmdsRecvd = 0;
1035
1036 int fdt_indicator;
1037
1038 memset(receivedCmd, 0x44, 400);
1039
1040 // Prepare the responses of the anticollision phase
1041 // there will be not enough time to do this at the moment the reader sends it REQA
1042
1043 // Answer to request
1044 CodeIso14443aAsTag(response1, sizeof(response1));
1045 memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
1046
1047 // Send our UID (cascade 1)
1048 CodeIso14443aAsTag(response2, sizeof(response2));
1049 memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;
1050
1051 // Answer to select (cascade1)
1052 CodeIso14443aAsTag(response3, sizeof(response3));
1053 memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;
1054
1055 // Send the cascade 2 2nd part of the uid
1056 CodeIso14443aAsTag(response2a, sizeof(response2a));
1057 memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax;
1058
1059 // Answer to select (cascade 2)
1060 CodeIso14443aAsTag(response3a, sizeof(response3a));
1061 memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax;
1062
1063 // Strange answer is an example of rare message size (3 bits)
1064 CodeStrangeAnswer();
1065 memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;
1066
1067 // Authentication answer (random nonce)
1068 CodeIso14443aAsTag(response5, sizeof(response5));
1069 memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax;
1070
1071 // We need to listen to the high-frequency, peak-detected path.
1072 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1073 FpgaSetupSsc();
1074
1075 cmdsRecvd = 0;
1076
1077 LED_A_ON();
1078 for(;;) {
1079
1080 if(!GetIso14443aCommandFromReader(receivedCmd, &len, 100)) {
1081 DbpString("button press");
1082 break;
1083 }
1084 // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
1085 // Okay, look at the command now.
1086 lastorder = order;
1087 i = 1; // first byte transmitted
1088 if(receivedCmd[0] == 0x26) {
1089 // Received a REQUEST
1090 resp = resp1; respLen = resp1Len; order = 1;
1091 //DbpString("Hello request from reader:");
1092 } else if(receivedCmd[0] == 0x52) {
1093 // Received a WAKEUP
1094 resp = resp1; respLen = resp1Len; order = 6;
1095 // //DbpString("Wakeup request from reader:");
1096
1097 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // greg - cascade 1 anti-collision
1098 // Received request for UID (cascade 1)
1099 resp = resp2; respLen = resp2Len; order = 2;
1100 // DbpString("UID (cascade 1) request from reader:");
1101 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1102
1103
1104 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] ==0x95) { // greg - cascade 2 anti-collision
1105 // Received request for UID (cascade 2)
1106 resp = resp2a; respLen = resp2aLen; order = 20;
1107 // DbpString("UID (cascade 2) request from reader:");
1108 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1109
1110
1111 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x93) { // greg - cascade 1 select
1112 // Received a SELECT
1113 resp = resp3; respLen = resp3Len; order = 3;
1114 // DbpString("Select (cascade 1) request from reader:");
1115 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1116
1117
1118 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x95) { // greg - cascade 2 select
1119 // Received a SELECT
1120 resp = resp3a; respLen = resp3aLen; order = 30;
1121 // DbpString("Select (cascade 2) request from reader:");
1122 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1123
1124
1125 } else if(receivedCmd[0] == 0x30) {
1126 // Received a READ
1127 resp = resp4; respLen = resp4Len; order = 4; // Do nothing
1128 Dbprintf("Read request from reader: %x %x %x",
1129 receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1130
1131
1132 } else if(receivedCmd[0] == 0x50) {
1133 // Received a HALT
1134 resp = resp1; respLen = 0; order = 5; // Do nothing
1135 DbpString("Reader requested we HALT!:");
1136
1137 } else if(receivedCmd[0] == 0x60) {
1138 // Received an authentication request
1139 resp = resp5; respLen = resp5Len; order = 7;
1140 Dbprintf("Authenticate request from reader: %x %x %x",
1141 receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1142
1143 } else if(receivedCmd[0] == 0xE0) {
1144 // Received a RATS request
1145 resp = resp1; respLen = 0;order = 70;
1146 Dbprintf("RATS request from reader: %x %x %x",
1147 receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1148 } else {
1149 // Never seen this command before
1150 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1151 len,
1152 receivedCmd[0], receivedCmd[1], receivedCmd[2],
1153 receivedCmd[3], receivedCmd[4], receivedCmd[5],
1154 receivedCmd[6], receivedCmd[7], receivedCmd[8]);
1155 // Do not respond
1156 resp = resp1; respLen = 0; order = 0;
1157 }
1158
1159 // Count number of wakeups received after a halt
1160 if(order == 6 && lastorder == 5) { happened++; }
1161
1162 // Count number of other messages after a halt
1163 if(order != 6 && lastorder == 5) { happened2++; }
1164
1165 // Look at last parity bit to determine timing of answer
1166 if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) {
1167 // 1236, so correction bit needed
1168 i = 0;
1169 }
1170
1171 memset(receivedCmd, 0x44, 32);
1172
1173 if(cmdsRecvd > 999) {
1174 DbpString("1000 commands later...");
1175 break;
1176 }
1177 else {
1178 cmdsRecvd++;
1179 }
1180
1181 if(respLen <= 0) continue;
1182
1183 // Modulate Manchester
1184 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
1185 AT91C_BASE_SSC->SSC_THR = 0x00;
1186 FpgaSetupSsc();
1187
1188 // ### Transmit the response ###
1189 u = 0;
1190 b = 0x00;
1191 fdt_indicator = FALSE;
1192 for(;;) {
1193 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1194 volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1195 (void)b;
1196 }
1197 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1198 if(i > respLen) {
1199 b = 0x00;
1200 u++;
1201 } else {
1202 b = resp[i];
1203 i++;
1204 }
1205 AT91C_BASE_SSC->SSC_THR = b;
1206
1207 if(u > 4) {
1208 break;
1209 }
1210 }
1211 if(BUTTON_PRESS()) {
1212 break;
1213 }
1214 }
1215
1216 }
1217
1218 Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
1219 LED_A_OFF();
1220 }
1221
1222 //-----------------------------------------------------------------------------
1223 // Transmit the command (to the tag) that was placed in ToSend[].
1224 //-----------------------------------------------------------------------------
1225 static void TransmitFor14443a(const uint8_t *cmd, int len, int *samples, int *wait)
1226 {
1227 int c;
1228
1229 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1230
1231 if (wait)
1232 if(*wait < 10)
1233 *wait = 10;
1234
1235 for(c = 0; c < *wait;) {
1236 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1237 AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
1238 c++;
1239 }
1240 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1241 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1242 (void)r;
1243 }
1244 WDT_HIT();
1245 }
1246
1247 c = 0;
1248 for(;;) {
1249 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1250 AT91C_BASE_SSC->SSC_THR = cmd[c];
1251 c++;
1252 if(c >= len) {
1253 break;
1254 }
1255 }
1256 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1257 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1258 (void)r;
1259 }
1260 WDT_HIT();
1261 }
1262 if (samples) *samples = (c + *wait) << 3;
1263 }
1264
1265 //-----------------------------------------------------------------------------
1266 // Code a 7-bit command without parity bit
1267 // This is especially for 0x26 and 0x52 (REQA and WUPA)
1268 //-----------------------------------------------------------------------------
1269 void ShortFrameFromReader(const uint8_t bt)
1270 {
1271 int j;
1272 int last;
1273 uint8_t b;
1274
1275 ToSendReset();
1276
1277 // Start of Communication (Seq. Z)
1278 ToSend[++ToSendMax] = SEC_Z;
1279 last = 0;
1280
1281 b = bt;
1282 for(j = 0; j < 7; j++) {
1283 if(b & 1) {
1284 // Sequence X
1285 ToSend[++ToSendMax] = SEC_X;
1286 last = 1;
1287 } else {
1288 if(last == 0) {
1289 // Sequence Z
1290 ToSend[++ToSendMax] = SEC_Z;
1291 }
1292 else {
1293 // Sequence Y
1294 ToSend[++ToSendMax] = SEC_Y;
1295 last = 0;
1296 }
1297 }
1298 b >>= 1;
1299 }
1300
1301 // End of Communication
1302 if(last == 0) {
1303 // Sequence Z
1304 ToSend[++ToSendMax] = SEC_Z;
1305 }
1306 else {
1307 // Sequence Y
1308 ToSend[++ToSendMax] = SEC_Y;
1309 last = 0;
1310 }
1311 // Sequence Y
1312 ToSend[++ToSendMax] = SEC_Y;
1313
1314 // Just to be sure!
1315 ToSend[++ToSendMax] = SEC_Y;
1316 ToSend[++ToSendMax] = SEC_Y;
1317 ToSend[++ToSendMax] = SEC_Y;
1318
1319 // Convert from last character reference to length
1320 ToSendMax++;
1321 }
1322
1323 //-----------------------------------------------------------------------------
1324 // Prepare reader command to send to FPGA
1325 //
1326 //-----------------------------------------------------------------------------
1327 void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity)
1328 {
1329 int i, j;
1330 int last;
1331 uint8_t b;
1332
1333 ToSendReset();
1334
1335 // Start of Communication (Seq. Z)
1336 ToSend[++ToSendMax] = SEC_Z;
1337 last = 0;
1338
1339 // Generate send structure for the data bits
1340 for (i = 0; i < len; i++) {
1341 // Get the current byte to send
1342 b = cmd[i];
1343
1344 for (j = 0; j < 8; j++) {
1345 if (b & 1) {
1346 // Sequence X
1347 ToSend[++ToSendMax] = SEC_X;
1348 last = 1;
1349 } else {
1350 if (last == 0) {
1351 // Sequence Z
1352 ToSend[++ToSendMax] = SEC_Z;
1353 } else {
1354 // Sequence Y
1355 ToSend[++ToSendMax] = SEC_Y;
1356 last = 0;
1357 }
1358 }
1359 b >>= 1;
1360 }
1361
1362 // Get the parity bit
1363 if ((dwParity >> i) & 0x01) {
1364 // Sequence X
1365 ToSend[++ToSendMax] = SEC_X;
1366 last = 1;
1367 } else {
1368 if (last == 0) {
1369 // Sequence Z
1370 ToSend[++ToSendMax] = SEC_Z;
1371 } else {
1372 // Sequence Y
1373 ToSend[++ToSendMax] = SEC_Y;
1374 last = 0;
1375 }
1376 }
1377 }
1378
1379 // End of Communication
1380 if (last == 0) {
1381 // Sequence Z
1382 ToSend[++ToSendMax] = SEC_Z;
1383 } else {
1384 // Sequence Y
1385 ToSend[++ToSendMax] = SEC_Y;
1386 last = 0;
1387 }
1388 // Sequence Y
1389 ToSend[++ToSendMax] = SEC_Y;
1390
1391 // Just to be sure!
1392 ToSend[++ToSendMax] = SEC_Y;
1393 ToSend[++ToSendMax] = SEC_Y;
1394 ToSend[++ToSendMax] = SEC_Y;
1395
1396 // Convert from last character reference to length
1397 ToSendMax++;
1398 }
1399
1400 //-----------------------------------------------------------------------------
1401 // Wait a certain time for tag response
1402 // If a response is captured return TRUE
1403 // If it takes to long return FALSE
1404 //-----------------------------------------------------------------------------
1405 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
1406 {
1407 // buffer needs to be 512 bytes
1408 int c;
1409
1410 // Set FPGA mode to "reader listen mode", no modulation (listen
1411 // only, since we are receiving, not transmitting).
1412 // Signal field is on with the appropriate LED
1413 LED_D_ON();
1414 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1415
1416 // Now get the answer from the card
1417 Demod.output = receivedResponse;
1418 Demod.len = 0;
1419 Demod.state = DEMOD_UNSYNCD;
1420
1421 uint8_t b;
1422 if (elapsed) *elapsed = 0;
1423
1424 c = 0;
1425 for(;;) {
1426 WDT_HIT();
1427
1428 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1429 AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
1430 if (elapsed) (*elapsed)++;
1431 }
1432 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1433 if(c < iso14a_timeout) { c++; } else { return FALSE; }
1434 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1435 if(ManchesterDecoding((b>>4) & 0xf)) {
1436 *samples = ((c - 1) << 3) + 4;
1437 return TRUE;
1438 }
1439 if(ManchesterDecoding(b & 0x0f)) {
1440 *samples = c << 3;
1441 return TRUE;
1442 }
1443 }
1444 }
1445 }
1446
1447 void ReaderTransmitShort(const uint8_t* bt)
1448 {
1449 int wait = 0;
1450 int samples = 0;
1451
1452 ShortFrameFromReader(*bt);
1453
1454 // Select the card
1455 TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
1456
1457 // Store reader command in buffer
1458 if (tracing) LogTrace(bt,1,0,GetParity(bt,1),TRUE);
1459 }
1460
1461 void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par)
1462 {
1463 int wait = 0;
1464 int samples = 0;
1465
1466 // This is tied to other size changes
1467 // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
1468 CodeIso14443aAsReaderPar(frame,len,par);
1469
1470 // Select the card
1471 TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
1472 if(trigger)
1473 LED_A_ON();
1474
1475 // Store reader command in buffer
1476 if (tracing) LogTrace(frame,len,0,par,TRUE);
1477 }
1478
1479
1480 void ReaderTransmit(uint8_t* frame, int len)
1481 {
1482 // Generate parity and redirect
1483 ReaderTransmitPar(frame,len,GetParity(frame,len));
1484 }
1485
1486 int ReaderReceive(uint8_t* receivedAnswer)
1487 {
1488 int samples = 0;
1489 if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE;
1490 if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
1491 if(samples == 0) return FALSE;
1492 return Demod.len;
1493 }
1494
1495 /* performs iso14443a anticolision procedure
1496 * fills the uid pointer unless NULL
1497 * fills resp_data unless NULL */
1498 int iso14443a_select_card(uint8_t * uid_ptr, iso14a_card_select_t * resp_data, uint32_t * cuid_ptr) {
1499 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1500 uint8_t sel_all[] = { 0x93,0x20 };
1501 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1502 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1503
1504 uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
1505
1506 uint8_t sak = 0x04; // cascade uid
1507 int cascade_level = 0;
1508
1509 int len;
1510
1511 // clear uid
1512 memset(uid_ptr, 0, 8);
1513
1514 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1515 ReaderTransmitShort(wupa);
1516 // Receive the ATQA
1517 if(!ReaderReceive(resp)) return 0;
1518
1519 if(resp_data)
1520 memcpy(resp_data->atqa, resp, 2);
1521
1522 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1523 // which case we need to make a cascade 2 request and select - this is a long UID
1524 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1525 for(; sak & 0x04; cascade_level++)
1526 {
1527 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1528 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1529
1530 // SELECT_ALL
1531 ReaderTransmit(sel_all,sizeof(sel_all));
1532 if (!ReaderReceive(resp)) return 0;
1533 if(uid_ptr) memcpy(uid_ptr + cascade_level*4, resp, 4);
1534
1535 // calculate crypto UID
1536 if(cuid_ptr) *cuid_ptr = bytes_to_num(resp, 4);
1537
1538 // Construct SELECT UID command
1539 memcpy(sel_uid+2,resp,5);
1540 AppendCrc14443a(sel_uid,7);
1541 ReaderTransmit(sel_uid,sizeof(sel_uid));
1542
1543 // Receive the SAK
1544 if (!ReaderReceive(resp)) return 0;
1545 sak = resp[0];
1546 }
1547 if(resp_data) {
1548 resp_data->sak = sak;
1549 resp_data->ats_len = 0;
1550 }
1551 //-- this byte not UID, it CT. http://www.nxp.com/documents/application_note/AN10927.pdf page 3
1552 if (uid_ptr[0] == 0x88) {
1553 memcpy(uid_ptr, uid_ptr + 1, 7);
1554 uid_ptr[7] = 0;
1555 }
1556
1557 if( (sak & 0x20) == 0)
1558 return 2; // non iso14443a compliant tag
1559
1560 // Request for answer to select
1561 if(resp_data) { // JCOP cards - if reader sent RATS then there is no MIFARE session at all!!!
1562 AppendCrc14443a(rats, 2);
1563 ReaderTransmit(rats, sizeof(rats));
1564
1565 if (!(len = ReaderReceive(resp))) return 0;
1566
1567 memcpy(resp_data->ats, resp, sizeof(resp_data->ats));
1568 resp_data->ats_len = len;
1569 }
1570
1571 return 1;
1572 }
1573
1574 void iso14443a_setup() {
1575 // Setup SSC
1576 FpgaSetupSsc();
1577 // Start from off (no field generated)
1578 // Signal field is off with the appropriate LED
1579 LED_D_OFF();
1580 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1581 SpinDelay(200);
1582
1583 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1584
1585 // Now give it time to spin up.
1586 // Signal field is on with the appropriate LED
1587 LED_D_ON();
1588 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1589 SpinDelay(200);
1590
1591 iso14a_timeout = 2048; //default
1592 }
1593
1594 int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) {
1595 uint8_t real_cmd[cmd_len+4];
1596 real_cmd[0] = 0x0a; //I-Block
1597 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1598 memcpy(real_cmd+2, cmd, cmd_len);
1599 AppendCrc14443a(real_cmd,cmd_len+2);
1600
1601 ReaderTransmit(real_cmd, cmd_len+4);
1602 size_t len = ReaderReceive(data);
1603 if(!len)
1604 return -1; //DATA LINK ERROR
1605
1606 return len;
1607 }
1608
1609
1610 //-----------------------------------------------------------------------------
1611 // Read an ISO 14443a tag. Send out commands and store answers.
1612 //
1613 //-----------------------------------------------------------------------------
1614 void ReaderIso14443a(UsbCommand * c, UsbCommand * ack)
1615 {
1616 iso14a_command_t param = c->arg[0];
1617 uint8_t * cmd = c->d.asBytes;
1618 size_t len = c->arg[1];
1619
1620 if(param & ISO14A_REQUEST_TRIGGER) iso14a_set_trigger(1);
1621
1622 if(param & ISO14A_CONNECT) {
1623 iso14443a_setup();
1624 ack->arg[0] = iso14443a_select_card(ack->d.asBytes, (iso14a_card_select_t *) (ack->d.asBytes+12), NULL);
1625 UsbSendPacket((void *)ack, sizeof(UsbCommand));
1626 }
1627
1628 if(param & ISO14A_SET_TIMEOUT) {
1629 iso14a_timeout = c->arg[2];
1630 }
1631
1632 if(param & ISO14A_SET_TIMEOUT) {
1633 iso14a_timeout = c->arg[2];
1634 }
1635
1636 if(param & ISO14A_APDU) {
1637 ack->arg[0] = iso14_apdu(cmd, len, ack->d.asBytes);
1638 UsbSendPacket((void *)ack, sizeof(UsbCommand));
1639 }
1640
1641 if(param & ISO14A_RAW) {
1642 if(param & ISO14A_APPEND_CRC) {
1643 AppendCrc14443a(cmd,len);
1644 len += 2;
1645 }
1646 ReaderTransmit(cmd,len);
1647 ack->arg[0] = ReaderReceive(ack->d.asBytes);
1648 UsbSendPacket((void *)ack, sizeof(UsbCommand));
1649 }
1650
1651 if(param & ISO14A_REQUEST_TRIGGER) iso14a_set_trigger(0);
1652
1653 if(param & ISO14A_NO_DISCONNECT)
1654 return;
1655
1656 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1657 LEDsoff();
1658 }
1659 //-----------------------------------------------------------------------------
1660 // Read an ISO 14443a tag. Send out commands and store answers.
1661 //
1662 //-----------------------------------------------------------------------------
1663 void ReaderMifare(uint32_t parameter)
1664 {
1665 // Mifare AUTH
1666 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
1667 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1668
1669 uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
1670 traceLen = 0;
1671 tracing = false;
1672
1673 iso14443a_setup();
1674
1675 LED_A_ON();
1676 LED_B_OFF();
1677 LED_C_OFF();
1678
1679 byte_t nt_diff = 0;
1680 LED_A_OFF();
1681 byte_t par = 0;
1682 byte_t par_mask = 0xff;
1683 byte_t par_low = 0;
1684 int led_on = TRUE;
1685
1686 tracing = FALSE;
1687 byte_t nt[4];
1688 byte_t nt_attacked[4];
1689 byte_t par_list[8];
1690 byte_t ks_list[8];
1691 num_to_bytes(parameter,4,nt_attacked);
1692
1693 while(TRUE)
1694 {
1695 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1696 SpinDelay(200);
1697 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1698
1699 // Test if the action was cancelled
1700 if(BUTTON_PRESS()) {
1701 break;
1702 }
1703
1704 if(!iso14443a_select_card(NULL, NULL, NULL)) continue;
1705
1706 // Transmit MIFARE_CLASSIC_AUTH
1707 ReaderTransmit(mf_auth,sizeof(mf_auth));
1708
1709 // Receive the (16 bit) "random" nonce
1710 if (!ReaderReceive(receivedAnswer)) continue;
1711 memcpy(nt,receivedAnswer,4);
1712
1713 // Transmit reader nonce and reader answer
1714 ReaderTransmitPar(mf_nr_ar,sizeof(mf_nr_ar),par);
1715
1716 // Receive 4 bit answer
1717 if (ReaderReceive(receivedAnswer))
1718 {
1719 if (nt_diff == 0)
1720 {
1721 LED_A_ON();
1722 memcpy(nt_attacked,nt,4);
1723 par_mask = 0xf8;
1724 par_low = par & 0x07;
1725 }
1726
1727 if (memcmp(nt,nt_attacked,4) != 0) continue;
1728
1729 led_on = !led_on;
1730 if(led_on) LED_B_ON(); else LED_B_OFF();
1731 par_list[nt_diff] = par;
1732 ks_list[nt_diff] = receivedAnswer[0]^0x05;
1733
1734 // Test if the information is complete
1735 if (nt_diff == 0x07) break;
1736
1737 nt_diff = (nt_diff+1) & 0x07;
1738 mf_nr_ar[3] = nt_diff << 5;
1739 par = par_low;
1740 } else {
1741 if (nt_diff == 0)
1742 {
1743 par++;
1744 } else {
1745 par = (((par>>3)+1) << 3) | par_low;
1746 }
1747 }
1748 }
1749
1750 LogTrace(nt,4,0,GetParity(nt,4),TRUE);
1751 LogTrace(par_list,8,0,GetParity(par_list,8),TRUE);
1752 LogTrace(ks_list,8,0,GetParity(ks_list,8),TRUE);
1753
1754 // Thats it...
1755 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1756 LEDsoff();
1757 tracing = TRUE;
1758
1759 DbpString("COMMAND FINISHED");
1760
1761 Dbprintf("nt=%x", (int)nt[0]);
1762 }
1763
1764 //-----------------------------------------------------------------------------
1765 // Select, Authenticaate, Read an MIFARE tag.
1766 // read block
1767 //-----------------------------------------------------------------------------
1768 void MifareReadBlock(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
1769 {
1770 // params
1771 uint8_t blockNo = arg0;
1772 uint8_t keyType = arg1;
1773 uint64_t ui64Key = 0;
1774 ui64Key = bytes_to_num(datain, 6);
1775
1776 // variables
1777 byte_t isOK = 0;
1778 byte_t dataoutbuf[16];
1779 uint8_t uid[7];
1780 uint32_t cuid;
1781 struct Crypto1State mpcs = {0, 0};
1782 struct Crypto1State *pcs;
1783 pcs = &mpcs;
1784
1785 // clear trace
1786 traceLen = 0;
1787 // tracing = false;
1788
1789 iso14443a_setup();
1790
1791 LED_A_ON();
1792 LED_B_OFF();
1793 LED_C_OFF();
1794
1795 while (true) {
1796 if(!iso14443a_select_card(uid, NULL, &cuid)) {
1797 Dbprintf("Can't select card");
1798 break;
1799 };
1800
1801 if(mifare_classic_auth(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST)) {
1802 Dbprintf("Auth error");
1803 break;
1804 };
1805
1806 if(mifare_classic_readblock(pcs, cuid, blockNo, dataoutbuf)) {
1807 Dbprintf("Read block error");
1808 break;
1809 };
1810
1811 if(mifare_classic_halt(pcs, cuid)) {
1812 Dbprintf("Halt error");
1813 break;
1814 };
1815
1816 isOK = 1;
1817 break;
1818 }
1819
1820 // ----------------------------- crypto1 destroy
1821 crypto1_destroy(pcs);
1822
1823 // DbpString("READ BLOCK FINISHED");
1824
1825 // add trace trailer
1826 uid[0] = 0xff;
1827 uid[1] = 0xff;
1828 uid[2] = 0xff;
1829 uid[3] = 0xff;
1830 LogTrace(uid, 4, 0, 0, TRUE);
1831
1832 UsbCommand ack = {CMD_ACK, {isOK, 0, 0}};
1833 memcpy(ack.d.asBytes, dataoutbuf, 16);
1834
1835 LED_B_ON();
1836 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
1837 LED_B_OFF();
1838
1839
1840 // Thats it...
1841 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1842 LEDsoff();
1843 // tracing = TRUE;
1844
1845 }
1846
1847 //-----------------------------------------------------------------------------
1848 // Select, Authenticaate, Read an MIFARE tag.
1849 // read sector (data = 4 x 16 bytes = 64 bytes)
1850 //-----------------------------------------------------------------------------
1851 void MifareReadSector(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
1852 {
1853 // params
1854 uint8_t sectorNo = arg0;
1855 uint8_t keyType = arg1;
1856 uint64_t ui64Key = 0;
1857 ui64Key = bytes_to_num(datain, 6);
1858
1859 // variables
1860 byte_t isOK = 0;
1861 byte_t dataoutbuf[16 * 4];
1862 uint8_t uid[8];
1863 uint32_t cuid;
1864 struct Crypto1State mpcs = {0, 0};
1865 struct Crypto1State *pcs;
1866 pcs = &mpcs;
1867
1868 // clear trace
1869 traceLen = 0;
1870 // tracing = false;
1871
1872 iso14443a_setup();
1873
1874 LED_A_ON();
1875 LED_B_OFF();
1876 LED_C_OFF();
1877
1878 while (true) {
1879 if(!iso14443a_select_card(uid, NULL, &cuid)) {
1880 Dbprintf("Can't select card");
1881 break;
1882 };
1883
1884 if(mifare_classic_auth(pcs, cuid, sectorNo * 4, keyType, ui64Key, AUTH_FIRST)) {
1885 Dbprintf("Auth error");
1886 break;
1887 };
1888
1889 if(mifare_classic_readblock(pcs, cuid, sectorNo * 4 + 0, dataoutbuf + 16 * 0)) {
1890 Dbprintf("Read block 0 error");
1891 break;
1892 };
1893 if(mifare_classic_readblock(pcs, cuid, sectorNo * 4 + 1, dataoutbuf + 16 * 1)) {
1894 Dbprintf("Read block 1 error");
1895 break;
1896 };
1897 if(mifare_classic_readblock(pcs, cuid, sectorNo * 4 + 2, dataoutbuf + 16 * 2)) {
1898 Dbprintf("Read block 2 error");
1899 break;
1900 };
1901 if(mifare_classic_readblock(pcs, cuid, sectorNo * 4 + 3, dataoutbuf + 16 * 3)) {
1902 Dbprintf("Read block 3 error");
1903 break;
1904 };
1905
1906 if(mifare_classic_halt(pcs, cuid)) {
1907 Dbprintf("Halt error");
1908 break;
1909 };
1910
1911 isOK = 1;
1912 break;
1913 }
1914
1915 // ----------------------------- crypto1 destroy
1916 crypto1_destroy(pcs);
1917
1918 // DbpString("READ BLOCK FINISHED");
1919
1920 // add trace trailer
1921 uid[0] = 0xff;
1922 uid[1] = 0xff;
1923 uid[2] = 0xff;
1924 uid[3] = 0xff;
1925 LogTrace(uid, 4, 0, 0, TRUE);
1926
1927 UsbCommand ack = {CMD_ACK, {isOK, 0, 0}};
1928 memcpy(ack.d.asBytes, dataoutbuf, 16 * 2);
1929
1930 LED_B_ON();
1931 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
1932
1933 SpinDelay(100);
1934
1935 memcpy(ack.d.asBytes, dataoutbuf + 16 * 2, 16 * 2);
1936 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
1937 LED_B_OFF();
1938
1939 // Thats it...
1940 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1941 LEDsoff();
1942 // tracing = TRUE;
1943
1944 }
1945
1946 //-----------------------------------------------------------------------------
1947 // Select, Authenticaate, Read an MIFARE tag.
1948 // read block
1949 //-----------------------------------------------------------------------------
1950 void MifareWriteBlock(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
1951 {
1952 // params
1953 uint8_t blockNo = arg0;
1954 uint8_t keyType = arg1;
1955 uint64_t ui64Key = 0;
1956 byte_t blockdata[16];
1957
1958 ui64Key = bytes_to_num(datain, 6);
1959 memcpy(blockdata, datain + 10, 16);
1960
1961 // variables
1962 byte_t isOK = 0;
1963 uint8_t uid[8];
1964 uint32_t cuid;
1965 struct Crypto1State mpcs = {0, 0};
1966 struct Crypto1State *pcs;
1967 pcs = &mpcs;
1968
1969 // clear trace
1970 traceLen = 0;
1971 // tracing = false;
1972
1973 iso14443a_setup();
1974
1975 LED_A_ON();
1976 LED_B_OFF();
1977 LED_C_OFF();
1978
1979 while (true) {
1980 if(!iso14443a_select_card(uid, NULL, &cuid)) {
1981 Dbprintf("Can't select card");
1982 break;
1983 };
1984
1985 if(mifare_classic_auth(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST)) {
1986 Dbprintf("Auth error");
1987 break;
1988 };
1989
1990 if(mifare_classic_writeblock(pcs, cuid, blockNo, blockdata)) {
1991 Dbprintf("Write block error");
1992 break;
1993 };
1994
1995 if(mifare_classic_halt(pcs, cuid)) {
1996 Dbprintf("Halt error");
1997 break;
1998 };
1999
2000 isOK = 1;
2001 break;
2002 }
2003
2004 // ----------------------------- crypto1 destroy
2005 crypto1_destroy(pcs);
2006
2007 // DbpString("WRITE BLOCK FINISHED");
2008
2009 // add trace trailer
2010 uid[0] = 0xff;
2011 uid[1] = 0xff;
2012 uid[2] = 0xff;
2013 uid[3] = 0xff;
2014 LogTrace(uid, 4, 0, 0, TRUE);
2015
2016 UsbCommand ack = {CMD_ACK, {isOK, 0, 0}};
2017
2018 LED_B_ON();
2019 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
2020 LED_B_OFF();
2021
2022
2023 // Thats it...
2024 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2025 LEDsoff();
2026 // tracing = TRUE;
2027
2028 }
2029
2030 //-----------------------------------------------------------------------------
2031 // MIFARE nested authentication.
2032 //
2033 //-----------------------------------------------------------------------------
2034 void MifareNested(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
2035 {
2036 // params
2037 uint8_t blockNo = arg0;
2038 uint8_t keyType = arg1;
2039 uint64_t ui64Key = 0;
2040
2041 ui64Key = bytes_to_num(datain, 6);
2042
2043 // variables
2044 byte_t isOK = 0;
2045 uint8_t uid[8];
2046 uint32_t cuid;
2047 uint8_t dataoutbuf[16];
2048 struct Crypto1State mpcs = {0, 0};
2049 struct Crypto1State *pcs;
2050 pcs = &mpcs;
2051
2052 // clear trace
2053 traceLen = 0;
2054 // tracing = false;
2055
2056 iso14443a_setup();
2057
2058 LED_A_ON();
2059 LED_B_OFF();
2060 LED_C_OFF();
2061
2062 while (true) {
2063 if(!iso14443a_select_card(uid, NULL, &cuid)) {
2064 Dbprintf("Can't select card");
2065 break;
2066 };
2067
2068 if(mifare_classic_auth(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST)) {
2069 Dbprintf("Auth error");
2070 break;
2071 };
2072
2073 // nested authenticate block = (blockNo + 1)
2074 if(mifare_classic_auth(pcs, (uint32_t)bytes_to_num(uid, 4), blockNo + 1, keyType, ui64Key, AUTH_NESTED)) {
2075 Dbprintf("Auth error");
2076 break;
2077 };
2078
2079 if(mifare_classic_readblock(pcs, (uint32_t)bytes_to_num(uid, 4), blockNo + 1, dataoutbuf)) {
2080 Dbprintf("Read block error");
2081 break;
2082 };
2083
2084 if(mifare_classic_halt(pcs, (uint32_t)bytes_to_num(uid, 4))) {
2085 Dbprintf("Halt error");
2086 break;
2087 };
2088
2089 isOK = 1;
2090 break;
2091 }
2092
2093 // ----------------------------- crypto1 destroy
2094 crypto1_destroy(pcs);
2095
2096 DbpString("NESTED FINISHED");
2097
2098 // add trace trailer
2099 uid[0] = 0xff;
2100 uid[1] = 0xff;
2101 uid[2] = 0xff;
2102 uid[3] = 0xff;
2103 LogTrace(uid, 4, 0, 0, TRUE);
2104
2105 UsbCommand ack = {CMD_ACK, {isOK, 0, 0}};
2106 memcpy(ack.d.asBytes, dataoutbuf, 16);
2107
2108 LED_B_ON();
2109 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
2110 LED_B_OFF();
2111
2112 // Thats it...
2113 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2114 LEDsoff();
2115 // tracing = TRUE;
2116
2117 }
2118
2119 //-----------------------------------------------------------------------------
2120 // MIFARE 1K simulate.
2121 //
2122 //-----------------------------------------------------------------------------
2123 void Mifare1ksim(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
2124 {
2125 }
Impressum, Datenschutz