1 //-----------------------------------------------------------------------------
2 // (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // LEGIC RF simulation code
10 //-----------------------------------------------------------------------------
13 static struct legic_frame
{
24 static crc_t legic_crc
;
25 static int legic_read_count
;
26 static uint32_t legic_prng_bc
;
27 static uint32_t legic_prng_iv
;
29 static int legic_phase_drift
;
30 static int legic_frame_drift
;
31 static int legic_reqresp_drift
;
37 static void setup_timer(void) {
38 // Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging
39 // this it won't be terribly accurate but should be good enough.
41 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
42 timer = AT91C_BASE_TC1;
43 timer->TC_CCR = AT91C_TC_CLKDIS;
44 timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK;
45 timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
48 // Set up Timer 2 to use for measuring time between frames in
49 // tag simulation mode. Runs 4x faster as Timer 1
51 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2);
52 prng_timer = AT91C_BASE_TC2;
53 prng_timer->TC_CCR = AT91C_TC_CLKDIS;
54 prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK;
55 prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
58 AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
59 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
62 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
63 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
64 AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
65 AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
66 AT91C_BASE_TC0->TC_RA = 1;
67 AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
71 // At TIMER_CLOCK3 (MCK/32)
72 // testing calculating in (us) microseconds.
73 #define RWD_TIME_1 120 // READER_TIME_PAUSE 20us off, 80us on = 100us 80 * 1.5 == 120ticks
74 #define RWD_TIME_0 60 // READER_TIME_PAUSE 20us off, 40us on = 60us 40 * 1.5 == 60ticks
75 #define RWD_TIME_PAUSE 30 // 20us == 20 * 1.5 == 30ticks */
76 #define TAG_BIT_PERIOD 142 // 100us == 100 * 1.5 == 150ticks
77 #define TAG_FRAME_WAIT 495 // 330us from READER frame end to TAG frame start. 330 * 1.5 == 495
79 #define RWD_TIME_FUZZ 20 // rather generous 13us, since the peak detector + hysteresis fuzz quite a bit
81 #define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */
82 #define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */
84 #define OFFSET_LOG 1024
86 #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz)))
89 # define SHORT_COIL LOW(GPIO_SSC_DOUT);
92 # define OPEN_COIL HIGH(GPIO_SSC_DOUT);
97 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; \
98 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; \
101 // Pause pulse, off in 20us / 30ticks,
102 // ONE / ZERO bit pulse,
103 // one == 80us / 120ticks
104 // zero == 40us / 60ticks
106 # define COIL_PULSE(x) \
109 WaitTicks( (RWD_TIME_PAUSE) ); \
115 // ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces.
116 // Historically it used to be FREE_BUFFER_SIZE, which was 2744.
117 #define LEGIC_CARD_MEMSIZE 1024
118 static uint8_t* cardmem
;
120 static void frame_append_bit(struct legic_frame
* const f
, uint8_t bit
) {
121 // Overflow, won't happen
122 if (f
->bits
>= 31) return;
124 f
->data
|= (bit
<< f
->bits
);
128 static void frame_clean(struct legic_frame
* const f
) {
133 // Prng works when waiting in 99.1us cycles.
134 // and while sending/receiving in bit frames (100, 60)
135 /*static void CalibratePrng( uint32_t time){
136 // Calculate Cycles based on timer 100us
137 uint32_t i = (time - sendFrameStop) / 100 ;
139 // substract cycles of finished frames
140 int k = i - legic_prng_count()+1;
142 // substract current frame length, rewind to beginning
144 legic_prng_forward(k);
148 /* Generate Keystream */
149 uint32_t get_key_stream(int skip
, int count
) {
153 // Use int to enlarge timer tc to 32bit
154 legic_prng_bc
+= prng_timer
->TC_CV
;
156 // reset the prng timer.
158 /* If skip == -1, forward prng time based */
160 i
= (legic_prng_bc
+ SIM_SHIFT
)/SIM_DIVISOR
; /* Calculate Cycles based on timer */
161 i
-= legic_prng_count(); /* substract cycles of finished frames */
162 i
-= count
; /* substract current frame length, rewind to beginning */
163 legic_prng_forward(i
);
165 legic_prng_forward(skip
);
168 i
= (count
== 6) ? -1 : legic_read_count
;
170 /* Generate KeyStream */
171 return legic_prng_get_bits(count
);
174 /* Send a frame in tag mode, the FPGA must have been set up by
177 void frame_send_tag(uint16_t response
, uint8_t bits
) {
181 /* Bitbang the response */
183 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
184 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
186 /* TAG_FRAME_WAIT -> shift by 2 */
187 legic_prng_forward(2);
188 response
^= legic_prng_get_bits(bits
);
190 /* Wait for the frame start */
191 WaitTicks( TAG_FRAME_WAIT
);
193 for (; mask
< BITMASK(bits
); mask
<<= 1) {
198 WaitTicks(TAG_BIT_PERIOD
);
203 /* Send a frame in reader mode, the FPGA must have been set up by
206 void frame_sendAsReader(uint32_t data
, uint8_t bits
){
208 uint32_t starttime
= GET_TICKS
, send
= 0;
211 // xor lsfr onto data.
212 send
= data
^ legic_prng_get_bits(bits
);
214 for (; mask
< BITMASK(bits
); mask
<<= 1) {
216 COIL_PULSE(RWD_TIME_1
)
218 COIL_PULSE(RWD_TIME_0
)
221 // Final pause to mark the end of the frame
225 uint8_t cmdbytes
[] = {bits
, BYTEx(data
, 0), BYTEx(data
, 1), BYTEx(send
, 0), BYTEx(send
, 1)};
226 LogTrace(cmdbytes
, sizeof(cmdbytes
), starttime
, GET_TICKS
, NULL
, TRUE
);
229 /* Receive a frame from the card in reader emulation mode, the FPGA and
230 * timer must have been set up by LegicRfReader and frame_sendAsReader.
232 * The LEGIC RF protocol from card to reader does not include explicit
233 * frame start/stop information or length information. The reader must
234 * know beforehand how many bits it wants to receive. (Notably: a card
235 * sending a stream of 0-bits is indistinguishable from no card present.)
237 * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but
238 * I'm not smart enough to use it. Instead I have patched hi_read_tx to output
239 * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look
240 * for edges. Count the edges in each bit interval. If they are approximately
241 * 0 this was a 0-bit, if they are approximately equal to the number of edges
242 * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the
243 * timer that's still running from frame_sendAsReader in order to get a synchronization
244 * with the frame that we just sent.
246 * FIXME: Because we're relying on the hysteresis to just do the right thing
247 * the range is severely reduced (and you'll probably also need a good antenna).
248 * So this should be fixed some time in the future for a proper receiver.
250 static void frame_receiveAsReader(struct legic_frame
* const f
, uint8_t bits
) {
252 if ( bits
> 32 ) return;
254 uint8_t i
= bits
, edges
= 0;
255 uint32_t the_bit
= 1, next_bit_at
= 0, data
= 0;
256 uint32_t old_level
= 0;
257 volatile uint32_t level
= 0;
261 /* Bitbang the receiver */
264 // calibrate the prng.
265 legic_prng_forward(2);
266 data
= legic_prng_get_bits(bits
);
268 //FIXED time between sending frame and now listening frame. 330us
269 uint32_t starttime
= GET_TICKS
;
270 // its about 9+9 ticks delay from end-send to here.
273 next_bit_at
= GET_TICKS
+ TAG_BIT_PERIOD
;
277 while ( GET_TICKS
< next_bit_at
) {
279 level
= (AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_DIN
);
281 if (level
!= old_level
)
287 next_bit_at
+= TAG_BIT_PERIOD
;
289 // We expect 42 edges (ONE)
301 uint8_t cmdbytes
[] = {bits
, BYTEx(data
, 0), BYTEx(data
, 1)};
302 LogTrace(cmdbytes
, sizeof(cmdbytes
), starttime
, GET_TICKS
, NULL
, FALSE
);
305 // Setup pm3 as a Legic Reader
306 static uint32_t setup_phase_reader(uint8_t iv
) {
308 // Switch on carrier and let the tag charge for 1ms
318 frame_sendAsReader(iv
, 7);
320 // Now both tag and reader has same IV. Prng can start.
323 frame_receiveAsReader(¤t_frame
, 6);
325 // 292us (438t) - fixed delay before sending ack.
326 // minus log and stuff 100tick?
328 legic_prng_forward(3);
330 // Send obsfuscated acknowledgment frame.
331 // 0x19 = 0x18 MIM22, 0x01 LSB READCMD
332 // 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD
333 switch ( current_frame
.data
) {
334 case 0x0D: frame_sendAsReader(0x19, 6); break;
336 case 0x3D: frame_sendAsReader(0x39, 6); break;
340 legic_prng_forward(2);
341 return current_frame
.data
;
344 static void LegicCommonInit(void) {
346 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
347 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
);
348 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
350 /* Bitbang the transmitter */
352 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
353 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
355 // reserve a cardmem, meaning we can use the tracelog function in bigbuff easier.
356 cardmem
= BigBuf_get_EM_addr();
357 memset(cardmem
, 0x00, LEGIC_CARD_MEMSIZE
);
361 crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0);
366 // Switch off carrier, make sure tag is reset
367 static void switch_off_tag_rwd(void) {
373 // calculate crc4 for a legic READ command
374 static uint32_t legic4Crc(uint8_t cmd
, uint16_t byte_index
, uint8_t value
, uint8_t cmd_sz
) {
375 crc_clear(&legic_crc
);
376 uint32_t temp
= (value
<< cmd_sz
) | (byte_index
<< 1) | cmd
;
377 crc_update(&legic_crc
, temp
, cmd_sz
+ 8 );
378 return crc_finish(&legic_crc
);
381 int legic_read_byte( uint16_t index
, uint8_t cmd_sz
) {
383 uint8_t byte
, crc
, calcCrc
= 0;
384 uint32_t cmd
= (index
<< 1) | LEGIC_READ
;
386 // 90ticks = 60us (should be 100us but crc calc takes time.)
387 //WaitTicks(330); // 330ticks prng(4) - works
388 WaitTicks(240); // 240ticks prng(3) - works
390 frame_sendAsReader(cmd
, cmd_sz
);
391 frame_receiveAsReader(¤t_frame
, 12);
394 byte
= BYTEx(current_frame
.data
, 0);
395 crc
= BYTEx(current_frame
.data
, 1);
396 calcCrc
= legic4Crc(LEGIC_READ
, index
, byte
, cmd_sz
);
398 if( calcCrc
!= crc
) {
399 Dbprintf("!!! crc mismatch: expected %x but got %x !!!", calcCrc
, crc
);
403 legic_prng_forward(3);
408 * - assemble a write_cmd_frame with crc and send it
409 * - wait until the tag sends back an ACK ('1' bit unencrypted)
410 * - forward the prng based on the timing
412 int legic_write_byte(uint16_t index
, uint8_t byte
, uint8_t addr_sz
) {
415 crc_clear(&legic_crc
);
416 crc_update(&legic_crc
, 0, 1); /* CMD_WRITE */
417 crc_update(&legic_crc
, index
, addr_sz
);
418 crc_update(&legic_crc
, byte
, 8);
419 uint32_t crc
= crc_finish(&legic_crc
);
420 uint32_t crc2
= legic4Crc(LEGIC_WRITE
, index
, byte
, addr_sz
+1);
422 Dbprintf("crc is missmatch");
425 // send write command
426 uint32_t cmd
= ((crc
<<(addr_sz
+1+8)) //CRC
427 |(byte
<<(addr_sz
+1)) //Data
429 | LEGIC_WRITE
); //CMD = Write
431 uint32_t cmd_sz
= addr_sz
+1+8+4; //crc+data+cmd
433 legic_prng_forward(2);
437 frame_sendAsReader(cmd
, cmd_sz
);
439 /* Bitbang the receiver */
442 int t
, old_level
= 0, edges
= 0;
445 // ACK 3.6ms = 3600us * 1.5 = 5400ticks.
448 for( t
= 0; t
< 80; ++t
) {
450 next_bit_at
+= TAG_BIT_PERIOD
;
451 while(timer
->TC_CV
< next_bit_at
) {
452 volatile uint32_t level
= (AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_DIN
);
453 if(level
!= old_level
)
458 /* expected are 42 edges (ONE) */
460 int t
= timer
->TC_CV
;
461 int c
= t
/ TAG_BIT_PERIOD
;
464 legic_prng_forward(c
);
472 int LegicRfReader(uint16_t offset
, uint16_t len
, uint8_t iv
) {
476 legic_card_select_t card
;
480 if ( legic_select_card_iv(&card
, iv
) ) {
485 switch_off_tag_rwd();
487 if (len
+ offset
>= card
.cardsize
)
488 len
= card
.cardsize
- offset
;
490 setup_phase_reader(iv
);
494 int r
= legic_read_byte(offset
+ i
, card
.cmdsize
);
496 if (r
== -1 || BUTTON_PRESS()) {
497 if ( MF_DBGLEVEL
>= 2) DbpString("operation aborted");
507 switch_off_tag_rwd();
509 cmd_send(CMD_ACK
, isOK
, len
, 0, cardmem
, len
);
513 void LegicRfWriter(uint16_t offset
, uint16_t len
, uint8_t iv
, uint8_t *data
) {
517 // UID not is writeable.
523 legic_card_select_t card
;
527 if ( legic_select_card_iv(&card
, iv
) ) {
532 if (len
+ offset
>= card
.cardsize
)
533 len
= card
.cardsize
- offset
;
535 setup_phase_reader(iv
);
539 // how about we write backwards instead. no need for this extra DCF check.
540 // index = len - cardsize
547 if ( index > cardsize ) return -1;
550 write( data[index], index , card.addrsize);
554 uint16_t index
= len
;
557 r
= legic_write_byte( index
, data
[ index
], card
.addrsize
);
560 Dbprintf("operation aborted @ 0x%03.3x", index
);
569 cmd_send(CMD_ACK
, isOK
, 0,0,0,0);
570 switch_off_tag_rwd();
574 int legic_select_card_iv(legic_card_select_t
*p_card
, uint8_t iv
){
576 if ( p_card
== NULL
) return 1;
578 p_card
->tagtype
= setup_phase_reader(iv
);
580 switch(p_card
->tagtype
) {
583 p_card
->addrsize
= 5;
584 p_card
->cardsize
= 22;
588 p_card
->addrsize
= 8;
589 p_card
->cardsize
= 256;
592 p_card
->cmdsize
= 11;
593 p_card
->addrsize
= 10;
594 p_card
->cardsize
= 1024;
598 p_card
->addrsize
= 0;
599 p_card
->cardsize
= 0;
604 int legic_select_card(legic_card_select_t
*p_card
){
605 return legic_select_card_iv(p_card
, 0x01);
608 //-----------------------------------------------------------------------------
609 // Work with emulator memory
611 // Note: we call FpgaDownloadAndGo(FPGA_BITSTREAM_HF) here although FPGA is not
612 // involved in dealing with emulator memory. But if it is called later, it might
613 // destroy the Emulator Memory.
614 //-----------------------------------------------------------------------------
616 // arg1 = num of bytes
617 void LegicEMemSet(uint32_t arg0
, uint32_t arg1
, uint8_t *data
) {
618 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
619 legic_emlset_mem(data
, arg0
, arg1
);
622 // arg1 = num of bytes
623 void LegicEMemGet(uint32_t arg0
, uint32_t arg1
) {
624 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
625 uint8_t buf
[USB_CMD_DATA_SIZE
] = {0x00};
626 legic_emlget_mem(buf
, arg0
, arg1
);
628 cmd_send(CMD_ACK
, arg0
, arg1
, 0, buf
, USB_CMD_DATA_SIZE
);
631 void legic_emlset_mem(uint8_t *data
, int offset
, int numofbytes
) {
632 cardmem
= BigBuf_get_EM_addr();
633 memcpy(cardmem
+ offset
, data
, numofbytes
);
635 void legic_emlget_mem(uint8_t *data
, int offset
, int numofbytes
) {
636 cardmem
= BigBuf_get_EM_addr();
637 memcpy(data
, cardmem
+ offset
, numofbytes
);
640 void LegicRfInfo(void){
644 uint8_t buf
[sizeof(legic_card_select_t
)] = {0x00};
645 legic_card_select_t
*card
= (legic_card_select_t
*) buf
;
649 if ( legic_select_card(card
) ) {
650 cmd_send(CMD_ACK
,0,0,0,0,0);
655 for ( uint8_t i
= 0; i
< sizeof(card
->uid
); ++i
) {
656 r
= legic_read_byte(i
, card
->cmdsize
);
658 cmd_send(CMD_ACK
,0,0,0,0,0);
661 card
->uid
[i
] = r
& 0xFF;
665 r
= legic_read_byte(4, card
->cmdsize
);
666 uint32_t calc_mcc
= CRC8Legic(card
->uid
, 4);;
667 if ( r
!= calc_mcc
) {
668 cmd_send(CMD_ACK
,0,0,0,0,0);
673 cmd_send(CMD_ACK
, 1, 0, 0, buf
, sizeof(legic_card_select_t
));
676 switch_off_tag_rwd();
680 /* Handle (whether to respond) a frame in tag mode
681 * Only called when simulating a tag.
683 static void frame_handle_tag(struct legic_frame
const * const f
)
686 //uint8_t cmdbytes[] = {bits, BYTEx(data, 0), BYTEx(data, 1)};
687 //LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, FALSE);
689 cardmem
= BigBuf_get_EM_addr();
691 /* First Part of Handshake (IV) */
697 ResetTimer(prng_timer
);
700 legic_prng_init(f
->data
);
702 // We should have three tagtypes with three different answers.
703 frame_send_tag(0x3d, 6); /* 0x3d^0x26 = 0x1B */
705 legic_state
= STATE_IV
;
706 legic_read_count
= 0;
708 legic_prng_iv
= f
->data
;
717 if(legic_state
== STATE_IV
) {
718 uint32_t local_key
= get_key_stream(3, 6);
719 int xored
= 0x39 ^ local_key
;
720 if((f
->bits
== 6) && (f
->data
== xored
)) {
721 legic_state
= STATE_CON
;
728 legic_state
= STATE_DISCON
;
730 Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv
, f
->data
, local_key
, xored
);
737 if(legic_state
== STATE_CON
) {
738 uint32_t key
= get_key_stream(2, 11); //legic_phase_drift, 11);
739 uint16_t addr
= f
->data
^ key
;
741 uint8_t data
= cardmem
[addr
];
742 int hash
= legic4Crc(LEGIC_READ
, addr
, data
, 11) << 8;
745 legic_prng_forward(legic_reqresp_drift
);
747 frame_send_tag(hash
| data
, 12);
749 legic_prng_forward(2);
757 uint32_t key
= get_key_stream(-1, 23); //legic_frame_drift, 23);
758 uint16_t addr
= f
->data
^ key
;
761 uint32_t data
= f
->data
^ key
;
765 cardmem
[addr
] = data
;
767 legic_state
= STATE_DISCON
;
769 Dbprintf("write - addr: %x, data: %x", addr
, data
);
770 // should send a ACK within 3.5ms too
774 if(legic_state
!= STATE_DISCON
) {
775 Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f
->bits
, f
->data
, legic_state
, legic_read_count
);
776 Dbprintf("IV: %03.3x", legic_prng_iv
);
779 legic_state
= STATE_DISCON
;
780 legic_read_count
= 0;
786 /* Read bit by bit untill full frame is received
787 * Call to process frame end answer
789 static void emit(int bit
) {
793 frame_append_bit(¤t_frame
, 1);
796 frame_append_bit(¤t_frame
, 0);
799 if(current_frame
.bits
<= 4) {
800 frame_clean(¤t_frame
);
802 frame_handle_tag(¤t_frame
);
803 frame_clean(¤t_frame
);
810 void LegicRfSimulate(int phase
, int frame
, int reqresp
)
812 /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode,
813 * modulation mode set to 212kHz subcarrier. We are getting the incoming raw
814 * envelope waveform on DIN and should send our response on DOUT.
816 * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll
817 * measure the time between two rising edges on DIN, and no encoding on the
818 * subcarrier from card to reader, so we'll just shift out our verbatim data
819 * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear,
820 * seems to be 300us-ish.
823 int old_level
= 0, active
= 0;
824 legic_state
= STATE_DISCON
;
826 legic_phase_drift
= phase
;
827 legic_frame_drift
= frame
;
828 legic_reqresp_drift
= reqresp
;
830 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
831 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
832 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_212K
);
834 /* Bitbang the receiver */
837 // need a way to determine which tagtype we are simulating
839 // hook up emulator memory
840 cardmem
= BigBuf_get_EM_addr();
845 crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0);
850 DbpString("Starting Legic emulator, press button to end");
852 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
853 volatile uint32_t level
= !!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_DIN
);
855 uint32_t time
= GET_TICKS
;
857 if (level
!= old_level
) {
863 if (FUZZ_EQUAL(time
, RWD_TIME_1
, RWD_TIME_FUZZ
)) {
868 } else if (FUZZ_EQUAL(time
, RWD_TIME_0
, RWD_TIME_FUZZ
)) {
883 if(time
>= (RWD_TIME_1
+RWD_TIME_FUZZ
) && active
) {
890 * Disable the counter, Then wait for the clock to acknowledge the
891 * shutdown in its status register. Reading the SR has the
892 * side-effect of clearing any pending state in there.
894 if(time
>= (20*RWD_TIME_1
) && (timer
->TC_SR
& AT91C_TC_CLKSTA
))
902 switch_off_tag_rwd();
904 cmd_send(CMD_ACK
, 1, 0, 0, 0, 0);
907 //-----------------------------------------------------------------------------
908 // Code up a string of octets at layer 2 (including CRC, we don't generate
909 // that here) so that they can be transmitted to the reader. Doesn't transmit
910 // them yet, just leaves them ready to send in ToSend[].
911 //-----------------------------------------------------------------------------
912 // static void CodeLegicAsTag(const uint8_t *cmd, int len)
918 // // Transmit a burst of ones, as the initial thing that lets the
919 // // reader get phase sync. This (TR1) must be > 80/fs, per spec,
920 // // but tag that I've tried (a Paypass) exceeds that by a fair bit,
922 // for(i = 0; i < 20; i++) {
923 // ToSendStuffBit(1);
924 // ToSendStuffBit(1);
925 // ToSendStuffBit(1);
926 // ToSendStuffBit(1);
930 // for(i = 0; i < 10; i++) {
931 // ToSendStuffBit(0);
932 // ToSendStuffBit(0);
933 // ToSendStuffBit(0);
934 // ToSendStuffBit(0);
936 // for(i = 0; i < 2; i++) {
937 // ToSendStuffBit(1);
938 // ToSendStuffBit(1);
939 // ToSendStuffBit(1);
940 // ToSendStuffBit(1);
943 // for(i = 0; i < len; i++) {
945 // uint8_t b = cmd[i];
948 // ToSendStuffBit(0);
949 // ToSendStuffBit(0);
950 // ToSendStuffBit(0);
951 // ToSendStuffBit(0);
954 // for(j = 0; j < 8; j++) {
956 // ToSendStuffBit(1);
957 // ToSendStuffBit(1);
958 // ToSendStuffBit(1);
959 // ToSendStuffBit(1);
961 // ToSendStuffBit(0);
962 // ToSendStuffBit(0);
963 // ToSendStuffBit(0);
964 // ToSendStuffBit(0);
970 // ToSendStuffBit(1);
971 // ToSendStuffBit(1);
972 // ToSendStuffBit(1);
973 // ToSendStuffBit(1);
977 // for(i = 0; i < 10; i++) {
978 // ToSendStuffBit(0);
979 // ToSendStuffBit(0);
980 // ToSendStuffBit(0);
981 // ToSendStuffBit(0);
983 // for(i = 0; i < 2; i++) {
984 // ToSendStuffBit(1);
985 // ToSendStuffBit(1);
986 // ToSendStuffBit(1);
987 // ToSendStuffBit(1);
990 // // Convert from last byte pos to length
994 //-----------------------------------------------------------------------------
995 // The software UART that receives commands from the reader, and its state
997 //-----------------------------------------------------------------------------
1002 STATE_GOT_FALLING_EDGE_OF_SOF,
1003 STATE_AWAITING_START_BIT,
1004 STATE_RECEIVING_DATA
1014 /* Receive & handle a bit coming from the reader.
1016 * This function is called 4 times per bit (every 2 subcarrier cycles).
1017 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
1020 * LED A -> ON once we have received the SOF and are expecting the rest.
1021 * LED A -> OFF once we have received EOF or are in error state or unsynced
1023 * Returns: true if we received a EOF
1024 * false if we are still waiting for some more
1026 // static RAMFUNC int HandleLegicUartBit(uint8_t bit)
1028 // switch(Uart.state) {
1029 // case STATE_UNSYNCD:
1031 // // we went low, so this could be the beginning of an SOF
1032 // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
1038 // case STATE_GOT_FALLING_EDGE_OF_SOF:
1040 // if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
1042 // if(Uart.bitCnt > 9) {
1043 // // we've seen enough consecutive
1044 // // zeros that it's a valid SOF
1046 // Uart.byteCnt = 0;
1047 // Uart.state = STATE_AWAITING_START_BIT;
1048 // LED_A_ON(); // Indicate we got a valid SOF
1050 // // didn't stay down long enough
1051 // // before going high, error
1052 // Uart.state = STATE_UNSYNCD;
1055 // // do nothing, keep waiting
1059 // if(Uart.posCnt >= 4) Uart.posCnt = 0;
1060 // if(Uart.bitCnt > 12) {
1061 // // Give up if we see too many zeros without
1064 // Uart.state = STATE_UNSYNCD;
1068 // case STATE_AWAITING_START_BIT:
1071 // if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
1072 // // stayed high for too long between
1073 // // characters, error
1074 // Uart.state = STATE_UNSYNCD;
1077 // // falling edge, this starts the data byte
1080 // Uart.shiftReg = 0;
1081 // Uart.state = STATE_RECEIVING_DATA;
1085 // case STATE_RECEIVING_DATA:
1087 // if(Uart.posCnt == 2) {
1088 // // time to sample a bit
1089 // Uart.shiftReg >>= 1;
1091 // Uart.shiftReg |= 0x200;
1095 // if(Uart.posCnt >= 4) {
1098 // if(Uart.bitCnt == 10) {
1099 // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
1101 // // this is a data byte, with correct
1102 // // start and stop bits
1103 // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
1106 // if(Uart.byteCnt >= Uart.byteCntMax) {
1107 // // Buffer overflowed, give up
1109 // Uart.state = STATE_UNSYNCD;
1111 // // so get the next byte now
1113 // Uart.state = STATE_AWAITING_START_BIT;
1115 // } else if (Uart.shiftReg == 0x000) {
1116 // // this is an EOF byte
1117 // LED_A_OFF(); // Finished receiving
1118 // Uart.state = STATE_UNSYNCD;
1119 // if (Uart.byteCnt != 0) {
1123 // // this is an error
1125 // Uart.state = STATE_UNSYNCD;
1132 // Uart.state = STATE_UNSYNCD;
1140 static void UartReset() {
1141 Uart.byteCntMax = 3;
1142 Uart.state = STATE_UNSYNCD;
1146 memset(Uart.output, 0x00, 3);
1149 // static void UartInit(uint8_t *data) {
1150 // Uart.output = data;
1154 //=============================================================================
1155 // An LEGIC reader. We take layer two commands, code them
1156 // appropriately, and then send them to the tag. We then listen for the
1157 // tag's response, which we leave in the buffer to be demodulated on the
1159 //=============================================================================
1164 DEMOD_PHASE_REF_TRAINING,
1165 DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
1166 DEMOD_GOT_FALLING_EDGE_OF_SOF,
1167 DEMOD_AWAITING_START_BIT,
1168 DEMOD_RECEIVING_DATA
1181 * Handles reception of a bit from the tag
1183 * This function is called 2 times per bit (every 4 subcarrier cycles).
1184 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
1187 * LED C -> ON once we have received the SOF and are expecting the rest.
1188 * LED C -> OFF once we have received EOF or are unsynced
1190 * Returns: true if we received a EOF
1191 * false if we are still waiting for some more
1196 static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq)
1201 int halfci = (ai >> 1);
1202 int halfcq = (aq >> 1);
1204 switch(Demod.state) {
1207 CHECK_FOR_SUBCARRIER()
1209 if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected
1210 Demod.state = DEMOD_PHASE_REF_TRAINING;
1217 case DEMOD_PHASE_REF_TRAINING:
1218 if(Demod.posCount < 8) {
1220 CHECK_FOR_SUBCARRIER()
1222 if (v > SUBCARRIER_DETECT_THRESHOLD) {
1223 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
1224 // note: synchronization time > 80 1/fs
1230 Demod.state = DEMOD_UNSYNCD;
1233 Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
1237 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
1239 MAKE_SOFT_DECISION()
1241 //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq );
1242 // logic '0' detected
1245 Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
1247 // start of SOF sequence
1250 // maximum length of TR1 = 200 1/fs
1251 if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD;
1256 case DEMOD_GOT_FALLING_EDGE_OF_SOF:
1259 MAKE_SOFT_DECISION()
1262 // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
1263 if(Demod.posCount < 10*2) {
1264 Demod.state = DEMOD_UNSYNCD;
1266 LED_C_ON(); // Got SOF
1267 Demod.state = DEMOD_AWAITING_START_BIT;
1272 // low phase of SOF too long (> 12 etu)
1273 if(Demod.posCount > 13*2) {
1274 Demod.state = DEMOD_UNSYNCD;
1280 case DEMOD_AWAITING_START_BIT:
1283 MAKE_SOFT_DECISION()
1286 // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
1287 if(Demod.posCount > 3*2) {
1288 Demod.state = DEMOD_UNSYNCD;
1292 // start bit detected
1294 Demod.posCount = 1; // this was the first half
1297 Demod.state = DEMOD_RECEIVING_DATA;
1301 case DEMOD_RECEIVING_DATA:
1303 MAKE_SOFT_DECISION()
1305 if(Demod.posCount == 0) {
1306 // first half of bit
1310 // second half of bit
1312 Demod.shiftReg >>= 1;
1314 if(Demod.thisBit > 0)
1315 Demod.shiftReg |= 0x200;
1319 if(Demod.bitCount == 10) {
1321 uint16_t s = Demod.shiftReg;
1323 if((s & 0x200) && !(s & 0x001)) {
1324 // stop bit == '1', start bit == '0'
1325 uint8_t b = (s >> 1);
1326 Demod.output[Demod.len] = b;
1328 Demod.state = DEMOD_AWAITING_START_BIT;
1330 Demod.state = DEMOD_UNSYNCD;
1334 // This is EOF (start, stop and all data bits == '0'
1344 Demod.state = DEMOD_UNSYNCD;
1352 // Clear out the state of the "UART" that receives from the tag.
1353 static void DemodReset() {
1355 Demod.state = DEMOD_UNSYNCD;
1362 memset(Demod.output, 0x00, 3);
1365 static void DemodInit(uint8_t *data) {
1366 Demod.output = data;
1372 * Demodulate the samples we received from the tag, also log to tracebuffer
1373 * quiet: set to 'TRUE' to disable debug output
1377 #define LEGIC_DMA_BUFFER_SIZE 256
1379 static void GetSamplesForLegicDemod(int n, bool quiet)
1382 bool gotFrame = FALSE;
1383 int lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
1384 int ci, cq, samples = 0;
1388 // And put the FPGA in the appropriate mode
1389 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ);
1391 // The response (tag -> reader) that we're receiving.
1392 // Set up the demodulator for tag -> reader responses.
1393 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
1395 // The DMA buffer, used to stream samples from the FPGA
1396 int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE);
1397 int8_t *upTo = dmaBuf;
1399 // Setup and start DMA.
1400 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){
1401 if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
1405 // Signal field is ON with the appropriate LED:
1408 int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
1409 if(behindBy > max) max = behindBy;
1411 while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) {
1415 if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) {
1417 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
1418 AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE;
1421 if(lastRxCounter <= 0)
1422 lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
1426 gotFrame = HandleLegicSamplesDemod(ci , cq );
1431 if(samples > n || gotFrame)
1435 FpgaDisableSscDma();
1437 if (!quiet && Demod.len == 0) {
1438 Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d",
1449 if (Demod.len > 0) {
1450 uint8_t parity[MAX_PARITY_SIZE] = {0x00};
1451 LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE);
1457 //-----------------------------------------------------------------------------
1458 // Transmit the command (to the tag) that was placed in ToSend[].
1459 //-----------------------------------------------------------------------------
1461 static void TransmitForLegic(void)
1467 while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))
1468 AT91C_BASE_SSC->SSC_THR = 0xff;
1470 // Signal field is ON with the appropriate Red LED
1473 // Signal we are transmitting with the Green LED
1475 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
1477 for(c = 0; c < 10;) {
1478 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1479 AT91C_BASE_SSC->SSC_THR = 0xff;
1482 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1483 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1491 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1492 AT91C_BASE_SSC->SSC_THR = ToSend[c];
1493 legic_prng_forward(1); // forward the lfsr
1495 if(c >= ToSendMax) {
1499 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1500 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1509 //-----------------------------------------------------------------------------
1510 // Code a layer 2 command (string of octets, including CRC) into ToSend[],
1511 // so that it is ready to transmit to the tag using TransmitForLegic().
1512 //-----------------------------------------------------------------------------
1514 static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
1522 for(i = 0; i < 7; i++)
1526 for(i = 0; i < cmdlen; i++) {
1532 for(j = 0; j < bits; j++) {
1542 // Convert from last character reference to length
1547 Convenience function to encode, transmit and trace Legic comms
1550 static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
1552 CodeLegicBitsAsReader(cmd, cmdlen, bits);
1555 uint8_t parity[1] = {0x00};
1556 LogTrace(cmd, cmdlen, 0, 0, parity, TRUE);
1561 // Set up LEGIC communication
1563 void ice_legic_setup() {
1566 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1567 BigBuf_free(); BigBuf_Clear_ext(false);
1573 // Set up the synchronous serial port
1576 // connect Demodulated Signal to ADC:
1577 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1579 // Signal field is on with the appropriate LED
1581 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
1584 //StartCountSspClk();
1587 crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);