#include "crapto1.h"
#include "mifareutil.h"
+// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
+// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
+// Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
+// T0 = TIMER_CLOCK1 / 125000 = 192
+#define T0 192
+
#define SHORT_COIL() LOW(GPIO_SSC_DOUT)
#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
// split into two routines so we can avoid timing issues after sending commands //
void DoAcquisition125k_internal(int trigger_threshold, bool silent)
{
- uint8_t *dest = mifare_get_bigbufptr();
- int n = 24000;
- int i = 0;
- memset(dest, 0x00, n);
+ uint8_t *dest = get_bigbufptr_recvrespbuf();
+ uint16_t i = 0;
+ memset(dest, 0x00, FREE_BUFFER_SIZE);
for(;;) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
continue;
else
trigger_threshold = -1;
- if (++i >= n) break;
+ if (++i >= FREE_BUFFER_SIZE) break;
}
}
if (!silent){
void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
{
-
- /* Make sure the tag is reset */
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
+ /* Make sure the tag is reset */
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(2500);
- int divisor_used = 95; // 125 KHz
+ int divisor = 95; // 125 KHz
// see if 'h' was specified
-
if (command[strlen((char *) command) - 1] == 'h')
- divisor_used = 88; // 134.8 KHz
+ divisor = 88; // 134.8 KHz
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// Give it a bit of time for the resonant antenna to settle.
- SpinDelay(50);
-
-
- // And a little more time for the tag to fully power up
SpinDelay(2000);
// Now set up the SSC to get the ADC samples that are now streaming at us.
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
SpinDelayUs(delay_off);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
LED_D_ON();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
SpinDelayUs(delay_off);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
-
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// now do the read
// PIO_SODR = Set Output Data Register
//#define LOW(x) AT91C_BASE_PIOA->PIO_CODR = (x)
//#define HIGH(x) AT91C_BASE_PIOA->PIO_SODR = (x)
-void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
+void SimulateTagLowFrequency( uint16_t period, uint32_t gap, uint8_t ledcontrol)
{
- int i = 0;
+ LED_D_ON();
+
+ uint16_t i = 0;
+ uint8_t send = 0;
+
+ //int overflow = 0;
+ uint8_t *buf = (uint8_t *)BigBuf;
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+ RELAY_OFF();
+
+ // Configure output pin that is connected to the FPGA (for modulating)
+ AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
+ AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
+
+ SHORT_COIL();
+
+ // Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering
+ AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0);
+
+ // Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the reader frames
+ AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
+ AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
+
+ // Disable timer during configuration
+ AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
+
+ // Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
+ // external trigger rising edge, load RA on rising edge of TIOA.
+ AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_RISING | AT91C_TC_ABETRG | AT91C_TC_LDRA_RISING;
+
+ // Enable and reset counter
+ //AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
+ AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
+
+ while(!BUTTON_PRESS()) {
+ WDT_HIT();
+
+ // Receive frame, watch for at most T0*EOF periods
+ while (AT91C_BASE_TC1->TC_CV < T0 * 55) {
+
+ // Check if rising edge in modulation is detected
+ if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
+ // Retrieve the new timing values
+ //int ra = (AT91C_BASE_TC1->TC_RA/T0) + overflow;
+ //Dbprintf("Timing value - %d %d", ra, overflow);
+ //overflow = 0;
+
+ // Reset timer every frame, we have to capture the last edge for timing
+ AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
+ send = 1;
+
+ LED_B_ON();
+ }
+ }
+
+ if ( send ) {
+ // Disable timer 1 with external trigger to avoid triggers during our own modulation
+ AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
+
+ // Wait for HITAG_T_WAIT_1 carrier periods after the last reader bit,
+ // not that since the clock counts since the rising edge, but T_Wait1 is
+ // with respect to the falling edge, we need to wait actually (T_Wait1 - T_Low)
+ // periods. The gap time T_Low varies (4..10). All timer values are in
+ // terms of T0 units
+ while(AT91C_BASE_TC0->TC_CV < T0 * 16 );
+
+ // datat kommer in som 1 bit för varje position i arrayn
+ for(i = 0; i < period; ++i) {
+
+ // Reset clock for the next bit
+ AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
+
+ if ( buf[i] > 0 )
+ HIGH(GPIO_SSC_DOUT);
+ else
+ LOW(GPIO_SSC_DOUT);
+
+ while(AT91C_BASE_TC0->TC_CV < T0 * 1 );
+ }
+ // Drop modulation
+ LOW(GPIO_SSC_DOUT);
+
+ // Enable and reset external trigger in timer for capturing future frames
+ AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
+ LED_B_OFF();
+ }
+
+ send = 0;
+
+ // Save the timer overflow, will be 0 when frame was received
+ //overflow += (AT91C_BASE_TC1->TC_CV/T0);
+
+ // Reset the timer to restart while-loop that receives frames
+ AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG;
+ }
+
+ LED_B_OFF();
+ LED_D_OFF();
+ AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
+ AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+
+ DbpString("Sim Stopped");
+}
+
+
+void SimulateTagLowFrequencyA(int len, int gap)
+{
+ //Dbprintf("LEN %d || Gap %d",len, gap);
+
uint8_t *buf = (uint8_t *)BigBuf;
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE); // new izsh toggle mode!
// Connect the A/D to the peak-detected low-frequency path.
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
// Now set up the SSC to get the ADC samples that are now streaming at us.
FpgaSetupSsc();
+ SpinDelay(5);
- // Configure output and enable pin that is connected to the FPGA (for modulating)
- // AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; // (PIO_PER) PIO Enable Register
- // AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; // (PIO_OER) Output Enable Register
- // AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; // (PIO_ODR) Output Disable Register
-
- AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
+ AT91C_BASE_SSC->SSC_THR = 0x00;
+ int i = 0;
while(!BUTTON_PRESS()) {
WDT_HIT();
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+
+ if ( buf[i] > 0 )
+ AT91C_BASE_SSC->SSC_THR = 0x43;
+ else
+ AT91C_BASE_SSC->SSC_THR = 0x00;
- // PIO_PDSR = Pin Data Status Register
- // GPIO_SSC_CLK = SSC Transmit Clock
- // wait ssp_clk == high
- while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
- if(BUTTON_PRESS()) {
- DbpString("Stopped at 0");
- return;
- }
- WDT_HIT();
- }
-
- if ( buf[i] > 0 ){
- OPEN_COIL();
- } else {
- SHORT_COIL();
- }
-
- DbpString("Enter Sim3");
- // wait ssp_clk == low
- while( (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) ) {
- if(BUTTON_PRESS()) {
- DbpString("stopped at 1");
- return;
+ ++i;
+ LED_A_ON();
+ if (i >= len){
+ i = 0;
}
- WDT_HIT();
}
- DbpString("Enter Sim4 ");
- //SpinDelayUs(512);
-
- ++i;
- if(i == period) {
- i = 0;
- if (gap) {
- SHORT_COIL();
- SpinDelay(gap);
- }
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+ volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
+ (void)r;
+ LED_A_OFF();
}
}
- DbpString("Stopped");
- return;
+ DbpString("lf simulate stopped");
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
}
#define DEBUG_FRAME_CONTENTS 1
}
// compose fc/8 fc/10 waveform
-static void fc(int c, int *n) {
+static void fc(int c, uint16_t *n) {
uint8_t *dest = (uint8_t *)BigBuf;
int idx;
// prepare a waveform pattern in the buffer based on the ID given then
// simulate a HID tag until the button is pressed
-void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
+void CmdHIDsimTAG(int hi, int lo, uint8_t ledcontrol)
{
- int n=0, i=0;
+ uint16_t n=0, i=0;
/*
HID tag bitstream format
The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
}
-size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t h2l_crossing_value,uint8_t l2h_crossing_value, uint8_t maxConsequtiveBits )
+size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t h2l_crossing_value,uint8_t l2h_crossing_value, uint8_t maxConsequtiveBits, uint8_t invert )
{
uint8_t lastval=dest[0];
uint32_t idx=0;
continue;
}
//if lastval was 1, we have a 1->0 crossing
- if ( dest[idx-1] ) {
+ if ( dest[idx-1]==1 ) {
n=(n+1) / h2l_crossing_value;
} else {// 0->1 crossing
n=(n+1) / l2h_crossing_value;
if(n < maxConsequtiveBits)
{
- memset(dest+numBits, dest[idx-1] , n);
+ if ( invert==0)
+ memset(dest+numBits, dest[idx-1] , n);
+ else
+ memset(dest+numBits, dest[idx-1]^1 , n);
+
numBits += n;
}
n=0;
// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
{
- uint8_t *dest = (uint8_t *)BigBuf;
+ uint8_t *dest = get_bigbufptr_recvrespbuf();
size_t size=0,idx=0; //, found=0;
- uint32_t hi2=0, hi=0, lo=0;
+ uint32_t hi2=0, hi=0, lo=0;
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(0, true);
if (ledcontrol) LED_A_ON();
DoAcquisition125k_internal(-1,true);
- size = sizeof(BigBuf);
// FSK demodulator
- size = fsk_demod(dest, size);
+ size = fsk_demod(dest, FREE_BUFFER_SIZE);
// we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
// 1->0 : fc/8 in sets of 6
// 0->1 : fc/10 in sets of 5
- size = aggregate_bits(dest,size, 6,5,5);
-
- WDT_HIT();
+ // do not invert
+ size = aggregate_bits(dest,size, 6,5,5,0);
// final loop, go over previously decoded manchester data and decode into usable tag ID
// 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
{
// Keep going until next frame marker (or error)
// Shift in a bit. Start by shifting high registers
- hi2=(hi2<<1)|(hi>>31);
+ hi2=(hi2<<1)|(hi>>31);
hi=(hi<<1)|(lo>>31);
//Then, shift in a 0 or one into low
if (dest[idx] && !dest[idx+1]) // 1 0
// Hopefully, we read a tag and hit upon the next frame marker
if(idx + sizeof(frame_marker_mask) < size)
{
- if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
- {
- if (hi2 != 0){
- Dbprintf("TAG ID: %x%08x%08x (%d)",
- (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
- }
- else {
- Dbprintf("TAG ID: %x%08x (%d)",
- (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+ if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
+ {
+ if (hi2 != 0){
+ Dbprintf("TAG ID: %x%08x%08x (%d)",
+ (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+ }
+ else {
+ Dbprintf("TAG ID: %x%08x (%d)",
+ (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+ }
}
}
- }
-
// reset
hi2 = hi = lo = 0;
numshifts = 0;
- }else
- {
+ } else {
idx++;
}
}
void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
{
- uint8_t *dest = (uint8_t *)BigBuf;
-
+ uint8_t *dest = get_bigbufptr_recvrespbuf();
+
size_t size=0, idx=0;
uint32_t code=0, code2=0;
-
+ uint8_t isFinish = 0;
+
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(0, true);
- while(!BUTTON_PRESS()) {
+ while(!BUTTON_PRESS() & !isFinish) {
+
WDT_HIT();
+
if (ledcontrol) LED_A_ON();
DoAcquisition125k_internal(-1,true);
- size = sizeof(BigBuf);
// FSK demodulator
- size = fsk_demod(dest, size);
+ size = fsk_demod(dest, FREE_BUFFER_SIZE);
// we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
// 1->0 : fc/8 in sets of 7
// 0->1 : fc/10 in sets of 6
- size = aggregate_bits(dest, size, 7,6,13);
-
- WDT_HIT();
-
+ size = aggregate_bits(dest, size, 7,6,13,1); //13 max Consecutive should be ok as most 0s in row should be 10 for init seq - invert bits
+
+ //Index map
+ //0 10 20 30 40 50 60
+ //| | | | | | |
+ //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
+ //-----------------------------------------------------------------------------
+ //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
+ //
+ //XSF(version)facility:codeone+codetwo
//Handle the data
+
uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
- for( idx=0; idx < size - 64; idx++) {
-
- if ( memcmp(dest + idx, mask, sizeof(mask)) ) continue;
-
- Dbprintf("%d%d%d%d%d%d%d%d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7]);
- Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+8], dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15]);
- Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+16],dest[idx+17],dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23]);
- Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+24],dest[idx+25],dest[idx+26],dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31]);
- Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35],dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39]);
- Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44],dest[idx+45],dest[idx+46],dest[idx+47]);
- Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53],dest[idx+54],dest[idx+55]);
- Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
- code = bytebits_to_byte(dest+idx,32);
- code2 = bytebits_to_byte(dest+idx+32,32);
+ for( idx=0; idx < (size - 64); idx++) {
+ if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
+ //frame marker found
+ if(findone){ //only print binary if we are doing one
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
+ }
+ code = bytebits_to_byte(dest+idx,32);
+ code2 = bytebits_to_byte(dest+idx+32,32);
+ short version = bytebits_to_byte(dest+idx+28,8); //14,4
+ char facilitycode = bytebits_to_byte(dest+idx+19,8) ;
+ uint16_t number = (bytebits_to_byte(dest+idx+37,8)<<8)|(bytebits_to_byte(dest+idx+46,8)); //36,9
+
+ Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,facilitycode,number,code,code2);
- short version = bytebits_to_byte(dest+idx+14,4);
- char unknown = bytebits_to_byte(dest+idx+19,8) ;
- uint16_t number = bytebits_to_byte(dest+idx+36,9);
-
- Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,unknown,number,code,code2);
- if (ledcontrol) LED_D_OFF();
-
- // if we're only looking for one tag
- if (findone){
- LED_A_OFF();
- return;
+ // if we're only looking for one tag
+ if (findone){
+ if (ledcontrol) LED_A_OFF();
+ isFinish = 1;
+ break;
+ }
+ }
}
- }
- WDT_HIT();
+ WDT_HIT();
}
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
// Read one card block in page 0
void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
{
- uint8_t *dest = mifare_get_bigbufptr();
+ uint8_t *dest = get_bigbufptr_recvrespbuf();
uint16_t bufferlength = T55xx_SAMPLES_SIZE;
uint32_t i = 0;
for(;;) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
AT91C_BASE_SSC->SSC_THR = 0x43;
+ //AT91C_BASE_SSC->SSC_THR = 0xff;
LED_D_ON();
}
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
// Read card traceability data (page 1)
void T55xxReadTrace(void){
- uint8_t *dest = mifare_get_bigbufptr();
+ uint8_t *dest = get_bigbufptr_recvrespbuf();
uint16_t bufferlength = T55xx_SAMPLES_SIZE;
- int i=0;
+ uint32_t i = 0;
// Clear destination buffer before sending the command 0x80 = average
memset(dest, 0x80, bufferlength);
void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
- uint8_t *dest = mifare_get_bigbufptr();
+ uint8_t *dest = get_bigbufptr_recvrespbuf();
uint16_t bufferlength = 12000;
uint32_t i = 0;