#include <stdio.h>
#include <string.h>
#include <inttypes.h>
-//#include "proxusb.h"
#include "proxmark3.h"
#include "ui.h"
+#include "util.h"
+#include "data.h"
#include "graph.h"
#include "cmdparser.h"
#include "cmddata.h"
#include "cmdlf.h"
-#include "cmdlfem4x.h"
+#include "cmdmain.h"
+#include "lfdemod.h"
+
+uint64_t g_em410xId=0;
static int CmdHelp(const char *Cmd);
+int CmdEMdemodASK(const char *Cmd)
+{
+ char cmdp = param_getchar(Cmd, 0);
+ int findone = (cmdp == '1') ? 1 : 0;
+ UsbCommand c={CMD_EM410X_DEMOD};
+ c.arg[0]=findone;
+ SendCommand(&c);
+ return 0;
+}
+
+//by marshmellow
+//print 64 bit EM410x ID in multiple formats
+void printEM410x(uint32_t hi, uint64_t id)
+{
+ if (id || hi){
+ uint64_t iii=1;
+ uint64_t id2lo=0;
+ uint32_t ii=0;
+ uint32_t i=0;
+ for (ii=5; ii>0;ii--){
+ for (i=0;i<8;i++){
+ id2lo=(id2lo<<1LL) | ((id & (iii << (i+((ii-1)*8)))) >> (i+((ii-1)*8)));
+ }
+ }
+ if (hi){
+ //output 88 bit em id
+ PrintAndLog("\nEM TAG ID : %06X%016" PRIX64, hi, id);
+ } else{
+ //output 40 bit em id
+ PrintAndLog("\nEM TAG ID : %010" PRIX64, id);
+ PrintAndLog("\nPossible de-scramble patterns");
+ PrintAndLog("Unique TAG ID : %010" PRIX64, id2lo);
+ PrintAndLog("HoneyWell IdentKey {");
+ PrintAndLog("DEZ 8 : %08" PRIu64,id & 0xFFFFFF);
+ PrintAndLog("DEZ 10 : %010" PRIu64,id & 0xFFFFFFFF);
+ PrintAndLog("DEZ 5.5 : %05lld.%05" PRIu64,(id>>16LL) & 0xFFFF,(id & 0xFFFF));
+ PrintAndLog("DEZ 3.5A : %03lld.%05" PRIu64,(id>>32ll),(id & 0xFFFF));
+ PrintAndLog("DEZ 3.5B : %03lld.%05" PRIu64,(id & 0xFF000000) >> 24,(id & 0xFFFF));
+ PrintAndLog("DEZ 3.5C : %03lld.%05" PRIu64,(id & 0xFF0000) >> 16,(id & 0xFFFF));
+ PrintAndLog("DEZ 14/IK2 : %014" PRIu64,id);
+ PrintAndLog("DEZ 15/IK3 : %015" PRIu64,id2lo);
+ PrintAndLog("DEZ 20/ZK : %02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64,
+ (id2lo & 0xf000000000) >> 36,
+ (id2lo & 0x0f00000000) >> 32,
+ (id2lo & 0x00f0000000) >> 28,
+ (id2lo & 0x000f000000) >> 24,
+ (id2lo & 0x0000f00000) >> 20,
+ (id2lo & 0x00000f0000) >> 16,
+ (id2lo & 0x000000f000) >> 12,
+ (id2lo & 0x0000000f00) >> 8,
+ (id2lo & 0x00000000f0) >> 4,
+ (id2lo & 0x000000000f)
+ );
+ uint64_t paxton = (((id>>32) << 24) | (id & 0xffffff)) + 0x143e00;
+ PrintAndLog("}\nOther : %05" PRIu64 "_%03" PRIu64 "_%08" PRIu64 "",(id&0xFFFF),((id>>16LL) & 0xFF),(id & 0xFFFFFF));
+ PrintAndLog("Pattern Paxton : %" PRIu64 " [0x%" PRIX64 "]", paxton, paxton);
+
+ uint32_t p1id = (id & 0xFFFFFF);
+ uint8_t arr[32] = {0x00};
+ int i =0;
+ int j = 23;
+ for (; i < 24; ++i, --j ){
+ arr[i] = (p1id >> i) & 1;
+ }
+
+ uint32_t p1 = 0;
+
+ p1 |= arr[23] << 21;
+ p1 |= arr[22] << 23;
+ p1 |= arr[21] << 20;
+ p1 |= arr[20] << 22;
+
+ p1 |= arr[19] << 18;
+ p1 |= arr[18] << 16;
+ p1 |= arr[17] << 19;
+ p1 |= arr[16] << 17;
+
+ p1 |= arr[15] << 13;
+ p1 |= arr[14] << 15;
+ p1 |= arr[13] << 12;
+ p1 |= arr[12] << 14;
+
+ p1 |= arr[11] << 6;
+ p1 |= arr[10] << 2;
+ p1 |= arr[9] << 7;
+ p1 |= arr[8] << 1;
+
+ p1 |= arr[7] << 0;
+ p1 |= arr[6] << 8;
+ p1 |= arr[5] << 11;
+ p1 |= arr[4] << 3;
+
+ p1 |= arr[3] << 10;
+ p1 |= arr[2] << 4;
+ p1 |= arr[1] << 5;
+ p1 |= arr[0] << 9;
+ PrintAndLog("Pattern 1 : %d [0x%X]", p1, p1);
+
+ uint16_t sebury1 = id & 0xFFFF;
+ uint8_t sebury2 = (id >> 16) & 0x7F;
+ uint32_t sebury3 = id & 0x7FFFFF;
+ PrintAndLog("Pattern Sebury : %d %d %d [0x%X 0x%X 0x%X]", sebury1, sebury2, sebury3, sebury1, sebury2, sebury3);
+ }
+ }
+ return;
+}
+
/* Read the ID of an EM410x tag.
* Format:
* 1111 1111 1 <-- standard non-repeatable header
* CCCC <-- each bit here is parity for the 10 bits above in corresponding column
* 0 <-- stop bit, end of tag
*/
-int CmdEM410xRead(const char *Cmd)
+int AskEm410xDecode(bool verbose, uint32_t *hi, uint64_t *lo )
{
- int i, j, clock, header, rows, bit, hithigh, hitlow, first, bit2idx, high, low;
- int parity[4];
- char id[11];
- char id2[11];
- int retested = 0;
- uint8_t BitStream[MAX_GRAPH_TRACE_LEN];
- high = low = 0;
-
- /* Detect high and lows and clock */
- for (i = 0; i < GraphTraceLen; i++)
- {
- if (GraphBuffer[i] > high)
- high = GraphBuffer[i];
- else if (GraphBuffer[i] < low)
- low = GraphBuffer[i];
- }
-
- /* get clock */
- clock = GetClock(Cmd, high, 0);
-
- /* parity for our 4 columns */
- parity[0] = parity[1] = parity[2] = parity[3] = 0;
- header = rows = 0;
-
- /* manchester demodulate */
- bit = bit2idx = 0;
- for (i = 0; i < (int)(GraphTraceLen / clock); i++)
- {
- hithigh = 0;
- hitlow = 0;
- first = 1;
-
- /* Find out if we hit both high and low peaks */
- for (j = 0; j < clock; j++)
- {
- if (GraphBuffer[(i * clock) + j] == high)
- hithigh = 1;
- else if (GraphBuffer[(i * clock) + j] == low)
- hitlow = 1;
-
- /* it doesn't count if it's the first part of our read
- because it's really just trailing from the last sequence */
- if (first && (hithigh || hitlow))
- hithigh = hitlow = 0;
- else
- first = 0;
-
- if (hithigh && hitlow)
- break;
- }
-
- /* If we didn't hit both high and low peaks, we had a bit transition */
- if (!hithigh || !hitlow)
- bit ^= 1;
-
- BitStream[bit2idx++] = bit;
- }
-
-retest:
- /* We go till 5 before the graph ends because we'll get that far below */
- for (i = 1; i < bit2idx - 5; i++)
- {
- /* Step 2: We have our header but need our tag ID */
- if (header == 9 && rows < 10)
- {
- /* Confirm parity is correct */
- if ((BitStream[i] ^ BitStream[i+1] ^ BitStream[i+2] ^ BitStream[i+3]) == BitStream[i+4])
- {
- /* Read another byte! */
- sprintf(id+rows, "%x", (8 * BitStream[i]) + (4 * BitStream[i+1]) + (2 * BitStream[i+2]) + (1 * BitStream[i+3]));
- sprintf(id+rows, "%x", (8 * BitStream[i+3]) + (4 * BitStream[i+2]) + (2 * BitStream[i+1]) + (1 * BitStream[i]));
- rows++;
-
- /* Keep parity info */
- parity[0] ^= BitStream[i];
- parity[1] ^= BitStream[i+1];
- parity[2] ^= BitStream[i+2];
- parity[3] ^= BitStream[i+3];
-
- /* Move 4 bits ahead */
- i += 4;
- }
-
- /* Damn, something wrong! reset */
- else
- {
- PrintAndLog("Thought we had a valid tag but failed at word %d (i=%d)", rows + 1, i);
-
- /* Start back rows * 5 + 9 header bits, -1 to not start at same place */
- i -= 9 + (5 * rows) - 5;
-
- rows = header = 0;
- }
- }
-
- /* Step 3: Got our 40 bits! confirm column parity */
- else if (rows == 10)
- {
- /* We need to make sure our 4 bits of parity are correct and we have a stop bit */
- if (BitStream[i] == parity[0] && BitStream[i+1] == parity[1] &&
- BitStream[i+2] == parity[2] && BitStream[i+3] == parity[3] &&
- BitStream[i+4] == 0)
- {
- /* Sweet! */
- PrintAndLog("EM410x Tag ID: %s", id);
- PrintAndLog("Unique Tag ID: %s", id);
-
- /* Stop any loops */
- return 1;
- }
-
- /* Crap! Incorrect parity or no stop bit, start all over */
- else
- {
- rows = header = 0;
-
- /* Go back 59 bits (9 header bits + 10 rows at 4+1 parity) */
- i -= 59;
- }
- }
-
- /* Step 1: get our header */
- else if (header < 9)
- {
- /* Need 9 consecutive 1's */
- if (BitStream[i] == 1)
- header++;
-
- /* We don't have a header, not enough consecutive 1 bits */
- else
- header = 0;
- }
- }
-
- /* if we've already retested after flipping bits, return */
- if (retested++)
- return 0;
-
- /* if this didn't work, try flipping bits */
- for (i = 0; i < bit2idx; i++)
- BitStream[i] ^= 1;
-
- goto retest;
-}
-
-/* emulate an EM410X tag
- * Format:
- * 1111 1111 1 <-- standard non-repeatable header
- * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID
- * ....
- * CCCC <-- each bit here is parity for the 10 bits above in corresponding column
- * 0 <-- stop bit, end of tag
- */
+ size_t idx = 0;
+ size_t BitLen = DemodBufferLen;
+ uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
+ memcpy(BitStream, DemodBuffer, BitLen);
+ if (Em410xDecode(BitStream, &BitLen, &idx, hi, lo)){
+ //set GraphBuffer for clone or sim command
+ setDemodBuf(BitStream, BitLen, idx);
+ if (g_debugMode){
+ PrintAndLog("DEBUG: idx: %d, Len: %d, Printing Demod Buffer:", idx, BitLen);
+ printDemodBuff();
+ }
+ if (verbose){
+ PrintAndLog("EM410x pattern found: ");
+ printEM410x(*hi, *lo);
+ g_em410xId = *lo;
+ }
+ return 1;
+ }
+ return 0;
+}
+
+//askdemod then call Em410xdecode
+int AskEm410xDemod(const char *Cmd, uint32_t *hi, uint64_t *lo, bool verbose)
+{
+ bool st = true;
+ if (!ASKDemod_ext(Cmd, false, false, 1, &st)) return 0;
+ return AskEm410xDecode(verbose, hi, lo);
+}
+
+//by marshmellow
+//takes 3 arguments - clock, invert and maxErr as integers
+//attempts to demodulate ask while decoding manchester
+//prints binary found and saves in graphbuffer for further commands
+int CmdAskEM410xDemod(const char *Cmd)
+{
+ char cmdp = param_getchar(Cmd, 0);
+ if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
+ PrintAndLog("Usage: lf em 410xdemod [clock] <0|1> [maxError]");
+ PrintAndLog(" [set clock as integer] optional, if not set, autodetect.");
+ PrintAndLog(" <invert>, 1 for invert output");
+ PrintAndLog(" [set maximum allowed errors], default = 100.");
+ PrintAndLog("");
+ PrintAndLog(" sample: lf em 410xdemod = demod an EM410x Tag ID from GraphBuffer");
+ PrintAndLog(" : lf em 410xdemod 32 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32");
+ PrintAndLog(" : lf em 410xdemod 32 1 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32 and inverting data");
+ PrintAndLog(" : lf em 410xdemod 1 = demod an EM410x Tag ID from GraphBuffer while inverting data");
+ PrintAndLog(" : lf em 410xdemod 64 1 0 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/64 and inverting data and allowing 0 demod errors");
+ return 0;
+ }
+ uint64_t lo = 0;
+ uint32_t hi = 0;
+ return AskEm410xDemod(Cmd, &hi, &lo, true);
+}
+
+int usage_lf_em410x_sim(void) {
+ PrintAndLog("Simulating EM410x tag");
+ PrintAndLog("");
+ PrintAndLog("Usage: lf em 410xsim [h] <uid> <clock>");
+ PrintAndLog("Options:");
+ PrintAndLog(" h - this help");
+ PrintAndLog(" uid - uid (10 HEX symbols)");
+ PrintAndLog(" clock - clock (32|64) (optional)");
+ PrintAndLog("samples:");
+ PrintAndLog(" lf em 410xsim 0F0368568B");
+ PrintAndLog(" lf em 410xsim 0F0368568B 32");
+ return 0;
+}
+
+// emulate an EM410X tag
int CmdEM410xSim(const char *Cmd)
{
- int i, n, j, h, binary[4], parity[4];
-
- /* clock is 64 in EM410x tags */
- int clock = 64;
-
- /* clear our graph */
- ClearGraph(0);
-
- /* write it out a few times */
- for (h = 0; h < 4; h++)
- {
- /* write 9 start bits */
- for (i = 0; i < 9; i++)
- AppendGraph(0, clock, 1);
-
- /* for each hex char */
- parity[0] = parity[1] = parity[2] = parity[3] = 0;
- for (i = 0; i < 10; i++)
- {
- /* read each hex char */
- sscanf(&Cmd[i], "%1x", &n);
- for (j = 3; j >= 0; j--, n/= 2)
- binary[j] = n % 2;
-
- /* append each bit */
- AppendGraph(0, clock, binary[0]);
- AppendGraph(0, clock, binary[1]);
- AppendGraph(0, clock, binary[2]);
- AppendGraph(0, clock, binary[3]);
-
- /* append parity bit */
- AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
-
- /* keep track of column parity */
- parity[0] ^= binary[0];
- parity[1] ^= binary[1];
- parity[2] ^= binary[2];
- parity[3] ^= binary[3];
- }
-
- /* parity columns */
- AppendGraph(0, clock, parity[0]);
- AppendGraph(0, clock, parity[1]);
- AppendGraph(0, clock, parity[2]);
- AppendGraph(0, clock, parity[3]);
-
- /* stop bit */
- AppendGraph(0, clock, 0);
- }
-
- /* modulate that biatch */
- CmdManchesterMod("");
-
- /* booyah! */
- RepaintGraphWindow();
-
- CmdLFSim("");
- return 0;
-}
-
-/* Function is equivalent of loread + losamples + em410xread
- * looped until an EM410x tag is detected */
+ int i, n, j, binary[4], parity[4];
+
+ char cmdp = param_getchar(Cmd, 0);
+ uint8_t uid[5] = {0x00};
+
+ if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_sim();
+ /* clock is 64 in EM410x tags */
+ uint8_t clock = 64;
+
+ if (param_gethex(Cmd, 0, uid, 10)) {
+ PrintAndLog("UID must include 10 HEX symbols");
+ return 0;
+ }
+ param_getdec(Cmd,1, &clock);
+
+ PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock);
+ PrintAndLog("Press pm3-button to about simulation");
+
+
+ /* clear our graph */
+ ClearGraph(0);
+
+ /* write 9 start bits */
+ for (i = 0; i < 9; i++)
+ AppendGraph(0, clock, 1);
+
+ /* for each hex char */
+ parity[0] = parity[1] = parity[2] = parity[3] = 0;
+ for (i = 0; i < 10; i++)
+ {
+ /* read each hex char */
+ sscanf(&Cmd[i], "%1x", &n);
+ for (j = 3; j >= 0; j--, n/= 2)
+ binary[j] = n % 2;
+
+ /* append each bit */
+ AppendGraph(0, clock, binary[0]);
+ AppendGraph(0, clock, binary[1]);
+ AppendGraph(0, clock, binary[2]);
+ AppendGraph(0, clock, binary[3]);
+
+ /* append parity bit */
+ AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
+
+ /* keep track of column parity */
+ parity[0] ^= binary[0];
+ parity[1] ^= binary[1];
+ parity[2] ^= binary[2];
+ parity[3] ^= binary[3];
+ }
+
+ /* parity columns */
+ AppendGraph(0, clock, parity[0]);
+ AppendGraph(0, clock, parity[1]);
+ AppendGraph(0, clock, parity[2]);
+ AppendGraph(0, clock, parity[3]);
+
+ /* stop bit */
+ AppendGraph(1, clock, 0);
+
+ CmdLFSim("0"); //240 start_gap.
+ return 0;
+}
+
+/* Function is equivalent of lf read + data samples + em410xread
+ * looped until an EM410x tag is detected
+ *
+ * Why is CmdSamples("16000")?
+ * TBD: Auto-grow sample size based on detected sample rate. IE: If the
+ * rate gets lower, then grow the number of samples
+ * Changed by martin, 4000 x 4 = 16000,
+ * see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235
+ *
+ * EDIT -- capture enough to get 2 complete preambles at the slowest data rate known to be used (rf/64) (64*64*2+9 = 8201) marshmellow
+*/
int CmdEM410xWatch(const char *Cmd)
{
- int read_h = (*Cmd == 'h');
- do
- {
- CmdLFRead(read_h ? "h" : "");
- // 2000 samples is OK for clock=64, but not clock=32. Probably want
- // 8000 for clock=16. Don't want to go too high since old HID driver
- // is very slow
- // TBD: Auto-grow sample size based on detected sample rate. IE: If the
- // rate gets lower, then grow the number of samples
-
- // Changed by martin, 4000 x 4 = 16000,
- // see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235
- CmdSamples("16000");
- } while ( ! CmdEM410xRead(""));
- return 0;
-}
-
-/* Read the transmitted data of an EM4x50 tag
- * Format:
- *
- * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
- * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
- * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
- * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
- * CCCCCCCC <- column parity bits
- * 0 <- stop bit
- * LW <- Listen Window
- *
- * This pattern repeats for every block of data being transmitted.
- * Transmission starts with two Listen Windows (LW - a modulated
- * pattern of 320 cycles each (32/32/128/64/64)).
- *
- * Note that this data may or may not be the UID. It is whatever data
- * is stored in the blocks defined in the control word First and Last
- * Word Read values. UID is stored in block 32.
- */
-int CmdEM4x50Read(const char *Cmd)
+ do {
+ if (ukbhit()) {
+ printf("\naborted via keyboard!\n");
+ break;
+ }
+
+ CmdLFRead("s");
+ getSamples("8201",true);
+ } while (!CmdAskEM410xDemod(""));
+
+ return 0;
+}
+
+//currently only supports manchester modulations
+int CmdEM410xWatchnSpoof(const char *Cmd)
{
- int i, j, startblock, skip, block, start, end, low, high;
- bool complete= false;
- int tmpbuff[MAX_GRAPH_TRACE_LEN / 64];
- char tmp[6];
-
- high= low= 0;
- memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64);
-
- /* first get high and low values */
- for (i = 0; i < GraphTraceLen; i++)
- {
- if (GraphBuffer[i] > high)
- high = GraphBuffer[i];
- else if (GraphBuffer[i] < low)
- low = GraphBuffer[i];
- }
-
- /* populate a buffer with pulse lengths */
- i= 0;
- j= 0;
- while (i < GraphTraceLen)
- {
- // measure from low to low
- while ((GraphBuffer[i] > low) && (i<GraphTraceLen))
- ++i;
- start= i;
- while ((GraphBuffer[i] < high) && (i<GraphTraceLen))
- ++i;
- while ((GraphBuffer[i] > low) && (i<GraphTraceLen))
- ++i;
- if (j>(MAX_GRAPH_TRACE_LEN/64)) {
- break;
- }
- tmpbuff[j++]= i - start;
- }
-
- /* look for data start - should be 2 pairs of LW (pulses of 192,128) */
- start= -1;
- skip= 0;
- for (i= 0; i < j - 4 ; ++i)
- {
- skip += tmpbuff[i];
- if (tmpbuff[i] >= 190 && tmpbuff[i] <= 194)
- if (tmpbuff[i+1] >= 126 && tmpbuff[i+1] <= 130)
- if (tmpbuff[i+2] >= 190 && tmpbuff[i+2] <= 194)
- if (tmpbuff[i+3] >= 126 && tmpbuff[i+3] <= 130)
- {
- start= i + 3;
- break;
- }
- }
- startblock= i + 3;
-
- /* skip over the remainder of the LW */
- skip += tmpbuff[i+1]+tmpbuff[i+2];
- while (skip < MAX_GRAPH_TRACE_LEN && GraphBuffer[skip] > low)
- ++skip;
- skip += 8;
-
- /* now do it again to find the end */
- end= start;
- for (i += 3; i < j - 4 ; ++i)
- {
- end += tmpbuff[i];
- if (tmpbuff[i] >= 190 && tmpbuff[i] <= 194)
- if (tmpbuff[i+1] >= 126 && tmpbuff[i+1] <= 130)
- if (tmpbuff[i+2] >= 190 && tmpbuff[i+2] <= 194)
- if (tmpbuff[i+3] >= 126 && tmpbuff[i+3] <= 130)
- {
- complete= true;
- break;
- }
- }
-
- if (start >= 0)
- PrintAndLog("Found data at sample: %i",skip);
- else
- {
- PrintAndLog("No data found!");
- PrintAndLog("Try again with more samples.");
- return 0;
- }
-
- if (!complete)
- {
- PrintAndLog("*** Warning!");
- PrintAndLog("Partial data - no end found!");
- PrintAndLog("Try again with more samples.");
- }
-
- /* get rid of leading crap */
- sprintf(tmp,"%i",skip);
- CmdLtrim(tmp);
-
- /* now work through remaining buffer printing out data blocks */
- block= 0;
- i= startblock;
- while (block < 6)
- {
- PrintAndLog("Block %i:", block);
- // mandemod routine needs to be split so we can call it for data
- // just print for now for debugging
- CmdManchesterDemod("i 64");
- skip= 0;
- /* look for LW before start of next block */
- for ( ; i < j - 4 ; ++i)
- {
- skip += tmpbuff[i];
- if (tmpbuff[i] >= 190 && tmpbuff[i] <= 194)
- if (tmpbuff[i+1] >= 126 && tmpbuff[i+1] <= 130)
- break;
- }
- while (GraphBuffer[skip] > low)
- ++skip;
- skip += 8;
- sprintf(tmp,"%i",skip);
- CmdLtrim(tmp);
- start += skip;
- block++;
- }
- return 0;
+ CmdEM410xWatch(Cmd);
+ PrintAndLog("# Replaying captured ID: %010"PRIx64, g_em410xId);
+ CmdLFaskSim("");
+ return 0;
}
int CmdEM410xWrite(const char *Cmd)
{
- uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value
- int card = 0xFF; // invalid card value
+ uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value
+ int card = 0xFF; // invalid card value
unsigned int clock = 0; // invalid clock value
- sscanf(Cmd, "%" PRIx64 " %d %d", &id, &card, &clock);
+ sscanf(Cmd, "%" SCNx64 " %d %d", &id, &card, &clock);
// Check ID
if (id == 0xFFFFFFFFFFFFFFFF) {
}
// Check Clock
- if (card == 1)
- {
- // Default: 64
- if (clock == 0)
- clock = 64;
-
- // Allowed clock rates: 16, 32 and 64
- if ((clock != 16) && (clock != 32) && (clock != 64)) {
- PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32 and 64.\n", clock);
- return 0;
- }
- }
- else if (clock != 0)
- {
- PrintAndLog("Error! Clock rate is only supported on T55x7 tags.\n");
+ // Default: 64
+ if (clock == 0)
+ clock = 64;
+
+ // Allowed clock rates: 16, 32, 40 and 64
+ if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) {
+ PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock);
return 0;
}
// provide for backwards-compatibility for older firmware, and to avoid
// having to add another argument to CMD_EM410X_WRITE_TAG, we just store
// the clock rate in bits 8-15 of the card value
- card = (card & 0xFF) | (((uint64_t)clock << 8) & 0xFF00);
- }
- else if (card == 0)
+ card = (card & 0xFF) | ((clock << 8) & 0xFF00);
+ } else if (card == 0) {
PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock);
- else {
+ card = (card & 0xFF) | ((clock << 8) & 0xFF00);
+ } else {
PrintAndLog("Error! Bad card type selected.\n");
return 0;
}
- UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}};
- SendCommand(&c);
+ UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}};
+ SendCommand(&c);
- return 0;
+ return 0;
}
-int CmdReadWord(const char *Cmd)
+//**************** Start of EM4x50 Code ************************
+bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
{
- int Word = 16; //default to invalid word
- UsbCommand c;
-
- sscanf(Cmd, "%d", &Word);
-
- if (Word > 15) {
- PrintAndLog("Word must be between 0 and 15");
- return 1;
- }
-
- PrintAndLog("Reading word %d", Word);
-
- c.cmd = CMD_EM4X_READ_WORD;
- c.d.asBytes[0] = 0x0; //Normal mode
- c.arg[0] = 0;
- c.arg[1] = Word;
- c.arg[2] = 0;
- SendCommand(&c);
- return 0;
-}
-
-int CmdReadWordPWD(const char *Cmd)
+ if (rows*cols>size) return false;
+ uint8_t colP=0;
+ //assume last col is a parity and do not test
+ for (uint8_t colNum = 0; colNum < cols-1; colNum++) {
+ for (uint8_t rowNum = 0; rowNum < rows; rowNum++) {
+ colP ^= BitStream[(rowNum*cols)+colNum];
+ }
+ if (colP != pType) return false;
+ }
+ return true;
+}
+
+bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
{
- int Word = 16; //default to invalid word
- int Password = 0xFFFFFFFF; //default to blank password
- UsbCommand c;
-
- sscanf(Cmd, "%d %x", &Word, &Password);
-
- if (Word > 15) {
- PrintAndLog("Word must be between 0 and 15");
- return 1;
- }
-
- PrintAndLog("Reading word %d with password %08X", Word, Password);
-
- c.cmd = CMD_EM4X_READ_WORD;
- c.d.asBytes[0] = 0x1; //Password mode
- c.arg[0] = 0;
- c.arg[1] = Word;
- c.arg[2] = Password;
- SendCommand(&c);
- return 0;
-}
-
-int CmdWriteWord(const char *Cmd)
+ if (rows*cols>size) return false;
+ uint8_t rowP=0;
+ //assume last row is a parity row and do not test
+ for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) {
+ for (uint8_t colNum = 0; colNum < cols; colNum++) {
+ rowP ^= BitStream[(rowNum*cols)+colNum];
+ }
+ if (rowP != pType) return false;
+ }
+ return true;
+}
+
+uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest)
{
- int Word = 16; //default to invalid block
- int Data = 0xFFFFFFFF; //default to blank data
- UsbCommand c;
-
- sscanf(Cmd, "%x %d", &Data, &Word);
-
- if (Word > 15) {
- PrintAndLog("Word must be between 0 and 15");
- return 1;
- }
-
- PrintAndLog("Writting word %d with data %08X", Word, Data);
-
- c.cmd = CMD_EM4X_WRITE_WORD;
- c.d.asBytes[0] = 0x0; //Normal mode
- c.arg[0] = Data;
- c.arg[1] = Word;
- c.arg[2] = 0;
- SendCommand(&c);
- return 0;
-}
-
-int CmdWriteWordPWD(const char *Cmd)
+ if (size<45) return 0;
+ uint32_t code = bytebits_to_byte(BitStream,8);
+ code = code<<8 | bytebits_to_byte(BitStream+9,8);
+ code = code<<8 | bytebits_to_byte(BitStream+18,8);
+ code = code<<8 | bytebits_to_byte(BitStream+27,8);
+ if (verbose || g_debugMode){
+ for (uint8_t i = 0; i<5; i++){
+ if (i == 4) PrintAndLog(""); //parity byte spacer
+ PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x",
+ BitStream[i*9],
+ BitStream[i*9+1],
+ BitStream[i*9+2],
+ BitStream[i*9+3],
+ BitStream[i*9+4],
+ BitStream[i*9+5],
+ BitStream[i*9+6],
+ BitStream[i*9+7],
+ BitStream[i*9+8],
+ bytebits_to_byte(BitStream+i*9,8)
+ );
+ }
+ if (pTest)
+ PrintAndLog("Parity Passed");
+ else
+ PrintAndLog("Parity Failed");
+ }
+ return code;
+}
+/* Read the transmitted data of an EM4x50 tag from the graphbuffer
+ * Format:
+ *
+ * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
+ * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
+ * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
+ * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
+ * CCCCCCCC <- column parity bits
+ * 0 <- stop bit
+ * LW <- Listen Window
+ *
+ * This pattern repeats for every block of data being transmitted.
+ * Transmission starts with two Listen Windows (LW - a modulated
+ * pattern of 320 cycles each (32/32/128/64/64)).
+ *
+ * Note that this data may or may not be the UID. It is whatever data
+ * is stored in the blocks defined in the control word First and Last
+ * Word Read values. UID is stored in block 32.
+ */
+ //completed by Marshmellow
+int EM4x50Read(const char *Cmd, bool verbose)
{
- int Word = 8; //default to invalid word
- int Data = 0xFFFFFFFF; //default to blank data
- int Password = 0xFFFFFFFF; //default to blank password
- UsbCommand c;
-
- sscanf(Cmd, "%x %d %x", &Data, &Word, &Password);
-
- if (Word > 15) {
- PrintAndLog("Word must be between 0 and 15");
- return 1;
- }
-
- PrintAndLog("Writting word %d with data %08X and password %08X", Word, Data, Password);
-
- c.cmd = CMD_EM4X_WRITE_WORD;
- c.d.asBytes[0] = 0x1; //Password mode
- c.arg[0] = Data;
- c.arg[1] = Word;
- c.arg[2] = Password;
- SendCommand(&c);
- return 0;
+ uint8_t fndClk[] = {8,16,32,40,50,64,128};
+ int clk = 0;
+ int invert = 0;
+ int tol = 0;
+ int i, j, startblock, skip, block, start, end, low, high, minClk;
+ bool complete = false;
+ int tmpbuff[MAX_GRAPH_TRACE_LEN / 64];
+ uint32_t Code[6];
+ char tmp[6];
+ char tmp2[20];
+ int phaseoff;
+ high = low = 0;
+ memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64);
+
+ // get user entry if any
+ sscanf(Cmd, "%i %i", &clk, &invert);
+
+ // save GraphBuffer - to restore it later
+ save_restoreGB(1);
+
+ // first get high and low values
+ for (i = 0; i < GraphTraceLen; i++) {
+ if (GraphBuffer[i] > high)
+ high = GraphBuffer[i];
+ else if (GraphBuffer[i] < low)
+ low = GraphBuffer[i];
+ }
+
+ i = 0;
+ j = 0;
+ minClk = 255;
+ // get to first full low to prime loop and skip incomplete first pulse
+ while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
+ ++i;
+ while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
+ ++i;
+ skip = i;
+
+ // populate tmpbuff buffer with pulse lengths
+ while (i < GraphTraceLen) {
+ // measure from low to low
+ while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
+ ++i;
+ start= i;
+ while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
+ ++i;
+ while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
+ ++i;
+ if (j>=(MAX_GRAPH_TRACE_LEN/64)) {
+ break;
+ }
+ tmpbuff[j++]= i - start;
+ if (i-start < minClk && i < GraphTraceLen) {
+ minClk = i - start;
+ }
+ }
+ // set clock
+ if (!clk) {
+ for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
+ tol = fndClk[clkCnt]/8;
+ if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
+ clk=fndClk[clkCnt];
+ break;
+ }
+ }
+ if (!clk) return 0;
+ } else tol = clk/8;
+
+ // look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2)
+ start = -1;
+ for (i= 0; i < j - 4 ; ++i) {
+ skip += tmpbuff[i];
+ if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
+ if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
+ if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
+ if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
+ {
+ start= i + 4;
+ break;
+ }
+ }
+ startblock = i + 4;
+
+ // skip over the remainder of LW
+ skip += tmpbuff[i+1] + tmpbuff[i+2] + clk;
+ if (tmpbuff[i+3]>clk)
+ phaseoff = tmpbuff[i+3]-clk;
+ else
+ phaseoff = 0;
+ // now do it again to find the end
+ end = skip;
+ for (i += 3; i < j - 4 ; ++i) {
+ end += tmpbuff[i];
+ if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
+ if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
+ if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
+ if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
+ {
+ complete= true;
+ break;
+ }
+ }
+ end = i;
+ // report back
+ if (verbose || g_debugMode) {
+ if (start >= 0) {
+ PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)");
+ } else {
+ PrintAndLog("No data found!, clock tried:%d",clk);
+ PrintAndLog("Try again with more samples.");
+ PrintAndLog(" or after a 'data askedge' command to clean up the read");
+ return 0;
+ }
+ } else if (start < 0) return 0;
+ start = skip;
+ snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47);
+ // get rid of leading crap
+ snprintf(tmp, sizeof(tmp), "%i", skip);
+ CmdLtrim(tmp);
+ bool pTest;
+ bool AllPTest = true;
+ // now work through remaining buffer printing out data blocks
+ block = 0;
+ i = startblock;
+ while (block < 6) {
+ if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block);
+ skip = phaseoff;
+
+ // look for LW before start of next block
+ for ( ; i < j - 4 ; ++i) {
+ skip += tmpbuff[i];
+ if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol)
+ if (tmpbuff[i+1] >= clk-tol)
+ break;
+ }
+ if (i >= j-4) break; //next LW not found
+ skip += clk;
+ if (tmpbuff[i+1]>clk)
+ phaseoff = tmpbuff[i+1]-clk;
+ else
+ phaseoff = 0;
+ i += 2;
+ if (ASKDemod(tmp2, false, false, 1) < 1) {
+ save_restoreGB(0);
+ return 0;
+ }
+ //set DemodBufferLen to just one block
+ DemodBufferLen = skip/clk;
+ //test parities
+ pTest = EM_ByteParityTest(DemodBuffer,DemodBufferLen,5,9,0);
+ pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0);
+ AllPTest &= pTest;
+ //get output
+ Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest);
+ if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk);
+ //skip to start of next block
+ snprintf(tmp,sizeof(tmp),"%i",skip);
+ CmdLtrim(tmp);
+ block++;
+ if (i >= end) break; //in case chip doesn't output 6 blocks
+ }
+ //print full code:
+ if (verbose || g_debugMode || AllPTest){
+ if (!complete) {
+ PrintAndLog("*** Warning!");
+ PrintAndLog("Partial data - no end found!");
+ PrintAndLog("Try again with more samples.");
+ }
+ PrintAndLog("Found data at sample: %i - using clock: %i", start, clk);
+ end = block;
+ for (block=0; block < end; block++){
+ PrintAndLog("Block %d: %08x",block,Code[block]);
+ }
+ if (AllPTest) {
+ PrintAndLog("Parities Passed");
+ } else {
+ PrintAndLog("Parities Failed");
+ PrintAndLog("Try cleaning the read samples with 'data askedge'");
+ }
+ }
+
+ //restore GraphBuffer
+ save_restoreGB(0);
+ return (int)AllPTest;
}
+int CmdEM4x50Read(const char *Cmd)
+{
+ return EM4x50Read(Cmd, true);
+}
+
+//**************** Start of EM4x05/EM4x69 Code ************************
+int usage_lf_em_read(void) {
+ PrintAndLog("Read EM4x05/EM4x69. Tag must be on antenna. ");
+ PrintAndLog("");
+ PrintAndLog("Usage: lf em 4x05readword [h] <address> <pwd>");
+ PrintAndLog("Options:");
+ PrintAndLog(" h - this help");
+ PrintAndLog(" address - memory address to read. (0-15)");
+ PrintAndLog(" pwd - password (hex) (optional)");
+ PrintAndLog("samples:");
+ PrintAndLog(" lf em 4x05readword 1");
+ PrintAndLog(" lf em 4x05readword 1 11223344");
+ return 0;
+}
+
+// for command responses from em4x05 or em4x69
+// download samples from device and copy them to the Graphbuffer
+bool downloadSamplesEM() {
+ // 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples)
+ uint8_t got[6000];
+ GetFromBigBuf(got, sizeof(got), 0);
+ if ( !WaitForResponseTimeout(CMD_ACK, NULL, 4000) ) {
+ PrintAndLog("command execution time out");
+ return false;
+ }
+ setGraphBuf(got, sizeof(got));
+ return true;
+}
+
+bool EM4x05testDemodReadData(uint32_t *word, bool readCmd) {
+ // em4x05/em4x69 command response preamble is 00001010
+ // skip first two 0 bits as they might have been missed in the demod
+ uint8_t preamble[] = {0,0,1,0,1,0};
+ size_t startIdx = 0;
+
+ // set size to 20 to only test first 14 positions for the preamble or less if not a read command
+ size_t size = (readCmd) ? 20 : 11;
+ // sanity check
+ size = (size > DemodBufferLen) ? DemodBufferLen : size;
+ // test preamble
+ if ( !preambleSearchEx(DemodBuffer, preamble, sizeof(preamble), &size, &startIdx, true) ) {
+ if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 preamble not found :: %d", startIdx);
+ return false;
+ }
+ // if this is a readword command, get the read bytes and test the parities
+ if (readCmd) {
+ if (!EM_EndParityTest(DemodBuffer + startIdx + sizeof(preamble), 45, 5, 9, 0)) {
+ if (g_debugMode) PrintAndLog("DEBUG: Error - End Parity check failed");
+ return false;
+ }
+ // test for even parity bits and remove them. (leave out the end row of parities so 36 bits)
+ if ( removeParity(DemodBuffer, startIdx + sizeof(preamble),9,0,36) == 0 ) {
+ if (g_debugMode) PrintAndLog("DEBUG: Error - Parity not detected");
+ return false;
+ }
+
+ setDemodBuf(DemodBuffer, 32, 0);
+ *word = bytebits_to_byteLSBF(DemodBuffer, 32);
+ }
+ return true;
+}
+
+// FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE
+// should cover 90% of known used configs
+// the rest will need to be manually demoded for now...
+int demodEM4x05resp(uint32_t *word, bool readCmd) {
+ int ans = 0;
+
+ // test for FSK wave (easiest to 99% ID)
+ if (GetFskClock("", false, false)) {
+ //valid fsk clocks found
+ ans = FSKrawDemod("0 0", false);
+ if (!ans) {
+ if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: FSK Demod failed, ans: %d", ans);
+ } else {
+ if (EM4x05testDemodReadData(word, readCmd)) {
+ return 1;
+ }
+ }
+ }
+ // PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... )
+ ans = GetPskClock("", false, false);
+ if (ans>0) {
+ //try psk1
+ ans = PSKDemod("0 0 6", false);
+ if (!ans) {
+ if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans);
+ } else {
+ if (EM4x05testDemodReadData(word, readCmd)) {
+ return 1;
+ } else {
+ //try psk2
+ psk1TOpsk2(DemodBuffer, DemodBufferLen);
+ if (EM4x05testDemodReadData(word, readCmd)) {
+ return 1;
+ }
+ }
+ //try psk1 inverted
+ ans = PSKDemod("0 1 6", false);
+ if (!ans) {
+ if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans);
+ } else {
+ if (EM4x05testDemodReadData(word, readCmd)) {
+ return 1;
+ } else {
+ //try psk2
+ psk1TOpsk2(DemodBuffer, DemodBufferLen);
+ if (EM4x05testDemodReadData(word, readCmd)) {
+ return 1;
+ }
+ }
+ }
+ }
+ }
+
+ // manchester is more common than biphase... try first
+ bool stcheck = false;
+ // try manchester - NOTE: ST only applies to T55x7 tags.
+ ans = ASKDemod_ext("0,0,1", false, false, 1, &stcheck);
+ if (!ans) {
+ if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/Manchester Demod failed, ans: %d", ans);
+ } else {
+ if (EM4x05testDemodReadData(word, readCmd)) {
+ return 1;
+ }
+ }
+
+ //try biphase
+ ans = ASKbiphaseDemod("0 0 1", false);
+ if (!ans) {
+ if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans);
+ } else {
+ if (EM4x05testDemodReadData(word, readCmd)) {
+ return 1;
+ }
+ }
+
+ //try diphase (differential biphase or inverted)
+ ans = ASKbiphaseDemod("0 1 1", false);
+ if (!ans) {
+ if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans);
+ } else {
+ if (EM4x05testDemodReadData(word, readCmd)) {
+ return 1;
+ }
+ }
+
+ return -1;
+}
+
+int EM4x05ReadWord_ext(uint8_t addr, uint32_t pwd, bool usePwd, uint32_t *wordData) {
+ UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}};
+ clearCommandBuffer();
+ SendCommand(&c);
+ UsbCommand resp;
+ if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)){
+ PrintAndLog("Command timed out");
+ return -1;
+ }
+ if ( !downloadSamplesEM() ) {
+ return -1;
+ }
+ int testLen = (GraphTraceLen < 1000) ? GraphTraceLen : 1000;
+ if (graphJustNoise(GraphBuffer, testLen)) {
+ PrintAndLog("no tag not found");
+ return -1;
+ }
+ //attempt demod:
+ return demodEM4x05resp(wordData, true);
+}
+
+int EM4x05ReadWord(uint8_t addr, uint32_t pwd, bool usePwd) {
+ uint32_t wordData = 0;
+ int success = EM4x05ReadWord_ext(addr, pwd, usePwd, &wordData);
+ if (success == 1)
+ PrintAndLog("%s Address %02d | %08X", (addr>13) ? "Lock":" Got",addr,wordData);
+ else
+ PrintAndLog("Read Address %02d | failed",addr);
+
+ return success;
+}
+
+int CmdEM4x05ReadWord(const char *Cmd) {
+ uint8_t addr;
+ uint32_t pwd;
+ bool usePwd = false;
+ uint8_t ctmp = param_getchar(Cmd, 0);
+ if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_read();
+
+ addr = param_get8ex(Cmd, 0, 50, 10);
+ // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
+ pwd = param_get32ex(Cmd, 1, 1, 16);
+
+ if ( (addr > 15) ) {
+ PrintAndLog("Address must be between 0 and 15");
+ return 1;
+ }
+ if ( pwd == 1 ) {
+ PrintAndLog("Reading address %02u", addr);
+ } else {
+ usePwd = true;
+ PrintAndLog("Reading address %02u | password %08X", addr, pwd);
+ }
+
+ return EM4x05ReadWord(addr, pwd, usePwd);
+}
+
+int usage_lf_em_dump(void) {
+ PrintAndLog("Dump EM4x05/EM4x69. Tag must be on antenna. ");
+ PrintAndLog("");
+ PrintAndLog("Usage: lf em 4x05dump [h] <pwd>");
+ PrintAndLog("Options:");
+ PrintAndLog(" h - this help");
+ PrintAndLog(" pwd - password (hex) (optional)");
+ PrintAndLog("samples:");
+ PrintAndLog(" lf em 4x05dump");
+ PrintAndLog(" lf em 4x05dump 11223344");
+ return 0;
+}
+
+int CmdEM4x05dump(const char *Cmd) {
+ uint8_t addr = 0;
+ uint32_t pwd;
+ bool usePwd = false;
+ uint8_t ctmp = param_getchar(Cmd, 0);
+ if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump();
+
+ // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
+ pwd = param_get32ex(Cmd, 0, 1, 16);
+
+ if ( pwd != 1 ) {
+ usePwd = true;
+ }
+ int success = 1;
+ for (; addr < 16; addr++) {
+ if (addr == 2) {
+ if (usePwd) {
+ PrintAndLog(" PWD Address %02u | %08X",addr,pwd);
+ } else {
+ PrintAndLog(" PWD Address 02 | cannot read");
+ }
+ } else {
+ success &= EM4x05ReadWord(addr, pwd, usePwd);
+ }
+ }
+
+ return success;
+}
+
+
+int usage_lf_em_write(void) {
+ PrintAndLog("Write EM4x05/EM4x69. Tag must be on antenna. ");
+ PrintAndLog("");
+ PrintAndLog("Usage: lf em 4x05writeword [h] [s] <address> <data> <pwd>");
+ PrintAndLog("Options:");
+ PrintAndLog(" h - this help");
+ PrintAndLog(" s - swap data bit order before write");
+ PrintAndLog(" address - memory address to write to. (0-15)");
+ PrintAndLog(" data - data to write (hex)");
+ PrintAndLog(" pwd - password (hex) (optional)");
+ PrintAndLog("samples:");
+ PrintAndLog(" lf em 4x05writeword 1");
+ PrintAndLog(" lf em 4x05writeword 1 deadc0de 11223344");
+ return 0;
+}
+
+int CmdEM4x05WriteWord(const char *Cmd) {
+ uint8_t ctmp = param_getchar(Cmd, 0);
+ if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_write();
+
+ bool usePwd = false;
+
+ uint8_t addr = 16; // default to invalid address
+ uint32_t data = 0xFFFFFFFF; // default to blank data
+ uint32_t pwd = 0xFFFFFFFF; // default to blank password
+ char swap = 0;
+
+ int p = 0;
+ swap = param_getchar(Cmd, 0);
+ if (swap == 's' || swap=='S') p++;
+ addr = param_get8ex(Cmd, p++, 16, 10);
+ data = param_get32ex(Cmd, p++, 0, 16);
+ pwd = param_get32ex(Cmd, p++, 1, 16);
+
+ if (swap == 's' || swap=='S') data = SwapBits(data, 32);
+
+ if ( (addr > 15) ) {
+ PrintAndLog("Address must be between 0 and 15");
+ return 1;
+ }
+ if ( pwd == 1 )
+ PrintAndLog("Writing address %d data %08X", addr, data);
+ else {
+ usePwd = true;
+ PrintAndLog("Writing address %d data %08X using password %08X", addr, data, pwd);
+ }
+
+ uint16_t flag = (addr << 8 ) | usePwd;
+
+ UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}};
+ clearCommandBuffer();
+ SendCommand(&c);
+ UsbCommand resp;
+ if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)){
+ PrintAndLog("Error occurred, device did not respond during write operation.");
+ return -1;
+ }
+ if ( !downloadSamplesEM() ) {
+ return -1;
+ }
+ //check response for 00001010 for write confirmation!
+ //attempt demod:
+ uint32_t dummy = 0;
+ int result = demodEM4x05resp(&dummy,false);
+ if (result == 1) {
+ PrintAndLog("Write Verified");
+ } else {
+ PrintAndLog("Write could not be verified");
+ }
+ return result;
+}
+
+void printEM4x05config(uint32_t wordData) {
+ uint16_t datarate = (((wordData & 0x3F)+1)*2);
+ uint8_t encoder = ((wordData >> 6) & 0xF);
+ char enc[14];
+ memset(enc,0,sizeof(enc));
+
+ uint8_t PSKcf = (wordData >> 10) & 0x3;
+ char cf[10];
+ memset(cf,0,sizeof(cf));
+ uint8_t delay = (wordData >> 12) & 0x3;
+ char cdelay[33];
+ memset(cdelay,0,sizeof(cdelay));
+ uint8_t LWR = (wordData >> 14) & 0xF; //last word read
+
+ switch (encoder) {
+ case 0: snprintf(enc,sizeof(enc),"NRZ"); break;
+ case 1: snprintf(enc,sizeof(enc),"Manchester"); break;
+ case 2: snprintf(enc,sizeof(enc),"Biphase"); break;
+ case 3: snprintf(enc,sizeof(enc),"Miller"); break;
+ case 4: snprintf(enc,sizeof(enc),"PSK1"); break;
+ case 5: snprintf(enc,sizeof(enc),"PSK2"); break;
+ case 6: snprintf(enc,sizeof(enc),"PSK3"); break;
+ case 7: snprintf(enc,sizeof(enc),"Unknown"); break;
+ case 8: snprintf(enc,sizeof(enc),"FSK1"); break;
+ case 9: snprintf(enc,sizeof(enc),"FSK2"); break;
+ default: snprintf(enc,sizeof(enc),"Unknown"); break;
+ }
+
+ switch (PSKcf) {
+ case 0: snprintf(cf,sizeof(cf),"RF/2"); break;
+ case 1: snprintf(cf,sizeof(cf),"RF/8"); break;
+ case 2: snprintf(cf,sizeof(cf),"RF/4"); break;
+ case 3: snprintf(cf,sizeof(cf),"unknown"); break;
+ }
+
+ switch (delay) {
+ case 0: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
+ case 1: snprintf(cdelay, sizeof(cdelay),"BP/8 or 1/8th bit period delay"); break;
+ case 2: snprintf(cdelay, sizeof(cdelay),"BP/4 or 1/4th bit period delay"); break;
+ case 3: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
+ }
+ PrintAndLog("ConfigWord: %08X (Word 4)\n", wordData);
+ PrintAndLog("Config Breakdown:", wordData);
+ PrintAndLog(" Data Rate: %02u | RF/%u", wordData & 0x3F, datarate);
+ PrintAndLog(" Encoder: %u | %s", encoder, enc);
+ PrintAndLog(" PSK CF: %u | %s", PSKcf, cf);
+ PrintAndLog(" Delay: %u | %s", delay, cdelay);
+ PrintAndLog(" LastWordR: %02u | Address of last word for default read", LWR);
+ PrintAndLog(" ReadLogin: %u | Read Login is %s", (wordData & 0x40000)>>18, (wordData & 0x40000) ? "Required" : "Not Required");
+ PrintAndLog(" ReadHKL: %u | Read Housekeeping Words Login is %s", (wordData & 0x80000)>>19, (wordData & 0x80000) ? "Required" : "Not Required");
+ PrintAndLog("WriteLogin: %u | Write Login is %s", (wordData & 0x100000)>>20, (wordData & 0x100000) ? "Required" : "Not Required");
+ PrintAndLog(" WriteHKL: %u | Write Housekeeping Words Login is %s", (wordData & 0x200000)>>21, (wordData & 0x200000) ? "Required" : "Not Required");
+ PrintAndLog(" R.A.W.: %u | Read After Write is %s", (wordData & 0x400000)>>22, (wordData & 0x400000) ? "On" : "Off");
+ PrintAndLog(" Disable: %u | Disable Command is %s", (wordData & 0x800000)>>23, (wordData & 0x800000) ? "Accepted" : "Not Accepted");
+ PrintAndLog(" R.T.F.: %u | Reader Talk First is %s", (wordData & 0x1000000)>>24, (wordData & 0x1000000) ? "Enabled" : "Disabled");
+ PrintAndLog(" Pigeon: %u | Pigeon Mode is %s\n", (wordData & 0x4000000)>>26, (wordData & 0x4000000) ? "Enabled" : "Disabled");
+}
+
+void printEM4x05info(uint8_t chipType, uint8_t cap, uint16_t custCode, uint32_t serial) {
+ switch (chipType) {
+ case 9: PrintAndLog("\n Chip Type: %u | EM4305", chipType); break;
+ case 4: PrintAndLog(" Chip Type: %u | Unknown", chipType); break;
+ case 2: PrintAndLog(" Chip Type: %u | EM4469", chipType); break;
+ //add more here when known
+ default: PrintAndLog(" Chip Type: %u Unknown", chipType); break;
+ }
+
+ switch (cap) {
+ case 3: PrintAndLog(" Cap Type: %u | 330pF",cap); break;
+ case 2: PrintAndLog(" Cap Type: %u | %spF",cap, (chipType==2)? "75":"210"); break;
+ case 1: PrintAndLog(" Cap Type: %u | 250pF",cap); break;
+ case 0: PrintAndLog(" Cap Type: %u | no resonant capacitor",cap); break;
+ default: PrintAndLog(" Cap Type: %u | unknown",cap); break;
+ }
+
+ PrintAndLog(" Cust Code: %03u | %s", custCode, (custCode == 0x200) ? "Default": "Unknown");
+ if (serial != 0) {
+ PrintAndLog("\n Serial #: %08X\n", serial);
+ }
+}
+
+void printEM4x05ProtectionBits(uint32_t wordData) {
+ for (uint8_t i = 0; i < 15; i++) {
+ PrintAndLog(" Word: %02u | %s", i, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
+ if (i==14) {
+ PrintAndLog(" Word: %02u | %s", i+1, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
+ }
+ }
+}
+
+//quick test for EM4x05/EM4x69 tag
+bool EM4x05Block0Test(uint32_t *wordData) {
+ if (EM4x05ReadWord_ext(0,0,false,wordData) == 1) {
+ return true;
+ }
+ return false;
+}
+
+int CmdEM4x05info(const char *Cmd) {
+ //uint8_t addr = 0;
+ uint32_t pwd;
+ uint32_t wordData = 0;
+ bool usePwd = false;
+ uint8_t ctmp = param_getchar(Cmd, 0);
+ if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump();
+
+ // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
+ pwd = param_get32ex(Cmd, 0, 1, 16);
+
+ if ( pwd != 1 ) {
+ usePwd = true;
+ }
+
+ // read word 0 (chip info)
+ // block 0 can be read even without a password.
+ if ( !EM4x05Block0Test(&wordData) )
+ return -1;
+
+ uint8_t chipType = (wordData >> 1) & 0xF;
+ uint8_t cap = (wordData >> 5) & 3;
+ uint16_t custCode = (wordData >> 9) & 0x3FF;
+
+ // read word 1 (serial #) doesn't need pwd
+ wordData = 0;
+ if (EM4x05ReadWord_ext(1, 0, false, &wordData) != 1) {
+ //failed, but continue anyway...
+ }
+ printEM4x05info(chipType, cap, custCode, wordData);
+
+ // read word 4 (config block)
+ // needs password if one is set
+ wordData = 0;
+ if ( EM4x05ReadWord_ext(4, pwd, usePwd, &wordData) != 1 ) {
+ //failed
+ return 0;
+ }
+ printEM4x05config(wordData);
+
+ // read word 14 and 15 to see which is being used for the protection bits
+ wordData = 0;
+ if ( EM4x05ReadWord_ext(14, pwd, usePwd, &wordData) != 1 ) {
+ //failed
+ return 0;
+ }
+ // if status bit says this is not the used protection word
+ if (!(wordData & 0x8000)) {
+ if ( EM4x05ReadWord_ext(15, pwd, usePwd, &wordData) != 1 ) {
+ //failed
+ return 0;
+ }
+ }
+ if (!(wordData & 0x8000)) {
+ //something went wrong
+ return 0;
+ }
+ printEM4x05ProtectionBits(wordData);
+
+ return 1;
+}
static command_t CommandTable[] =
{
- {"help", CmdHelp, 1, "This help"},
- {"em410xread", CmdEM410xRead, 1, "[clock rate] -- Extract ID from EM410x tag"},
- {"em410xsim", CmdEM410xSim, 0, "<UID> -- Simulate EM410x tag"},
- {"em410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
- {"em410xwrite", CmdEM410xWrite, 1, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
- {"em4x50read", CmdEM4x50Read, 1, "Extract data from EM4x50 tag"},
- {"readword", CmdReadWord, 1, "<Word> -- Read EM4xxx word data"},
- {"readwordPWD", CmdReadWordPWD, 1, "<Word> <Password> -- Read EM4xxx word data in password mode"},
- {"writeword", CmdWriteWord, 1, "<Data> <Word> -- Write EM4xxx word data"},
- {"writewordPWD", CmdWriteWordPWD, 1, "<Data> <Word> <Password> -- Write EM4xxx word data in password mode"},
- {NULL, NULL, 0, NULL}
+ {"help", CmdHelp, 1, "This help"},
+ {"410xread", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"},
+ {"410xdemod", CmdAskEM410xDemod, 1, "[clock] [invert<0|1>] [maxErr] -- Demodulate an EM410x tag from GraphBuffer (args optional)"},
+ {"410xsim", CmdEM410xSim, 0, "<UID> [clock rate] -- Simulate EM410x tag"},
+ {"410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
+ {"410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" },
+ {"410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
+ {"4x05dump", CmdEM4x05dump, 0, "(pwd) -- Read EM4x05/EM4x69 all word data"},
+ {"4x05info", CmdEM4x05info, 0, "(pwd) -- Get info from EM4x05/EM4x69 tag"},
+ {"4x05readword", CmdEM4x05ReadWord, 0, "<Word> (pwd) -- Read EM4x05/EM4x69 word data"},
+ {"4x05writeword", CmdEM4x05WriteWord, 0, "<Word> <data> (pwd) -- Write EM4x05/EM4x69 word data"},
+ {"4x50read", CmdEM4x50Read, 1, "demod data from EM4x50 tag from the graph buffer"},
+ {NULL, NULL, 0, NULL}
};
int CmdLFEM4X(const char *Cmd)
{
- CmdsParse(CommandTable, Cmd);
- return 0;
+ CmdsParse(CommandTable, Cmd);
+ return 0;
}
int CmdHelp(const char *Cmd)
{
- CmdsHelp(CommandTable);
- return 0;
+ CmdsHelp(CommandTable);
+ return 0;
}