// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
-// Routines to support ISO 14443. This includes both the reader software and
-// the `fake tag' modes. At the moment only the Type B modulation is
-// supported.
+// Routines to support ISO 14443B. This includes both the reader software and
+// the `fake tag' modes.
//-----------------------------------------------------------------------------
#include "proxmark3.h"
#include "iso14443crc.h"
-//static void GetSamplesFor14443(int weTx, int n);
-
-/*#define DEMOD_TRACE_SIZE 4096
-#define READER_TAG_BUFFER_SIZE 2048
-#define TAG_READER_BUFFER_SIZE 2048
-#define DEMOD_DMA_BUFFER_SIZE 1024
-*/
-
#define RECEIVE_SAMPLES_TIMEOUT 2000
+#define ISO14443B_DMA_BUFFER_SIZE 256
//=============================================================================
// An ISO 14443 Type B tag. We listen for commands from the reader, using
ToSendStuffBit(1);
}
- // Send SOF.
+ // Send EOF.
for(i = 0; i < 10; i++) {
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(0);
}
- for(i = 0; i < 10; i++) {
+ for(i = 0; i < 2; i++) {
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
// Convert from last byte pos to length
ToSendMax++;
-
- // Add a few more for slop
- ToSendMax += 2;
}
//-----------------------------------------------------------------------------
STATE_UNSYNCD,
STATE_GOT_FALLING_EDGE_OF_SOF,
STATE_AWAITING_START_BIT,
- STATE_RECEIVING_DATA,
- STATE_ERROR_WAIT
+ STATE_RECEIVING_DATA
} state;
uint16_t shiftReg;
int bitCnt;
} Uart;
/* Receive & handle a bit coming from the reader.
+ *
+ * This function is called 4 times per bit (every 2 subcarrier cycles).
+ * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
*
* LED handling:
* LED A -> ON once we have received the SOF and are expecting the rest.
* Returns: true if we received a EOF
* false if we are still waiting for some more
*/
-static int Handle14443UartBit(int bit)
+static RAMFUNC int Handle14443bUartBit(uint8_t bit)
{
switch(Uart.state) {
case STATE_UNSYNCD:
case STATE_GOT_FALLING_EDGE_OF_SOF:
Uart.posCnt++;
- if(Uart.posCnt == 2) {
+ if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
if(bit) {
- if(Uart.bitCnt >= 10) {
+ if(Uart.bitCnt > 9) {
// we've seen enough consecutive
// zeros that it's a valid SOF
Uart.posCnt = 0;
} else {
// didn't stay down long enough
// before going high, error
- Uart.state = STATE_ERROR_WAIT;
+ Uart.state = STATE_UNSYNCD;
}
} else {
// do nothing, keep waiting
Uart.bitCnt++;
}
if(Uart.posCnt >= 4) Uart.posCnt = 0;
- if(Uart.bitCnt > 14) {
+ if(Uart.bitCnt > 12) {
// Give up if we see too many zeros without
// a one, too.
- Uart.state = STATE_ERROR_WAIT;
+ LED_A_OFF();
+ Uart.state = STATE_UNSYNCD;
}
break;
case STATE_AWAITING_START_BIT:
Uart.posCnt++;
if(bit) {
- if(Uart.posCnt > 25) {
+ if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
// stayed high for too long between
// characters, error
- Uart.state = STATE_ERROR_WAIT;
+ Uart.state = STATE_UNSYNCD;
}
} else {
// falling edge, this starts the data byte
if(Uart.byteCnt >= Uart.byteCntMax) {
// Buffer overflowed, give up
- Uart.posCnt = 0;
- Uart.state = STATE_ERROR_WAIT;
+ LED_A_OFF();
+ Uart.state = STATE_UNSYNCD;
} else {
// so get the next byte now
Uart.posCnt = 0;
Uart.state = STATE_AWAITING_START_BIT;
}
- } else if(Uart.shiftReg == 0x000) {
+ } else if (Uart.shiftReg == 0x000) {
// this is an EOF byte
LED_A_OFF(); // Finished receiving
- return TRUE;
+ Uart.state = STATE_UNSYNCD;
+ if (Uart.byteCnt != 0) {
+ return TRUE;
+ }
} else {
// this is an error
- Uart.posCnt = 0;
- Uart.state = STATE_ERROR_WAIT;
+ LED_A_OFF();
+ Uart.state = STATE_UNSYNCD;
}
}
break;
- case STATE_ERROR_WAIT:
- // We're all screwed up, so wait a little while
- // for whatever went wrong to finish, and then
- // start over.
- Uart.posCnt++;
- if(Uart.posCnt > 10) {
- Uart.state = STATE_UNSYNCD;
- LED_A_OFF();
- }
- break;
-
default:
+ LED_A_OFF();
Uart.state = STATE_UNSYNCD;
break;
}
return FALSE;
}
+
+static void UartReset()
+{
+ Uart.byteCntMax = MAX_FRAME_SIZE;
+ Uart.state = STATE_UNSYNCD;
+ Uart.byteCnt = 0;
+ Uart.bitCnt = 0;
+}
+
+
+static void UartInit(uint8_t *data)
+{
+ Uart.output = data;
+ UartReset();
+}
+
+
//-----------------------------------------------------------------------------
// Receive a command (from the reader to us, where we are the simulated tag),
// and store it in the given buffer, up to the given maximum length. Keeps
// Assume that we're called with the SSC (to the FPGA) and ADC path set
// correctly.
//-----------------------------------------------------------------------------
-static int GetIso14443CommandFromReader(uint8_t *received, int *len, int maxLen)
+static int GetIso14443bCommandFromReader(uint8_t *received, uint16_t *len)
{
- uint8_t mask;
- int i, bit;
-
- // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
+ // Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen
// only, since we are receiving, not transmitting).
// Signal field is off with the appropriate LED
LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
-
// Now run a `software UART' on the stream of incoming samples.
- Uart.output = received;
- Uart.byteCntMax = maxLen;
- Uart.state = STATE_UNSYNCD;
+ UartInit(received);
for(;;) {
WDT_HIT();
if(BUTTON_PRESS()) return FALSE;
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = 0x00;
- }
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-
- mask = 0x80;
- for(i = 0; i < 8; i++, mask >>= 1) {
- bit = (b & mask);
- if(Handle14443UartBit(bit)) {
+ for(uint8_t mask = 0x80; mask != 0x00; mask >>= 1) {
+ if(Handle14443bUartBit(b & mask)) {
*len = Uart.byteCnt;
return TRUE;
}
}
}
}
+
+ return FALSE;
}
//-----------------------------------------------------------------------------
// Main loop of simulated tag: receive commands from reader, decide what
// response to send, and send it.
//-----------------------------------------------------------------------------
-void SimulateIso14443Tag(void)
+void SimulateIso14443bTag(void)
{
+ // the only commands we understand is REQB, AFI=0, Select All, N=0:
static const uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
+ // ... and REQB, AFI=0, Normal Request, N=0:
+ static const uint8_t cmd2[] = { 0x05, 0x00, 0x00, 0x71, 0xFF };
+
+ // ... and we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922,
+ // supports only 106kBit/s in both directions, max frame size = 32Bytes,
+ // supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported:
static const uint8_t response1[] = {
0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22,
0x00, 0x21, 0x85, 0x5e, 0xd7
};
- uint8_t *resp;
- int respLen;
-
- uint8_t *resp1 = BigBuf_get_addr() + 800;
- int resp1Len;
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- uint8_t *receivedCmd = BigBuf_get_addr();
- int len;
+ clear_trace();
+ set_tracing(TRUE);
- int i;
+ const uint8_t *resp;
+ uint8_t *respCode;
+ uint16_t respLen, respCodeLen;
- int cmdsRecvd = 0;
+ // allocate command receive buffer
+ BigBuf_free();
+ uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
- FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- memset(receivedCmd, 0x44, 400);
+ uint16_t len;
+ uint16_t cmdsRecvd = 0;
+ // prepare the (only one) tag answer:
CodeIso14443bAsTag(response1, sizeof(response1));
- memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
+ uint8_t *resp1Code = BigBuf_malloc(ToSendMax);
+ memcpy(resp1Code, ToSend, ToSendMax);
+ uint16_t resp1CodeLen = ToSendMax;
// We need to listen to the high-frequency, peak-detected path.
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
cmdsRecvd = 0;
for(;;) {
- uint8_t b1, b2;
- if(!GetIso14443CommandFromReader(receivedCmd, &len, 100)) {
- Dbprintf("button pressed, received %d commands", cmdsRecvd);
- break;
+ if(!GetIso14443bCommandFromReader(receivedCmd, &len)) {
+ Dbprintf("button pressed, received %d commands", cmdsRecvd);
+ break;
+ }
+
+ if (tracing) {
+ uint8_t parity[MAX_PARITY_SIZE];
+ LogTrace(receivedCmd, len, 0, 0, parity, TRUE);
}
// Good, look at the command now.
-
- if(len == sizeof(cmd1) && memcmp(receivedCmd, cmd1, len)==0) {
- resp = resp1; respLen = resp1Len;
+ if ( (len == sizeof(cmd1) && memcmp(receivedCmd, cmd1, len) == 0)
+ || (len == sizeof(cmd2) && memcmp(receivedCmd, cmd2, len) == 0) ) {
+ resp = response1;
+ respLen = sizeof(response1);
+ respCode = resp1Code;
+ respCodeLen = resp1CodeLen;
} else {
Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len, cmdsRecvd);
// And print whether the CRC fails, just for good measure
+ uint8_t b1, b2;
ComputeCrc14443(CRC_14443_B, receivedCmd, len-2, &b1, &b2);
if(b1 != receivedCmd[len-2] || b2 != receivedCmd[len-1]) {
// Not so good, try again.
break;
}
- memset(receivedCmd, 0x44, 32);
-
cmdsRecvd++;
if(cmdsRecvd > 0x30) {
break;
}
- if(respLen <= 0) continue;
+ if(respCodeLen <= 0) continue;
// Modulate BPSK
// Signal field is off with the appropriate LED
FpgaSetupSsc();
// Transmit the response.
- i = 0;
+ uint16_t i = 0;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- uint8_t b = resp[i];
+ uint8_t b = respCode[i];
AT91C_BASE_SSC->SSC_THR = b;
i++;
- if(i > respLen) {
+ if(i > respCodeLen) {
break;
}
}
(void)b;
}
}
+
+ // trace the response:
+ if (tracing) {
+ uint8_t parity[MAX_PARITY_SIZE];
+ LogTrace(resp, respLen, 0, 0, parity, FALSE);
+ }
+
}
}
DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
DEMOD_GOT_FALLING_EDGE_OF_SOF,
DEMOD_AWAITING_START_BIT,
- DEMOD_RECEIVING_DATA,
- DEMOD_ERROR_WAIT
+ DEMOD_RECEIVING_DATA
} state;
int bitCount;
int posCount;
int thisBit;
+/* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
int metric;
int metricN;
+*/
uint16_t shiftReg;
uint8_t *output;
int len;
/*
* Handles reception of a bit from the tag
*
+ * This function is called 2 times per bit (every 4 subcarrier cycles).
+ * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us
+ *
* LED handling:
* LED C -> ON once we have received the SOF and are expecting the rest.
* LED C -> OFF once we have received EOF or are unsynced
* false if we are still waiting for some more
*
*/
-static RAMFUNC int Handle14443SamplesDemod(int ci, int cq)
+static RAMFUNC int Handle14443bSamplesDemod(int ci, int cq)
{
int v;
- // The soft decision on the bit uses an estimate of just the
- // quadrant of the reference angle, not the exact angle.
+// The soft decision on the bit uses an estimate of just the
+// quadrant of the reference angle, not the exact angle.
#define MAKE_SOFT_DECISION() { \
if(Demod.sumI > 0) { \
v = ci; \
} \
}
+#define SUBCARRIER_DETECT_THRESHOLD 8
+
+// Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by abs(ci) + abs(cq)
+/* #define CHECK_FOR_SUBCARRIER() { \
+ v = ci; \
+ if(v < 0) v = -v; \
+ if(cq > 0) { \
+ v += cq; \
+ } else { \
+ v -= cq; \
+ } \
+ }
+ */
+// Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
+#define CHECK_FOR_SUBCARRIER() { \
+ if(ci < 0) { \
+ if(cq < 0) { /* ci < 0, cq < 0 */ \
+ if (cq < ci) { \
+ v = -cq - (ci >> 1); \
+ } else { \
+ v = -ci - (cq >> 1); \
+ } \
+ } else { /* ci < 0, cq >= 0 */ \
+ if (cq < -ci) { \
+ v = -ci + (cq >> 1); \
+ } else { \
+ v = cq - (ci >> 1); \
+ } \
+ } \
+ } else { \
+ if(cq < 0) { /* ci >= 0, cq < 0 */ \
+ if (-cq < ci) { \
+ v = ci - (cq >> 1); \
+ } else { \
+ v = -cq + (ci >> 1); \
+ } \
+ } else { /* ci >= 0, cq >= 0 */ \
+ if (cq < ci) { \
+ v = ci + (cq >> 1); \
+ } else { \
+ v = cq + (ci >> 1); \
+ } \
+ } \
+ } \
+ }
+
switch(Demod.state) {
case DEMOD_UNSYNCD:
- v = ci;
- if(v < 0) v = -v;
- if(cq > 0) {
- v += cq;
- } else {
- v -= cq;
- }
- if(v > 40) {
- Demod.posCount = 0;
+ CHECK_FOR_SUBCARRIER();
+ if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected
Demod.state = DEMOD_PHASE_REF_TRAINING;
- Demod.sumI = 0;
- Demod.sumQ = 0;
- }
+ Demod.sumI = ci;
+ Demod.sumQ = cq;
+ Demod.posCount = 1;
+ }
break;
case DEMOD_PHASE_REF_TRAINING:
if(Demod.posCount < 8) {
- Demod.sumI += ci;
- Demod.sumQ += cq;
- } else if(Demod.posCount > 100) {
- // error, waited too long
- Demod.state = DEMOD_UNSYNCD;
- } else {
- MAKE_SOFT_DECISION();
- if(v < 0) {
- Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
- Demod.posCount = 0;
+ CHECK_FOR_SUBCARRIER();
+ if (v > SUBCARRIER_DETECT_THRESHOLD) {
+ // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
+ // note: synchronization time > 80 1/fs
+ Demod.sumI += ci;
+ Demod.sumQ += cq;
+ Demod.posCount++;
+ } else { // subcarrier lost
+ Demod.state = DEMOD_UNSYNCD;
}
+ } else {
+ Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
}
- Demod.posCount++;
break;
case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
MAKE_SOFT_DECISION();
- if(v < 0) {
+ if(v < 0) { // logic '0' detected
Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
- Demod.posCount = 0;
+ Demod.posCount = 0; // start of SOF sequence
} else {
- if(Demod.posCount > 100) {
+ if(Demod.posCount > 200/4) { // maximum length of TR1 = 200 1/fs
Demod.state = DEMOD_UNSYNCD;
}
}
break;
case DEMOD_GOT_FALLING_EDGE_OF_SOF:
+ Demod.posCount++;
MAKE_SOFT_DECISION();
if(v > 0) {
- if(Demod.posCount < 12) {
+ if(Demod.posCount < 9*2) { // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
Demod.state = DEMOD_UNSYNCD;
} else {
LED_C_ON(); // Got SOF
Demod.state = DEMOD_AWAITING_START_BIT;
Demod.posCount = 0;
Demod.len = 0;
+/* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
Demod.metricN = 0;
Demod.metric = 0;
+*/
}
} else {
- if(Demod.posCount > 100) {
+ if(Demod.posCount > 12*2) { // low phase of SOF too long (> 12 etu)
Demod.state = DEMOD_UNSYNCD;
LED_C_OFF();
}
}
- Demod.posCount++;
break;
case DEMOD_AWAITING_START_BIT:
+ Demod.posCount++;
MAKE_SOFT_DECISION();
if(v > 0) {
- if(Demod.posCount > 10) {
+ if(Demod.posCount > 3*2) { // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
Demod.state = DEMOD_UNSYNCD;
LED_C_OFF();
}
- } else {
+ } else { // start bit detected
Demod.bitCount = 0;
- Demod.posCount = 1;
+ Demod.posCount = 1; // this was the first half
Demod.thisBit = v;
Demod.shiftReg = 0;
Demod.state = DEMOD_RECEIVING_DATA;
case DEMOD_RECEIVING_DATA:
MAKE_SOFT_DECISION();
- if(Demod.posCount == 0) {
+ if(Demod.posCount == 0) { // first half of bit
Demod.thisBit = v;
Demod.posCount = 1;
- } else {
+ } else { // second half of bit
Demod.thisBit += v;
+/* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
if(Demod.thisBit > 0) {
Demod.metric += Demod.thisBit;
} else {
Demod.metric -= Demod.thisBit;
}
(Demod.metricN)++;
+*/
Demod.shiftReg >>= 1;
- if(Demod.thisBit > 0) {
+ if(Demod.thisBit > 0) { // logic '1'
Demod.shiftReg |= 0x200;
}
Demod.bitCount++;
if(Demod.bitCount == 10) {
uint16_t s = Demod.shiftReg;
- if((s & 0x200) && !(s & 0x001)) {
+ if((s & 0x200) && !(s & 0x001)) { // stop bit == '1', start bit == '0'
uint8_t b = (s >> 1);
Demod.output[Demod.len] = b;
Demod.len++;
Demod.state = DEMOD_UNSYNCD;
LED_C_OFF();
if(s == 0x000) {
- // This is EOF
+ // This is EOF (start, stop and all data bits == '0'
return TRUE;
}
}
// Clear out the state of the "UART" that receives from the tag.
Demod.len = 0;
Demod.state = DEMOD_UNSYNCD;
+ Demod.posCount = 0;
memset(Demod.output, 0x00, MAX_FRAME_SIZE);
}
}
-static void UartReset()
-{
- Uart.byteCntMax = MAX_FRAME_SIZE;
- Uart.state = STATE_UNSYNCD;
- Uart.byteCnt = 0;
- Uart.bitCnt = 0;
-}
-
-
-static void UartInit(uint8_t *data)
-{
- Uart.output = data;
- UartReset();
-}
-
-
/*
* Demodulate the samples we received from the tag, also log to tracebuffer
- * weTx: set to 'TRUE' if we behave like a reader
- * set to 'FALSE' if we behave like a snooper
* quiet: set to 'TRUE' to disable debug output
*/
-static void GetSamplesFor14443Demod(int weTx, int n, int quiet)
+static void GetSamplesFor14443bDemod(int n, bool quiet)
{
int max = 0;
- int gotFrame = FALSE;
+ bool gotFrame = FALSE;
int lastRxCounter, ci, cq, samples = 0;
// Allocate memory from BigBuf for some buffers
uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
// The DMA buffer, used to stream samples from the FPGA
- int8_t *dmaBuf = (int8_t*) BigBuf_malloc(DMA_BUFFER_SIZE);
+ int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE);
// Set up the demodulator for tag -> reader responses.
DemodInit(receivedResponse);
// Setup and start DMA.
- FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE);
+ FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE);
int8_t *upTo = dmaBuf;
- lastRxCounter = DMA_BUFFER_SIZE;
+ lastRxCounter = ISO14443B_DMA_BUFFER_SIZE;
// Signal field is ON with the appropriate LED:
- if (weTx) LED_D_ON(); else LED_D_OFF();
+ LED_D_ON();
// And put the FPGA in the appropriate mode
- FpgaWriteConfWord(
- FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ |
- (weTx ? 0 : FPGA_HF_READER_RX_XCORR_SNOOP));
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
for(;;) {
int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
if(behindBy > max) max = behindBy;
- while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (DMA_BUFFER_SIZE-1))
- > 2)
- {
+ while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO14443B_DMA_BUFFER_SIZE-1)) > 2) {
ci = upTo[0];
cq = upTo[1];
upTo += 2;
- if(upTo >= dmaBuf + DMA_BUFFER_SIZE) {
+ if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) {
upTo = dmaBuf;
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
- AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
+ AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE;
}
lastRxCounter -= 2;
if(lastRxCounter <= 0) {
- lastRxCounter += DMA_BUFFER_SIZE;
+ lastRxCounter += ISO14443B_DMA_BUFFER_SIZE;
}
samples += 2;
- if(Handle14443SamplesDemod(ci, cq)) {
- gotFrame = 1;
+ if(Handle14443bSamplesDemod(ci, cq)) {
+ gotFrame = TRUE;
+ break;
}
}
- if(samples > n) {
+ if(samples > n || gotFrame) {
break;
}
}
+
AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
- if (!quiet) Dbprintf("%x %x %x", max, gotFrame, Demod.len);
+
+ if (!quiet) Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", max, samples, gotFrame, Demod.len, Demod.sumI, Demod.sumQ);
//Tracing
if (tracing && Demod.len > 0) {
uint8_t parity[MAX_PARITY_SIZE];
- GetParity(Demod.output, Demod.len, parity);
LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE);
}
}
-//-----------------------------------------------------------------------------
-// Read the tag's response. We just receive a stream of slightly-processed
-// samples from the FPGA, which we will later do some signal processing on,
-// to get the bits.
-//-----------------------------------------------------------------------------
-/*static void GetSamplesFor14443(int weTx, int n)
-{
- uint8_t *dest = (uint8_t *)BigBuf;
- int c;
-
- FpgaWriteConfWord(
- FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ |
- (weTx ? 0 : FPGA_HF_READER_RX_XCORR_SNOOP));
-
- c = 0;
- for(;;) {
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = 0x43;
- }
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- int8_t b;
- b = (int8_t)AT91C_BASE_SSC->SSC_RHR;
-
- dest[c++] = (uint8_t)b;
-
- if(c >= n) {
- break;
- }
- }
- }
-}*/
-
-
//-----------------------------------------------------------------------------
// Transmit the command (to the tag) that was placed in ToSend[].
//-----------------------------------------------------------------------------
-static void TransmitFor14443(void)
+static void TransmitFor14443b(void)
{
int c;
LED_D_ON();
// Signal we are transmitting with the Green LED
LED_B_ON();
- FpgaWriteConfWord(
- FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
for(c = 0; c < 10;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
//-----------------------------------------------------------------------------
// Code a layer 2 command (string of octets, including CRC) into ToSend[],
-// so that it is ready to transmit to the tag using TransmitFor14443().
+// so that it is ready to transmit to the tag using TransmitFor14443b().
//-----------------------------------------------------------------------------
static void CodeIso14443bAsReader(const uint8_t *cmd, int len)
{
}
-//-----------------------------------------------------------------------------
-// Read an ISO 14443 tag. We send it some set of commands, and record the
-// responses.
-// The command name is misleading, it actually decodes the reponse in HEX
-// into the output buffer (read the result using hexsamples, not hisamples)
-//
-// obsolete function only for test
-//-----------------------------------------------------------------------------
-void AcquireRawAdcSamplesIso14443(uint32_t parameter)
-{
- uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
-
- SendRawCommand14443B(sizeof(cmd1),1,1,cmd1);
-}
-
-
/**
Convenience function to encode, transmit and trace iso 14443b comms
**/
static void CodeAndTransmit14443bAsReader(const uint8_t *cmd, int len)
{
CodeIso14443bAsReader(cmd, len);
- TransmitFor14443();
+ TransmitFor14443b();
if (tracing) {
uint8_t parity[MAX_PARITY_SIZE];
- GetParity(cmd, len, parity);
LogTrace(cmd,len, 0, 0, parity, TRUE);
}
}
//-----------------------------------------------------------------------------
-// Read a SRI512 ISO 14443 tag.
+// Read a SRI512 ISO 14443B tag.
//
// SRI512 tags are just simple memory tags, here we're looking at making a dump
// of the contents of the memory. No anticollision algorithm is done, we assume
//
// I tried to be systematic and check every answer of the tag, every CRC, etc...
//-----------------------------------------------------------------------------
-void ReadSTMemoryIso14443(uint32_t dwLast)
+void ReadSTMemoryIso14443b(uint32_t dwLast)
{
- clear_trace();
- set_tracing(TRUE);
-
uint8_t i = 0x00;
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// Now give it time to spin up.
// Signal field is on with the appropriate LED
LED_D_ON();
- FpgaWriteConfWord(
- FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
SpinDelay(200);
- // First command: wake up the tag using the INITIATE command
- uint8_t cmd1[] = { 0x06, 0x00, 0x97, 0x5b};
+ clear_trace();
+ set_tracing(TRUE);
+ // First command: wake up the tag using the INITIATE command
+ uint8_t cmd1[] = {0x06, 0x00, 0x97, 0x5b};
CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
-// LED_A_ON();
- GetSamplesFor14443Demod(TRUE, RECEIVE_SAMPLES_TIMEOUT, TRUE);
-// LED_A_OFF();
+ GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
if (Demod.len == 0) {
- DbpString("No response from tag");
- return;
+ DbpString("No response from tag");
+ return;
} else {
- Dbprintf("Randomly generated UID from tag (+ 2 byte CRC): %x %x %x",
- Demod.output[0], Demod.output[1],Demod.output[2]);
+ Dbprintf("Randomly generated Chip ID (+ 2 byte CRC): %02x %02x %02x",
+ Demod.output[0], Demod.output[1], Demod.output[2]);
}
+
// There is a response, SELECT the uid
DbpString("Now SELECT tag:");
cmd1[0] = 0x0E; // 0x0E is SELECT
cmd1[1] = Demod.output[0];
ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]);
CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
-
-// LED_A_ON();
- GetSamplesFor14443Demod(TRUE, RECEIVE_SAMPLES_TIMEOUT, TRUE);
-// LED_A_OFF();
+ GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
if (Demod.len != 3) {
- Dbprintf("Expected 3 bytes from tag, got %d", Demod.len);
- return;
+ Dbprintf("Expected 3 bytes from tag, got %d", Demod.len);
+ return;
}
// Check the CRC of the answer:
ComputeCrc14443(CRC_14443_B, Demod.output, 1 , &cmd1[2], &cmd1[3]);
if(cmd1[2] != Demod.output[1] || cmd1[3] != Demod.output[2]) {
- DbpString("CRC Error reading select response.");
- return;
+ DbpString("CRC Error reading select response.");
+ return;
}
// Check response from the tag: should be the same UID as the command we just sent:
if (cmd1[1] != Demod.output[0]) {
- Dbprintf("Bad response to SELECT from Tag, aborting: %x %x", cmd1[1], Demod.output[0]);
- return;
+ Dbprintf("Bad response to SELECT from Tag, aborting: %02x %02x", cmd1[1], Demod.output[0]);
+ return;
}
+
// Tag is now selected,
// First get the tag's UID:
cmd1[0] = 0x0B;
ComputeCrc14443(CRC_14443_B, cmd1, 1 , &cmd1[1], &cmd1[2]);
CodeAndTransmit14443bAsReader(cmd1, 3); // Only first three bytes for this one
-
-// LED_A_ON();
- GetSamplesFor14443Demod(TRUE, RECEIVE_SAMPLES_TIMEOUT, TRUE);
-// LED_A_OFF();
+ GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
if (Demod.len != 10) {
- Dbprintf("Expected 10 bytes from tag, got %d", Demod.len);
- return;
+ Dbprintf("Expected 10 bytes from tag, got %d", Demod.len);
+ return;
}
// The check the CRC of the answer (use cmd1 as temporary variable):
ComputeCrc14443(CRC_14443_B, Demod.output, 8, &cmd1[2], &cmd1[3]);
- if(cmd1[2] != Demod.output[8] || cmd1[3] != Demod.output[9]) {
- Dbprintf("CRC Error reading block! - Below: expected, got %x %x",
- (cmd1[2]<<8)+cmd1[3], (Demod.output[8]<<8)+Demod.output[9]);
- // Do not return;, let's go on... (we should retry, maybe ?)
+ if(cmd1[2] != Demod.output[8] || cmd1[3] != Demod.output[9]) {
+ Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
+ (cmd1[2]<<8)+cmd1[3], (Demod.output[8]<<8)+Demod.output[9]);
+ // Do not return;, let's go on... (we should retry, maybe ?)
}
Dbprintf("Tag UID (64 bits): %08x %08x",
- (Demod.output[7]<<24) + (Demod.output[6]<<16) + (Demod.output[5]<<8) + Demod.output[4],
- (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0]);
+ (Demod.output[7]<<24) + (Demod.output[6]<<16) + (Demod.output[5]<<8) + Demod.output[4],
+ (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0]);
// Now loop to read all 16 blocks, address from 0 to last block
- Dbprintf("Tag memory dump, block 0 to %d",dwLast);
+ Dbprintf("Tag memory dump, block 0 to %d", dwLast);
cmd1[0] = 0x08;
i = 0x00;
dwLast++;
for (;;) {
- if (i == dwLast) {
+ if (i == dwLast) {
DbpString("System area block (0xff):");
i = 0xff;
}
cmd1[1] = i;
ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]);
CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
-
-// LED_A_ON();
- GetSamplesFor14443Demod(TRUE, RECEIVE_SAMPLES_TIMEOUT, TRUE);
-// LED_A_OFF();
+ GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
if (Demod.len != 6) { // Check if we got an answer from the tag
- DbpString("Expected 6 bytes from tag, got less...");
- return;
+ DbpString("Expected 6 bytes from tag, got less...");
+ return;
}
// The check the CRC of the answer (use cmd1 as temporary variable):
ComputeCrc14443(CRC_14443_B, Demod.output, 4, &cmd1[2], &cmd1[3]);
- if(cmd1[2] != Demod.output[4] || cmd1[3] != Demod.output[5]) {
- Dbprintf("CRC Error reading block! - Below: expected, got %x %x",
- (cmd1[2]<<8)+cmd1[3], (Demod.output[4]<<8)+Demod.output[5]);
- // Do not return;, let's go on... (we should retry, maybe ?)
+ if(cmd1[2] != Demod.output[4] || cmd1[3] != Demod.output[5]) {
+ Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
+ (cmd1[2]<<8)+cmd1[3], (Demod.output[4]<<8)+Demod.output[5]);
+ // Do not return;, let's go on... (we should retry, maybe ?)
}
// Now print out the memory location:
- Dbprintf("Address=%x, Contents=%x, CRC=%x", i,
- (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0],
- (Demod.output[4]<<8)+Demod.output[5]);
+ Dbprintf("Address=%02x, Contents=%08x, CRC=%04x", i,
+ (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0],
+ (Demod.output[4]<<8)+Demod.output[5]);
if (i == 0xff) {
- break;
+ break;
}
i++;
}
* Memory usage for this function, (within BigBuf)
* Last Received command (reader->tag) - MAX_FRAME_SIZE
* Last Received command (tag->reader) - MAX_FRAME_SIZE
- * DMA Buffer, 1024 bytes (samples) - DMA_BUFFER_SIZE
+ * DMA Buffer - ISO14443B_DMA_BUFFER_SIZE
* Demodulated samples received - all the rest
*/
-void RAMFUNC SnoopIso14443(void)
+void RAMFUNC SnoopIso14443b(void)
{
// We won't start recording the frames that we acquire until we trigger;
// a good trigger condition to get started is probably when we see a
set_tracing(TRUE);
// The DMA buffer, used to stream samples from the FPGA
- int8_t *dmaBuf = (int8_t*) BigBuf_malloc(DMA_BUFFER_SIZE);
+ int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE);
int lastRxCounter;
int8_t *upTo;
int ci, cq;
Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
Dbprintf(" Reader -> tag: %i bytes", MAX_FRAME_SIZE);
Dbprintf(" tag -> Reader: %i bytes", MAX_FRAME_SIZE);
- Dbprintf(" DMA: %i bytes", DMA_BUFFER_SIZE);
+ Dbprintf(" DMA: %i bytes", ISO14443B_DMA_BUFFER_SIZE);
- // Signal field is off with the appropriate LED
- LED_D_OFF();
+ // Signal field is off, no reader signal, no tag signal
+ LEDsoff();
// And put the FPGA in the appropriate mode
- FpgaWriteConfWord(
- FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ |
- FPGA_HF_READER_RX_XCORR_SNOOP);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
// Setup for the DMA.
FpgaSetupSsc();
upTo = dmaBuf;
- lastRxCounter = DMA_BUFFER_SIZE;
- FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE);
+ lastRxCounter = ISO14443B_DMA_BUFFER_SIZE;
+ FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE);
uint8_t parity[MAX_PARITY_SIZE];
- LED_A_ON();
bool TagIsActive = FALSE;
bool ReaderIsActive = FALSE;
// And now we loop, receiving samples.
for(;;) {
int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
- (DMA_BUFFER_SIZE-1);
+ (ISO14443B_DMA_BUFFER_SIZE-1);
if(behindBy > maxBehindBy) {
maxBehindBy = behindBy;
- if(behindBy > (9*DMA_BUFFER_SIZE/10)) { // TODO: understand whether we can increase/decrease as we want or not?
- Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
- break;
- }
}
+
if(behindBy < 2) continue;
ci = upTo[0];
cq = upTo[1];
upTo += 2;
lastRxCounter -= 2;
- if(upTo >= dmaBuf + DMA_BUFFER_SIZE) {
+ if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) {
upTo = dmaBuf;
- lastRxCounter += DMA_BUFFER_SIZE;
+ lastRxCounter += ISO14443B_DMA_BUFFER_SIZE;
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
- AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
+ AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE;
+ WDT_HIT();
+ if(behindBy > (9*ISO14443B_DMA_BUFFER_SIZE/10)) { // TODO: understand whether we can increase/decrease as we want or not?
+ Dbprintf("blew circular buffer! behindBy=%d", behindBy);
+ break;
+ }
+ if(!tracing) {
+ DbpString("Reached trace limit");
+ break;
+ }
+ if(BUTTON_PRESS()) {
+ DbpString("cancelled");
+ break;
+ }
}
samples += 2;
if (!TagIsActive) { // no need to try decoding reader data if the tag is sending
- if(Handle14443UartBit(ci & 0x01)) {
+ if(Handle14443bUartBit(ci & 0x01)) {
if(triggered && tracing) {
- GetParity(Uart.output, Uart.byteCnt, parity);
- LogTrace(Uart.output,Uart.byteCnt,samples, samples,parity,TRUE);
+ LogTrace(Uart.output, Uart.byteCnt, samples, samples, parity, TRUE);
}
- if(Uart.byteCnt==0) Dbprintf("[1] Error, Uart.byteCnt==0, Uart.bitCnt=%d", Uart.bitCnt);
-
/* And ready to receive another command. */
UartReset();
/* And also reset the demod code, which might have been */
/* false-triggered by the commands from the reader. */
DemodReset();
}
- if(Handle14443UartBit(cq & 0x01)) {
+ if(Handle14443bUartBit(cq & 0x01)) {
if(triggered && tracing) {
- GetParity(Uart.output, Uart.byteCnt, parity);
- LogTrace(Uart.output,Uart.byteCnt,samples, samples, parity, TRUE);
+ LogTrace(Uart.output, Uart.byteCnt, samples, samples, parity, TRUE);
}
- if(Uart.byteCnt==0) Dbprintf("[2] Error, Uart.byteCnt==0, Uart.bitCnt=%d", Uart.bitCnt);
-
/* And ready to receive another command. */
UartReset();
/* And also reset the demod code, which might have been */
/* false-triggered by the commands from the reader. */
DemodReset();
}
- ReaderIsActive = (Uart.state != STATE_UNSYNCD);
+ ReaderIsActive = (Uart.state > STATE_GOT_FALLING_EDGE_OF_SOF);
}
if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
- if(Handle14443SamplesDemod(ci & 0xFE, cq & 0xFE)) {
+ if(Handle14443bSamplesDemod(ci | 0x01, cq | 0x01)) {
//Use samples as a time measurement
if(tracing)
{
uint8_t parity[MAX_PARITY_SIZE];
- GetParity(Demod.output, Demod.len, parity);
LogTrace(Demod.output, Demod.len, samples, samples, parity, FALSE);
}
triggered = TRUE;
- LED_A_OFF();
- LED_B_ON();
// And ready to receive another response.
DemodReset();
}
- TagIsActive = (Demod.state != DEMOD_UNSYNCD);
- }
-
- WDT_HIT();
-
- if(!tracing) {
- DbpString("Reached trace limit");
- break;
+ TagIsActive = (Demod.state > DEMOD_GOT_FALLING_EDGE_OF_SOF);
}
- if(BUTTON_PRESS()) {
- DbpString("cancelled");
- break;
- }
}
+
FpgaDisableSscDma();
- LED_A_OFF();
- LED_B_OFF();
- LED_C_OFF();
+ LEDsoff();
AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
DbpString("Snoop statistics:");
Dbprintf(" Max behind by: %i", maxBehindBy);
void SendRawCommand14443B(uint32_t datalen, uint32_t recv, uint8_t powerfield, uint8_t data[])
{
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- if(!powerfield)
- {
- // Make sure that we start from off, since the tags are stateful;
- // confusing things will happen if we don't reset them between reads.
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LED_D_OFF();
- SpinDelay(200);
- }
-
- if(!GETBIT(GPIO_LED_D))
- {
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
- FpgaSetupSsc();
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+ FpgaSetupSsc();
- // Now give it time to spin up.
- // Signal field is on with the appropriate LED
- LED_D_ON();
- FpgaWriteConfWord(
- FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
- SpinDelay(200);
- }
+ if (datalen){
+ set_tracing(TRUE);
+
+ CodeAndTransmit14443bAsReader(data, datalen);
- CodeAndTransmit14443bAsReader(data, datalen);
+ if(recv) {
+ GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
+ uint16_t iLen = MIN(Demod.len, USB_CMD_DATA_SIZE);
+ cmd_send(CMD_ACK, iLen, 0, 0, Demod.output, iLen);
+ }
+ }
- if(recv)
- {
- GetSamplesFor14443Demod(TRUE, RECEIVE_SAMPLES_TIMEOUT, TRUE);
- uint16_t iLen = MIN(Demod.len,USB_CMD_DATA_SIZE);
- cmd_send(CMD_ACK,iLen,0,0,Demod.output,iLen);
- }
- if(!powerfield)
- {
+ if(!powerfield) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
}