//-----------------------------------------------------------------------------
// Routines to support ISO 14443 type A.
//-----------------------------------------------------------------------------
-
-#include "proxmark3.h"
-#include "apps.h"
-#include "util.h"
-#include "string.h"
-#include "cmd.h"
-#include "iso14443crc.h"
#include "iso14443a.h"
-#include "iso14443b.h"
-#include "crapto1.h"
-#include "mifareutil.h"
-#include "BigBuf.h"
-#include "parity.h"
static uint32_t iso14a_timeout;
int rsamples = 0;
//-----------------------------------------------------------------------------
void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
- // Here, we collect CUID, block1, keytype1, NT1, NR1, AR1, CUID, block2, keytyp2, NT2, NR2, AR2
- // it should also collect block, keytype.
- // This can be used in a reader-only attack.
- uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
- uint8_t ar_nr_collected = 0;
uint8_t sak = 0;
uint32_t cuid = 0;
uint32_t nonce = 0;
// The first response contains the ATQA (note: bytes are transmitted in reverse order).
uint8_t response1[] = {0,0};
+
+ // Here, we collect CUID, block1, keytype1, NT1, NR1, AR1, CUID, block2, keytyp2, NT2, NR2, AR2
+ // it should also collect block, keytype.
+ uint8_t cardAUTHSC = 0;
+ uint8_t cardAUTHKEY = 0xff; // no authentication
+ // allow collecting up to 8 sets of nonces to allow recovery of up to 8 keys
+ #define ATTACK_KEY_COUNT 8 // keep same as define in cmdhfmf.c -> readerAttack()
+ nonces_t ar_nr_resp[ATTACK_KEY_COUNT*2]; // for 2 separate attack types (nml, moebius)
+ memset(ar_nr_resp, 0x00, sizeof(ar_nr_resp));
+
+ uint8_t ar_nr_collected[ATTACK_KEY_COUNT*2]; // for 2nd attack type (moebius)
+ memset(ar_nr_collected, 0x00, sizeof(ar_nr_collected));
+ uint8_t nonce1_count = 0;
+ uint8_t nonce2_count = 0;
+ uint8_t moebius_n_count = 0;
+ bool gettingMoebius = false;
+ uint8_t mM = 0; // moebius_modifier for collection storage
+
switch (tagType) {
case 1: { // MIFARE Classic 1k
uint16_t start = 4 * (0+12);
uint8_t emdata[8];
emlGetMemBt( emdata, start, sizeof(emdata));
- memcpy(data, emdata, 3); //uid bytes 0-2
- memcpy(data+3, emdata+4, 4); //uid bytes 3-7
+ memcpy(data, emdata, 3); // uid bytes 0-2
+ memcpy(data+3, emdata+4, 4); // uid bytes 3-7
flags |= FLAG_7B_UID_IN_DATA;
}
} break;
nonce = bytes_to_num(response5, 4);
// Prepare GET_VERSION (different for UL EV-1 / NTAG)
- //uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION.
- //uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
+ // uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION.
+ // uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
// Prepare CHK_TEARING
- //uint8_t response9[] = {0xBD,0x90,0x3f};
+ // uint8_t response9[] = {0xBD,0x90,0x3f};
#define TAG_RESPONSE_COUNT 10
tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
{ .response = response8, .response_n = sizeof(response8) } // EV1/NTAG PACK response
};
- //{ .response = response7_NTAG, .response_n = sizeof(response7_NTAG)}, // EV1/NTAG GET_VERSION response
- //{ .response = response9, .response_n = sizeof(response9) } // EV1/NTAG CHK_TEAR response
+ // { .response = response7_NTAG, .response_n = sizeof(response7_NTAG)}, // EV1/NTAG GET_VERSION response
+ // { .response = response9, .response_n = sizeof(response9) } // EV1/NTAG CHK_TEAR response
// Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
uint8_t block = receivedCmd[1];
// if Ultralight or NTAG (4 byte blocks)
if ( tagType == 7 || tagType == 2 ) {
- //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+ // first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
uint16_t start = 4 * (block+12);
- uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
- emlGetMemBt( emdata, start, 16);
- AppendCrc14443a(emdata, 16);
- EmSendCmdEx(emdata, sizeof(emdata), false);
+ uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
+ emlGetMemBt( emdata, start, 16);
+ AppendCrc14443a(emdata, 16);
+ EmSendCmdEx(emdata, sizeof(emdata), false);
// We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
p_response = NULL;
} else { // all other tags (16 byte block tags)
- EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
+ uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
+ emlGetMemBt( emdata, block, 16);
+ AppendCrc14443a(emdata, 16);
+ EmSendCmdEx(emdata, sizeof(emdata), false);
+ // EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
// Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
// We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
p_response = NULL;
}
} else if(receivedCmd[0] == MIFARE_ULEV1_FASTREAD) { // Received a FAST READ (ranged read)
uint8_t emdata[MAX_FRAME_SIZE];
- //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+ // first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
int start = (receivedCmd[1]+12) * 4;
int len = (receivedCmd[2] - receivedCmd[1] + 1) * 4;
emlGetMemBt( emdata, start, len);
EmSendCmdEx(emdata, len+2, false);
p_response = NULL;
} else if(receivedCmd[0] == MIFARE_ULEV1_READSIG && tagType == 7) { // Received a READ SIGNATURE --
- //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+ // first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
uint16_t start = 4 * 4;
uint8_t emdata[34];
emlGetMemBt( emdata, start, 32);
EmSendCmdEx(ack,sizeof(ack),false);
p_response = NULL;
} else if(receivedCmd[0] == MIFARE_ULEV1_CHECKTEAR && tagType == 7) { // Received a CHECK_TEARING_EVENT --
- //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+ // first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
uint8_t emdata[3];
uint8_t counter=0;
if (receivedCmd[1]<3) counter = receivedCmd[1];
uint8_t emdata[10];
emlGetMemBt( emdata, 0, 8 );
AppendCrc14443a(emdata, sizeof(emdata)-2);
- EmSendCmdEx(emdata, sizeof(emdata), false);
+ EmSendCmdEx(emdata, sizeof(emdata), false);
p_response = NULL;
} else {
+ cardAUTHSC = receivedCmd[1] / 4; // received block num
+ cardAUTHKEY = receivedCmd[0] - 0x60;
p_response = &responses[5]; order = 7;
}
} else if(receivedCmd[0] == ISO14443A_CMD_RATS) { // Received a RATS request
uint32_t nr = bytes_to_num(receivedCmd,4);
uint32_t ar = bytes_to_num(receivedCmd+4,4);
+ // Collect AR/NR per keytype & sector
if ( (flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK ) {
- if(ar_nr_collected < 2){
- ar_nr_responses[ar_nr_collected*4] = cuid;
- ar_nr_responses[ar_nr_collected*4+1] = nonce;
- ar_nr_responses[ar_nr_collected*4+2] = nr;
- ar_nr_responses[ar_nr_collected*4+3] = ar;
- ar_nr_collected++;
- }
- if(ar_nr_collected > 1 ) {
- if (MF_DBGLEVEL >= 2 && !(flags & FLAG_INTERACTIVE)) {
- Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
- Dbprintf("../tools/mfkey/mfkey32v2.exe %08x %08x %08x %08x %08x %08x %08x",
- ar_nr_responses[0], // CUID
- ar_nr_responses[1], // NT_1
- ar_nr_responses[2], // AR_1
- ar_nr_responses[3], // NR_1
- ar_nr_responses[5], // NT_2
- ar_nr_responses[6], // AR_2
- ar_nr_responses[7] // NR_2
- );
+ for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
+ if ( ar_nr_collected[i+mM]==0 || ((cardAUTHSC == ar_nr_resp[i+mM].sector) && (cardAUTHKEY == ar_nr_resp[i+mM].keytype) && (ar_nr_collected[i+mM] > 0)) ) {
+ // if first auth for sector, or matches sector and keytype of previous auth
+ if (ar_nr_collected[i+mM] < 2) {
+ // if we haven't already collected 2 nonces for this sector
+ if (ar_nr_resp[ar_nr_collected[i+mM]].ar != ar) {
+ // Avoid duplicates... probably not necessary, ar should vary.
+ if (ar_nr_collected[i+mM]==0) {
+ // first nonce collect
+ ar_nr_resp[i+mM].cuid = cuid;
+ ar_nr_resp[i+mM].sector = cardAUTHSC;
+ ar_nr_resp[i+mM].keytype = cardAUTHKEY;
+ ar_nr_resp[i+mM].nonce = nonce;
+ ar_nr_resp[i+mM].nr = nr;
+ ar_nr_resp[i+mM].ar = ar;
+ nonce1_count++;
+ // add this nonce to first moebius nonce
+ ar_nr_resp[i+ATTACK_KEY_COUNT].cuid = cuid;
+ ar_nr_resp[i+ATTACK_KEY_COUNT].sector = cardAUTHSC;
+ ar_nr_resp[i+ATTACK_KEY_COUNT].keytype = cardAUTHKEY;
+ ar_nr_resp[i+ATTACK_KEY_COUNT].nonce = nonce;
+ ar_nr_resp[i+ATTACK_KEY_COUNT].nr = nr;
+ ar_nr_resp[i+ATTACK_KEY_COUNT].ar = ar;
+ ar_nr_collected[i+ATTACK_KEY_COUNT]++;
+ } else { // second nonce collect (std and moebius)
+ ar_nr_resp[i+mM].nonce2 = nonce;
+ ar_nr_resp[i+mM].nr2 = nr;
+ ar_nr_resp[i+mM].ar2 = ar;
+ if (!gettingMoebius) {
+ nonce2_count++;
+ // check if this was the last second nonce we need for std attack
+ if ( nonce2_count == nonce1_count ) {
+ // done collecting std test switch to moebius
+ // first finish incrementing last sample
+ ar_nr_collected[i+mM]++;
+ // switch to moebius collection
+ gettingMoebius = true;
+ mM = ATTACK_KEY_COUNT;
+ break;
+ }
+ } else {
+ moebius_n_count++;
+ // if we've collected all the nonces we need - finish.
+ if (nonce1_count == moebius_n_count) {
+ cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_resp,sizeof(ar_nr_resp));
+ nonce1_count = 0;
+ nonce2_count = 0;
+ moebius_n_count = 0;
+ gettingMoebius = false;
+ }
+ }
+ }
+ ar_nr_collected[i+mM]++;
+ }
+ }
+ // we found right spot for this nonce stop looking
+ break;
+ }
}
- uint8_t len = ar_nr_collected*4*4;
- cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len);
- ar_nr_collected = 0;
- memset(ar_nr_responses, 0x00, len);
}
- }
} else if (receivedCmd[0] == MIFARE_ULC_AUTH_1 ) { // ULC authentication, or Desfire Authentication
} else if (receivedCmd[0] == MIFARE_ULEV1_AUTH) { // NTAG / EV-1 authentication
if ( tagType == 7 ) {
- uint16_t start = 13; //first 4 blocks of emu are [getversion answer - check tearing - pack - 0x00]
+ uint16_t start = 13; // first 4 blocks of emu are [getversion answer - check tearing - pack - 0x00]
uint8_t emdata[4];
emlGetMemBt( emdata, start, 2);
AppendCrc14443a(emdata, 2);
BigBuf_free_keep_EM();
LED_A_OFF();
+ if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1) {
+ for ( uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
+ if (ar_nr_collected[i] == 2) {
+ Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
+ Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
+ ar_nr_resp[i].cuid, //UID
+ ar_nr_resp[i].nonce, //NT
+ ar_nr_resp[i].nr, //NR1
+ ar_nr_resp[i].ar, //AR1
+ ar_nr_resp[i].nr2, //NR2
+ ar_nr_resp[i].ar2 //AR2
+ );
+ }
+ }
+ for ( uint8_t i = ATTACK_KEY_COUNT; i < ATTACK_KEY_COUNT*2; i++) {
+ if (ar_nr_collected[i] == 2) {
+ Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
+ Dbprintf("../tools/mfkey/mfkey32v2 %08x %08x %08x %08x %08x %08x %08x",
+ ar_nr_resp[i].cuid, //UID
+ ar_nr_resp[i].nonce, //NT
+ ar_nr_resp[i].nr, //NR1
+ ar_nr_resp[i].ar, //AR1
+ ar_nr_resp[i].nonce2,//NT2
+ ar_nr_resp[i].nr2, //NR2
+ ar_nr_resp[i].ar2 //AR2
+ );
+ }
+ }
+ }
+
if (MF_DBGLEVEL >= 4){
Dbprintf("-[ Wake ups after halt [%d]", happened);
Dbprintf("-[ Messages after halt [%d]", happened2);
//-----------------------------------------------------------------------------
// Prepare reader command (in bits, support short frames) to send to FPGA
//-----------------------------------------------------------------------------
-void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
-{
+void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity) {
int i, j;
int last = 0;
uint8_t b;
}
void iso14443a_setup(uint8_t fpga_minor_mode) {
+
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// Set up the synchronous serial port
FpgaSetupSsc();
// connect Demodulated Signal to ADC:
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
-
LED_D_OFF();
// Signal field is on with the appropriate LED
if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD ||
fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN)
LED_D_ON();
- // Prepare the demodulation functions
- DemodReset();
- UartReset();
-
- iso14a_set_timeout(10*106); // 10ms default
-
- //NextTransferTime = 2 * DELAY_ARM2AIR_AS_READER;
- NextTransferTime = DELAY_ARM2AIR_AS_READER << 1;
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
// Start the timer
StartCountSspClk();
+
+ // Prepare the demodulation functions
+ DemodReset();
+ UartReset();
+ NextTransferTime = 2 * DELAY_ARM2AIR_AS_READER;
+ iso14a_set_timeout(10*106); // 10ms default
}
int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
return len;
}
+
//-----------------------------------------------------------------------------
// Read an ISO 14443a tag. Send out commands and store answers.
//
if (nt1 == nt2) return 0;
- uint16_t i;
uint32_t nttmp1 = nt1;
uint32_t nttmp2 = nt2;
- for (i = 1; i < (32768/8); ++i) {
+ for (uint16_t i = 1; i < 32768/8; ++i) {
nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i;
nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -i;
nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+1;
nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+1);
+
nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+2;
nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+2);
+
nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+3;
nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+3);
+
nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+4;
nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+4);
+
nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+5;
nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+5);
+
nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+6;
nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+6);
+
nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+7;
- nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+7);
- }
+ nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+7);
+ }
// either nt1 or nt2 are invalid nonces
return(-99999);
}
// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
// (article by Nicolas T. Courtois, 2009)
//-----------------------------------------------------------------------------
-void ReaderMifare(bool first_try, uint8_t block ) {
- uint8_t mf_auth[] = { MIFARE_AUTH_KEYA, block, 0x00, 0x00 };
+
+void ReaderMifare(bool first_try, uint8_t block, uint8_t keytype ) {
+
+ uint8_t mf_auth[] = { keytype, block, 0x00, 0x00 };
uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
uint8_t uid[10] = {0,0,0,0,0,0,0,0,0,0};
uint8_t par_list[8] = {0,0,0,0,0,0,0,0};
#define PRNG_SEQUENCE_LENGTH (1 << 16)
#define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
#define MAX_SYNC_TRIES 32
-
+
+ AppendCrc14443a(mf_auth, 2);
+
BigBuf_free(); BigBuf_Clear_ext(false);
clear_trace();
set_tracing(TRUE);
iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
- AppendCrc14443a(mf_auth, 2);
+ sync_time = GetCountSspClk() & 0xfffffff8;
+ sync_cycles = PRNG_SEQUENCE_LENGTH; // Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
+ nt_attacked = 0;
- if (first_try) {
- sync_time = GetCountSspClk() & 0xfffffff8;
- sync_cycles = PRNG_SEQUENCE_LENGTH + 1130; //65536; //0x10000 // Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
- mf_nr_ar3 = 0;
- nt_attacked = 0;
+ if (MF_DBGLEVEL >= 4) Dbprintf("Mifare::Sync %08x", sync_time);
+
+ if (first_try) {
+ mf_nr_ar3 = 0;
par_low = 0;
} else {
// we were unsuccessful on a previous call.
// Transmit reader nonce with fake par
ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
- WDT_HIT();
- LED_B_ON();
- if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
+ // we didn't calibrate our clock yet,
+ // iceman: has to be calibrated every time.
+ if (previous_nt && !nt_attacked) {
nt_distance = dist_nt(previous_nt, nt);
}
LED_B_OFF();
- if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
+ if ( (nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
catch_up_cycles = ABS(dist_nt(nt_attacked, nt));
if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
set_tracing(FALSE);
}
+
/**
*MIFARE 1K simulate.
*
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
- uint32_t numReads = 0; //Counts numer of times reader read a block
+ uint32_t numReads = 0; // Counts numer of times reader read a block
uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
uint8_t response[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t sak_4[] = {0x0C, 0x00, 0x00}; // CL1 - 4b uid
uint8_t sak_7[] = {0x0C, 0x00, 0x00}; // CL2 - 7b uid
uint8_t sak_10[] = {0x0C, 0x00, 0x00}; // CL3 - 10b uid
- //uint8_t sak[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
+ // uint8_t sak[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
uint8_t rUIDBCC3[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01}; // very random nonce
- //uint8_t rAUTH_NT[] = {0x55, 0x41, 0x49, 0x92};// nonce from nested? why this?
+ // uint8_t rAUTH_NT[] = {0x55, 0x41, 0x49, 0x92};// nonce from nested? why this?
uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
// Here, we collect CUID, NT, NR, AR, CUID2, NT2, NR2, AR2
uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
ar_nr_responses[1] = nonce;
- //-- Determine the UID
+ // -- Determine the UID
// Can be set from emulator memory or incoming data
// Length: 4,7,or 10 bytes
if ( (flags & FLAG_UID_IN_EMUL) == FLAG_UID_IN_EMUL)
}
if (cardSTATE == MFEMUL_NOFIELD) continue;
- //Now, get data
+ // Now, get data
res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
if (res == 2) { //Field is off!
cardSTATE = MFEMUL_NOFIELD;
LEDsoff();
continue;
} else if (res == 1) {
- break; //return value 1 means button press
+ break; // return value 1 means button press
}
// REQ or WUP request in ANY state and WUP in HALTED state
uint32_t nr = bytes_to_num(receivedCmd, 4);
uint32_t ar = bytes_to_num(&receivedCmd[4], 4);
- //Collect AR/NR
- //if(ar_nr_collected < 2 && cardAUTHSC == 2){
+ // Collect AR/NR
+ // if(ar_nr_collected < 2 && cardAUTHSC == 2){
if(ar_nr_collected < 2) {
- //if(ar_nr_responses[2] != nr) {
+ // if(ar_nr_responses[2] != nr) {
ar_nr_responses[ar_nr_collected*4] = cuid;
ar_nr_responses[ar_nr_collected*4+1] = nonce;
ar_nr_responses[ar_nr_collected*4+2] = nr;
ar_nr_responses[ar_nr_collected*4+3] = ar;
ar_nr_collected++;
- //}
+ // }
// Interactive mode flag, means we need to send ACK
finished = ( ((flags & FLAG_INTERACTIVE) == FLAG_INTERACTIVE)&& ar_nr_collected == 2);
if (!encrypted_data) {
// first authentication
- crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
+ crypto1_word(pcs, cuid ^ nonce, 0);// Update crypto state
num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
// Interactive mode flag, means we need to send ACK
if((flags & FLAG_INTERACTIVE) == FLAG_INTERACTIVE) {
- //May just aswell send the collected ar_nr in the response aswell
+ // May just aswell send the collected ar_nr in the response aswell
uint8_t len = ar_nr_collected * 4 * 4;
cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len);
}
ar_nr_responses[1], // NT1
ar_nr_responses[2], // NR1
ar_nr_responses[3], // AR1
- //ar_nr_responses[4], // CUID2
+ // ar_nr_responses[4], // CUID2
ar_nr_responses[5], // NT2
ar_nr_responses[6], // NR2
ar_nr_responses[7] // AR2