// Also routines for raw mode reading/simulating of LF waveform
//-----------------------------------------------------------------------------
-#include "proxmark3.h"
+#include "../include/proxmark3.h"
#include "apps.h"
#include "util.h"
-#include "hitag2.h"
-#include "crc16.h"
+#include "../include/hitag2.h"
+#include "../common/crc16.h"
#include "string.h"
+#include "crapto1.h"
+#include "mifareutil.h"
-void AcquireRawAdcSamples125k(int at134khz)
+void LFSetupFPGAForADC(int divisor, bool lf_field)
{
- if (at134khz)
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- else
+ else if (divisor == 0)
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ else
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
// Connect the A/D to the peak-detected low-frequency path.
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-
// Give it a bit of time for the resonant antenna to settle.
SpinDelay(50);
-
// Now set up the SSC to get the ADC samples that are now streaming at us.
FpgaSetupSsc();
+}
- // Now call the acquisition routine
- DoAcquisition125k();
+void AcquireRawAdcSamples125k(int divisor)
+{
+ LFSetupFPGAForADC(divisor, true);
+ DoAcquisition125k(-1);
+}
+
+void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
+{
+ LFSetupFPGAForADC(divisor, false);
+ DoAcquisition125k(trigger_threshold);
}
// split into two routines so we can avoid timing issues after sending commands //
-void DoAcquisition125k(void)
+void DoAcquisition125k(int trigger_threshold)
{
uint8_t *dest = (uint8_t *)BigBuf;
int n = sizeof(BigBuf);
}
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- i++;
LED_D_OFF();
- if (i >= n) break;
+ if (trigger_threshold != -1 && dest[i] < trigger_threshold)
+ continue;
+ else
+ trigger_threshold = -1;
+ if (++i >= n) break;
}
}
Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
int at134khz;
/* Make sure the tag is reset */
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(2500);
else
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// Give it a bit of time for the resonant antenna to settle.
SpinDelay(50);
else
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
LED_D_ON();
if(*(command++) == '0')
SpinDelayUs(period_0);
else
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// now do the read
- DoAcquisition125k();
+ DoAcquisition125k(-1);
}
/* blank r/w tag data stream
uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
// TI tags charge at 134.2Khz
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
// Place FPGA in passthrough mode, in this mode the CROSS_LO line
// if not provided a valid crc will be computed from the data and written.
void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
{
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
if(crc == 0) {
crc = update_crc16(crc, (idlo)&0xff);
crc = update_crc16(crc, (idlo>>8)&0xff);
{
int i;
uint8_t *tab = (uint8_t *)BigBuf;
-
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);
-
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
+
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
-
+
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
-
+
#define SHORT_COIL() LOW(GPIO_SSC_DOUT)
#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
-
+
i = 0;
for(;;) {
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
}
WDT_HIT();
}
-
+
if (ledcontrol)
LED_D_ON();
-
+
if(tab[i])
OPEN_COIL();
else
SHORT_COIL();
-
+
if (ledcontrol)
LED_D_OFF();
-
+
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
if(BUTTON_PRESS()) {
DbpString("Stopped");
}
WDT_HIT();
}
-
+
i++;
if(i == period) {
i = 0;
}
}
-/* Provides a framework for bidirectional LF tag communication
- * Encoding is currently Hitag2, but the general idea can probably
- * be transferred to other encodings.
- *
- * The new FPGA code will, for the LF simulator mode, give on SSC_FRAME
- * (PA15) a thresholded version of the signal from the ADC. Setting the
- * ADC path to the low frequency peak detection signal, will enable a
- * somewhat reasonable receiver for modulation on the carrier signal
- * that is generated by the reader. The signal is low when the reader
- * field is switched off, and high when the reader field is active. Due
- * to the way that the signal looks like, mostly only the rising edge is
- * useful, your mileage may vary.
- *
- * Neat perk: PA15 can not only be used as a bit-banging GPIO, but is also
- * TIOA1, which can be used as the capture input for timer 1. This should
- * make it possible to measure the exact edge-to-edge time, without processor
- * intervention.
- *
- * Arguments: divisor is the divisor to be sent to the FPGA (e.g. 95 for 125kHz)
- * t0 is the carrier frequency cycle duration in terms of MCK (384 for 125kHz)
- *
- * The following defines are in carrier periods:
- */
-#define HITAG_T_0_MIN 15 /* T[0] should be 18..22 */
-#define HITAG_T_1_MIN 24 /* T[1] should be 26..30 */
-#define HITAG_T_EOF 40 /* T_EOF should be > 36 */
-#define HITAG_T_WRESP 208 /* T_wresp should be 204..212 */
-
-static void hitag_handle_frame(int t0, int frame_len, char *frame);
-//#define DEBUG_RA_VALUES 1
#define DEBUG_FRAME_CONTENTS 1
void SimulateTagLowFrequencyBidir(int divisor, int t0)
{
-#if DEBUG_RA_VALUES || DEBUG_FRAME_CONTENTS
- int i = 0;
-#endif
- char frame[10];
- int frame_pos=0;
-
- DbpString("Starting Hitag2 emulator, press button to end");
- hitag2_init();
-
- /* Set up simulator mode, frequency divisor which will drive the FPGA
- * and analog mux selection.
- */
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
- RELAY_OFF();
-
- /* Set up Timer 1:
- * Capture mode, timer source MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
- * external trigger rising edge, load RA on rising edge of TIOA, load RB on rising
- * edge of TIOA. Assign PA15 to TIOA1 (peripheral B)
- */
-
- AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
- AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
- AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK |
- AT91C_TC_ETRGEDG_RISING |
- AT91C_TC_ABETRG |
- AT91C_TC_LDRA_RISING |
- AT91C_TC_LDRB_RISING;
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN |
- AT91C_TC_SWTRG;
-
- /* calculate the new value for the carrier period in terms of TC1 values */
- t0 = t0/2;
-
- int overflow = 0;
- while(!BUTTON_PRESS()) {
- WDT_HIT();
- if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
- int ra = AT91C_BASE_TC1->TC_RA;
- if((ra > t0*HITAG_T_EOF) | overflow) ra = t0*HITAG_T_EOF+1;
-#if DEBUG_RA_VALUES
- if(ra > 255 || overflow) ra = 255;
- ((char*)BigBuf)[i] = ra;
- i = (i+1) % 8000;
-#endif
-
- if(overflow || (ra > t0*HITAG_T_EOF) || (ra < t0*HITAG_T_0_MIN)) {
- /* Ignore */
- } else if(ra >= t0*HITAG_T_1_MIN ) {
- /* '1' bit */
- if(frame_pos < 8*sizeof(frame)) {
- frame[frame_pos / 8] |= 1<<( 7-(frame_pos%8) );
- frame_pos++;
- }
- } else if(ra >= t0*HITAG_T_0_MIN) {
- /* '0' bit */
- if(frame_pos < 8*sizeof(frame)) {
- frame[frame_pos / 8] |= 0<<( 7-(frame_pos%8) );
- frame_pos++;
- }
- }
-
- overflow = 0;
- LED_D_ON();
- } else {
- if(AT91C_BASE_TC1->TC_CV > t0*HITAG_T_EOF) {
- /* Minor nuisance: In Capture mode, the timer can not be
- * stopped by a Compare C. There's no way to stop the clock
- * in software, so we'll just have to note the fact that an
- * overflow happened and the next loaded timer value might
- * have wrapped. Also, this marks the end of frame, and the
- * still running counter can be used to determine the correct
- * time for the start of the reply.
- */
- overflow = 1;
-
- if(frame_pos > 0) {
- /* Have a frame, do something with it */
-#if DEBUG_FRAME_CONTENTS
- ((char*)BigBuf)[i++] = frame_pos;
- memcpy( ((char*)BigBuf)+i, frame, 7);
- i+=7;
- i = i % sizeof(BigBuf);
-#endif
- hitag_handle_frame(t0, frame_pos, frame);
- memset(frame, 0, sizeof(frame));
- }
- frame_pos = 0;
-
- }
- LED_D_OFF();
- }
- }
- DbpString("All done");
-}
-
-static void hitag_send_bit(int t0, int bit) {
- if(bit == 1) {
- /* Manchester: Loaded, then unloaded */
- LED_A_ON();
- SHORT_COIL();
- while(AT91C_BASE_TC1->TC_CV < t0*15);
- OPEN_COIL();
- while(AT91C_BASE_TC1->TC_CV < t0*31);
- LED_A_OFF();
- } else if(bit == 0) {
- /* Manchester: Unloaded, then loaded */
- LED_B_ON();
- OPEN_COIL();
- while(AT91C_BASE_TC1->TC_CV < t0*15);
- SHORT_COIL();
- while(AT91C_BASE_TC1->TC_CV < t0*31);
- LED_B_OFF();
- }
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; /* Reset clock for the next bit */
-
-}
-static void hitag_send_frame(int t0, int frame_len, const char const * frame, int fdt)
-{
- OPEN_COIL();
- AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
-
- /* Wait for HITAG_T_WRESP carrier periods after the last reader bit,
- * not that since the clock counts since the rising edge, but T_wresp is
- * with respect to the falling edge, we need to wait actually (T_wresp - T_g)
- * periods. The gap time T_g varies (4..10).
- */
- while(AT91C_BASE_TC1->TC_CV < t0*(fdt-8));
-
- int saved_cmr = AT91C_BASE_TC1->TC_CMR;
- AT91C_BASE_TC1->TC_CMR &= ~AT91C_TC_ETRGEDG; /* Disable external trigger for the clock */
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; /* Reset the clock and use it for response timing */
-
- int i;
- for(i=0; i<5; i++)
- hitag_send_bit(t0, 1); /* Start of frame */
-
- for(i=0; i<frame_len; i++) {
- hitag_send_bit(t0, !!(frame[i/ 8] & (1<<( 7-(i%8) ))) );
- }
-
- OPEN_COIL();
- AT91C_BASE_TC1->TC_CMR = saved_cmr;
-}
-
-/* Callback structure to cleanly separate tag emulation code from the radio layer. */
-static int hitag_cb(const char* response_data, const int response_length, const int fdt, void *cb_cookie)
-{
- hitag_send_frame(*(int*)cb_cookie, response_length, response_data, fdt);
- return 0;
-}
-/* Frame length in bits, frame contents in MSBit first format */
-static void hitag_handle_frame(int t0, int frame_len, char *frame)
-{
- hitag2_handle_command(frame, frame_len, hitag_cb, &t0);
}
// compose fc/8 fc/10 waveform
{
uint8_t *dest = (uint8_t *)BigBuf;
int m=0, n=0, i=0, idx=0, found=0, lastval=0;
- uint32_t hi=0, lo=0;
+ uint32_t hi2=0, hi=0, lo=0;
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// Connect the A/D to the peak-detected low-frequency path.
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
{
found=1;
idx+=6;
- if (found && (hi|lo)) {
- Dbprintf("TAG ID: %x%08x (%d)",
- (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+ if (found && (hi2|hi|lo)) {
+ if (hi2 != 0){
+ Dbprintf("TAG ID: %x%08x%08x (%d)",
+ (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+ }
+ else {
+ Dbprintf("TAG ID: %x%08x (%d)",
+ (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+ }
/* if we're only looking for one tag */
if (findone)
{
*low = lo;
return;
}
+ hi2=0;
hi=0;
lo=0;
found=0;
}
if (found) {
if (dest[idx] && (!dest[idx+1]) ) {
+ hi2=(hi2<<1)|(hi>>31);
hi=(hi<<1)|(lo>>31);
lo=(lo<<1)|0;
} else if ( (!dest[idx]) && dest[idx+1]) {
+ hi2=(hi2<<1)|(hi>>31);
hi=(hi<<1)|(lo>>31);
lo=(lo<<1)|1;
} else {
found=0;
+ hi2=0;
hi=0;
lo=0;
}
found=1;
idx+=6;
if (found && (hi|lo)) {
- Dbprintf("TAG ID: %x%08x (%d)",
- (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+ if (hi2 != 0){
+ Dbprintf("TAG ID: %x%08x%08x (%d)",
+ (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+ }
+ else {
+ Dbprintf("TAG ID: %x%08x (%d)",
+ (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+ }
/* if we're only looking for one tag */
if (findone)
{
*low = lo;
return;
}
+ hi2=0;
hi=0;
lo=0;
found=0;
WDT_HIT();
}
}
+
+void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
+{
+ uint8_t *dest = (uint8_t *)BigBuf;
+ int m=0, n=0, i=0, idx=0, lastval=0;
+ int found=0;
+ uint32_t code=0, code2=0;
+ //uint32_t hi2=0, hi=0, lo=0;
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // Connect the A/D to the peak-detected low-frequency path.
+ SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+
+ // Give it a bit of time for the resonant antenna to settle.
+ SpinDelay(50);
+
+ // Now set up the SSC to get the ADC samples that are now streaming at us.
+ FpgaSetupSsc();
+
+ for(;;) {
+ WDT_HIT();
+ if (ledcontrol)
+ LED_A_ON();
+ if(BUTTON_PRESS()) {
+ DbpString("Stopped");
+ if (ledcontrol)
+ LED_A_OFF();
+ return;
+ }
+
+ i = 0;
+ m = sizeof(BigBuf);
+ memset(dest,128,m);
+ for(;;) {
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = 0x43;
+ if (ledcontrol)
+ LED_D_ON();
+ }
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ // we don't care about actual value, only if it's more or less than a
+ // threshold essentially we capture zero crossings for later analysis
+ if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
+ i++;
+ if (ledcontrol)
+ LED_D_OFF();
+ if(i >= m) {
+ break;
+ }
+ }
+ }
+
+ // FSK demodulator
+
+ // sync to first lo-hi transition
+ for( idx=1; idx<m; idx++) {
+ if (dest[idx-1]<dest[idx])
+ lastval=idx;
+ break;
+ }
+ WDT_HIT();
+
+ // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
+ // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
+ // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
+ for( i=0; idx<m; idx++) {
+ if (dest[idx-1]<dest[idx]) {
+ dest[i]=idx-lastval;
+ if (dest[i] <= 8) {
+ dest[i]=1;
+ } else {
+ dest[i]=0;
+ }
+
+ lastval=idx;
+ i++;
+ }
+ }
+ m=i;
+ WDT_HIT();
+
+ // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
+ lastval=dest[0];
+ idx=0;
+ i=0;
+ n=0;
+ for( idx=0; idx<m; idx++) {
+ if (dest[idx]==lastval) {
+ n++;
+ } else {
+ // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
+ // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
+ // swallowed up by rounding
+ // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
+ // special start of frame markers use invalid manchester states (no transitions) by using sequences
+ // like 111000
+ if (dest[idx-1]) {
+ n=(n+1)/7; // fc/8 in sets of 7
+ } else {
+ n=(n+1)/6; // fc/10 in sets of 6
+ }
+ switch (n) { // stuff appropriate bits in buffer
+ case 0:
+ case 1: // one bit
+ dest[i++]=dest[idx-1]^1;
+ //Dbprintf("%d",dest[idx-1]);
+ break;
+ case 2: // two bits
+ dest[i++]=dest[idx-1]^1;
+ dest[i++]=dest[idx-1]^1;
+ //Dbprintf("%d",dest[idx-1]);
+ //Dbprintf("%d",dest[idx-1]);
+ break;
+ case 3: // 3 bit start of frame markers
+ for(int j=0; j<3; j++){
+ dest[i++]=dest[idx-1]^1;
+ // Dbprintf("%d",dest[idx-1]);
+ }
+ break;
+ case 4:
+ for(int j=0; j<4; j++){
+ dest[i++]=dest[idx-1]^1;
+ // Dbprintf("%d",dest[idx-1]);
+ }
+ break;
+ case 5:
+ for(int j=0; j<5; j++){
+ dest[i++]=dest[idx-1]^1;
+ // Dbprintf("%d",dest[idx-1]);
+ }
+ break;
+ case 6:
+ for(int j=0; j<6; j++){
+ dest[i++]=dest[idx-1]^1;
+ // Dbprintf("%d",dest[idx-1]);
+ }
+ break;
+ case 7:
+ for(int j=0; j<7; j++){
+ dest[i++]=dest[idx-1]^1;
+ // Dbprintf("%d",dest[idx-1]);
+ }
+ break;
+ case 8:
+ for(int j=0; j<8; j++){
+ dest[i++]=dest[idx-1]^1;
+ // Dbprintf("%d",dest[idx-1]);
+ }
+ break;
+ case 9:
+ for(int j=0; j<9; j++){
+ dest[i++]=dest[idx-1]^1;
+ // Dbprintf("%d",dest[idx-1]);
+ }
+ break;
+ case 10:
+ for(int j=0; j<10; j++){
+ dest[i++]=dest[idx-1]^1;
+ // Dbprintf("%d",dest[idx-1]);
+ }
+ break;
+ case 11:
+ for(int j=0; j<11; j++){
+ dest[i++]=dest[idx-1]^1;
+ // Dbprintf("%d",dest[idx-1]);
+ }
+ break;
+ case 12:
+ for(int j=0; j<12; j++){
+ dest[i++]=dest[idx-1]^1;
+ // Dbprintf("%d",dest[idx-1]);
+ }
+ break;
+ default: // this shouldn't happen, don't stuff any bits
+ //Dbprintf("%d",dest[idx-1]);
+ break;
+ }
+ n=0;
+ lastval=dest[idx];
+ }
+ }//end for
+ /*for(int j=0; j<64;j+=8){
+ Dbprintf("%d%d%d%d%d%d%d%d",dest[j],dest[j+1],dest[j+2],dest[j+3],dest[j+4],dest[j+5],dest[j+6],dest[j+7]);
+ }
+ Dbprintf("\n");*/
+ m=i;
+ WDT_HIT();
+
+ for( idx=0; idx<m-9; idx++) {
+ if ( !(dest[idx]) && !(dest[idx+1]) && !(dest[idx+2]) && !(dest[idx+3]) && !(dest[idx+4]) && !(dest[idx+5]) && !(dest[idx+6]) && !(dest[idx+7]) && !(dest[idx+8])&& (dest[idx+9])){
+ found=1;
+ //idx+=9;
+ if (found) {
+ Dbprintf("%d%d%d%d%d%d%d%d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7]);
+ Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+8], dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15]);
+ Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+16],dest[idx+17],dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23]);
+ Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+24],dest[idx+25],dest[idx+26],dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31]);
+ Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35],dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39]);
+ Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44],dest[idx+45],dest[idx+46],dest[idx+47]);
+ Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53],dest[idx+54],dest[idx+55]);
+ Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
+
+ short version='\x00';
+ char unknown='\x00';
+ uint16_t number=0;
+ for(int j=14;j<18;j++){
+ //Dbprintf("%d",dest[idx+j]);
+ version <<=1;
+ if (dest[idx+j]) version |= 1;
+ }
+ for(int j=19;j<27;j++){
+ //Dbprintf("%d",dest[idx+j]);
+ unknown <<=1;
+ if (dest[idx+j]) unknown |= 1;
+ }
+ for(int j=36;j<45;j++){
+ //Dbprintf("%d",dest[idx+j]);
+ number <<=1;
+ if (dest[idx+j]) number |= 1;
+ }
+ for(int j=46;j<53;j++){
+ //Dbprintf("%d",dest[idx+j]);
+ number <<=1;
+ if (dest[idx+j]) number |= 1;
+ }
+ for(int j=0; j<32; j++){
+ code <<=1;
+ if(dest[idx+j]) code |= 1;
+ }
+ for(int j=32; j<64; j++){
+ code2 <<=1;
+ if(dest[idx+j]) code2 |= 1;
+ }
+
+ Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,unknown,number,code,code2);
+ if (ledcontrol)
+ LED_D_OFF();
+ }
+ // if we're only looking for one tag
+ if (findone){
+ //*high = hi;
+ //*low = lo;
+ LED_A_OFF();
+ return;
+ }
+
+ //hi=0;
+ //lo=0;
+ found=0;
+ }
+
+ }
+ }
+ WDT_HIT();
+}
+
+/*------------------------------
+ * T5555/T5557/T5567 routines
+ *------------------------------
+ */
+
+/* T55x7 configuration register definitions */
+#define T55x7_POR_DELAY 0x00000001
+#define T55x7_ST_TERMINATOR 0x00000008
+#define T55x7_PWD 0x00000010
+#define T55x7_MAXBLOCK_SHIFT 5
+#define T55x7_AOR 0x00000200
+#define T55x7_PSKCF_RF_2 0
+#define T55x7_PSKCF_RF_4 0x00000400
+#define T55x7_PSKCF_RF_8 0x00000800
+#define T55x7_MODULATION_DIRECT 0
+#define T55x7_MODULATION_PSK1 0x00001000
+#define T55x7_MODULATION_PSK2 0x00002000
+#define T55x7_MODULATION_PSK3 0x00003000
+#define T55x7_MODULATION_FSK1 0x00004000
+#define T55x7_MODULATION_FSK2 0x00005000
+#define T55x7_MODULATION_FSK1a 0x00006000
+#define T55x7_MODULATION_FSK2a 0x00007000
+#define T55x7_MODULATION_MANCHESTER 0x00008000
+#define T55x7_MODULATION_BIPHASE 0x00010000
+#define T55x7_BITRATE_RF_8 0
+#define T55x7_BITRATE_RF_16 0x00040000
+#define T55x7_BITRATE_RF_32 0x00080000
+#define T55x7_BITRATE_RF_40 0x000C0000
+#define T55x7_BITRATE_RF_50 0x00100000
+#define T55x7_BITRATE_RF_64 0x00140000
+#define T55x7_BITRATE_RF_100 0x00180000
+#define T55x7_BITRATE_RF_128 0x001C0000
+
+/* T5555 (Q5) configuration register definitions */
+#define T5555_ST_TERMINATOR 0x00000001
+#define T5555_MAXBLOCK_SHIFT 0x00000001
+#define T5555_MODULATION_MANCHESTER 0
+#define T5555_MODULATION_PSK1 0x00000010
+#define T5555_MODULATION_PSK2 0x00000020
+#define T5555_MODULATION_PSK3 0x00000030
+#define T5555_MODULATION_FSK1 0x00000040
+#define T5555_MODULATION_FSK2 0x00000050
+#define T5555_MODULATION_BIPHASE 0x00000060
+#define T5555_MODULATION_DIRECT 0x00000070
+#define T5555_INVERT_OUTPUT 0x00000080
+#define T5555_PSK_RF_2 0
+#define T5555_PSK_RF_4 0x00000100
+#define T5555_PSK_RF_8 0x00000200
+#define T5555_USE_PWD 0x00000400
+#define T5555_USE_AOR 0x00000800
+#define T5555_BITRATE_SHIFT 12
+#define T5555_FAST_WRITE 0x00004000
+#define T5555_PAGE_SELECT 0x00008000
+
+/*
+ * Relevant times in microsecond
+ * To compensate antenna falling times shorten the write times
+ * and enlarge the gap ones.
+ */
+#define START_GAP 250
+#define WRITE_GAP 160
+#define WRITE_0 144 // 192
+#define WRITE_1 400 // 432 for T55x7; 448 for E5550
+
+// VALUES TAKEN FROM EM4x function: SendForward
+// START_GAP = 440; //(55*8)
+// WRITE_GAP = 128; //(16*8)
+// WRITE_1 = 256 32*8; //32 cycles at 125Khz (8us each) 1
+// //These timings work for 4469/4269/4305 (with the 55*8 above)
+// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8); // (8us each) 0
+
+
+
+// Write one bit to card
+void T55xxWriteBit(int bit)
+{
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ if (bit == 0)
+ SpinDelayUs(WRITE_0);
+ else
+ SpinDelayUs(WRITE_1);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelayUs(WRITE_GAP);
+}
+
+// Write one card block in page 0, no lock
+void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
+{
+ unsigned int i;
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // Give it a bit of time for the resonant antenna to settle.
+ // And for the tag to fully power up
+ SpinDelay(150);
+
+ // Now start writting
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelayUs(START_GAP);
+
+ // Opcode
+ T55xxWriteBit(1);
+ T55xxWriteBit(0); //Page 0
+ if (PwdMode == 1){
+ // Pwd
+ for (i = 0x80000000; i != 0; i >>= 1)
+ T55xxWriteBit(Pwd & i);
+ }
+ // Lock bit
+ T55xxWriteBit(0);
+
+ // Data
+ for (i = 0x80000000; i != 0; i >>= 1)
+ T55xxWriteBit(Data & i);
+
+ // Block
+ for (i = 0x04; i != 0; i >>= 1)
+ T55xxWriteBit(Block & i);
+
+ // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
+ // so wait a little more)
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ SpinDelay(20);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+}
+
+// Read one card block in page 0
+void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
+{
+ uint8_t *dest = mifare_get_bigbufptr();
+ uint16_t bufferlength = 16000;
+ uint32_t i = 0;
+
+ // Clear destination buffer before sending the command 0x80 = average.
+ memset(dest, 0x80, bufferlength);
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
+ // Connect the A/D to the peak-detected low-frequency path.
+ SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+ // Now set up the SSC to get the ADC samples that are now streaming at us.
+ FpgaSetupSsc();
+
+ LED_D_ON();
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // Give it a bit of time for the resonant antenna to settle.
+ // And for the tag to fully power up
+ SpinDelay(150);
+
+ // Now start writting
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelayUs(START_GAP);
+
+ // Opcode
+ T55xxWriteBit(1);
+ T55xxWriteBit(0); //Page 0
+ if (PwdMode == 1){
+ // Pwd
+ for (i = 0x80000000; i != 0; i >>= 1)
+ T55xxWriteBit(Pwd & i);
+ }
+ // Lock bit
+ T55xxWriteBit(0);
+ // Block
+ for (i = 0x04; i != 0; i >>= 1)
+ T55xxWriteBit(Block & i);
+
+ // Turn field on to read the response
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // Now do the acquisition
+ i = 0;
+ for(;;) {
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+ AT91C_BASE_SSC->SSC_THR = 0x43;
+ LED_D_ON();
+ }
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+ dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ LED_D_OFF();
+ ++i;
+ if (i > bufferlength) break;
+ }
+ }
+
+ cmd_send(CMD_ACK,0,0,0,0,0);
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ LED_D_OFF();
+}
+
+// Read card traceability data (page 1)
+void T55xxReadTrace(void){
+ uint8_t *dest = mifare_get_bigbufptr();
+ uint16_t bufferlength = 16000;
+ int i=0;
+
+ // Clear destination buffer before sending the command 0x80 = average
+ memset(dest, 0x80, bufferlength);
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
+ // Connect the A/D to the peak-detected low-frequency path.
+ SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+ // Now set up the SSC to get the ADC samples that are now streaming at us.
+ FpgaSetupSsc();
+
+ LED_D_ON();
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // Give it a bit of time for the resonant antenna to settle.
+ // And for the tag to fully power up
+ SpinDelay(150);
+
+ // Now start writting
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelayUs(START_GAP);
+
+ // Opcode
+ T55xxWriteBit(1);
+ T55xxWriteBit(1); //Page 1
+
+ // Turn field on to read the response
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // Now do the acquisition
+ i = 0;
+ for(;;) {
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+ AT91C_BASE_SSC->SSC_THR = 0x43;
+ LED_D_ON();
+ }
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+ dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ LED_D_OFF();
+ ++i;
+ if (i >= bufferlength) break;
+ }
+ }
+
+ cmd_send(CMD_ACK,0,0,0,0,0);
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ LED_D_OFF();
+}
+
+/*-------------- Cloning routines -----------*/
+// Copy HID id to card and setup block 0 config
+void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
+{
+ int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
+ int last_block = 0;
+
+ if (longFMT){
+ // Ensure no more than 84 bits supplied
+ if (hi2>0xFFFFF) {
+ DbpString("Tags can only have 84 bits.");
+ return;
+ }
+ // Build the 6 data blocks for supplied 84bit ID
+ last_block = 6;
+ data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
+ for (int i=0;i<4;i++) {
+ if (hi2 & (1<<(19-i)))
+ data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
+ else
+ data1 |= (1<<((3-i)*2)); // 0 -> 01
+ }
+
+ data2 = 0;
+ for (int i=0;i<16;i++) {
+ if (hi2 & (1<<(15-i)))
+ data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data2 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+
+ data3 = 0;
+ for (int i=0;i<16;i++) {
+ if (hi & (1<<(31-i)))
+ data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data3 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+
+ data4 = 0;
+ for (int i=0;i<16;i++) {
+ if (hi & (1<<(15-i)))
+ data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data4 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+
+ data5 = 0;
+ for (int i=0;i<16;i++) {
+ if (lo & (1<<(31-i)))
+ data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data5 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+
+ data6 = 0;
+ for (int i=0;i<16;i++) {
+ if (lo & (1<<(15-i)))
+ data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data6 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+ }
+ else {
+ // Ensure no more than 44 bits supplied
+ if (hi>0xFFF) {
+ DbpString("Tags can only have 44 bits.");
+ return;
+ }
+
+ // Build the 3 data blocks for supplied 44bit ID
+ last_block = 3;
+
+ data1 = 0x1D000000; // load preamble
+
+ for (int i=0;i<12;i++) {
+ if (hi & (1<<(11-i)))
+ data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
+ else
+ data1 |= (1<<((11-i)*2)); // 0 -> 01
+ }
+
+ data2 = 0;
+ for (int i=0;i<16;i++) {
+ if (lo & (1<<(31-i)))
+ data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data2 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+
+ data3 = 0;
+ for (int i=0;i<16;i++) {
+ if (lo & (1<<(15-i)))
+ data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data3 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+ }
+
+ LED_D_ON();
+ // Program the data blocks for supplied ID
+ // and the block 0 for HID format
+ T55xxWriteBlock(data1,1,0,0);
+ T55xxWriteBlock(data2,2,0,0);
+ T55xxWriteBlock(data3,3,0,0);
+
+ if (longFMT) { // if long format there are 6 blocks
+ T55xxWriteBlock(data4,4,0,0);
+ T55xxWriteBlock(data5,5,0,0);
+ T55xxWriteBlock(data6,6,0,0);
+ }
+
+ // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
+ T55xxWriteBlock(T55x7_BITRATE_RF_50 |
+ T55x7_MODULATION_FSK2a |
+ last_block << T55x7_MAXBLOCK_SHIFT,
+ 0,0,0);
+
+ LED_D_OFF();
+
+ DbpString("DONE!");
+}
+
+void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
+{
+ int data1=0, data2=0; //up to six blocks for long format
+
+ data1 = hi; // load preamble
+ data2 = lo;
+
+ LED_D_ON();
+ // Program the data blocks for supplied ID
+ // and the block 0 for HID format
+ T55xxWriteBlock(data1,1,0,0);
+ T55xxWriteBlock(data2,2,0,0);
+
+ //Config Block
+ T55xxWriteBlock(0x00147040,0,0,0);
+ LED_D_OFF();
+
+ DbpString("DONE!");
+}
+
+// Define 9bit header for EM410x tags
+#define EM410X_HEADER 0x1FF
+#define EM410X_ID_LENGTH 40
+
+void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
+{
+ int i, id_bit;
+ uint64_t id = EM410X_HEADER;
+ uint64_t rev_id = 0; // reversed ID
+ int c_parity[4]; // column parity
+ int r_parity = 0; // row parity
+ uint32_t clock = 0;
+
+ // Reverse ID bits given as parameter (for simpler operations)
+ for (i = 0; i < EM410X_ID_LENGTH; ++i) {
+ if (i < 32) {
+ rev_id = (rev_id << 1) | (id_lo & 1);
+ id_lo >>= 1;
+ } else {
+ rev_id = (rev_id << 1) | (id_hi & 1);
+ id_hi >>= 1;
+ }
+ }
+
+ for (i = 0; i < EM410X_ID_LENGTH; ++i) {
+ id_bit = rev_id & 1;
+
+ if (i % 4 == 0) {
+ // Don't write row parity bit at start of parsing
+ if (i)
+ id = (id << 1) | r_parity;
+ // Start counting parity for new row
+ r_parity = id_bit;
+ } else {
+ // Count row parity
+ r_parity ^= id_bit;
+ }
+
+ // First elements in column?
+ if (i < 4)
+ // Fill out first elements
+ c_parity[i] = id_bit;
+ else
+ // Count column parity
+ c_parity[i % 4] ^= id_bit;
+
+ // Insert ID bit
+ id = (id << 1) | id_bit;
+ rev_id >>= 1;
+ }
+
+ // Insert parity bit of last row
+ id = (id << 1) | r_parity;
+
+ // Fill out column parity at the end of tag
+ for (i = 0; i < 4; ++i)
+ id = (id << 1) | c_parity[i];
+
+ // Add stop bit
+ id <<= 1;
+
+ Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
+ LED_D_ON();
+
+ // Write EM410x ID
+ T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
+ T55xxWriteBlock((uint32_t)id, 2, 0, 0);
+
+ // Config for EM410x (RF/64, Manchester, Maxblock=2)
+ if (card) {
+ // Clock rate is stored in bits 8-15 of the card value
+ clock = (card & 0xFF00) >> 8;
+ Dbprintf("Clock rate: %d", clock);
+ switch (clock)
+ {
+ case 32:
+ clock = T55x7_BITRATE_RF_32;
+ break;
+ case 16:
+ clock = T55x7_BITRATE_RF_16;
+ break;
+ case 0:
+ // A value of 0 is assumed to be 64 for backwards-compatibility
+ // Fall through...
+ case 64:
+ clock = T55x7_BITRATE_RF_64;
+ break;
+ default:
+ Dbprintf("Invalid clock rate: %d", clock);
+ return;
+ }
+
+ // Writing configuration for T55x7 tag
+ T55xxWriteBlock(clock |
+ T55x7_MODULATION_MANCHESTER |
+ 2 << T55x7_MAXBLOCK_SHIFT,
+ 0, 0, 0);
+ }
+ else
+ // Writing configuration for T5555(Q5) tag
+ T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
+ T5555_MODULATION_MANCHESTER |
+ 2 << T5555_MAXBLOCK_SHIFT,
+ 0, 0, 0);
+
+ LED_D_OFF();
+ Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
+ (uint32_t)(id >> 32), (uint32_t)id);
+}
+
+// Clone Indala 64-bit tag by UID to T55x7
+void CopyIndala64toT55x7(int hi, int lo)
+{
+
+ //Program the 2 data blocks for supplied 64bit UID
+ // and the block 0 for Indala64 format
+ T55xxWriteBlock(hi,1,0,0);
+ T55xxWriteBlock(lo,2,0,0);
+ //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
+ T55xxWriteBlock(T55x7_BITRATE_RF_32 |
+ T55x7_MODULATION_PSK1 |
+ 2 << T55x7_MAXBLOCK_SHIFT,
+ 0, 0, 0);
+ //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
+// T5567WriteBlock(0x603E1042,0);
+
+ DbpString("DONE!");
+
+}
+
+void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
+{
+
+ //Program the 7 data blocks for supplied 224bit UID
+ // and the block 0 for Indala224 format
+ T55xxWriteBlock(uid1,1,0,0);
+ T55xxWriteBlock(uid2,2,0,0);
+ T55xxWriteBlock(uid3,3,0,0);
+ T55xxWriteBlock(uid4,4,0,0);
+ T55xxWriteBlock(uid5,5,0,0);
+ T55xxWriteBlock(uid6,6,0,0);
+ T55xxWriteBlock(uid7,7,0,0);
+ //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
+ T55xxWriteBlock(T55x7_BITRATE_RF_32 |
+ T55x7_MODULATION_PSK1 |
+ 7 << T55x7_MAXBLOCK_SHIFT,
+ 0,0,0);
+ //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
+// T5567WriteBlock(0x603E10E2,0);
+
+ DbpString("DONE!");
+
+}
+
+
+#define abs(x) ( ((x)<0) ? -(x) : (x) )
+#define max(x,y) ( x<y ? y:x)
+
+int DemodPCF7931(uint8_t **outBlocks) {
+ uint8_t BitStream[256];
+ uint8_t Blocks[8][16];
+ uint8_t *GraphBuffer = (uint8_t *)BigBuf;
+ int GraphTraceLen = sizeof(BigBuf);
+ int i, j, lastval, bitidx, half_switch;
+ int clock = 64;
+ int tolerance = clock / 8;
+ int pmc, block_done;
+ int lc, warnings = 0;
+ int num_blocks = 0;
+ int lmin=128, lmax=128;
+ uint8_t dir;
+
+ AcquireRawAdcSamples125k(0);
+
+ lmin = 64;
+ lmax = 192;
+
+ i = 2;
+
+ /* Find first local max/min */
+ if(GraphBuffer[1] > GraphBuffer[0]) {
+ while(i < GraphTraceLen) {
+ if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
+ break;
+ i++;
+ }
+ dir = 0;
+ }
+ else {
+ while(i < GraphTraceLen) {
+ if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
+ break;
+ i++;
+ }
+ dir = 1;
+ }
+
+ lastval = i++;
+ half_switch = 0;
+ pmc = 0;
+ block_done = 0;
+
+ for (bitidx = 0; i < GraphTraceLen; i++)
+ {
+ if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
+ {
+ lc = i - lastval;
+ lastval = i;
+
+ // Switch depending on lc length:
+ // Tolerance is 1/8 of clock rate (arbitrary)
+ if (abs(lc-clock/4) < tolerance) {
+ // 16T0
+ if((i - pmc) == lc) { /* 16T0 was previous one */
+ /* It's a PMC ! */
+ i += (128+127+16+32+33+16)-1;
+ lastval = i;
+ pmc = 0;
+ block_done = 1;
+ }
+ else {
+ pmc = i;
+ }
+ } else if (abs(lc-clock/2) < tolerance) {
+ // 32TO
+ if((i - pmc) == lc) { /* 16T0 was previous one */
+ /* It's a PMC ! */
+ i += (128+127+16+32+33)-1;
+ lastval = i;
+ pmc = 0;
+ block_done = 1;
+ }
+ else if(half_switch == 1) {
+ BitStream[bitidx++] = 0;
+ half_switch = 0;
+ }
+ else
+ half_switch++;
+ } else if (abs(lc-clock) < tolerance) {
+ // 64TO
+ BitStream[bitidx++] = 1;
+ } else {
+ // Error
+ warnings++;
+ if (warnings > 10)
+ {
+ Dbprintf("Error: too many detection errors, aborting.");
+ return 0;
+ }
+ }
+
+ if(block_done == 1) {
+ if(bitidx == 128) {
+ for(j=0; j<16; j++) {
+ Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
+ 64*BitStream[j*8+6]+
+ 32*BitStream[j*8+5]+
+ 16*BitStream[j*8+4]+
+ 8*BitStream[j*8+3]+
+ 4*BitStream[j*8+2]+
+ 2*BitStream[j*8+1]+
+ BitStream[j*8];
+ }
+ num_blocks++;
+ }
+ bitidx = 0;
+ block_done = 0;
+ half_switch = 0;
+ }
+ if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
+ else dir = 1;
+ }
+ if(bitidx==255)
+ bitidx=0;
+ warnings = 0;
+ if(num_blocks == 4) break;
+ }
+ memcpy(outBlocks, Blocks, 16*num_blocks);
+ return num_blocks;
+}
+
+int IsBlock0PCF7931(uint8_t *Block) {
+ // Assume RFU means 0 :)
+ if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
+ return 1;
+ if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
+ return 1;
+ return 0;
+}
+
+int IsBlock1PCF7931(uint8_t *Block) {
+ // Assume RFU means 0 :)
+ if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
+ if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
+ return 1;
+
+ return 0;
+}
+#define ALLOC 16
+
+void ReadPCF7931() {
+ uint8_t Blocks[8][17];
+ uint8_t tmpBlocks[4][16];
+ int i, j, ind, ind2, n;
+ int num_blocks = 0;
+ int max_blocks = 8;
+ int ident = 0;
+ int error = 0;
+ int tries = 0;
+
+ memset(Blocks, 0, 8*17*sizeof(uint8_t));
+
+ do {
+ memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
+ n = DemodPCF7931((uint8_t**)tmpBlocks);
+ if(!n)
+ error++;
+ if(error==10 && num_blocks == 0) {
+ Dbprintf("Error, no tag or bad tag");
+ return;
+ }
+ else if (tries==20 || error==10) {
+ Dbprintf("Error reading the tag");
+ Dbprintf("Here is the partial content");
+ goto end;
+ }
+
+ for(i=0; i<n; i++)
+ Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
+ tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
+ tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
+ if(!ident) {
+ for(i=0; i<n; i++) {
+ if(IsBlock0PCF7931(tmpBlocks[i])) {
+ // Found block 0 ?
+ if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
+ // Found block 1!
+ // \o/
+ ident = 1;
+ memcpy(Blocks[0], tmpBlocks[i], 16);
+ Blocks[0][ALLOC] = 1;
+ memcpy(Blocks[1], tmpBlocks[i+1], 16);
+ Blocks[1][ALLOC] = 1;
+ max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
+ // Debug print
+ Dbprintf("(dbg) Max blocks: %d", max_blocks);
+ num_blocks = 2;
+ // Handle following blocks
+ for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
+ if(j==n) j=0;
+ if(j==i) break;
+ memcpy(Blocks[ind2], tmpBlocks[j], 16);
+ Blocks[ind2][ALLOC] = 1;
+ }
+ break;
+ }
+ }
+ }
+ }
+ else {
+ for(i=0; i<n; i++) { // Look for identical block in known blocks
+ if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
+ for(j=0; j<max_blocks; j++) {
+ if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
+ // Found an identical block
+ for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
+ if(ind2 < 0)
+ ind2 = max_blocks;
+ if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
+ // Dbprintf("Tmp %d -> Block %d", ind, ind2);
+ memcpy(Blocks[ind2], tmpBlocks[ind], 16);
+ Blocks[ind2][ALLOC] = 1;
+ num_blocks++;
+ if(num_blocks == max_blocks) goto end;
+ }
+ }
+ for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
+ if(ind2 > max_blocks)
+ ind2 = 0;
+ if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
+ // Dbprintf("Tmp %d -> Block %d", ind, ind2);
+ memcpy(Blocks[ind2], tmpBlocks[ind], 16);
+ Blocks[ind2][ALLOC] = 1;
+ num_blocks++;
+ if(num_blocks == max_blocks) goto end;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ tries++;
+ if (BUTTON_PRESS()) return;
+ } while (num_blocks != max_blocks);
+end:
+ Dbprintf("-----------------------------------------");
+ Dbprintf("Memory content:");
+ Dbprintf("-----------------------------------------");
+ for(i=0; i<max_blocks; i++) {
+ if(Blocks[i][ALLOC]==1)
+ Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
+ Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
+ Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
+ else
+ Dbprintf("<missing block %d>", i);
+ }
+ Dbprintf("-----------------------------------------");
+
+ return ;
+}
+
+
+//-----------------------------------
+// EM4469 / EM4305 routines
+//-----------------------------------
+#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
+#define FWD_CMD_WRITE 0xA
+#define FWD_CMD_READ 0x9
+#define FWD_CMD_DISABLE 0x5
+
+
+uint8_t forwardLink_data[64]; //array of forwarded bits
+uint8_t * forward_ptr; //ptr for forward message preparation
+uint8_t fwd_bit_sz; //forwardlink bit counter
+uint8_t * fwd_write_ptr; //forwardlink bit pointer
+
+//====================================================================
+// prepares command bits
+// see EM4469 spec
+//====================================================================
+//--------------------------------------------------------------------
+uint8_t Prepare_Cmd( uint8_t cmd ) {
+ //--------------------------------------------------------------------
+
+ *forward_ptr++ = 0; //start bit
+ *forward_ptr++ = 0; //second pause for 4050 code
+
+ *forward_ptr++ = cmd;
+ cmd >>= 1;
+ *forward_ptr++ = cmd;
+ cmd >>= 1;
+ *forward_ptr++ = cmd;
+ cmd >>= 1;
+ *forward_ptr++ = cmd;
+
+ return 6; //return number of emited bits
+}
+
+//====================================================================
+// prepares address bits
+// see EM4469 spec
+//====================================================================
+
+//--------------------------------------------------------------------
+uint8_t Prepare_Addr( uint8_t addr ) {
+ //--------------------------------------------------------------------
+
+ register uint8_t line_parity;
+
+ uint8_t i;
+ line_parity = 0;
+ for(i=0;i<6;i++) {
+ *forward_ptr++ = addr;
+ line_parity ^= addr;
+ addr >>= 1;
+ }
+
+ *forward_ptr++ = (line_parity & 1);
+
+ return 7; //return number of emited bits
+}
+
+//====================================================================
+// prepares data bits intreleaved with parity bits
+// see EM4469 spec
+//====================================================================
+
+//--------------------------------------------------------------------
+uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
+ //--------------------------------------------------------------------
+
+ register uint8_t line_parity;
+ register uint8_t column_parity;
+ register uint8_t i, j;
+ register uint16_t data;
+
+ data = data_low;
+ column_parity = 0;
+
+ for(i=0; i<4; i++) {
+ line_parity = 0;
+ for(j=0; j<8; j++) {
+ line_parity ^= data;
+ column_parity ^= (data & 1) << j;
+ *forward_ptr++ = data;
+ data >>= 1;
+ }
+ *forward_ptr++ = line_parity;
+ if(i == 1)
+ data = data_hi;
+ }
+
+ for(j=0; j<8; j++) {
+ *forward_ptr++ = column_parity;
+ column_parity >>= 1;
+ }
+ *forward_ptr = 0;
+
+ return 45; //return number of emited bits
+}
+
+//====================================================================
+// Forward Link send function
+// Requires: forwarLink_data filled with valid bits (1 bit per byte)
+// fwd_bit_count set with number of bits to be sent
+//====================================================================
+void SendForward(uint8_t fwd_bit_count) {
+
+ fwd_write_ptr = forwardLink_data;
+ fwd_bit_sz = fwd_bit_count;
+
+ LED_D_ON();
+
+ //Field on
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // Give it a bit of time for the resonant antenna to settle.
+ // And for the tag to fully power up
+ SpinDelay(150);
+
+ // force 1st mod pulse (start gap must be longer for 4305)
+ fwd_bit_sz--; //prepare next bit modulation
+ fwd_write_ptr++;
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+ SpinDelayUs(16*8); //16 cycles on (8us each)
+
+ // now start writting
+ while(fwd_bit_sz-- > 0) { //prepare next bit modulation
+ if(((*fwd_write_ptr++) & 1) == 1)
+ SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
+ else {
+ //These timings work for 4469/4269/4305 (with the 55*8 above)
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ SpinDelayUs(23*8); //16-4 cycles off (8us each)
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+ SpinDelayUs(9*8); //16 cycles on (8us each)
+ }
+ }
+}
+
+
+void EM4xLogin(uint32_t Password) {
+
+ uint8_t fwd_bit_count;
+
+ forward_ptr = forwardLink_data;
+ fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
+ fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
+
+ SendForward(fwd_bit_count);
+
+ //Wait for command to complete
+ SpinDelay(20);
+
+}
+
+void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
+
+ uint8_t *dest = mifare_get_bigbufptr();
+ uint16_t bufferlength = 16000;
+ uint32_t i = 0;
+
+ // Clear destination buffer before sending the command 0x80 = average.
+ memset(dest, 0x80, bufferlength);
+
+ uint8_t fwd_bit_count;
+
+ //If password mode do login
+ if (PwdMode == 1) EM4xLogin(Pwd);
+
+ forward_ptr = forwardLink_data;
+ fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
+ fwd_bit_count += Prepare_Addr( Address );
+
+ // Connect the A/D to the peak-detected low-frequency path.
+ SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+ // Now set up the SSC to get the ADC samples that are now streaming at us.
+ FpgaSetupSsc();
+
+ SendForward(fwd_bit_count);
+
+ // Now do the acquisition
+ i = 0;
+ for(;;) {
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+ AT91C_BASE_SSC->SSC_THR = 0x43;
+ }
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+ dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ ++i;
+ if (i >= bufferlength) break;
+ }
+ }
+
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ LED_D_OFF();
+}
+
+void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
+
+ uint8_t fwd_bit_count;
+
+ //If password mode do login
+ if (PwdMode == 1) EM4xLogin(Pwd);
+
+ forward_ptr = forwardLink_data;
+ fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
+ fwd_bit_count += Prepare_Addr( Address );
+ fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
+
+ SendForward(fwd_bit_count);
+
+ //Wait for write to complete
+ SpinDelay(20);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ LED_D_OFF();
+}