-//-----------------------------------------------------------------------------\r
-// The main application code. This is the first thing called after start.c\r
-// executes.\r
-// Jonathan Westhues, Mar 2006\r
-// Edits by Gerhard de Koning Gans, Sep 2007 (##)\r
-//-----------------------------------------------------------------------------\r
-\r
-\r
-#include <proxmark3.h>\r
-#include "apps.h"\r
-#ifdef WITH_LCD\r
-#include "fonts.h"\r
-#include "LCD.h"\r
-#endif\r
-\r
-// The large multi-purpose buffer, typically used to hold A/D samples,\r
-// maybe pre-processed in some way.\r
-DWORD BigBuf[16000];\r
-\r
-//=============================================================================\r
-// A buffer where we can queue things up to be sent through the FPGA, for\r
-// any purpose (fake tag, as reader, whatever). We go MSB first, since that\r
-// is the order in which they go out on the wire.\r
-//=============================================================================\r
-\r
-BYTE ToSend[256];\r
-int ToSendMax;\r
-static int ToSendBit;\r
-\r
-void ToSendReset(void)\r
-{\r
- ToSendMax = -1;\r
- ToSendBit = 8;\r
-}\r
-\r
-void ToSendStuffBit(int b)\r
-{\r
- if(ToSendBit >= 8) {\r
- ToSendMax++;\r
- ToSend[ToSendMax] = 0;\r
- ToSendBit = 0;\r
- }\r
-\r
- if(b) {\r
- ToSend[ToSendMax] |= (1 << (7 - ToSendBit));\r
- }\r
-\r
- ToSendBit++;\r
-\r
- if(ToSendBit >= sizeof(ToSend)) {\r
- ToSendBit = 0;\r
- DbpString("ToSendStuffBit overflowed!");\r
- }\r
-}\r
-\r
-//=============================================================================\r
-// Debug print functions, to go out over USB, to the usual PC-side client.\r
-//=============================================================================\r
-\r
-void DbpString(char *str)\r
-{\r
- UsbCommand c;\r
- c.cmd = CMD_DEBUG_PRINT_STRING;\r
- c.ext1 = strlen(str);\r
- memcpy(c.d.asBytes, str, c.ext1);\r
-\r
- UsbSendPacket((BYTE *)&c, sizeof(c));\r
- // TODO fix USB so stupid things like this aren't req'd\r
- SpinDelay(50);\r
-}\r
-\r
-void DbpIntegers(int x1, int x2, int x3)\r
-{\r
- UsbCommand c;\r
- c.cmd = CMD_DEBUG_PRINT_INTEGERS;\r
- c.ext1 = x1;\r
- c.ext2 = x2;\r
- c.ext3 = x3;\r
-\r
- UsbSendPacket((BYTE *)&c, sizeof(c));\r
- // XXX\r
- SpinDelay(50);\r
-}\r
-\r
-void AcquireRawAdcSamples125k(BOOL at134khz)\r
-{\r
- BYTE *dest = (BYTE *)BigBuf;\r
- int n = sizeof(BigBuf);\r
- int i;\r
-\r
- memset(dest,0,n);\r
-\r
- if(at134khz) {\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);\r
- } else {\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);\r
- }\r
-\r
- // Connect the A/D to the peak-detected low-frequency path.\r
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);\r
-\r
- // Give it a bit of time for the resonant antenna to settle.\r
- SpinDelay(50);\r
-\r
- // Now set up the SSC to get the ADC samples that are now streaming at us.\r
- FpgaSetupSsc();\r
-\r
- i = 0;\r
- for(;;) {\r
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
- SSC_TRANSMIT_HOLDING = 0x43;\r
- LED_D_ON();\r
- }\r
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
- dest[i] = (BYTE)SSC_RECEIVE_HOLDING;\r
- i++;\r
- LED_D_OFF();\r
- if(i >= n) {\r
- break;\r
- }\r
- }\r
- }\r
- DbpIntegers(dest[0], dest[1], at134khz);\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Read an ADC channel and block till it completes, then return the result\r
-// in ADC units (0 to 1023). Also a routine to average 32 samples and\r
-// return that.\r
-//-----------------------------------------------------------------------------\r
-static int ReadAdc(int ch)\r
-{\r
- DWORD d;\r
-\r
- ADC_CONTROL = ADC_CONTROL_RESET;\r
- ADC_MODE = ADC_MODE_PRESCALE(32) | ADC_MODE_STARTUP_TIME(16) |\r
- ADC_MODE_SAMPLE_HOLD_TIME(8);\r
- ADC_CHANNEL_ENABLE = ADC_CHANNEL(ch);\r
-\r
- ADC_CONTROL = ADC_CONTROL_START;\r
- while(!(ADC_STATUS & ADC_END_OF_CONVERSION(ch)))\r
- ;\r
- d = ADC_CHANNEL_DATA(ch);\r
-\r
- return d;\r
-}\r
-\r
-static int AvgAdc(int ch)\r
-{\r
- int i;\r
- int a = 0;\r
-\r
- for(i = 0; i < 32; i++) {\r
- a += ReadAdc(ch);\r
- }\r
-\r
- return (a + 15) >> 5;\r
-}\r
+//-----------------------------------------------------------------------------
+// Jonathan Westhues, Mar 2006
+// Edits by Gerhard de Koning Gans, Sep 2007 (##)
+//
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// The main application code. This is the first thing called after start.c
+// executes.
+//-----------------------------------------------------------------------------
+
+#include "usb_cdc.h"
+#include "cmd.h"
+
+#include "proxmark3.h"
+#include "apps.h"
+#include "util.h"
+#include "printf.h"
+#include "string.h"
+
+#include <stdarg.h>
+
+#include "legicrf.h"
+#include <hitag2.h>
+
+#ifdef WITH_LCD
+ #include "LCD.h"
+#endif
+
+#define abs(x) ( ((x)<0) ? -(x) : (x) )
+
+//=============================================================================
+// A buffer where we can queue things up to be sent through the FPGA, for
+// any purpose (fake tag, as reader, whatever). We go MSB first, since that
+// is the order in which they go out on the wire.
+//=============================================================================
+
+uint8_t ToSend[512];
+int ToSendMax;
+static int ToSendBit;
+struct common_area common_area __attribute__((section(".commonarea")));
+
+void BufferClear(void)
+{
+ memset(BigBuf,0,sizeof(BigBuf));
+ Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf));
+}
+
+void ToSendReset(void)
+{
+ ToSendMax = -1;
+ ToSendBit = 8;
+}
+
+void ToSendStuffBit(int b)
+{
+ if(ToSendBit >= 8) {
+ ToSendMax++;
+ ToSend[ToSendMax] = 0;
+ ToSendBit = 0;
+ }
+
+ if(b) {
+ ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
+ }
+
+ ToSendBit++;
+
+ if(ToSendBit >= sizeof(ToSend)) {
+ ToSendBit = 0;
+ DbpString("ToSendStuffBit overflowed!");
+ }
+}
+
+//=============================================================================
+// Debug print functions, to go out over USB, to the usual PC-side client.
+//=============================================================================
+
+void DbpString(char *str)
+{
+ byte_t len = strlen(str);
+ cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
+// /* this holds up stuff unless we're connected to usb */
+// if (!UsbConnected())
+// return;
+//
+// UsbCommand c;
+// c.cmd = CMD_DEBUG_PRINT_STRING;
+// c.arg[0] = strlen(str);
+// if(c.arg[0] > sizeof(c.d.asBytes)) {
+// c.arg[0] = sizeof(c.d.asBytes);
+// }
+// memcpy(c.d.asBytes, str, c.arg[0]);
+//
+// UsbSendPacket((uint8_t *)&c, sizeof(c));
+// // TODO fix USB so stupid things like this aren't req'd
+// SpinDelay(50);
+}
+
+#if 0
+void DbpIntegers(int x1, int x2, int x3)
+{
+ cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
+// /* this holds up stuff unless we're connected to usb */
+// if (!UsbConnected())
+// return;
+//
+// UsbCommand c;
+// c.cmd = CMD_DEBUG_PRINT_INTEGERS;
+// c.arg[0] = x1;
+// c.arg[1] = x2;
+// c.arg[2] = x3;
+//
+// UsbSendPacket((uint8_t *)&c, sizeof(c));
+// // XXX
+// SpinDelay(50);
+}
+#endif
+
+void Dbprintf(const char *fmt, ...) {
+// should probably limit size here; oh well, let's just use a big buffer
+ char output_string[128];
+ va_list ap;
+
+ va_start(ap, fmt);
+ kvsprintf(fmt, output_string, 10, ap);
+ va_end(ap);
+
+ DbpString(output_string);
+}
+
+// prints HEX & ASCII
+void Dbhexdump(int len, uint8_t *d, bool bAsci) {
+ int l=0,i;
+ char ascii[9];
+
+ while (len>0) {
+ if (len>8) l=8;
+ else l=len;
+
+ memcpy(ascii,d,l);
+ ascii[l]=0;
+
+ // filter safe ascii
+ for (i=0;i<l;i++)
+ if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
+
+ if (bAsci) {
+ Dbprintf("%-8s %*D",ascii,l,d," ");
+ } else {
+ Dbprintf("%*D",l,d," ");
+ }
+
+ len-=8;
+ d+=8;
+ }
+}
+
+//-----------------------------------------------------------------------------
+// Read an ADC channel and block till it completes, then return the result
+// in ADC units (0 to 1023). Also a routine to average 32 samples and
+// return that.
+//-----------------------------------------------------------------------------
+static int ReadAdc(int ch)
+{
+ uint32_t d;
+
+ AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
+ AT91C_BASE_ADC->ADC_MR =
+ ADC_MODE_PRESCALE(32) |
+ ADC_MODE_STARTUP_TIME(16) |
+ ADC_MODE_SAMPLE_HOLD_TIME(8);
+ AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
+
+ AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
+ while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
+ ;
+ d = AT91C_BASE_ADC->ADC_CDR[ch];
+
+ return d;
+}
+
+int AvgAdc(int ch) // was static - merlok
+{
+ int i;
+ int a = 0;
+
+ for(i = 0; i < 32; i++) {
+ a += ReadAdc(ch);
+ }
+
+ return (a + 15) >> 5;
+}
+
+void MeasureAntennaTuning(void)
+{
+ uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
+ int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
+ int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
+
+// UsbCommand c;
+
+ LED_B_ON();
+ DbpString("Measuring antenna characteristics, please wait...");
+ memset(dest,0,sizeof(FREE_BUFFER_SIZE));
/*
* Sweeps the useful LF range of the proxmark from
* 46.8kHz (divisor=255) to 600kHz (divisor=19) and
- * reads the voltage in the antenna: the result is a graph
- * which should clearly show the resonating frequency of your
- * LF antenna ( hopefully around 90 if it is tuned to 125kHz!)
- */\r
-void SweepLFrange()\r
-{\r
- BYTE *dest = (BYTE *)BigBuf;\r
- int i;\r
-\r
- // clear buffer\r
- memset(BigBuf,0,sizeof(BigBuf));\r
-\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
- for (i=255; i>19; i--) {\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);\r
- SpinDelay(20);\r
- dest[i] = (137500 * AvgAdc(4)) >> 18;\r
- }\r
-}\r
-\r
-void MeasureAntennaTuning(void)\r
-{\r
-// Impedances are Zc = 1/(j*omega*C), in ohms\r
-#define LF_TUNING_CAP_Z 1273 // 1 nF @ 125 kHz\r
-#define HF_TUNING_CAP_Z 235 // 50 pF @ 13.56 MHz\r
-\r
- int vLf125, vLf134, vHf; // in mV\r
-\r
- UsbCommand c;\r
-\r
- // Let the FPGA drive the low-frequency antenna around 125 kHz.\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);\r
- SpinDelay(20);\r
- vLf125 = AvgAdc(4);\r
- // Vref = 3.3V, and a 10000:240 voltage divider on the input\r
- // can measure voltages up to 137500 mV\r
- vLf125 = (137500 * vLf125) >> 10;\r
-\r
- // Let the FPGA drive the low-frequency antenna around 134 kHz.\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);\r
- SpinDelay(20);\r
- vLf134 = AvgAdc(4);\r
- // Vref = 3.3V, and a 10000:240 voltage divider on the input\r
- // can measure voltages up to 137500 mV\r
- vLf134 = (137500 * vLf134) >> 10;\r
-\r
- // Let the FPGA drive the high-frequency antenna around 13.56 MHz.\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);\r
- SpinDelay(20);\r
- vHf = AvgAdc(5);\r
- // Vref = 3300mV, and an 10:1 voltage divider on the input\r
- // can measure voltages up to 33000 mV\r
- vHf = (33000 * vHf) >> 10;\r
-\r
- c.cmd = CMD_MEASURED_ANTENNA_TUNING;\r
- c.ext1 = (vLf125 << 0) | (vLf134 << 16);\r
- c.ext2 = vHf;\r
- c.ext3 = (LF_TUNING_CAP_Z << 0) | (HF_TUNING_CAP_Z << 16);\r
- UsbSendPacket((BYTE *)&c, sizeof(c));\r
-}\r
-\r
-void SimulateTagLowFrequency(int period)\r
-{\r
- int i;\r
- BYTE *tab = (BYTE *)BigBuf;\r
-\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);\r
-\r
- PIO_ENABLE = (1 << GPIO_SSC_DOUT) | (1 << GPIO_SSC_CLK);\r
-\r
- PIO_OUTPUT_ENABLE = (1 << GPIO_SSC_DOUT);\r
- PIO_OUTPUT_DISABLE = (1 << GPIO_SSC_CLK);\r
-\r
-#define SHORT_COIL() LOW(GPIO_SSC_DOUT)\r
-#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)\r
-\r
- i = 0;\r
- for(;;) {\r
- while(!(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK))) {\r
- if(BUTTON_PRESS()) {\r
- return;\r
- }\r
- WDT_HIT();\r
- }\r
-\r
- LED_D_ON();\r
- if(tab[i]) {\r
- OPEN_COIL();\r
- } else {\r
- SHORT_COIL();\r
- }\r
- LED_D_OFF();\r
-\r
- while(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK)) {\r
- if(BUTTON_PRESS()) {\r
- return;\r
- }\r
- WDT_HIT();\r
- }\r
-\r
- i++;\r
- if(i == period) i = 0;\r
- }\r
-}\r
-\r
-// compose fc/8 fc/10 waveform\r
-static void fc(int c, int *n) {\r
- BYTE *dest = (BYTE *)BigBuf;\r
- int idx;\r
-\r
- // for when we want an fc8 pattern every 4 logical bits\r
- if(c==0) {\r
- dest[((*n)++)]=1;\r
- dest[((*n)++)]=1;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- }\r
- // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples\r
- if(c==8) {\r
- for (idx=0; idx<6; idx++) {\r
- dest[((*n)++)]=1;\r
- dest[((*n)++)]=1;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- }\r
- }\r
-\r
- // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples\r
- if(c==10) {\r
- for (idx=0; idx<5; idx++) {\r
- dest[((*n)++)]=1;\r
- dest[((*n)++)]=1;\r
- dest[((*n)++)]=1;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- }\r
- }\r
-}\r
-\r
-// prepare a waveform pattern in the buffer based on the ID given then\r
-// simulate a HID tag until the button is pressed\r
-static void CmdHIDsimTAG(int hi, int lo)\r
-{\r
- int n=0, i=0;\r
- /*\r
- HID tag bitstream format\r
- The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits\r
- A 1 bit is represented as 6 fc8 and 5 fc10 patterns\r
- A 0 bit is represented as 5 fc10 and 6 fc8 patterns\r
- A fc8 is inserted before every 4 bits\r
- A special start of frame pattern is used consisting a0b0 where a and b are neither 0\r
- nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)\r
- */\r
-\r
- if (hi>0xFFF) {\r
- DbpString("Tags can only have 44 bits.");\r
- return;\r
- }\r
- fc(0,&n);\r
- // special start of frame marker containing invalid bit sequences\r
- fc(8, &n); fc(8, &n); // invalid\r
- fc(8, &n); fc(10, &n); // logical 0\r
- fc(10, &n); fc(10, &n); // invalid\r
- fc(8, &n); fc(10, &n); // logical 0\r
-\r
- WDT_HIT();\r
- // manchester encode bits 43 to 32\r
- for (i=11; i>=0; i--) {\r
- if ((i%4)==3) fc(0,&n);\r
- if ((hi>>i)&1) {\r
- fc(10, &n); fc(8, &n); // low-high transition\r
- } else {\r
- fc(8, &n); fc(10, &n); // high-low transition\r
- }\r
- }\r
-\r
- WDT_HIT();\r
- // manchester encode bits 31 to 0\r
- for (i=31; i>=0; i--) {\r
- if ((i%4)==3) fc(0,&n);\r
- if ((lo>>i)&1) {\r
- fc(10, &n); fc(8, &n); // low-high transition\r
- } else {\r
- fc(8, &n); fc(10, &n); // high-low transition\r
- }\r
- }\r
-\r
- LED_A_ON();\r
- SimulateTagLowFrequency(n);\r
- LED_A_OFF();\r
-}\r
-\r
-// loop to capture raw HID waveform then FSK demodulate the TAG ID from it\r
-static void CmdHIDdemodFSK(void)\r
-{\r
- BYTE *dest = (BYTE *)BigBuf;\r
- int m=0, n=0, i=0, idx=0, found=0, lastval=0;\r
- DWORD hi=0, lo=0;\r
-\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);\r
-\r
- // Connect the A/D to the peak-detected low-frequency path.\r
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);\r
-\r
- // Give it a bit of time for the resonant antenna to settle.\r
- SpinDelay(50);\r
-\r
- // Now set up the SSC to get the ADC samples that are now streaming at us.\r
- FpgaSetupSsc();\r
-\r
- for(;;) {\r
- WDT_HIT();\r
- LED_A_ON();\r
- if(BUTTON_PRESS()) {\r
- LED_A_OFF();\r
- return;\r
- }\r
-\r
- i = 0;\r
- m = sizeof(BigBuf);\r
- memset(dest,128,m);\r
- for(;;) {\r
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
- SSC_TRANSMIT_HOLDING = 0x43;\r
- LED_D_ON();\r
- }\r
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
- dest[i] = (BYTE)SSC_RECEIVE_HOLDING;\r
- // we don't care about actual value, only if it's more or less than a\r
- // threshold essentially we capture zero crossings for later analysis\r
- if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;\r
- i++;\r
- LED_D_OFF();\r
- if(i >= m) {\r
- break;\r
- }\r
- }\r
- }\r
-\r
- // FSK demodulator\r
-\r
- // sync to first lo-hi transition\r
- for( idx=1; idx<m; idx++) {\r
- if (dest[idx-1]<dest[idx])\r
- lastval=idx;\r
- break;\r
- }\r
- WDT_HIT();\r
-\r
- // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)\r
- // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere\r
- // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10\r
- for( i=0; idx<m; idx++) {\r
- if (dest[idx-1]<dest[idx]) {\r
- dest[i]=idx-lastval;\r
- if (dest[i] <= 8) {\r
- dest[i]=1;\r
- } else {\r
- dest[i]=0;\r
- }\r
-\r
- lastval=idx;\r
- i++;\r
- }\r
- }\r
- m=i;\r
- WDT_HIT();\r
-\r
- // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns\r
- lastval=dest[0];\r
- idx=0;\r
- i=0;\r
- n=0;\r
- for( idx=0; idx<m; idx++) {\r
- if (dest[idx]==lastval) {\r
- n++;\r
- } else {\r
- // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,\r
- // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets\r
- // swallowed up by rounding\r
- // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding\r
- // special start of frame markers use invalid manchester states (no transitions) by using sequences\r
- // like 111000\r
- if (dest[idx-1]) {\r
- n=(n+1)/6; // fc/8 in sets of 6\r
- } else {\r
- n=(n+1)/5; // fc/10 in sets of 5\r
- }\r
- switch (n) { // stuff appropriate bits in buffer\r
- case 0:\r
- case 1: // one bit\r
- dest[i++]=dest[idx-1];\r
- break;\r
- case 2: // two bits\r
- dest[i++]=dest[idx-1];\r
- dest[i++]=dest[idx-1];\r
- break;\r
- case 3: // 3 bit start of frame markers\r
- dest[i++]=dest[idx-1];\r
- dest[i++]=dest[idx-1];\r
- dest[i++]=dest[idx-1];\r
- break;\r
- // When a logic 0 is immediately followed by the start of the next transmisson\r
- // (special pattern) a pattern of 4 bit duration lengths is created.\r
- case 4:\r
- dest[i++]=dest[idx-1];\r
- dest[i++]=dest[idx-1];\r
- dest[i++]=dest[idx-1];\r
- dest[i++]=dest[idx-1];\r
- break;\r
- default: // this shouldn't happen, don't stuff any bits\r
- break;\r
- }\r
- n=0;\r
- lastval=dest[idx];\r
- }\r
- }\r
- m=i;\r
- WDT_HIT();\r
-\r
- // final loop, go over previously decoded manchester data and decode into usable tag ID\r
- // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0\r
- for( idx=0; idx<m-6; idx++) {\r
- // search for a start of frame marker\r
- if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )\r
- {\r
- found=1;\r
- idx+=6;\r
- if (found && (hi|lo)) {\r
- DbpString("TAG ID");\r
- DbpIntegers(hi, lo, (lo>>1)&0xffff);\r
- hi=0;\r
- lo=0;\r
- found=0;\r
- }\r
- }\r
- if (found) {\r
- if (dest[idx] && (!dest[idx+1]) ) {\r
- hi=(hi<<1)|(lo>>31);\r
- lo=(lo<<1)|0;\r
- } else if ( (!dest[idx]) && dest[idx+1]) {\r
- hi=(hi<<1)|(lo>>31);\r
- lo=(lo<<1)|1;\r
- } else {\r
- found=0;\r
- hi=0;\r
- lo=0;\r
- }\r
- idx++;\r
- }\r
- if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )\r
- {\r
- found=1;\r
- idx+=6;\r
- if (found && (hi|lo)) {\r
- DbpString("TAG ID");\r
- DbpIntegers(hi, lo, (lo>>1)&0xffff);\r
- hi=0;\r
- lo=0;\r
- found=0;\r
- }\r
- }\r
- }\r
- WDT_HIT();\r
- }\r
-}\r
-\r
-void SimulateTagHfListen(void)\r
-{\r
- BYTE *dest = (BYTE *)BigBuf;\r
- int n = sizeof(BigBuf);\r
- BYTE v = 0;\r
- int i;\r
- int p = 0;\r
-\r
- // We're using this mode just so that I can test it out; the simulated\r
- // tag mode would work just as well and be simpler.\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);\r
-\r
- // We need to listen to the high-frequency, peak-detected path.\r
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
-\r
- FpgaSetupSsc();\r
-\r
- i = 0;\r
- for(;;) {\r
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
- SSC_TRANSMIT_HOLDING = 0xff;\r
- }\r
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
- BYTE r = (BYTE)SSC_RECEIVE_HOLDING;\r
-\r
- v <<= 1;\r
- if(r & 1) {\r
- v |= 1;\r
- }\r
- p++;\r
-\r
- if(p >= 8) {\r
- dest[i] = v;\r
- v = 0;\r
- p = 0;\r
- i++;\r
-\r
- if(i >= n) {\r
- break;\r
- }\r
- }\r
- }\r
- }\r
- DbpString("simulate tag (now type bitsamples)");\r
-}\r
-\r
-void UsbPacketReceived(BYTE *packet, int len)\r
-{\r
- UsbCommand *c = (UsbCommand *)packet;\r
-\r
- switch(c->cmd) {\r
- case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:\r
- AcquireRawAdcSamples125k(c->ext1);\r
- break;\r
-\r
- case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:\r
- AcquireRawAdcSamplesIso15693();\r
- break;\r
-\r
- case CMD_READER_ISO_15693:\r
- ReaderIso15693(c->ext1);\r
- break;\r
-\r
- case CMD_SIMTAG_ISO_15693:\r
- SimTagIso15693(c->ext1);\r
- break;\r
-\r
- case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:\r
- AcquireRawAdcSamplesIso14443(c->ext1);\r
- break;\r
+ * read the voltage in the antenna, the result left
+ * in the buffer is a graph which should clearly show
+ * the resonating frequency of your LF antenna
+ * ( hopefully around 95 if it is tuned to 125kHz!)
+ */
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+ for (i=255; i>19; i--) {
+ WDT_HIT();
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
+ SpinDelay(20);
+ // Vref = 3.3V, and a 10000:240 voltage divider on the input
+ // can measure voltages up to 137500 mV
+ adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
+ if (i==95) vLf125 = adcval; // voltage at 125Khz
+ if (i==89) vLf134 = adcval; // voltage at 134Khz
+
+ dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes
+ if(dest[i] > peak) {
+ peakv = adcval;
+ peak = dest[i];
+ peakf = i;
+ //ptr = i;
+ }
+ }
+
+ LED_A_ON();
+ // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+ SpinDelay(20);
+ // Vref = 3300mV, and an 10:1 voltage divider on the input
+ // can measure voltages up to 33000 mV
+ vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
+
+// c.cmd = CMD_MEASURED_ANTENNA_TUNING;
+// c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
+// c.arg[1] = vHf;
+// c.arg[2] = peakf | (peakv << 16);
+
+ DbpString("Measuring complete, sending report back to host");
+ cmd_send(CMD_MEASURED_ANTENNA_TUNING,vLf125|(vLf134<<16),vHf,peakf|(peakv<<16),0,0);
+// UsbSendPacket((uint8_t *)&c, sizeof(c));
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_A_OFF();
+ LED_B_OFF();
+ return;
+}
+
+void MeasureAntennaTuningHf(void)
+{
+ int vHf = 0; // in mV
+
+ DbpString("Measuring HF antenna, press button to exit");
+
+ for (;;) {
+ // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+ SpinDelay(20);
+ // Vref = 3300mV, and an 10:1 voltage divider on the input
+ // can measure voltages up to 33000 mV
+ vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
+
+ Dbprintf("%d mV",vHf);
+ if (BUTTON_PRESS()) break;
+ }
+ DbpString("cancelled");
+}
+
+
+void SimulateTagHfListen(void)
+{
+ uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
+ uint8_t v = 0;
+ int i;
+ int p = 0;
+
+ // We're using this mode just so that I can test it out; the simulated
+ // tag mode would work just as well and be simpler.
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
+
+ // We need to listen to the high-frequency, peak-detected path.
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+ FpgaSetupSsc();
+
+ i = 0;
+ for(;;) {
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = 0xff;
+ }
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+
+ v <<= 1;
+ if(r & 1) {
+ v |= 1;
+ }
+ p++;
+
+ if(p >= 8) {
+ dest[i] = v;
+ v = 0;
+ p = 0;
+ i++;
+
+ if(i >= FREE_BUFFER_SIZE) {
+ break;
+ }
+ }
+ }
+ }
+ DbpString("simulate tag (now type bitsamples)");
+}
+
+void ReadMem(int addr)
+{
+ const uint8_t *data = ((uint8_t *)addr);
+
+ Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
+ addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
+}
+
+/* osimage version information is linked in */
+extern struct version_information version_information;
+/* bootrom version information is pointed to from _bootphase1_version_pointer */
+extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
+void SendVersion(void)
+{
+ char temp[48]; /* Limited data payload in USB packets */
+ DbpString("Prox/RFID mark3 RFID instrument");
+
+ /* Try to find the bootrom version information. Expect to find a pointer at
+ * symbol _bootphase1_version_pointer, perform slight sanity checks on the
+ * pointer, then use it.
+ */
+ char *bootrom_version = *(char**)&_bootphase1_version_pointer;
+ if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
+ DbpString("bootrom version information appears invalid");
+ } else {
+ FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
+ DbpString(temp);
+ }
+
+ FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
+ DbpString(temp);
+
+ FpgaGatherVersion(temp, sizeof(temp));
+ DbpString(temp);
+}
+
+#ifdef WITH_LF
+// samy's sniff and repeat routine
+void SamyRun()
+{
+ DbpString("Stand-alone mode! No PC necessary.");
+
+ // 3 possible options? no just 2 for now
+#define OPTS 2
+
+ int high[OPTS], low[OPTS];
+
+ // Oooh pretty -- notify user we're in elite samy mode now
+ LED(LED_RED, 200);
+ LED(LED_ORANGE, 200);
+ LED(LED_GREEN, 200);
+ LED(LED_ORANGE, 200);
+ LED(LED_RED, 200);
+ LED(LED_ORANGE, 200);
+ LED(LED_GREEN, 200);
+ LED(LED_ORANGE, 200);
+ LED(LED_RED, 200);
+
+ int selected = 0;
+ int playing = 0;
+
+ // Turn on selected LED
+ LED(selected + 1, 0);
+
+ for (;;)
+ {
+// UsbPoll(FALSE);
+ usb_poll();
+ WDT_HIT();
+
+ // Was our button held down or pressed?
+ int button_pressed = BUTTON_HELD(1000);
+ SpinDelay(300);
+
+ // Button was held for a second, begin recording
+ if (button_pressed > 0)
+ {
+ LEDsoff();
+ LED(selected + 1, 0);
+ LED(LED_RED2, 0);
+
+ // record
+ DbpString("Starting recording");
+
+ // wait for button to be released
+ while(BUTTON_PRESS())
+ WDT_HIT();
+
+ /* need this delay to prevent catching some weird data */
+ SpinDelay(500);
+
+ CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
+ Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
+
+ LEDsoff();
+ LED(selected + 1, 0);
+ // Finished recording
+
+ // If we were previously playing, set playing off
+ // so next button push begins playing what we recorded
+ playing = 0;
+ }
+
+ // Change where to record (or begin playing)
+ else if (button_pressed)
+ {
+ // Next option if we were previously playing
+ if (playing)
+ selected = (selected + 1) % OPTS;
+ playing = !playing;
+
+ LEDsoff();
+ LED(selected + 1, 0);
+
+ // Begin transmitting
+ if (playing)
+ {
+ LED(LED_GREEN, 0);
+ DbpString("Playing");
+ // wait for button to be released
+ while(BUTTON_PRESS())
+ WDT_HIT();
+ Dbprintf("%x %x %x", selected, high[selected], low[selected]);
+ CmdHIDsimTAG(high[selected], low[selected], 0);
+ DbpString("Done playing");
+ if (BUTTON_HELD(1000) > 0)
+ {
+ DbpString("Exiting");
+ LEDsoff();
+ return;
+ }
+
+ /* We pressed a button so ignore it here with a delay */
+ SpinDelay(300);
+
+ // when done, we're done playing, move to next option
+ selected = (selected + 1) % OPTS;
+ playing = !playing;
+ LEDsoff();
+ LED(selected + 1, 0);
+ }
+ else
+ while(BUTTON_PRESS())
+ WDT_HIT();
+ }
+ }
+}
+#endif
+
+/*
+OBJECTIVE
+Listen and detect an external reader. Determine the best location
+for the antenna.
+
+INSTRUCTIONS:
+Inside the ListenReaderField() function, there is two mode.
+By default, when you call the function, you will enter mode 1.
+If you press the PM3 button one time, you will enter mode 2.
+If you press the PM3 button a second time, you will exit the function.
+
+DESCRIPTION OF MODE 1:
+This mode just listens for an external reader field and lights up green
+for HF and/or red for LF. This is the original mode of the detectreader
+function.
+
+DESCRIPTION OF MODE 2:
+This mode will visually represent, using the LEDs, the actual strength of the
+current compared to the maximum current detected. Basically, once you know
+what kind of external reader is present, it will help you spot the best location to place
+your antenna. You will probably not get some good results if there is a LF and a HF reader
+at the same place! :-)
+
+LIGHT SCHEME USED:
+*/
+static const char LIGHT_SCHEME[] = {
+ 0x0, /* ---- | No field detected */
+ 0x1, /* X--- | 14% of maximum current detected */
+ 0x2, /* -X-- | 29% of maximum current detected */
+ 0x4, /* --X- | 43% of maximum current detected */
+ 0x8, /* ---X | 57% of maximum current detected */
+ 0xC, /* --XX | 71% of maximum current detected */
+ 0xE, /* -XXX | 86% of maximum current detected */
+ 0xF, /* XXXX | 100% of maximum current detected */
+};
+static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
+
+void ListenReaderField(int limit)
+{
+ int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
+ int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;
+ int mode=1, display_val, display_max, i;
+
+#define LF_ONLY 1
+#define HF_ONLY 2
+
+ LEDsoff();
+
+ lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
+
+ if(limit != HF_ONLY) {
+ Dbprintf("LF 125/134 Baseline: %d", lf_av);
+ lf_baseline = lf_av;
+ }
+
+ hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
+
+ if (limit != LF_ONLY) {
+ Dbprintf("HF 13.56 Baseline: %d", hf_av);
+ hf_baseline = hf_av;
+ }
+
+ for(;;) {
+ if (BUTTON_PRESS()) {
+ SpinDelay(500);
+ switch (mode) {
+ case 1:
+ mode=2;
+ DbpString("Signal Strength Mode");
+ break;
+ case 2:
+ default:
+ DbpString("Stopped");
+ LEDsoff();
+ return;
+ break;
+ }
+ }
+ WDT_HIT();
+
+ if (limit != HF_ONLY) {
+ if(mode==1) {
+ if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
+ else LED_D_OFF();
+ }
+
+ ++lf_count;
+ lf_av_new= ReadAdc(ADC_CHAN_LF);
+ // see if there's a significant change
+ if(abs(lf_av - lf_av_new) > 10) {
+ Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count);
+ lf_av = lf_av_new;
+ if (lf_av > lf_max)
+ lf_max = lf_av;
+ lf_count= 0;
+ }
+ }
+
+ if (limit != LF_ONLY) {
+ if (mode == 1){
+ if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
+ else LED_B_OFF();
+ }
+
+ ++hf_count;
+ hf_av_new= ReadAdc(ADC_CHAN_HF);
+ // see if there's a significant change
+ if(abs(hf_av - hf_av_new) > 10) {
+ Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count);
+ hf_av = hf_av_new;
+ if (hf_av > hf_max)
+ hf_max = hf_av;
+ hf_count= 0;
+ }
+ }
+
+ if(mode == 2) {
+ if (limit == LF_ONLY) {
+ display_val = lf_av;
+ display_max = lf_max;
+ } else if (limit == HF_ONLY) {
+ display_val = hf_av;
+ display_max = hf_max;
+ } else { /* Pick one at random */
+ if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
+ display_val = hf_av;
+ display_max = hf_max;
+ } else {
+ display_val = lf_av;
+ display_max = lf_max;
+ }
+ }
+ for (i=0; i<LIGHT_LEN; i++) {
+ if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
+ if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
+ if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
+ if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
+ if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
+ break;
+ }
+ }
+ }
+ }
+}
+
+void UsbPacketReceived(uint8_t *packet, int len)
+{
+ UsbCommand *c = (UsbCommand *)packet;
+
+// Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
+
+ switch(c->cmd) {
+#ifdef WITH_LF
+ case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
+ AcquireRawAdcSamples125k(c->arg[0]);
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ break;
+ case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
+ ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
+ break;
+ case CMD_HID_DEMOD_FSK:
+ CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
+ break;
+ case CMD_HID_SIM_TAG:
+ CmdHIDsimTAG(c->arg[0], c->arg[1], 1); // Simulate HID tag by ID
+ break;
+ case CMD_HID_CLONE_TAG: // Clone HID tag by ID to T55x7
+ CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
+ break;
+ case CMD_EM410X_WRITE_TAG:
+ WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
+ break;
+ case CMD_READ_TI_TYPE:
+ ReadTItag();
+ break;
+ case CMD_WRITE_TI_TYPE:
+ WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
+ break;
+ case CMD_SIMULATE_TAG_125K:
+ LED_A_ON();
+ SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
+ LED_A_OFF();
+ break;
+ case CMD_LF_SIMULATE_BIDIR:
+ SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
+ break;
+ case CMD_INDALA_CLONE_TAG: // Clone Indala 64-bit tag by UID to T55x7
+ CopyIndala64toT55x7(c->arg[0], c->arg[1]);
+ break;
+ case CMD_INDALA_CLONE_TAG_L: // Clone Indala 224-bit tag by UID to T55x7
+ CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
+ break;
+ case CMD_T55XX_READ_BLOCK:
+ T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
+ break;
+ case CMD_T55XX_WRITE_BLOCK:
+ T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
+ break;
+ case CMD_T55XX_READ_TRACE: // Clone HID tag by ID to T55x7
+ T55xxReadTrace();
+ break;
+ case CMD_PCF7931_READ: // Read PCF7931 tag
+ ReadPCF7931();
+ cmd_send(CMD_ACK,0,0,0,0,0);
+// UsbSendPacket((uint8_t*)&ack, sizeof(ack));
+ break;
+ case CMD_EM4X_READ_WORD:
+ EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
+ break;
+ case CMD_EM4X_WRITE_WORD:
+ EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
+ break;
+#endif
+
+#ifdef WITH_HITAG
+ case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
+ SnoopHitag(c->arg[0]);
+ break;
+ case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
+ SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
+ break;
+ case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
+ ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
+ break;
+#endif
+
+#ifdef WITH_ISO15693
+ case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
+ AcquireRawAdcSamplesIso15693();
+ break;
+ case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
+ RecordRawAdcSamplesIso15693();
+ break;
+
+ case CMD_ISO_15693_COMMAND:
+ DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
+ break;
+
+ case CMD_ISO_15693_FIND_AFI:
+ BruteforceIso15693Afi(c->arg[0]);
+ break;
+
+ case CMD_ISO_15693_DEBUG:
+ SetDebugIso15693(c->arg[0]);
+ break;
+
+ case CMD_READER_ISO_15693:
+ ReaderIso15693(c->arg[0]);
+ break;
+ case CMD_SIMTAG_ISO_15693:
+ SimTagIso15693(c->arg[0]);
+ break;
+#endif
+
+#ifdef WITH_LEGICRF
+ case CMD_SIMULATE_TAG_LEGIC_RF:
+ LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
+ break;
+ case CMD_WRITER_LEGIC_RF:
+ LegicRfWriter(c->arg[1], c->arg[0]);
+ break;
+
+ case CMD_READER_LEGIC_RF:
+ LegicRfReader(c->arg[0], c->arg[1]);
+ break;
+#endif
+
+#ifdef WITH_ISO14443b
+ case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
+ AcquireRawAdcSamplesIso14443(c->arg[0]);
+ break;
case CMD_READ_SRI512_TAG:
- ReadSRI512Iso14443(c->ext1);
- break;
-\r
- case CMD_READER_ISO_14443a:\r
- ReaderIso14443a(c->ext1);\r
- break;\r
-\r
- case CMD_SNOOP_ISO_14443:\r
- SnoopIso14443();\r
- break;\r
-\r
- case CMD_SNOOP_ISO_14443a:\r
- SnoopIso14443a();\r
- break;\r
-\r
- case CMD_SIMULATE_TAG_HF_LISTEN:\r
- SimulateTagHfListen();\r
- break;\r
-\r
- case CMD_SIMULATE_TAG_ISO_14443:\r
- SimulateIso14443Tag();\r
- break;\r
-\r
- case CMD_SIMULATE_TAG_ISO_14443a:\r
- SimulateIso14443aTag(c->ext1, c->ext2); // ## Simulate iso14443a tag - pass tag type & UID\r
- break;\r
-\r
- case CMD_MEASURE_ANTENNA_TUNING:\r
- MeasureAntennaTuning();\r
- break;\r
-\r
- case CMD_HID_DEMOD_FSK:\r
- CmdHIDdemodFSK(); // Demodulate HID tag\r
- break;\r
-\r
- case CMD_HID_SIM_TAG:\r
- CmdHIDsimTAG(c->ext1, c->ext2); // Simulate HID tag by ID\r
- break;\r
-\r
- case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
- SpinDelay(200);\r
- LED_D_OFF(); // LED D indicates field ON or OFF\r
- break;\r
-\r
- case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:\r
- case CMD_DOWNLOAD_RAW_BITS_TI_TYPE: {\r
- UsbCommand n;\r
- if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {\r
- n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;\r
- } else {\r
- n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;\r
- }\r
- n.ext1 = c->ext1;\r
- memcpy(n.d.asDwords, BigBuf+c->ext1, 12*sizeof(DWORD));\r
- UsbSendPacket((BYTE *)&n, sizeof(n));\r
- break;\r
- }\r
- case CMD_DOWNLOADED_SIM_SAMPLES_125K: {\r
- BYTE *b = (BYTE *)BigBuf;\r
- memcpy(b+c->ext1, c->d.asBytes, 48);\r
- break;\r
- }\r
- case CMD_SIMULATE_TAG_125K:\r
- LED_A_ON();\r
- SimulateTagLowFrequency(c->ext1);\r
- LED_A_OFF();\r
- break;\r
-#ifdef WITH_LCD\r
- case CMD_LCD_RESET:\r
- LCDReset();\r
- break;\r
-#endif\r
- case CMD_SWEEP_LF:\r
- SweepLFrange();\r
- break;\r
-\r
- case CMD_SET_LF_DIVISOR:\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->ext1);\r
- break;\r
-#ifdef WITH_LCD\r
- case CMD_LCD:\r
- LCDSend(c->ext1);\r
- break;\r
-#endif\r
- case CMD_SETUP_WRITE:\r
- case CMD_FINISH_WRITE:\r
- USB_D_PLUS_PULLUP_OFF();\r
- SpinDelay(1000);\r
- SpinDelay(1000);\r
- RSTC_CONTROL = RST_CONTROL_KEY | RST_CONTROL_PROCESSOR_RESET;\r
- for(;;) {\r
- // We're going to reset, and the bootrom will take control.\r
- }\r
- break;\r
-\r
- default:\r
- DbpString("unknown command");\r
- break;\r
- }\r
-}\r
-\r
-void AppMain(void)\r
-{\r
- memset(BigBuf,0,sizeof(BigBuf));\r
- SpinDelay(100);\r
-\r
- LED_D_OFF();\r
- LED_C_OFF();\r
- LED_B_OFF();\r
- LED_A_OFF();\r
-\r
- UsbStart();\r
-\r
- // The FPGA gets its clock from us from PCK0 output, so set that up.\r
- PIO_PERIPHERAL_B_SEL = (1 << GPIO_PCK0);\r
- PIO_DISABLE = (1 << GPIO_PCK0);\r
- PMC_SYS_CLK_ENABLE = PMC_SYS_CLK_PROGRAMMABLE_CLK_0;\r
- // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz\r
- PMC_PROGRAMMABLE_CLK_0 = PMC_CLK_SELECTION_PLL_CLOCK |\r
- PMC_CLK_PRESCALE_DIV_4;\r
- PIO_OUTPUT_ENABLE = (1 << GPIO_PCK0);\r
-\r
- // Reset SPI\r
- SPI_CONTROL = SPI_CONTROL_RESET;\r
- // Reset SSC\r
- SSC_CONTROL = SSC_CONTROL_RESET;\r
-\r
- // Load the FPGA image, which we have stored in our flash.\r
- FpgaDownloadAndGo();\r
-\r
-#ifdef WITH_LCD\r
-\r
- LCDInit();\r
-\r
- // test text on different colored backgrounds\r
- LCDString(" The quick brown fox ", &FONT6x8,1,1+8*0,WHITE ,BLACK );\r
- LCDString(" jumped over the ", &FONT6x8,1,1+8*1,BLACK ,WHITE );\r
- LCDString(" lazy dog. ", &FONT6x8,1,1+8*2,YELLOW ,RED );\r
- LCDString(" AaBbCcDdEeFfGgHhIiJj ", &FONT6x8,1,1+8*3,RED ,GREEN );\r
- LCDString(" KkLlMmNnOoPpQqRrSsTt ", &FONT6x8,1,1+8*4,MAGENTA,BLUE );\r
- LCDString("UuVvWwXxYyZz0123456789", &FONT6x8,1,1+8*5,BLUE ,YELLOW);\r
- LCDString("`-=[]_;',./~!@#$%^&*()", &FONT6x8,1,1+8*6,BLACK ,CYAN );\r
- LCDString(" _+{}|:\\\"<>? ",&FONT6x8,1,1+8*7,BLUE ,MAGENTA);\r
-\r
- // color bands\r
- LCDFill(0, 1+8* 8, 132, 8, BLACK);\r
- LCDFill(0, 1+8* 9, 132, 8, WHITE);\r
- LCDFill(0, 1+8*10, 132, 8, RED);\r
- LCDFill(0, 1+8*11, 132, 8, GREEN);\r
- LCDFill(0, 1+8*12, 132, 8, BLUE);\r
- LCDFill(0, 1+8*13, 132, 8, YELLOW);\r
- LCDFill(0, 1+8*14, 132, 8, CYAN);\r
- LCDFill(0, 1+8*15, 132, 8, MAGENTA);\r
-\r
-#endif\r
-\r
- for(;;) {\r
- UsbPoll(FALSE);\r
- WDT_HIT();\r
- }\r
-}\r
-\r
-void SpinDelay(int ms)\r
-{\r
- int ticks = (48000*ms) >> 10;\r
-\r
- // Borrow a PWM unit for my real-time clock\r
- PWM_ENABLE = PWM_CHANNEL(0);\r
- // 48 MHz / 1024 gives 46.875 kHz\r
- PWM_CH_MODE(0) = PWM_CH_MODE_PRESCALER(10);\r
- PWM_CH_DUTY_CYCLE(0) = 0;\r
- PWM_CH_PERIOD(0) = 0xffff;\r
-\r
- WORD start = (WORD)PWM_CH_COUNTER(0);\r
-\r
- for(;;) {\r
- WORD now = (WORD)PWM_CH_COUNTER(0);\r
- if(now == (WORD)(start + ticks)) {\r
- return;\r
- }\r
- WDT_HIT();\r
- }\r
-}\r
+ ReadSRI512Iso14443(c->arg[0]);
+ break;
+ case CMD_READ_SRIX4K_TAG:
+ ReadSRIX4KIso14443(c->arg[0]);
+ break;
+ case CMD_SNOOP_ISO_14443:
+ SnoopIso14443();
+ break;
+ case CMD_SIMULATE_TAG_ISO_14443:
+ SimulateIso14443Tag();
+ break;
+#endif
+
+#ifdef WITH_ISO14443a
+ case CMD_SNOOP_ISO_14443a:
+ SnoopIso14443a(c->arg[0]);
+ break;
+ case CMD_READER_ISO_14443a:
+ ReaderIso14443a(c);
+ break;
+ case CMD_SIMULATE_TAG_ISO_14443a:
+ SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2]); // ## Simulate iso14443a tag - pass tag type & UID
+ break;
+ case CMD_EPA_PACE_COLLECT_NONCE:
+ EPA_PACE_Collect_Nonce(c);
+ break;
+
+ case CMD_READER_MIFARE:
+ ReaderMifare(c->arg[0]);
+ break;
+ case CMD_MIFARE_READBL:
+ MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+ case CMD_MIFARE_READSC:
+ MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+ case CMD_MIFARE_WRITEBL:
+ MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+ case CMD_MIFARE_NESTED:
+ MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+ case CMD_MIFARE_CHKKEYS:
+ MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+ case CMD_SIMULATE_MIFARE_CARD:
+ Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+
+ // emulator
+ case CMD_MIFARE_SET_DBGMODE:
+ MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+ case CMD_MIFARE_EML_MEMCLR:
+ MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+ case CMD_MIFARE_EML_MEMSET:
+ MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+ case CMD_MIFARE_EML_MEMGET:
+ MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+ case CMD_MIFARE_EML_CARDLOAD:
+ MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+
+ // Work with "magic Chinese" card
+ case CMD_MIFARE_EML_CSETBLOCK:
+ MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+ case CMD_MIFARE_EML_CGETBLOCK:
+ MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+
+ // mifare sniffer
+ case CMD_MIFARE_SNIFFER:
+ SniffMifare(c->arg[0]);
+ break;
+#endif
+
+#ifdef WITH_ICLASS
+ // Makes use of ISO14443a FPGA Firmware
+ case CMD_SNOOP_ICLASS:
+ SnoopIClass();
+ break;
+ case CMD_SIMULATE_TAG_ICLASS:
+ SimulateIClass(c->arg[0], c->d.asBytes);
+ break;
+ case CMD_READER_ICLASS:
+ ReaderIClass(c->arg[0]);
+ break;
+#endif
+
+ case CMD_SIMULATE_TAG_HF_LISTEN:
+ SimulateTagHfListen();
+ break;
+
+ case CMD_BUFF_CLEAR:
+ BufferClear();
+ break;
+
+ case CMD_MEASURE_ANTENNA_TUNING:
+ MeasureAntennaTuning();
+ break;
+
+ case CMD_MEASURE_ANTENNA_TUNING_HF:
+ MeasureAntennaTuningHf();
+ break;
+
+ case CMD_LISTEN_READER_FIELD:
+ ListenReaderField(c->arg[0]);
+ break;
+
+ case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(200);
+ LED_D_OFF(); // LED D indicates field ON or OFF
+ break;
+
+ case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {
+// UsbCommand n;
+// if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
+// n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
+// } else {
+// n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
+// }
+// n.arg[0] = c->arg[0];
+ // memcpy(n.d.asBytes, BigBuf+c->arg[0], 48); // 12*sizeof(uint32_t)
+ // LED_B_ON();
+ // usb_write((uint8_t *)&n, sizeof(n));
+ // UsbSendPacket((uint8_t *)&n, sizeof(n));
+ // LED_B_OFF();
+
+ LED_B_ON();
+ for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
+ size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
+ cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,0,((byte_t*)BigBuf)+c->arg[0]+i,len);
+ }
+ // Trigger a finish downloading signal with an ACK frame
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ LED_B_OFF();
+ } break;
+
+ case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
+ uint8_t *b = (uint8_t *)BigBuf;
+ memcpy(b+c->arg[0], c->d.asBytes, 48);
+ //Dbprintf("copied 48 bytes to %i",b+c->arg[0]);
+// UsbSendPacket((uint8_t*)&ack, sizeof(ack));
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ } break;
+
+ case CMD_READ_MEM:
+ ReadMem(c->arg[0]);
+ break;
+
+ case CMD_SET_LF_DIVISOR:
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
+ break;
+
+ case CMD_SET_ADC_MUX:
+ switch(c->arg[0]) {
+ case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
+ case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
+ case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
+ case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
+ }
+ break;
+
+ case CMD_VERSION:
+ SendVersion();
+ break;
+
+#ifdef WITH_LCD
+ case CMD_LCD_RESET:
+ LCDReset();
+ break;
+ case CMD_LCD:
+ LCDSend(c->arg[0]);
+ break;
+#endif
+ case CMD_SETUP_WRITE:
+ case CMD_FINISH_WRITE:
+ case CMD_HARDWARE_RESET: {
+ usb_disable();
+ SpinDelay(1000);
+ SpinDelay(1000);
+ AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
+ for(;;) {
+ // We're going to reset, and the bootrom will take control.
+ }
+ } break;
+
+ case CMD_START_FLASH: {
+ if(common_area.flags.bootrom_present) {
+ common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
+ }
+ usb_disable();
+ AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
+ for(;;);
+ } break;
+
+ case CMD_DEVICE_INFO: {
+ uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
+ if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
+// UsbSendPacket((uint8_t*)&c, sizeof(c));
+ cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
+ } break;
+
+ default: {
+ Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
+ } break;
+ }
+}
+
+void __attribute__((noreturn)) AppMain(void)
+{
+ SpinDelay(100);
+
+ if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
+ /* Initialize common area */
+ memset(&common_area, 0, sizeof(common_area));
+ common_area.magic = COMMON_AREA_MAGIC;
+ common_area.version = 1;
+ }
+ common_area.flags.osimage_present = 1;
+
+ LED_D_OFF();
+ LED_C_OFF();
+ LED_B_OFF();
+ LED_A_OFF();
+
+ // Init USB device`
+ usb_enable();
+// UsbStart();
+
+ // The FPGA gets its clock from us from PCK0 output, so set that up.
+ AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
+ AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
+ AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
+ // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
+ AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
+ AT91C_PMC_PRES_CLK_4;
+ AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
+
+ // Reset SPI
+ AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
+ // Reset SSC
+ AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
+
+ // Load the FPGA image, which we have stored in our flash.
+ FpgaDownloadAndGo();
+
+ StartTickCount();
+
+#ifdef WITH_LCD
+ LCDInit();
+#endif
+
+ byte_t rx[sizeof(UsbCommand)];
+ size_t rx_len;
+
+ for(;;) {
+ if (usb_poll()) {
+ rx_len = usb_read(rx,sizeof(UsbCommand));
+ if (rx_len) {
+ UsbPacketReceived(rx,rx_len);
+ }
+ }
+// UsbPoll(FALSE);
+
+ WDT_HIT();
+
+#ifdef WITH_LF
+ if (BUTTON_HELD(1000) > 0)
+ SamyRun();
+#endif
+ }
+}