]> cvs.zerfleddert.de Git - proxmark3-svn/blobdiff - armsrc/iso14443a.c
Merge pull request #478 from wsmoses/master
[proxmark3-svn] / armsrc / iso14443a.c
index f2fa1ff29e3e766ad1581dfaca5304cecb088689..ebbddbd89a29a02646945f0768fde298badc8daa 100644 (file)
 // Routines to support ISO 14443 type A.
 //-----------------------------------------------------------------------------
 
+#include "iso14443a.h"
+
+#include <stdio.h>
+#include <string.h>
 #include "proxmark3.h"
 #include "apps.h"
 #include "util.h"
-#include "string.h"
 #include "cmd.h"
-
 #include "iso14443crc.h"
-#include "iso14443a.h"
-#include "crapto1.h"
+#include "crapto1/crapto1.h"
 #include "mifareutil.h"
+#include "mifaresniff.h"
 #include "BigBuf.h"
+#include "protocols.h"
+#include "parity.h"
+
+typedef struct {
+       enum {
+               DEMOD_UNSYNCD,
+               // DEMOD_HALF_SYNCD,
+               // DEMOD_MOD_FIRST_HALF,
+               // DEMOD_NOMOD_FIRST_HALF,
+               DEMOD_MANCHESTER_DATA
+       } state;
+       uint16_t twoBits;
+       uint16_t highCnt;
+       uint16_t bitCount;
+       uint16_t collisionPos;
+       uint16_t syncBit;
+       uint8_t  parityBits;
+       uint8_t  parityLen;
+       uint16_t shiftReg;
+       uint16_t samples;
+       uint16_t len;
+       uint32_t startTime, endTime;
+       uint8_t  *output;
+       uint8_t  *parity;
+} tDemod;
+
+typedef enum {
+       MOD_NOMOD = 0,
+       MOD_SECOND_HALF,
+       MOD_FIRST_HALF,
+       MOD_BOTH_HALVES
+       } Modulation_t;
+
+typedef struct {
+       enum {
+               STATE_UNSYNCD,
+               STATE_START_OF_COMMUNICATION,
+               STATE_MILLER_X,
+               STATE_MILLER_Y,
+               STATE_MILLER_Z,
+               // DROP_NONE,
+               // DROP_FIRST_HALF,
+               } state;
+       uint16_t shiftReg;
+       int16_t  bitCount;
+       uint16_t len;
+       uint16_t byteCntMax;
+       uint16_t posCnt;
+       uint16_t syncBit;
+       uint8_t  parityBits;
+       uint8_t  parityLen;
+       uint32_t fourBits;
+       uint32_t startTime, endTime;
+    uint8_t *output;
+       uint8_t *parity;
+} tUart;
+
 static uint32_t iso14a_timeout;
 int rsamples = 0;
 uint8_t trigger = 0;
@@ -34,7 +93,7 @@ static uint8_t iso14_pcb_blocknum = 0;
 #define REQUEST_GUARD_TIME (7000/16 + 1)
 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles 
 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1) 
-// bool LastCommandWasRequest = FALSE;
+// bool LastCommandWasRequest = false;
 
 //
 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
@@ -74,13 +133,13 @@ uint16_t FpgaSendQueueDelay;
 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
 
 // When the PM acts as tag and is sending, it takes
-// 4*16 ticks until we can write data to the sending hold register
+// 4*16 + 8 ticks until we can write data to the sending hold register
 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
-// 8 ticks until the first transfer starts
-// 8 ticks later the FPGA samples the data
-// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
+// 8 ticks later the FPGA samples the first data
+// + 16 ticks until assigned to mod_sig
 // + 1 tick to assign mod_sig_coil
-#define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
+// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
+#define DELAY_ARM2AIR_AS_TAG (4*16 + 8 + 8*16 + 8 + 16 + 1 + DELAY_FPGA_QUEUE)
 
 // When the PM acts as sniffer and is receiving tag data, it takes
 // 3 ticks A/D conversion
@@ -122,26 +181,6 @@ static uint32_t LastProxToAirDuration;
 #define        SEC_Y 0x00
 #define        SEC_Z 0xc0
 
-const uint8_t OddByteParity[256] = {
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
-};
-
-
 void iso14a_set_trigger(bool enable) {
        trigger = enable;
 }
@@ -153,7 +192,7 @@ void iso14a_set_timeout(uint32_t timeout) {
 }
 
 
-void iso14a_set_ATS_timeout(uint8_t *ats) {
+static void iso14a_set_ATS_timeout(uint8_t *ats) {
 
        uint8_t tb1;
        uint8_t fwi; 
@@ -179,11 +218,6 @@ void iso14a_set_ATS_timeout(uint8_t *ats) {
 // Generate the parity value for a byte sequence
 //
 //-----------------------------------------------------------------------------
-byte_t oddparity (const byte_t bt)
-{
-       return OddByteParity[bt];
-}
-
 void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
 {
        uint16_t paritybit_cnt = 0;
@@ -192,7 +226,7 @@ void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
 
        for (uint16_t i = 0; i < iLen; i++) {
                // Generate the parity bits
-               parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
+               parityBits |= ((oddparity8(pbtCmd[i])) << (7-paritybit_cnt));
                if (paritybit_cnt == 7) {
                        par[paritybyte_cnt] = parityBits;       // save 8 Bits parity
                        parityBits = 0;                                         // and advance to next Parity Byte
@@ -213,6 +247,12 @@ void AppendCrc14443a(uint8_t* data, int len)
        ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
 }
 
+static void AppendCrc14443b(uint8_t* data, int len)
+{
+       ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1);
+}
+
+
 //=============================================================================
 // ISO 14443 Type A - Miller decoder
 //=============================================================================
@@ -232,15 +272,19 @@ void AppendCrc14443a(uint8_t* data, int len)
 static tUart Uart;
 
 // Lookup-Table to decide if 4 raw bits are a modulation.
-// We accept two or three consecutive "0" in any position with the rest "1"
+// We accept the following:
+// 0001  -   a 3 tick wide pause
+// 0011  -   a 2 tick wide pause, or a three tick wide pause shifted left
+// 0111  -   a 2 tick wide pause shifted left
+// 1001  -   a 2 tick wide pause shifted right
 const bool Mod_Miller_LUT[] = {
-       TRUE,  TRUE,  FALSE, TRUE,  FALSE, FALSE, FALSE, FALSE,
-       TRUE,  TRUE,  FALSE, FALSE, TRUE,  FALSE, FALSE, FALSE
+       false,  true, false, true,  false, false, false, true,
+       false,  true, false, false, false, false, false, false
 };
-#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
-#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
+#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
+#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
 
-void UartReset()
+static void UartReset()
 {
        Uart.state = STATE_UNSYNCD;
        Uart.bitCount = 0;
@@ -248,16 +292,15 @@ void UartReset()
        Uart.parityLen = 0;                                     // number of decoded parity bytes
        Uart.shiftReg = 0;                                      // shiftreg to hold decoded data bits
        Uart.parityBits = 0;                            // holds 8 parity bits
-       Uart.twoBits = 0x0000;                          // buffer for 2 Bits
-       Uart.highCnt = 0;
        Uart.startTime = 0;
        Uart.endTime = 0;
 }
 
-void UartInit(uint8_t *data, uint8_t *parity)
+static void UartInit(uint8_t *data, uint8_t *parity)
 {
        Uart.output = data;
        Uart.parity = parity;
+       Uart.fourBits = 0x00000000;                     // clear the buffer for 4 Bits
        UartReset();
 }
 
@@ -265,40 +308,37 @@ void UartInit(uint8_t *data, uint8_t *parity)
 static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
 {
 
-       Uart.twoBits = (Uart.twoBits << 8) | bit;
+       Uart.fourBits = (Uart.fourBits << 8) | bit;
        
        if (Uart.state == STATE_UNSYNCD) {                                                                                      // not yet synced
        
-               if (Uart.highCnt < 2) {                                                                                                 // wait for a stable unmodulated signal
-                       if (Uart.twoBits == 0xffff) {
-                               Uart.highCnt++;
-                       } else {
-                               Uart.highCnt = 0;
-                       }
-               } else {        
-                       Uart.syncBit = 0xFFFF;                                                                                          // not set
-                                                                                                                                                               // we look for a ...1111111100x11111xxxxxx pattern (the start bit)
-                       if              ((Uart.twoBits & 0xDF00) == 0x1F00) Uart.syncBit = 8;           // mask is   11x11111 xxxxxxxx, 
-                                                                                                                                                               // check for 00x11111 xxxxxxxx
-                       else if ((Uart.twoBits & 0xEF80) == 0x8F80) Uart.syncBit = 7;           // both masks shifted right one bit, left padded with '1'
-                       else if ((Uart.twoBits & 0xF7C0) == 0xC7C0) Uart.syncBit = 6;           // ...
-                       else if ((Uart.twoBits & 0xFBE0) == 0xE3E0) Uart.syncBit = 5;
-                       else if ((Uart.twoBits & 0xFDF0) == 0xF1F0) Uart.syncBit = 4;
-                       else if ((Uart.twoBits & 0xFEF8) == 0xF8F8) Uart.syncBit = 3;
-                       else if ((Uart.twoBits & 0xFF7C) == 0xFC7C) Uart.syncBit = 2;
-                       else if ((Uart.twoBits & 0xFFBE) == 0xFE3E) Uart.syncBit = 1;
-                       if (Uart.syncBit != 0xFFFF) {                                                                           // found a sync bit
-                               Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
-                               Uart.startTime -= Uart.syncBit;
-                               Uart.endTime = Uart.startTime;
-                               Uart.state = STATE_START_OF_COMMUNICATION;
-                       }
+               Uart.syncBit = 9999;                                                                                                    // not set
+               // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
+               // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
+               // we therefore look for a ...xx11111111111100x11111xxxxxx... pattern 
+               // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
+               #define ISO14443A_STARTBIT_MASK         0x07FFEF80                                                      // mask is    00000111 11111111 11101111 10000000
+               #define ISO14443A_STARTBIT_PATTERN      0x07FF8F80                                                      // pattern is 00000111 11111111 10001111 10000000
+               if              ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
+               else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
+               else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
+               else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
+               else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
+               else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
+               else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
+               else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
+
+               if (Uart.syncBit != 9999) {                                                                                             // found a sync bit
+                       Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
+                       Uart.startTime -= Uart.syncBit;
+                       Uart.endTime = Uart.startTime;
+                       Uart.state = STATE_START_OF_COMMUNICATION;
                }
 
        } else {
 
-               if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {                  
-                       if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) {          // Modulation in both halves - error
+               if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {                 
+                       if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) {         // Modulation in both halves - error
                                UartReset();
                        } else {                                                                                                                        // Modulation in first half = Sequence Z = logic "0"
                                if (Uart.state == STATE_MILLER_X) {                                                             // error - must not follow after X
@@ -322,7 +362,7 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
                                }
                        }
                } else {
-                       if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) {          // Modulation second half = Sequence X = logic "1"
+                       if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) {         // Modulation second half = Sequence X = logic "1"
                                Uart.bitCount++;
                                Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100;                                   // add a 1 to the shiftreg
                                Uart.state = STATE_MILLER_X;
@@ -349,21 +389,19 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
                                                Uart.parityBits <<= 1;                                                                  // add a (void) parity bit
                                                Uart.parityBits <<= (8 - (Uart.len&0x0007));                    // left align parity bits
                                                Uart.parity[Uart.parityLen++] = Uart.parityBits;                // and store it
-                                               return TRUE;
+                                               return true;
                                        } else if (Uart.len & 0x0007) {                                                         // there are some parity bits to store
                                                Uart.parityBits <<= (8 - (Uart.len&0x0007));                    // left align remaining parity bits
                                                Uart.parity[Uart.parityLen++] = Uart.parityBits;                // and store them
                                        }
                                        if (Uart.len) {
-                                               return TRUE;                                                                                    // we are finished with decoding the raw data sequence
+                                               return true;                                                                                    // we are finished with decoding the raw data sequence
                                        } else {
                                                UartReset();                                                                                    // Nothing received - start over
-                                               Uart.highCnt = 1;
                                        }
                                }
                                if (Uart.state == STATE_START_OF_COMMUNICATION) {                               // error - must not follow directly after SOC
                                        UartReset();
-                                       Uart.highCnt = 1;
                                } else {                                                                                                                // a logic "0"
                                        Uart.bitCount++;
                                        Uart.shiftReg = (Uart.shiftReg >> 1);                                           // add a 0 to the shiftreg
@@ -385,7 +423,7 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
                        
        } 
 
-    return FALSE;      // not finished yet, need more data
+    return false;      // not finished yet, need more data
 }
 
 
@@ -410,15 +448,15 @@ static tDemod Demod;
 // Lookup-Table to decide if 4 raw bits are a modulation.
 // We accept three or four "1" in any position
 const bool Mod_Manchester_LUT[] = {
-       FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
-       FALSE, FALSE, FALSE, TRUE,  FALSE, TRUE,  TRUE,  TRUE
+       false, false, false, false, false, false, false, true,
+       false, false, false, true,  false, true,  true,  true
 };
 
 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
 
 
-void DemodReset()
+static void DemodReset()
 {
        Demod.state = DEMOD_UNSYNCD;
        Demod.len = 0;                                          // number of decoded data bytes
@@ -432,7 +470,7 @@ void DemodReset()
        Demod.endTime = 0;
 }
 
-void DemodInit(uint8_t *data, uint8_t *parity)
+static void DemodInit(uint8_t *data, uint8_t *parity)
 {
        Demod.output = data;
        Demod.parity = parity;
@@ -516,13 +554,13 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non
                                        Demod.parityBits <<= 1;                                                         // add a (void) parity bit
                                        Demod.parityBits <<= (8 - (Demod.len&0x0007));          // left align remaining parity bits
                                        Demod.parity[Demod.parityLen++] = Demod.parityBits;     // and store them
-                                       return TRUE;
+                                       return true;
                                } else if (Demod.len & 0x0007) {                                                // there are some parity bits to store
                                        Demod.parityBits <<= (8 - (Demod.len&0x0007));          // left align remaining parity bits
                                        Demod.parity[Demod.parityLen++] = Demod.parityBits;     // and store them
                                }
                                if (Demod.len) {
-                                       return TRUE;                                                                            // we are finished with decoding the raw data sequence
+                                       return true;                                                                            // we are finished with decoding the raw data sequence
                                } else {                                                                                                // nothing received. Start over
                                        DemodReset();
                                }
@@ -531,7 +569,7 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non
                        
        } 
 
-    return FALSE;      // not finished yet, need more data
+    return false;      // not finished yet, need more data
 }
 
 //=============================================================================
@@ -551,12 +589,8 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
        
        LEDsoff();
 
-       // We won't start recording the frames that we acquire until we trigger;
-       // a good trigger condition to get started is probably when we see a
-       // response from the tag.
-       // triggered == FALSE -- to wait first for card
-       bool triggered = !(param & 0x03); 
-       
+       iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
+
        // Allocate memory from BigBuf for some buffers
        // free all previous allocations first
        BigBuf_free();
@@ -574,17 +608,15 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 
        // init trace buffer
        clear_trace();
-       set_tracing(TRUE);
+       set_tracing(true);
 
        uint8_t *data = dmaBuf;
        uint8_t previous_data = 0;
        int maxDataLen = 0;
        int dataLen = 0;
-       bool TagIsActive = FALSE;
-       bool ReaderIsActive = FALSE;
+       bool TagIsActive = false;
+       bool ReaderIsActive = false;
        
-       iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
-
        // Set up the demodulator for tag -> reader responses.
        DemodInit(receivedResponse, receivedResponsePar);
        
@@ -594,8 +626,14 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
        // Setup and start DMA.
        FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
        
+       // We won't start recording the frames that we acquire until we trigger;
+       // a good trigger condition to get started is probably when we see a
+       // response from the tag.
+       // triggered == false -- to wait first for card
+       bool triggered = !(param & 0x03); 
+       
        // And now we loop, receiving samples.
-       for(uint32_t rsamples = 0; TRUE; ) {
+       for(uint32_t rsamples = 0; true; ) {
 
                if(BUTTON_PRESS()) {
                        DbpString("cancelled by button");
@@ -644,7 +682,7 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
                                        LED_C_ON();
 
                                        // check - if there is a short 7bit request from reader
-                                       if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
+                                       if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = true;
 
                                        if(triggered) {
                                                if (!LogTrace(receivedCmd, 
@@ -652,7 +690,7 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
                                                                                Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
                                                                                Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
                                                                                Uart.parity, 
-                                                                               TRUE)) break;
+                                                                               true)) break;
                                        }
                                        /* And ready to receive another command. */
                                        UartReset();
@@ -674,12 +712,15 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
                                                                        Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, 
                                                                        Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
                                                                        Demod.parity,
-                                                                       FALSE)) break;
+                                                                       false)) break;
 
-                                       if ((!triggered) && (param & 0x01)) triggered = TRUE;
+                                       if ((!triggered) && (param & 0x01)) triggered = true;
 
                                        // And ready to receive another response.
                                        DemodReset();
+                                       // And reset the Miller decoder including itS (now outdated) input buffer
+                                       UartInit(receivedCmd, receivedCmdPar);
+
                                        LED_C_OFF();
                                } 
                                TagIsActive = (Demod.state != DEMOD_UNSYNCD);
@@ -753,14 +794,6 @@ static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *par
        ToSendMax++;
 }
 
-static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
-{
-       uint8_t par[MAX_PARITY_SIZE];
-       
-       GetParity(cmd, len, par);
-       CodeIso14443aAsTagPar(cmd, len, par);
-}
-
 
 static void Code4bitAnswerAsTag(uint8_t cmd)
 {
@@ -800,10 +833,42 @@ static void Code4bitAnswerAsTag(uint8_t cmd)
        ToSendMax++;
 }
 
+
+static uint8_t *LastReaderTraceTime = NULL;
+
+static void EmLogTraceReader(void) {
+       // remember last reader trace start to fix timing info later
+       LastReaderTraceTime = BigBuf_get_addr() + BigBuf_get_traceLen();
+       LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
+}
+
+
+static void FixLastReaderTraceTime(uint32_t tag_StartTime) {
+       uint32_t reader_EndTime = Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG;
+       uint32_t reader_StartTime = Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG;
+       uint16_t reader_modlen = reader_EndTime - reader_StartTime;
+       uint16_t approx_fdt = tag_StartTime - reader_EndTime;
+       uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
+       reader_StartTime = tag_StartTime - exact_fdt - reader_modlen;
+       LastReaderTraceTime[0] = (reader_StartTime >> 0) & 0xff;
+       LastReaderTraceTime[1] = (reader_StartTime >> 8) & 0xff;
+       LastReaderTraceTime[2] = (reader_StartTime >> 16) & 0xff;
+       LastReaderTraceTime[3] = (reader_StartTime >> 24) & 0xff;
+}
+
+       
+static void EmLogTraceTag(uint8_t *tag_data, uint16_t tag_len, uint8_t *tag_Parity, uint32_t ProxToAirDuration) {
+       uint32_t tag_StartTime = LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG;
+       uint32_t tag_EndTime = (LastTimeProxToAirStart + ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG;
+       LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, false);
+       FixLastReaderTraceTime(tag_StartTime);
+}
+
+
 //-----------------------------------------------------------------------------
 // Wait for commands from reader
 // Stop when button is pressed
-// Or return TRUE when command is captured
+// Or return true when command is captured
 //-----------------------------------------------------------------------------
 static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
 {
@@ -822,39 +887,28 @@ static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int
     for(;;) {
         WDT_HIT();
 
-        if(BUTTON_PRESS()) return FALSE;
+        if(BUTTON_PRESS()) return false;
                
         if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
             b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
                        if(MillerDecoding(b, 0)) {
                                *len = Uart.len;
-                               return TRUE;
+                               EmLogTraceReader();
+                               return true;
                        }
                }
     }
 }
 
-static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
-int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
+
+static int EmSend4bitEx(uint8_t resp);
 int EmSend4bit(uint8_t resp);
-int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
-int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
-int EmSendCmd(uint8_t *resp, uint16_t respLen);
-int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
-bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
-                                uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
+static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
+int EmSendCmdEx(uint8_t *resp, uint16_t respLen);
+int EmSendPrecompiledCmd(tag_response_info_t *response_info);
 
-static uint8_t* free_buffer_pointer;
 
-typedef struct {
-  uint8_t* response;
-  size_t   response_n;
-  uint8_t* modulation;
-  size_t   modulation_n;
-  uint32_t ProxToAirDuration;
-} tag_response_info_t;
-
-bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
+static bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
        // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
        // This will need the following byte array for a modulation sequence
        //    144        data bits (18 * 8)
@@ -868,17 +922,18 @@ bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffe
  
  
   // Prepare the tag modulation bits from the message
-  CodeIso14443aAsTag(response_info->response,response_info->response_n);
+  GetParity(response_info->response, response_info->response_n, &(response_info->par));
+  CodeIso14443aAsTagPar(response_info->response,response_info->response_n, &(response_info->par));
   
   // Make sure we do not exceed the free buffer space
   if (ToSendMax > max_buffer_size) {
     Dbprintf("Out of memory, when modulating bits for tag answer:");
-    Dbhexdump(response_info->response_n,response_info->response,false);
+    Dbhexdump(response_info->response_n, response_info->response, false);
     return false;
   }
   
   // Copy the byte array, used for this modulation to the buffer position
-  memcpy(response_info->modulation,ToSend,ToSendMax);
+  memcpy(response_info->modulation, ToSend, ToSendMax);
   
   // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
   response_info->modulation_n = ToSendMax;
@@ -890,21 +945,20 @@ bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffe
 
 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) 
-// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
+// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits for the modulation
 // -> need 273 bytes buffer
 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
 
-bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
+bool prepare_allocated_tag_modulation(tag_response_info_t* response_info, uint8_t **buffer, size_t *max_buffer_size) {
+
   // Retrieve and store the current buffer index
-  response_info->modulation = free_buffer_pointer;
-  
-  // Determine the maximum size we can use from our buffer
-  size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
+  response_info->modulation = *buffer;
   
   // Forward the prepare tag modulation function to the inner function
-  if (prepare_tag_modulation(response_info, max_buffer_size)) {
-    // Update the free buffer offset
-    free_buffer_pointer += ToSendMax;
+  if (prepare_tag_modulation(response_info, *max_buffer_size)) {
+    // Update the free buffer offset and the remaining buffer size
+    *buffer += ToSendMax;
+       *max_buffer_size -= ToSendMax;
     return true;
   } else {
     return false;
@@ -1026,21 +1080,24 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                .modulation_n = 0
        };
   
+       // We need to listen to the high-frequency, peak-detected path.
+       iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
        BigBuf_free_keep_EM();
 
        // allocate buffers:
        uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
        uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
-       free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
-
+       uint8_t *free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
+       size_t free_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
        // clear trace
        clear_trace();
-       set_tracing(TRUE);
+       set_tracing(true);
 
        // Prepare the responses of the anticollision phase
        // there will be not enough time to do this at the moment the reader sends it REQA
        for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
-               prepare_allocated_tag_modulation(&responses[i]);
+               prepare_allocated_tag_modulation(&responses[i], &free_buffer_pointer, &free_buffer_size);
        }
 
        int len = 0;
@@ -1054,16 +1111,12 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
        int happened2 = 0;
        int cmdsRecvd = 0;
 
-       // We need to listen to the high-frequency, peak-detected path.
-       iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
-
        cmdsRecvd = 0;
        tag_response_info_t* p_response;
 
        LED_A_ON();
        for(;;) {
                // Clean receive command buffer
-               
                if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
                        DbpString("Button press");
                        break;
@@ -1086,15 +1139,11 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) {   // Received a SELECT (cascade 2)
                        p_response = &responses[4]; order = 30;
                } else if(receivedCmd[0] == 0x30) {     // Received a (plain) READ
-                       EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
+                       EmSendCmdEx(data+(4*receivedCmd[1]),16);
                        // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
                        // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
                        p_response = NULL;
                } else if(receivedCmd[0] == 0x50) {     // Received a HALT
-
-                       if (tracing) {
-                               LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
-                       }
                        p_response = NULL;
                } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) {   // Received an authentication request
                        p_response = &responses[5]; order = 7;
@@ -1106,9 +1155,6 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                                p_response = &responses[6]; order = 70;
                        }
                } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
-                       if (tracing) {
-                               LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
-                       }
                        uint32_t nr = bytes_to_num(receivedCmd,4);
                        uint32_t ar = bytes_to_num(receivedCmd+4,4);
                        Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
@@ -1150,9 +1196,6 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 
                                default: {
                                        // Never seen this command before
-                                       if (tracing) {
-                                               LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
-                                       }
                                        Dbprintf("Received unknown command (len=%d):",len);
                                        Dbhexdump(len,receivedCmd,false);
                                        // Do not respond
@@ -1170,9 +1213,6 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
         
                                if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
                                        Dbprintf("Error preparing tag response");
-                                       if (tracing) {
-                                               LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
-                                       }
                                        break;
                                }
                                p_response = &dynamic_response_info;
@@ -1192,21 +1232,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                cmdsRecvd++;
 
                if (p_response != NULL) {
-                       EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
-                       // do the tracing for the previous reader request and this tag answer:
-                       uint8_t par[MAX_PARITY_SIZE];
-                       GetParity(p_response->response, p_response->response_n, par);
-       
-                       EmLogTrace(Uart.output, 
-                                               Uart.len, 
-                                               Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, 
-                                               Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 
-                                               Uart.parity,
-                                               p_response->response, 
-                                               p_response->response_n,
-                                               LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
-                                               (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, 
-                                               par);
+                       EmSendPrecompiledCmd(p_response);
                }
                
                if (!tracing) {
@@ -1223,7 +1249,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 
 // prepare a delayed transfer. This simply shifts ToSend[] by a number
 // of bits specified in the delay parameter.
-void PrepareDelayedTransfer(uint16_t delay)
+static void PrepareDelayedTransfer(uint16_t delay)
 {
        uint8_t bitmask = 0;
        uint8_t bits_to_shift = 0;
@@ -1296,7 +1322,7 @@ static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing
 //-----------------------------------------------------------------------------
 // Prepare reader command (in bits, support short frames) to send to FPGA
 //-----------------------------------------------------------------------------
-void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
+static void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
 {
        int i, j;
        int last;
@@ -1337,7 +1363,7 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8
                }
 
                // Only transmit parity bit if we transmitted a complete byte
-               if (j == 8) {
+               if (j == 8 && parity != NULL) {
                        // Get the parity bit
                        if (parity[i>>3] & (0x80 >> (i&0x0007))) {
                                // Sequence X
@@ -1374,21 +1400,13 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8
        ToSendMax++;
 }
 
-//-----------------------------------------------------------------------------
-// Prepare reader command to send to FPGA
-//-----------------------------------------------------------------------------
-void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
-{
-  CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
-}
-
 
 //-----------------------------------------------------------------------------
 // Wait for commands from reader
 // Stop when button is pressed (return 1) or field was gone (return 2)
 // Or return 0 when command is captured
 //-----------------------------------------------------------------------------
-static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
+int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
 {
        *len = 0;
 
@@ -1396,12 +1414,6 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
        int analogCnt = 0;
        int analogAVG = 0;
 
-       // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
-       // only, since we are receiving, not transmitting).
-       // Signal field is off with the appropriate LED
-       LED_D_OFF();
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
-
        // Set ADC to read field strength
        AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
        AT91C_BASE_ADC->ADC_MR =
@@ -1412,12 +1424,23 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
        // start ADC
        AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
        
-       // Now run a 'software UART' on the stream of incoming samples.
+       // Run a 'software UART' on the stream of incoming samples.
        UartInit(received, parity);
 
-       // Clear RXRDY:
-    uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-       
+       // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN
+       do {
+               if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+                       AT91C_BASE_SSC->SSC_THR = SEC_F;
+                       uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; (void) b;
+               }
+       } while (GetCountSspClk() < LastTimeProxToAirStart + LastProxToAirDuration + (FpgaSendQueueDelay>>3));
+
+       // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
+       // only, since we are receiving, not transmitting).
+       // Signal field is off with the appropriate LED
+       LED_D_OFF();
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
        for(;;) {
                WDT_HIT();
 
@@ -1443,9 +1466,10 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
 
                // receive and test the miller decoding
         if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
-            b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+            uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
                        if(MillerDecoding(b, 0)) {
                                *len = Uart.len;
+                               EmLogTraceReader();
                                return 0;
                        }
         }
@@ -1454,19 +1478,27 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
 }
 
 
-static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
+static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen)
 {
        uint8_t b;
        uint16_t i = 0;
-       uint32_t ThisTransferTime;
-       
+       bool correctionNeeded;
+
        // Modulate Manchester
        FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
 
        // include correction bit if necessary
-       if (Uart.parityBits & 0x01) {
-               correctionNeeded = TRUE;
+       if (Uart.bitCount == 7)
+       {
+               // Short tags (7 bits) don't have parity, determine the correct value from MSB
+               correctionNeeded = Uart.output[0] & 0x40;
        }
+       else
+       {
+               // Look at the last parity bit
+               correctionNeeded = Uart.parity[(Uart.len-1)/8] & (0x80 >> ((Uart.len-1) & 7));
+       }
+
        if(correctionNeeded) {
                // 1236, so correction bit needed
                i = 0;
@@ -1486,10 +1518,7 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNe
                if (AT91C_BASE_SSC->SSC_RHR) break;
        }
 
-       while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
-
-       // Clear TXRDY:
-       AT91C_BASE_SSC->SSC_THR = SEC_F;
+       LastTimeProxToAirStart = (GetCountSspClk() & 0xfffffff8) + (correctionNeeded?8:0);
 
        // send cycle
        for(; i < respLen; ) {
@@ -1503,101 +1532,64 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNe
                }
        }
 
-       // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
-       uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
-       for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
-               if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
-                       AT91C_BASE_SSC->SSC_THR = SEC_F;
-                       FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-                       i++;
-               }
-       }
-
-       LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
-
        return 0;
 }
 
-int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
+
+static int EmSend4bitEx(uint8_t resp){
        Code4bitAnswerAsTag(resp);
-       int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
+       int res = EmSendCmd14443aRaw(ToSend, ToSendMax);
        // do the tracing for the previous reader request and this tag answer:
-       uint8_t par[1];
-       GetParity(&resp, 1, par);
-       EmLogTrace(Uart.output, 
-                               Uart.len, 
-                               Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, 
-                               Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 
-                               Uart.parity,
-                               &resp, 
-                               1, 
-                               LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
-                               (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, 
-                               par);
+       EmLogTraceTag(&resp, 1, NULL, LastProxToAirDuration);
        return res;
 }
 
+
 int EmSend4bit(uint8_t resp){
-       return EmSend4bitEx(resp, false);
+       return EmSend4bitEx(resp);
 }
 
-int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
+
+static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
        CodeIso14443aAsTagPar(resp, respLen, par);
-       int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
+       int res = EmSendCmd14443aRaw(ToSend, ToSendMax);
        // do the tracing for the previous reader request and this tag answer:
-       EmLogTrace(Uart.output, 
-                               Uart.len, 
-                               Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, 
-                               Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 
-                               Uart.parity,
-                               resp, 
-                               respLen, 
-                               LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
-                               (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, 
-                               par);
+       EmLogTraceTag(resp, respLen, par, LastProxToAirDuration);
        return res;
 }
 
-int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
+
+int EmSendCmdEx(uint8_t *resp, uint16_t respLen){
        uint8_t par[MAX_PARITY_SIZE];
        GetParity(resp, respLen, par);
-       return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
+       return EmSendCmdExPar(resp, respLen, par);
 }
 
+
 int EmSendCmd(uint8_t *resp, uint16_t respLen){
        uint8_t par[MAX_PARITY_SIZE];
        GetParity(resp, respLen, par);
-       return EmSendCmdExPar(resp, respLen, false, par);
+       return EmSendCmdExPar(resp, respLen, par);
 }
 
+
 int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
-       return EmSendCmdExPar(resp, respLen, false, par);
+       return EmSendCmdExPar(resp, respLen, par);
 }
 
-bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
-                                uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
-{
-       if (tracing) {
-               // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
-               // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
-               // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
-               uint16_t reader_modlen = reader_EndTime - reader_StartTime;
-               uint16_t approx_fdt = tag_StartTime - reader_EndTime;
-               uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
-               reader_EndTime = tag_StartTime - exact_fdt;
-               reader_StartTime = reader_EndTime - reader_modlen;
-               if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
-                       return FALSE;
-               } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
-       } else {
-               return TRUE;
-       }
+
+int EmSendPrecompiledCmd(tag_response_info_t *response_info) {
+       int ret = EmSendCmd14443aRaw(response_info->modulation, response_info->modulation_n);
+       // do the tracing for the previous reader request and this tag answer:
+       EmLogTraceTag(response_info->response, response_info->response_n, &(response_info->par), response_info->ProxToAirDuration);
+       return ret;
 }
 
+
 //-----------------------------------------------------------------------------
 // Wait a certain time for tag response
-//  If a response is captured return TRUE
-//  If it takes too long return FALSE
+//  If a response is captured return true
+//  If it takes too long return false
 //-----------------------------------------------------------------------------
 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
 {
@@ -1623,14 +1615,15 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receive
                        b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
                        if(ManchesterDecoding(b, offset, 0)) {
                                NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
-                               return TRUE;
+                               return true;
                        } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
-                               return FALSE
+                               return false
                        }
                }
        }
 }
 
+
 void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
 {
        CodeIso14443aBitsAsReaderPar(frame, bits, par);
@@ -1642,16 +1635,18 @@ void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t
   
        // Log reader command in trace buffer
        if (tracing) {
-               LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
+               LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, true);
        }
 }
 
+
 void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
 {
   ReaderTransmitBitsPar(frame, len*8, par, timing);
 }
 
-void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
+
+static void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
 {
   // Generate parity and redirect
   uint8_t par[MAX_PARITY_SIZE];
@@ -1659,6 +1654,7 @@ void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
   ReaderTransmitBitsPar(frame, len, par, timing);
 }
 
+
 void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
 {
   // Generate parity and redirect
@@ -1667,28 +1663,33 @@ void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
   ReaderTransmitBitsPar(frame, len*8, par, timing);
 }
 
-int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
+
+static int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
 {
-       if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE;
+       if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return false;
        if (tracing) {
-               LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
+               LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, false);
        }
        return Demod.len;
 }
 
+
 int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
 {
-       if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
+       if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return false;
        if (tracing) {
-               LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
+               LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, false);
        }
        return Demod.len;
 }
 
-/* performs iso14443a anticollision procedure
- * fills the uid pointer unless NULL
- * fills resp_data unless NULL */
-int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
+// performs iso14443a anticollision (optional) and card select procedure
+// fills the uid and cuid pointer unless NULL
+// fills the card info record unless NULL
+// if anticollision is false, then the UID must be provided in uid_ptr[] 
+// and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
+// requests ATS unless no_rats is true
+int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades, bool no_rats) {
        uint8_t wupa[]       = { 0x52 };  // 0x26 - REQA  0x52 - WAKE-UP
        uint8_t sel_all[]    = { 0x93,0x20 };
        uint8_t sel_uid[]    = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
@@ -1702,23 +1703,35 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
        int cascade_level = 0;
        int len;
 
+       // init card struct
+       if(p_hi14a_card) {
+               p_hi14a_card->uidlen = 0;
+               memset(p_hi14a_card->uid, 0, 10);
+               p_hi14a_card->ats_len = 0;
+       }
+
        // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
-    ReaderTransmitBitsPar(wupa,7,0, NULL);
+    ReaderTransmitBitsPar(wupa, 7, NULL, NULL);
        
        // Receive the ATQA
        if(!ReaderReceive(resp, resp_par)) return 0;
 
        if(p_hi14a_card) {
                memcpy(p_hi14a_card->atqa, resp, 2);
-               p_hi14a_card->uidlen = 0;
-               memset(p_hi14a_card->uid,0,10);
        }
 
-       // clear uid
-       if (uid_ptr) {
-               memset(uid_ptr,0,10);
+       if (anticollision) {
+               // clear uid
+               if (uid_ptr) {
+                       memset(uid_ptr,0,10);
+               }
        }
 
+       // check for proprietary anticollision:
+       if ((resp[0] & 0x1F) == 0) {
+               return 3;
+       }
+       
        // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
        // which case we need to make a cascade 2 request and select - this is a long UID
        // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
@@ -1726,40 +1739,49 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
                // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
                sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
 
-               // SELECT_ALL
-               ReaderTransmit(sel_all, sizeof(sel_all), NULL);
-               if (!ReaderReceive(resp, resp_par)) return 0;
-
-               if (Demod.collisionPos) {                       // we had a collision and need to construct the UID bit by bit
-                       memset(uid_resp, 0, 4);
-                       uint16_t uid_resp_bits = 0;
-                       uint16_t collision_answer_offset = 0;
-                       // anti-collision-loop:
-                       while (Demod.collisionPos) {
-                               Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
-                               for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) {      // add valid UID bits before collision point
-                                       uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
-                                       uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
+               if (anticollision) {
+                       // SELECT_ALL
+                       ReaderTransmit(sel_all, sizeof(sel_all), NULL);
+                       if (!ReaderReceive(resp, resp_par)) return 0;
+
+                       if (Demod.collisionPos) {                       // we had a collision and need to construct the UID bit by bit
+                               memset(uid_resp, 0, 4);
+                               uint16_t uid_resp_bits = 0;
+                               uint16_t collision_answer_offset = 0;
+                               // anti-collision-loop:
+                               while (Demod.collisionPos) {
+                                       Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
+                                       for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) {      // add valid UID bits before collision point
+                                               uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
+                                               uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
+                                       }
+                                       uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8);                                  // next time select the card(s) with a 1 in the collision position
+                                       uid_resp_bits++;
+                                       // construct anticollosion command:
+                                       sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07);     // length of data in bytes and bits
+                                       for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
+                                               sel_uid[2+i] = uid_resp[i];
+                                       }
+                                       collision_answer_offset = uid_resp_bits%8;
+                                       ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
+                                       if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
                                }
-                               uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8);                                  // next time select the card(s) with a 1 in the collision position
-                               uid_resp_bits++;
-                               // construct anticollosion command:
-                               sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07);     // length of data in bytes and bits
-                               for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
-                                       sel_uid[2+i] = uid_resp[i];
+                               // finally, add the last bits and BCC of the UID
+                               for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
+                                       uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
+                                       uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
                                }
-                               collision_answer_offset = uid_resp_bits%8;
-                               ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
-                               if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
+
+                       } else {                // no collision, use the response to SELECT_ALL as current uid
+                               memcpy(uid_resp, resp, 4);
                        }
-                       // finally, add the last bits and BCC of the UID
-                       for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
-                               uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
-                               uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
+               } else {
+                       if (cascade_level < num_cascades - 1) {
+                               uid_resp[0] = 0x88;
+                               memcpy(uid_resp+1, uid_ptr+cascade_level*3, 3);
+                       } else {
+                               memcpy(uid_resp, uid_ptr+cascade_level*3, 4);
                        }
-
-               } else {                // no collision, use the response to SELECT_ALL as current uid
-                       memcpy(uid_resp, resp, 4);
                }
                uid_resp_len = 4;
 
@@ -1770,7 +1792,7 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
 
                // Construct SELECT UID command
                sel_uid[1] = 0x70;                                                                                                      // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
-               memcpy(sel_uid+2, uid_resp, 4);                                                                         // the UID
+               memcpy(sel_uid+2, uid_resp, 4);                                                                         // the UID received during anticollision, or the provided UID
                sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5];         // calculate and add BCC
                AppendCrc14443a(sel_uid, 7);                                                                            // calculate and add CRC
                ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
@@ -1778,19 +1800,18 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
                // Receive the SAK
                if (!ReaderReceive(resp, resp_par)) return 0;
                sak = resp[0];
-
-    // Test if more parts of the uid are coming
+       
+               // Test if more parts of the uid are coming
                if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
                        // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
                        // http://www.nxp.com/documents/application_note/AN10927.pdf
                        uid_resp[0] = uid_resp[1];
                        uid_resp[1] = uid_resp[2];
                        uid_resp[2] = uid_resp[3]; 
-
                        uid_resp_len = 3;
                }
 
-               if(uid_ptr) {
+               if(uid_ptr && anticollision) {
                        memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
                }
 
@@ -1802,33 +1823,33 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
 
        if(p_hi14a_card) {
                p_hi14a_card->sak = sak;
-               p_hi14a_card->ats_len = 0;
        }
 
-       // non iso14443a compliant tag
+       // PICC compilant with iso14443a-4 ---> (SAK & 0x20 != 0)
        if( (sak & 0x20) == 0) return 2; 
 
-       // Request for answer to select
-       AppendCrc14443a(rats, 2);
-       ReaderTransmit(rats, sizeof(rats), NULL);
+       if (!no_rats) {
+               // Request for answer to select
+               AppendCrc14443a(rats, 2);
+               ReaderTransmit(rats, sizeof(rats), NULL);
 
-       if (!(len = ReaderReceive(resp, resp_par))) return 0;
+               if (!(len = ReaderReceive(resp, resp_par))) return 0;
 
-       
-       if(p_hi14a_card) {
-               memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
-               p_hi14a_card->ats_len = len;
-       }
-
-       // reset the PCB block number
-       iso14_pcb_blocknum = 0;
+               if(p_hi14a_card) {
+                       memcpy(p_hi14a_card->ats, resp, len);
+                       p_hi14a_card->ats_len = len;
+               }
 
-       // set default timeout based on ATS
-       iso14a_set_ATS_timeout(resp);
+               // reset the PCB block number
+               iso14_pcb_blocknum = 0;
 
+               // set default timeout based on ATS
+               iso14a_set_ATS_timeout(resp);
+       }
        return 1;       
 }
 
+
 void iso14443a_setup(uint8_t fpga_minor_mode) {
        FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
        // Set up the synchronous serial port
@@ -1851,37 +1872,93 @@ void iso14443a_setup(uint8_t fpga_minor_mode) {
        DemodReset();
        UartReset();
        NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
-       iso14a_set_timeout(1050); // 10ms default
+       iso14a_set_timeout(1060); // 10ms default
 }
 
+/* Peter Fillmore 2015
+Added card id field to the function
+ info from ISO14443A standard
+b1 = Block Number
+b2 = RFU (always 1)
+b3 = depends on block
+b4 = Card ID following if set to 1
+b5 = depends on block type
+b6 = depends on block type
+b7,b8 = block type.
+Coding of I-BLOCK:
+b8 b7 b6 b5 b4 b3 b2 b1
+0  0  0  x  x  x  1  x
+b5 = chaining bit
+Coding of R-block:
+b8 b7 b6 b5 b4 b3 b2 b1
+1  0  1  x  x  0  1  x
+b5 = ACK/NACK
+Coding of S-block:
+b8 b7 b6 b5 b4 b3 b2 b1
+1  1  x  x  x  0  1  0 
+b5,b6 = 00 - DESELECT
+        11 - WTX 
+*/    
 int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
        uint8_t parity[MAX_PARITY_SIZE];
-       uint8_t real_cmd[cmd_len+4];
-       real_cmd[0] = 0x0a; //I-Block
+       uint8_t real_cmd[cmd_len + 4];
+       
+       // ISO 14443 APDU frame: PCB [CID] [NAD] APDU CRC PCB=0x02
+       real_cmd[0] = 0x02; // bnr,nad,cid,chn=0; i-block(0x00) 
        // put block number into the PCB
        real_cmd[0] |= iso14_pcb_blocknum;
-       real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
-       memcpy(real_cmd+2, cmd, cmd_len);
-       AppendCrc14443a(real_cmd,cmd_len+2);
+       memcpy(real_cmd + 1, cmd, cmd_len);
+       AppendCrc14443a(real_cmd, cmd_len + 1);
  
-       ReaderTransmit(real_cmd, cmd_len+4, NULL);
+       ReaderTransmit(real_cmd, cmd_len + 3, NULL);
+
        size_t len = ReaderReceive(data, parity);
        uint8_t *data_bytes = (uint8_t *) data;
-       if (!len)
+
+       if (!len) {
                return 0; //DATA LINK ERROR
-       // if we received an I- or R(ACK)-Block with a block number equal to the
-       // current block number, toggle the current block number
-       else if (len >= 4 // PCB+CID+CRC = 4 bytes
+       } else{
+               // S-Block WTX 
+               while((data_bytes[0] & 0xF2) == 0xF2) {
+                       // Transmit WTX back 
+                       // byte1 - WTXM [1..59]. command FWT=FWT*WTXM
+                       data_bytes[1] = data_bytes[1] & 0x3f; // 2 high bits mandatory set to 0b
+                       // now need to fix CRC.
+                       AppendCrc14443a(data_bytes, len - 2);
+                       // transmit S-Block
+                       ReaderTransmit(data_bytes, len, NULL);
+                       // retrieve the result again 
+                       len = ReaderReceive(data, parity);
+                       data_bytes = data;
+               }
+
+               // if we received an I- or R(ACK)-Block with a block number equal to the
+               // current block number, toggle the current block number
+               if (len >= 3 // PCB+CRC = 3 bytes
                 && ((data_bytes[0] & 0xC0) == 0 // I-Block
                     || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
                 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
-       {
-               iso14_pcb_blocknum ^= 1;
-       }
+               {
+                       iso14_pcb_blocknum ^= 1;
+               }
 
+               // crc check
+               if (len >=3 && !CheckCrc14443(CRC_14443_A, data_bytes, len)) {
+                       return -1;
+               }
+               
+       }
+       
+       // cut frame byte
+       len -= 1;
+       // memmove(data_bytes, data_bytes + 1, len);
+       for (int i = 0; i < len; i++)
+               data_bytes[i] = data_bytes[i + 1];
+       
        return len;
 }
 
+
 //-----------------------------------------------------------------------------
 // Read an ISO 14443a tag. Send out commands and store answers.
 //
@@ -1890,58 +1967,98 @@ void ReaderIso14443a(UsbCommand *c)
 {
        iso14a_command_t param = c->arg[0];
        uint8_t *cmd = c->d.asBytes;
-       size_t len = c->arg[1];
-       size_t lenbits = c->arg[2];
+       size_t len = c->arg[1] & 0xffff;
+       size_t lenbits = c->arg[1] >> 16;
+       uint32_t timeout = c->arg[2];
        uint32_t arg0 = 0;
-       byte_t buf[USB_CMD_DATA_SIZE];
+       byte_t buf[USB_CMD_DATA_SIZE] = {0};
        uint8_t par[MAX_PARITY_SIZE];
+       bool cantSELECT = false;
   
-       if(param & ISO14A_CONNECT) {
+       set_tracing(true);
+       
+       if(param & ISO14A_CLEAR_TRACE) {
                clear_trace();
        }
 
-       set_tracing(TRUE);
-
        if(param & ISO14A_REQUEST_TRIGGER) {
-               iso14a_set_trigger(TRUE);
+               iso14a_set_trigger(true);
        }
 
        if(param & ISO14A_CONNECT) {
+               LED_A_ON();
                iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
                if(!(param & ISO14A_NO_SELECT)) {
                        iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
-                       arg0 = iso14443a_select_card(NULL,card,NULL);
+                       arg0 = iso14443a_select_card(NULL, card, NULL, true, 0, param & ISO14A_NO_RATS);
+
+                       // if we cant select then we cant send data
+                       if (arg0 != 1 && arg0 != 2) {
+                               // 1 - all is OK with ATS, 2 - without ATS
+                               cantSELECT = true;
+                       }
+                       
+                       LED_B_ON();
                        cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
+                       LED_B_OFF();
                }
        }
 
        if(param & ISO14A_SET_TIMEOUT) {
-               iso14a_set_timeout(c->arg[2]);
+               iso14a_set_timeout(timeout);
        }
 
-       if(param & ISO14A_APDU) {
+       if(param & ISO14A_APDU && !cantSELECT) {
                arg0 = iso14_apdu(cmd, len, buf);
-               cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
+               LED_B_ON();
+               cmd_send(CMD_ACK, arg0, 0, 0, buf, sizeof(buf));
+               LED_B_OFF();
        }
 
-       if(param & ISO14A_RAW) {
+       if(param & ISO14A_RAW && !cantSELECT) {
                if(param & ISO14A_APPEND_CRC) {
-                       AppendCrc14443a(cmd,len);
+                       if(param & ISO14A_TOPAZMODE) {
+                               AppendCrc14443b(cmd,len);
+                       } else {
+                               AppendCrc14443a(cmd,len);
+                       }
                        len += 2;
                        if (lenbits) lenbits += 16;
                }
-               if(lenbits>0) {
-                       GetParity(cmd, lenbits/8, par);
-                       ReaderTransmitBitsPar(cmd, lenbits, par, NULL);
-               } else {
-                       ReaderTransmit(cmd,len, NULL);
+               if(lenbits>0) {                         // want to send a specific number of bits (e.g. short commands)
+                       if(param & ISO14A_TOPAZMODE) {
+                               int bits_to_send = lenbits;
+                               uint16_t i = 0;
+                               ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL);             // first byte is always short (7bits) and no parity
+                               bits_to_send -= 7;
+                               while (bits_to_send > 0) {
+                                       ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL);     // following bytes are 8 bit and no parity
+                                       bits_to_send -= 8;
+                               }
+                       } else {
+                               GetParity(cmd, lenbits/8, par);
+                               ReaderTransmitBitsPar(cmd, lenbits, par, NULL);                                                 // bytes are 8 bit with odd parity
+                       }
+               } else {                                        // want to send complete bytes only
+                       if(param & ISO14A_TOPAZMODE) {
+                               uint16_t i = 0;
+                               ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL);                                                // first byte: 7 bits, no paritiy
+                               while (i < len) {
+                                       ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL);                                        // following bytes: 8 bits, no paritiy
+                               }
+                       } else {
+                               ReaderTransmit(cmd,len, NULL);                                                                                  // 8 bits, odd parity
+                       }
                }
                arg0 = ReaderReceive(buf, par);
+
+               LED_B_ON();
                cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
+               LED_B_OFF();
        }
 
        if(param & ISO14A_REQUEST_TRIGGER) {
-               iso14a_set_trigger(FALSE);
+               iso14a_set_trigger(false);
        }
 
        if(param & ISO14A_NO_DISCONNECT) {
@@ -1956,7 +2073,7 @@ void ReaderIso14443a(UsbCommand *c)
 // Determine the distance between two nonces.
 // Assume that the difference is small, but we don't know which is first.
 // Therefore try in alternating directions.
-int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
+static int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
 
        uint16_t i;
        uint32_t nttmp1, nttmp2;
@@ -1970,7 +2087,7 @@ int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
                nttmp1 = prng_successor(nttmp1, 1);
                if (nttmp1 == nt2) return i;
                nttmp2 = prng_successor(nttmp2, 1);
-                       if (nttmp2 == nt1) return -i;
+               if (nttmp2 == nt1) return -i;
                }
        
        return(-99999); // either nt1 or nt2 are invalid nonces
@@ -1993,16 +2110,20 @@ void ReaderMifare(bool first_try)
        uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
        uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
 
+       if (first_try) { 
+               iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+       }
+       
        // free eventually allocated BigBuf memory. We want all for tracing.
        BigBuf_free();
        
        clear_trace();
-       set_tracing(TRUE);
+       set_tracing(true);
 
        byte_t nt_diff = 0;
        uint8_t par[1] = {0};   // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
        static byte_t par_low = 0;
-       bool led_on = TRUE;
+       bool led_on = true;
        uint8_t uid[10]  ={0};
        uint32_t cuid;
 
@@ -2012,20 +2133,20 @@ void ReaderMifare(bool first_try)
        byte_t par_list[8] = {0x00};
        byte_t ks_list[8] = {0x00};
 
+       #define PRNG_SEQUENCE_LENGTH  (1 << 16);
        static uint32_t sync_time;
-       static uint32_t sync_cycles;
+       static int32_t sync_cycles;
        int catch_up_cycles = 0;
        int last_catch_up = 0;
+       uint16_t elapsed_prng_sequences;
        uint16_t consecutive_resyncs = 0;
        int isOK = 0;
 
        if (first_try) { 
                mf_nr_ar3 = 0;
-               iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
                sync_time = GetCountSspClk() & 0xfffffff8;
-               sync_cycles = 65536;                                                                    // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
+               sync_cycles = PRNG_SEQUENCE_LENGTH;                                                     // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the tag nonces).
                nt_attacked = 0;
-               nt = 0;
                par[0] = 0;
        }
        else {
@@ -2039,33 +2160,84 @@ void ReaderMifare(bool first_try)
        LED_B_OFF();
        LED_C_OFF();
        
-  
-       for(uint16_t i = 0; TRUE; i++) {
+
+       #define MAX_UNEXPECTED_RANDOM   4               // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
+       #define MAX_SYNC_TRIES                  32
+       #define NUM_DEBUG_INFOS                 8               // per strategy
+       #define MAX_STRATEGY                    3
+       uint16_t unexpected_random = 0;
+       uint16_t sync_tries = 0;
+       int16_t debug_info_nr = -1;
+       uint16_t strategy = 0;
+       int32_t debug_info[MAX_STRATEGY][NUM_DEBUG_INFOS];
+       uint32_t select_time;
+       uint32_t halt_time;
+       
+       for(uint16_t i = 0; true; i++) {
                
+               LED_C_ON();
                WDT_HIT();
 
                // Test if the action was cancelled
                if(BUTTON_PRESS()) {
+                       isOK = -1;
                        break;
                }
                
-               LED_C_ON();
+               if (strategy == 2) {
+                       // test with additional hlt command
+                       halt_time = 0;
+                       int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time);
+                       if (len && MF_DBGLEVEL >= 3) {
+                               Dbprintf("Unexpected response of %d bytes to hlt command (additional debugging).", len);
+                       }
+               }
 
-               if(!iso14443a_select_card(uid, NULL, &cuid)) {
+               if (strategy == 3) {
+                       // test with FPGA power off/on
+                       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+                       SpinDelay(200);
+                       iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+                       SpinDelay(100);
+               }
+               
+               if(!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
                        if (MF_DBGLEVEL >= 1)   Dbprintf("Mifare: Can't select card");
                        continue;
                }
+               select_time = GetCountSspClk();
 
-               sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
-               catch_up_cycles = 0;
+               elapsed_prng_sequences = 1;
+               if (debug_info_nr == -1) {
+                       sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
+                       catch_up_cycles = 0;
 
-               // if we missed the sync time already, advance to the next nonce repeat
-               while(GetCountSspClk() > sync_time) {
-                       sync_time = (sync_time & 0xfffffff8) + sync_cycles;
-               }
+                       // if we missed the sync time already, advance to the next nonce repeat
+                       while(GetCountSspClk() > sync_time) {
+                               elapsed_prng_sequences++;
+                               sync_time = (sync_time & 0xfffffff8) + sync_cycles;
+                       }
 
-               // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked) 
-               ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+                       // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked) 
+                       ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+               } else {
+                       // collect some information on tag nonces for debugging:
+                       #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH
+                       if (strategy == 0) {
+                               // nonce distances at fixed time after card select:
+                               sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES;
+                       } else if (strategy == 1) {
+                               // nonce distances at fixed time between authentications:
+                               sync_time = sync_time + DEBUG_FIXED_SYNC_CYCLES;
+                       } else if (strategy == 2) {
+                               // nonce distances at fixed time after halt:
+                               sync_time = halt_time + DEBUG_FIXED_SYNC_CYCLES;
+                       } else {
+                               // nonce_distances at fixed time after power on
+                               sync_time = DEBUG_FIXED_SYNC_CYCLES;
+                       }
+                       ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+               }                       
 
                // Receive the (4 Byte) "random" nonce
                if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
@@ -2083,13 +2255,37 @@ void ReaderMifare(bool first_try)
                        int nt_distance = dist_nt(previous_nt, nt);
                        if (nt_distance == 0) {
                                nt_attacked = nt;
-                       }
-                       else {
-                               if (nt_distance == -99999) { // invalid nonce received, try again
-                                       continue;
+                       } else {
+                               if (nt_distance == -99999) { // invalid nonce received
+                                       unexpected_random++;
+                                       if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
+                                               isOK = -3;              // Card has an unpredictable PRNG. Give up      
+                                               break;
+                                       } else {
+                                               continue;               // continue trying...
+                                       }
+                               }
+                               if (++sync_tries > MAX_SYNC_TRIES) {
+                                       if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) {
+                                               isOK = -4;                      // Card's PRNG runs at an unexpected frequency or resets unexpectedly
+                                               break;
+                                       } else {                                // continue for a while, just to collect some debug info
+                                               debug_info[strategy][debug_info_nr] = nt_distance;
+                                               debug_info_nr++;
+                                               if (debug_info_nr == NUM_DEBUG_INFOS) {
+                                                       strategy++;
+                                                       debug_info_nr = 0;
+                                               }
+                                               continue;
+                                       }
+                               }
+                               sync_cycles = (sync_cycles - nt_distance/elapsed_prng_sequences);
+                               if (sync_cycles <= 0) {
+                                       sync_cycles += PRNG_SEQUENCE_LENGTH;
+                               }
+                               if (MF_DBGLEVEL >= 3) {
+                                       Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
                                }
-                               sync_cycles = (sync_cycles - nt_distance);
-                               if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
                                continue;
                        }
                }
@@ -2100,6 +2296,7 @@ void ReaderMifare(bool first_try)
                                catch_up_cycles = 0;
                                continue;
                        }
+                       catch_up_cycles /= elapsed_prng_sequences;
                        if (catch_up_cycles == last_catch_up) {
                                consecutive_resyncs++;
                        }
@@ -2113,6 +2310,9 @@ void ReaderMifare(bool first_try)
                        else {  
                                sync_cycles = sync_cycles + catch_up_cycles;
                                if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
+                               last_catch_up = 0;
+                               catch_up_cycles = 0;
+                               consecutive_resyncs = 0;
                        }
                        continue;
                }
@@ -2120,12 +2320,10 @@ void ReaderMifare(bool first_try)
                consecutive_resyncs = 0;
                
                // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
-               if (ReaderReceive(receivedAnswer, receivedAnswerPar))
-               {
+               if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
                        catch_up_cycles = 8;    // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
        
-                       if (nt_diff == 0)
-                       {
+                       if (nt_diff == 0) {
                                par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
                        }
 
@@ -2148,6 +2346,10 @@ void ReaderMifare(bool first_try)
                        if (nt_diff == 0 && first_try)
                        {
                                par[0]++;
+                               if (par[0] == 0x00) {           // tried all 256 possible parities without success. Card doesn't send NACK.
+                                       isOK = -2;
+                                       break;
+                               }
                        } else {
                                par[0] = ((par[0] & 0x1F) + 1) | par_low;
                        }
@@ -2156,6 +2358,16 @@ void ReaderMifare(bool first_try)
 
 
        mf_nr_ar[3] &= 0x1F;
+
+       if (isOK == -4) {
+               if (MF_DBGLEVEL >= 3) {
+                       for (uint16_t i = 0; i <= MAX_STRATEGY; i++) {
+                               for(uint16_t j = 0; j < NUM_DEBUG_INFOS; j++) {
+                                       Dbprintf("collected debug info[%d][%d] = %d", i, j, debug_info[i][j]);
+                               }
+                       }
+               }
+       }
        
        byte_t buf[28];
        memcpy(buf + 0,  uid, 4);
@@ -2164,522 +2376,15 @@ void ReaderMifare(bool first_try)
        memcpy(buf + 16, ks_list, 8);
        memcpy(buf + 24, mf_nr_ar, 4);
                
-       cmd_send(CMD_ACK,isOK,0,0,buf,28);
+       cmd_send(CMD_ACK, isOK, 0, 0, buf, 28);
 
        // Thats it...
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        LEDsoff();
 
-       set_tracing(FALSE);
+       set_tracing(false);
 }
 
-/**
-  *MIFARE 1K simulate.
-  *
-  *@param flags :
-  *    FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
-  * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
-  * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
-  *    FLAG_NR_AR_ATTACK  - means we should collect NR_AR responses for bruteforcing later
-  *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
-  */
-void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
-{
-       int cardSTATE = MFEMUL_NOFIELD;
-       int _7BUID = 0;
-       int vHf = 0;    // in mV
-       int res;
-       uint32_t selTimer = 0;
-       uint32_t authTimer = 0;
-       uint16_t len = 0;
-       uint8_t cardWRBL = 0;
-       uint8_t cardAUTHSC = 0;
-       uint8_t cardAUTHKEY = 0xff;  // no authentication
-       uint32_t cardRr = 0;
-       uint32_t cuid = 0;
-       //uint32_t rn_enc = 0;
-       uint32_t ans = 0;
-       uint32_t cardINTREG = 0;
-       uint8_t cardINTBLOCK = 0;
-       struct Crypto1State mpcs = {0, 0};
-       struct Crypto1State *pcs;
-       pcs = &mpcs;
-       uint32_t numReads = 0;//Counts numer of times reader read a block
-       uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
-       uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
-       uint8_t response[MAX_MIFARE_FRAME_SIZE];
-       uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
-       
-       uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
-       uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
-       uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
-       uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
-       uint8_t rSAK1[] = {0x04, 0xda, 0x17};
-
-       uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
-       uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
-               
-       //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
-       // This can be used in a reader-only attack.
-       // (it can also be retrieved via 'hf 14a list', but hey...
-       uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
-       uint8_t ar_nr_collected = 0;
-
-       // free eventually allocated BigBuf memory but keep Emulator Memory
-       BigBuf_free_keep_EM();
-
-       // clear trace
-       clear_trace();
-       set_tracing(TRUE);
-
-       // Authenticate response - nonce
-       uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
-       
-       //-- Determine the UID
-       // Can be set from emulator memory, incoming data
-       // and can be 7 or 4 bytes long
-       if (flags & FLAG_4B_UID_IN_DATA)
-       {
-               // 4B uid comes from data-portion of packet
-               memcpy(rUIDBCC1,datain,4);
-               rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
-
-       } else if (flags & FLAG_7B_UID_IN_DATA) {
-               // 7B uid comes from data-portion of packet
-               memcpy(&rUIDBCC1[1],datain,3);
-               memcpy(rUIDBCC2, datain+3, 4);
-               _7BUID = true;
-       } else {
-               // get UID from emul memory
-               emlGetMemBt(receivedCmd, 7, 1);
-               _7BUID = !(receivedCmd[0] == 0x00);
-               if (!_7BUID) {                     // ---------- 4BUID
-                       emlGetMemBt(rUIDBCC1, 0, 4);
-               } else {                           // ---------- 7BUID
-                       emlGetMemBt(&rUIDBCC1[1], 0, 3);
-                       emlGetMemBt(rUIDBCC2, 3, 4);
-               }
-       }
-
-       /*
-        * Regardless of what method was used to set the UID, set fifth byte and modify
-        * the ATQA for 4 or 7-byte UID
-        */
-       rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
-       if (_7BUID) {
-               rATQA[0] = 0x44;
-               rUIDBCC1[0] = 0x88;
-               rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
-       }
-
-       // We need to listen to the high-frequency, peak-detected path.
-       iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
-
-
-       if (MF_DBGLEVEL >= 1)   {
-               if (!_7BUID) {
-                       Dbprintf("4B UID: %02x%02x%02x%02x", 
-                               rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
-               } else {
-                       Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
-                               rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
-                               rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
-               }
-       }
-
-       bool finished = FALSE;
-       while (!BUTTON_PRESS() && !finished) {
-               WDT_HIT();
-
-               // find reader field
-               if (cardSTATE == MFEMUL_NOFIELD) {
-                       vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
-                       if (vHf > MF_MINFIELDV) {
-                               cardSTATE_TO_IDLE();
-                               LED_A_ON();
-                       }
-               } 
-               if(cardSTATE == MFEMUL_NOFIELD) continue;
-
-               //Now, get data
-
-               res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
-               if (res == 2) { //Field is off!
-                       cardSTATE = MFEMUL_NOFIELD;
-                       LEDsoff();
-                       continue;
-               } else if (res == 1) {
-                       break;  //return value 1 means button press
-               }
-                       
-               // REQ or WUP request in ANY state and WUP in HALTED state
-               if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
-                       selTimer = GetTickCount();
-                       EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
-                       cardSTATE = MFEMUL_SELECT1;
-
-                       // init crypto block
-                       LED_B_OFF();
-                       LED_C_OFF();
-                       crypto1_destroy(pcs);
-                       cardAUTHKEY = 0xff;
-                       continue;
-               }
-               
-               switch (cardSTATE) {
-                       case MFEMUL_NOFIELD:
-                       case MFEMUL_HALTED:
-                       case MFEMUL_IDLE:{
-                               LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
-                               break;
-                       }
-                       case MFEMUL_SELECT1:{
-                               // select all
-                               if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
-                                       if (MF_DBGLEVEL >= 4)   Dbprintf("SELECT ALL received");
-                                       EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
-                                       break;
-                               }
-
-                               if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
-                               {
-                                       Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
-                               }
-                               // select card
-                               if (len == 9 && 
-                                               (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
-                                       EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
-                                       cuid = bytes_to_num(rUIDBCC1, 4);
-                                       if (!_7BUID) {
-                                               cardSTATE = MFEMUL_WORK;
-                                               LED_B_ON();
-                                               if (MF_DBGLEVEL >= 4)   Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
-                                               break;
-                                       } else {
-                                               cardSTATE = MFEMUL_SELECT2;
-                                       }
-                               }
-                               break;
-                       }
-                       case MFEMUL_AUTH1:{
-                               if( len != 8)
-                               {
-                                       cardSTATE_TO_IDLE();
-                                       LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
-                                       break;
-                               }
-
-                               uint32_t ar = bytes_to_num(receivedCmd, 4);
-                               uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
-
-                               //Collect AR/NR
-                               if(ar_nr_collected < 2){
-                                       if(ar_nr_responses[2] != ar)
-                                       {// Avoid duplicates... probably not necessary, ar should vary. 
-                                               ar_nr_responses[ar_nr_collected*4] = cuid;
-                                               ar_nr_responses[ar_nr_collected*4+1] = nonce;
-                                               ar_nr_responses[ar_nr_collected*4+2] = ar;
-                                               ar_nr_responses[ar_nr_collected*4+3] = nr;
-                                               ar_nr_collected++;
-                                       }
-                               }
-
-                               // --- crypto
-                               crypto1_word(pcs, ar , 1);
-                               cardRr = nr ^ crypto1_word(pcs, 0, 0);
-
-                               // test if auth OK
-                               if (cardRr != prng_successor(nonce, 64)){
-                                       if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
-                                                       cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
-                                                       cardRr, prng_successor(nonce, 64));
-                                       // Shouldn't we respond anything here?
-                                       // Right now, we don't nack or anything, which causes the
-                                       // reader to do a WUPA after a while. /Martin
-                                       // -- which is the correct response. /piwi
-                                       cardSTATE_TO_IDLE();
-                                       LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
-                                       break;
-                               }
-
-                               ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
-
-                               num_to_bytes(ans, 4, rAUTH_AT);
-                               // --- crypto
-                               EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
-                               LED_C_ON();
-                               cardSTATE = MFEMUL_WORK;
-                               if (MF_DBGLEVEL >= 4)   Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d", 
-                                       cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
-                                       GetTickCount() - authTimer);
-                               break;
-                       }
-                       case MFEMUL_SELECT2:{
-                               if (!len) { 
-                                       LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
-                                       break;
-                               }
-                               if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
-                                       EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
-                                       break;
-                               }
-
-                               // select 2 card
-                               if (len == 9 && 
-                                               (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
-                                       EmSendCmd(rSAK, sizeof(rSAK));
-                                       cuid = bytes_to_num(rUIDBCC2, 4);
-                                       cardSTATE = MFEMUL_WORK;
-                                       LED_B_ON();
-                                       if (MF_DBGLEVEL >= 4)   Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
-                                       break;
-                               }
-                               
-                               // i guess there is a command). go into the work state.
-                               if (len != 4) {
-                                       LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
-                                       break;
-                               }
-                               cardSTATE = MFEMUL_WORK;
-                               //goto lbWORK;
-                               //intentional fall-through to the next case-stmt
-                       }
-
-                       case MFEMUL_WORK:{
-                               if (len == 0) {
-                                       LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
-                                       break;
-                               }
-                               
-                               bool encrypted_data = (cardAUTHKEY != 0xFF) ;
-
-                               if(encrypted_data) {
-                                       // decrypt seqence
-                                       mf_crypto1_decrypt(pcs, receivedCmd, len);
-                               }
-                               
-                               if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
-                                       authTimer = GetTickCount();
-                                       cardAUTHSC = receivedCmd[1] / 4;  // received block num
-                                       cardAUTHKEY = receivedCmd[0] - 0x60;
-                                       crypto1_destroy(pcs);//Added by martin
-                                       crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
-
-                                       if (!encrypted_data) { // first authentication
-                                               if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY  );
-
-                                               crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
-                                               num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
-                                       } else { // nested authentication
-                                               if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
-                                               ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); 
-                                               num_to_bytes(ans, 4, rAUTH_AT);
-                                       }
-
-                                       EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
-                                       //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
-                                       cardSTATE = MFEMUL_AUTH1;
-                                       break;
-                               }
-                               
-                               // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
-                               // BUT... ACK --> NACK
-                               if (len == 1 && receivedCmd[0] == CARD_ACK) {
-                                       EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-                                       break;
-                               }
-                               
-                               // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
-                               if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
-                                       EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
-                                       break;
-                               }
-                               
-                               if(len != 4) {
-                                       LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
-                                       break;
-                               }
-
-                               if(receivedCmd[0] == 0x30 // read block
-                                               || receivedCmd[0] == 0xA0 // write block
-                                               || receivedCmd[0] == 0xC0 // inc
-                                               || receivedCmd[0] == 0xC1 // dec
-                                               || receivedCmd[0] == 0xC2 // restore
-                                               || receivedCmd[0] == 0xB0) { // transfer
-                                       if (receivedCmd[1] >= 16 * 4) {
-                                               EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-                                               if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
-                                               break;
-                                       }
-
-                                       if (receivedCmd[1] / 4 != cardAUTHSC) {
-                                               EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-                                               if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
-                                               break;
-                                       }
-                               }
-                               // read block
-                               if (receivedCmd[0] == 0x30) {
-                                       if (MF_DBGLEVEL >= 4) {
-                                               Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
-                                       }
-                                       emlGetMem(response, receivedCmd[1], 1);
-                                       AppendCrc14443a(response, 16);
-                                       mf_crypto1_encrypt(pcs, response, 18, response_par);
-                                       EmSendCmdPar(response, 18, response_par);
-                                       numReads++;
-                                       if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
-                                               Dbprintf("%d reads done, exiting", numReads);
-                                               finished = true;
-                                       }
-                                       break;
-                               }
-                               // write block
-                               if (receivedCmd[0] == 0xA0) {
-                                       if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
-                                       EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
-                                       cardSTATE = MFEMUL_WRITEBL2;
-                                       cardWRBL = receivedCmd[1];
-                                       break;
-                               }
-                               // increment, decrement, restore
-                               if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
-                                       if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
-                                       if (emlCheckValBl(receivedCmd[1])) {
-                                               if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
-                                               EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-                                               break;
-                                       }
-                                       EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
-                                       if (receivedCmd[0] == 0xC1)
-                                               cardSTATE = MFEMUL_INTREG_INC;
-                                       if (receivedCmd[0] == 0xC0)
-                                               cardSTATE = MFEMUL_INTREG_DEC;
-                                       if (receivedCmd[0] == 0xC2)
-                                               cardSTATE = MFEMUL_INTREG_REST;
-                                       cardWRBL = receivedCmd[1];
-                                       break;
-                               }
-                               // transfer
-                               if (receivedCmd[0] == 0xB0) {
-                                       if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
-                                       if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
-                                               EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-                                       else
-                                               EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
-                                       break;
-                               }
-                               // halt
-                               if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
-                                       LED_B_OFF();
-                                       LED_C_OFF();
-                                       cardSTATE = MFEMUL_HALTED;
-                                       if (MF_DBGLEVEL >= 4)   Dbprintf("--> HALTED. Selected time: %d ms",  GetTickCount() - selTimer);
-                                       LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
-                                       break;
-                               }
-                               // RATS
-                               if (receivedCmd[0] == 0xe0) {//RATS
-                                       EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-                                       break;
-                               }
-                               // command not allowed
-                               if (MF_DBGLEVEL >= 4)   Dbprintf("Received command not allowed, nacking");
-                               EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-                               break;
-                       }
-                       case MFEMUL_WRITEBL2:{
-                               if (len == 18){
-                                       mf_crypto1_decrypt(pcs, receivedCmd, len);
-                                       emlSetMem(receivedCmd, cardWRBL, 1);
-                                       EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
-                                       cardSTATE = MFEMUL_WORK;
-                               } else {
-                                       cardSTATE_TO_IDLE();
-                                       LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
-                               }
-                               break;
-                       }
-                       
-                       case MFEMUL_INTREG_INC:{
-                               mf_crypto1_decrypt(pcs, receivedCmd, len);
-                               memcpy(&ans, receivedCmd, 4);
-                               if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
-                                       EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-                                       cardSTATE_TO_IDLE();
-                                       break;
-                               } 
-                               LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
-                               cardINTREG = cardINTREG + ans;
-                               cardSTATE = MFEMUL_WORK;
-                               break;
-                       }
-                       case MFEMUL_INTREG_DEC:{
-                               mf_crypto1_decrypt(pcs, receivedCmd, len);
-                               memcpy(&ans, receivedCmd, 4);
-                               if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
-                                       EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-                                       cardSTATE_TO_IDLE();
-                                       break;
-                               }
-                               LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
-                               cardINTREG = cardINTREG - ans;
-                               cardSTATE = MFEMUL_WORK;
-                               break;
-                       }
-                       case MFEMUL_INTREG_REST:{
-                               mf_crypto1_decrypt(pcs, receivedCmd, len);
-                               memcpy(&ans, receivedCmd, 4);
-                               if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
-                                       EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-                                       cardSTATE_TO_IDLE();
-                                       break;
-                               }
-                               LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
-                               cardSTATE = MFEMUL_WORK;
-                               break;
-                       }
-               }
-       }
-
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-       LEDsoff();
-
-       if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
-       {
-               //May just aswell send the collected ar_nr in the response aswell
-               cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4);
-       }
-
-       if(flags & FLAG_NR_AR_ATTACK)
-       {
-               if(ar_nr_collected > 1) {
-                       Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
-                       Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
-                                       ar_nr_responses[0], // UID
-                                       ar_nr_responses[1], //NT
-                                       ar_nr_responses[2], //AR1
-                                       ar_nr_responses[3], //NR1
-                                       ar_nr_responses[6], //AR2
-                                       ar_nr_responses[7] //NR2
-                                       );
-               } else {
-                       Dbprintf("Failed to obtain two AR/NR pairs!");
-                       if(ar_nr_collected >0) {
-                               Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
-                                               ar_nr_responses[0], // UID
-                                               ar_nr_responses[1], //NT
-                                               ar_nr_responses[2], //AR1
-                                               ar_nr_responses[3] //NR1
-                                               );
-                       }
-               }
-       }
-       if (MF_DBGLEVEL >= 1)   Dbprintf("Emulator stopped. Tracing: %d  trace length: %d ",    tracing, BigBuf_get_traceLen());
-       
-}
-
-
 
 //-----------------------------------------------------------------------------
 // MIFARE sniffer. 
@@ -2694,7 +2399,7 @@ void RAMFUNC SniffMifare(uint8_t param) {
        LEDsoff();
        // init trace buffer
        clear_trace();
-       set_tracing(TRUE);
+       set_tracing(true);
 
        // The command (reader -> tag) that we're receiving.
        // The length of a received command will in most cases be no more than 18 bytes.
@@ -2705,10 +2410,8 @@ void RAMFUNC SniffMifare(uint8_t param) {
        uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
        uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
 
-       // As we receive stuff, we copy it from receivedCmd or receivedResponse
-       // into trace, along with its length and other annotations.
-       //uint8_t *trace = (uint8_t *)BigBuf;
-       
+       iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
+
        // free eventually allocated BigBuf memory
        BigBuf_free();
        // allocate the DMA buffer, used to stream samples from the FPGA
@@ -2717,10 +2420,8 @@ void RAMFUNC SniffMifare(uint8_t param) {
        uint8_t previous_data = 0;
        int maxDataLen = 0;
        int dataLen = 0;
-       bool ReaderIsActive = FALSE;
-       bool TagIsActive = FALSE;
-
-       iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
+       bool ReaderIsActive = false;
+       bool TagIsActive = false;
 
        // Set up the demodulator for tag -> reader responses.
        DemodInit(receivedResponse, receivedResponsePar);
@@ -2737,7 +2438,7 @@ void RAMFUNC SniffMifare(uint8_t param) {
        MfSniffInit();
 
        // And now we loop, receiving samples.
-       for(uint32_t sniffCounter = 0; TRUE; ) {
+       for(uint32_t sniffCounter = 0; true; ) {
        
                if(BUTTON_PRESS()) {
                        DbpString("cancelled by button");
@@ -2755,8 +2456,8 @@ void RAMFUNC SniffMifare(uint8_t param) {
                                sniffCounter = 0;
                                data = dmaBuf;
                                maxDataLen = 0;
-                               ReaderIsActive = FALSE;
-                               TagIsActive = FALSE;
+                               ReaderIsActive = false;
+                               TagIsActive = false;
                                FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
                        }
                }
@@ -2798,10 +2499,10 @@ void RAMFUNC SniffMifare(uint8_t param) {
                                uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
                                if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
                                        LED_C_INV();
-                                       if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
+                                       if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, true)) break;
 
                                        /* And ready to receive another command. */
-                                       UartReset();
+                                       UartInit(receivedCmd, receivedCmdPar);
                                        
                                        /* And also reset the demod code */
                                        DemodReset();
@@ -2814,10 +2515,12 @@ void RAMFUNC SniffMifare(uint8_t param) {
                                if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
                                        LED_C_INV();
 
-                                       if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
+                                       if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, false)) break;
 
                                        // And ready to receive another response.
                                        DemodReset();
+                                       // And reset the Miller decoder including its (now outdated) input buffer
+                                       UartInit(receivedCmd, receivedCmdPar);
                                }
                                TagIsActive = (Demod.state != DEMOD_UNSYNCD);
                        }
Impressum, Datenschutz