]> cvs.zerfleddert.de Git - proxmark3-svn/blobdiff - armsrc/appmain.c
Remove unused code from hitag2.c
[proxmark3-svn] / armsrc / appmain.c
index 77bbbbc4daec6a54b0c46ed95b1276e5db998223..78ab86912c779eb5b4b2db6cc182f3a4a439fea0 100644 (file)
@@ -5,7 +5,6 @@
 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
 //-----------------------------------------------------------------------------
 
-
 #include <proxmark3.h>
 #include <stdlib.h>
 #include "apps.h"
 #include "LCD.h"
 #endif
 
-// The large multi-purpose buffer, typically used to hold A/D samples,
-// maybe pre-processed in some way.
-DWORD BigBuf[16000];
-
 //=============================================================================
 // A buffer where we can queue things up to be sent through the FPGA, for
 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
@@ -27,7 +22,7 @@ DWORD BigBuf[16000];
 BYTE ToSend[256];
 int ToSendMax;
 static int ToSendBit;
-
+struct common_area common_area __attribute__((section(".commonarea")));
 
 void BufferClear(void)
 {
@@ -67,6 +62,10 @@ void ToSendStuffBit(int b)
 
 void DbpString(char *str)
 {
+       /* this holds up stuff unless we're connected to usb */
+       if (!UsbConnected())
+               return;
+
        UsbCommand c;
        c.cmd = CMD_DEBUG_PRINT_STRING;
        c.ext1 = strlen(str);
@@ -79,6 +78,10 @@ void DbpString(char *str)
 
 void DbpIntegers(int x1, int x2, int x3)
 {
+       /* this holds up stuff unless we're connected to usb */
+       if (!UsbConnected())
+               return;
+
        UsbCommand c;
        c.cmd = CMD_DEBUG_PRINT_INTEGERS;
        c.ext1 = x1;
@@ -90,113 +93,6 @@ void DbpIntegers(int x1, int x2, int x3)
        SpinDelay(50);
 }
 
-void AcquireRawAdcSamples125k(BOOL at134khz)
-{
-       if(at134khz) {
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
-       } else {
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
-       }
-
-       // Connect the A/D to the peak-detected low-frequency path.
-       SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-
-       // Give it a bit of time for the resonant antenna to settle.
-       SpinDelay(50);
-
-       // Now set up the SSC to get the ADC samples that are now streaming at us.
-       FpgaSetupSsc();
-
-       // Now call the acquisition routine
-       DoAcquisition125k(at134khz);
-}
-
-// split into two routines so we can avoid timing issues after sending commands //
-void DoAcquisition125k(BOOL at134khz)
-{
-       BYTE *dest = (BYTE *)BigBuf;
-       int n = sizeof(BigBuf);
-       int i;
-
-       memset(dest,0,n);
-       i = 0;
-       for(;;) {
-               if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
-                       SSC_TRANSMIT_HOLDING = 0x43;
-                       LED_D_ON();
-               }
-               if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
-                       dest[i] = (BYTE)SSC_RECEIVE_HOLDING;
-                       i++;
-                       LED_D_OFF();
-                       if(i >= n) {
-                               break;
-                       }
-               }
-       }
-       DbpIntegers(dest[0], dest[1], at134khz);
-}
-
-void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYTE *command)
-{
-       BOOL at134khz;
-
-       // see if 'h' was specified
-       if(command[strlen((char *) command) - 1] == 'h')
-               at134khz= TRUE;
-       else
-               at134khz= FALSE;
-       
-       if(at134khz) {
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
-       } else {
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
-       }
-
-       // Give it a bit of time for the resonant antenna to settle.
-       SpinDelay(50);
-
-       // Now set up the SSC to get the ADC samples that are now streaming at us.
-       FpgaSetupSsc();
-
-       // now modulate the reader field
-       while(*command != '\0' && *command != ' ')
-               {
-               FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-               LED_D_OFF();
-               SpinDelayUs(delay_off);
-               if(at134khz) {
-                       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-                       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
-               } else {
-                       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-                       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
-               }
-               LED_D_ON();
-               if(*(command++) == '0')
-                       SpinDelayUs(period_0);
-               else
-                       SpinDelayUs(period_1);
-               }
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-       LED_D_OFF();
-       SpinDelayUs(delay_off);
-       if(at134khz) {
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
-       } else {
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
-       }
-
-       // now do the read
-       DoAcquisition125k(at134khz);
-}
-
 //-----------------------------------------------------------------------------
 // Read an ADC channel and block till it completes, then return the result
 // in ADC units (0 to 1023). Also a routine to average 32 samples and
@@ -231,462 +127,402 @@ static int AvgAdc(int ch)
        return (a + 15) >> 5;
 }
 
-/*
- * Sweeps the useful LF range of the proxmark from
- * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
- * reads the voltage in the antenna: the result is a graph
- * which should clearly show the resonating frequency of your
- * LF antenna ( hopefully around 90 if it is tuned to 125kHz!)
- */
-void SweepLFrange()
+void MeasureAntennaTuning(void)
 {
        BYTE *dest = (BYTE *)BigBuf;
-       char dummy[12];
-       int i, peak= 0, ptr= 0;
-       double freq;
+       int i, ptr = 0, adcval = 0, peak = 0, peakv = 0, peakf = 0;;
+       int vLf125 = 0, vLf134 = 0, vHf = 0;    // in mV
+
+       UsbCommand c;
 
-       // clear buffer
+       DbpString("Measuring antenna characteristics, please wait.");
        memset(BigBuf,0,sizeof(BigBuf));
 
+/*
+ * Sweeps the useful LF range of the proxmark from
+ * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
+ * read the voltage in the antenna, the result left
+ * in the buffer is a graph which should clearly show
+ * the resonating frequency of your LF antenna
+ * ( hopefully around 95 if it is tuned to 125kHz!)
+ */
        FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
        for (i=255; i>19; i--) {
                FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
                SpinDelay(20);
-               dest[i] = (137500 * AvgAdc(ADC_CHAN_LF)) >> 18;
+               // Vref = 3.3V, and a 10000:240 voltage divider on the input
+               // can measure voltages up to 137500 mV
+               adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
+               if (i==95)      vLf125 = adcval; // voltage at 125Khz
+               if (i==89)      vLf134 = adcval; // voltage at 134Khz
+
+               dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes
                if(dest[i] > peak) {
-                       peak= dest[i];
-                       ptr= i;
-                       }
-       }
-       dummy[11]= '\0';
-       dummy[10]= 'z';
-       dummy[9]= 'H';
-       dummy[8]= 'k';
-       dummy[7]= ' ';
-       freq= 12000000/(ptr + 1);
-       for(i= 6; i > 3 ; --i) {
-               dummy[i]= '0' + ((int) freq) % 10;
-               freq /= 10;
-               }
-       dummy[3]= '.';
-       for(i= 2; i >= 0 ; --i) {
-               dummy[i]= '0' + ((int) freq) % 10;
-               freq /= 10;
+                       peakv = adcval;
+                       peak = dest[i];
+                       peakf = i;
+                       ptr = i;
                }
-       DbpString("Antenna resonates at:");
-       DbpString(dummy);
-}
-
-void MeasureAntennaTuning(void)
-{
-// Impedances are Zc = 1/(j*omega*C), in ohms
-#define LF_TUNING_CAP_Z        1273    //  1 nF @ 125   kHz
-#define HF_TUNING_CAP_Z        235             // 50 pF @ 13.56 MHz
-
-       int vLf125, vLf134, vHf;        // in mV
-
-       UsbCommand c;
-
-       // Let the FPGA drive the low-frequency antenna around 125 kHz.
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
-       SpinDelay(20);
-       vLf125 = AvgAdc(ADC_CHAN_LF);
-       // Vref = 3.3V, and a 10000:240 voltage divider on the input
-       // can measure voltages up to 137500 mV
-       vLf125 = (137500 * vLf125) >> 10;
-
-       // Let the FPGA drive the low-frequency antenna around 134 kHz.
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
-       SpinDelay(20);
-       vLf134 = AvgAdc(ADC_CHAN_LF);
-       // Vref = 3.3V, and a 10000:240 voltage divider on the input
-       // can measure voltages up to 137500 mV
-       vLf134 = (137500 * vLf134) >> 10;
+       }
 
        // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
        FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
        SpinDelay(20);
-       vHf = AvgAdc(ADC_CHAN_HF);
        // Vref = 3300mV, and an 10:1 voltage divider on the input
        // can measure voltages up to 33000 mV
-       vHf = (33000 * vHf) >> 10;
+       vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
 
        c.cmd = CMD_MEASURED_ANTENNA_TUNING;
        c.ext1 = (vLf125 << 0) | (vLf134 << 16);
        c.ext2 = vHf;
-       c.ext3 = (LF_TUNING_CAP_Z << 0) | (HF_TUNING_CAP_Z << 16);
+       c.ext3 = peakf | (peakv << 16);
        UsbSendPacket((BYTE *)&c, sizeof(c));
 }
 
-void SimulateTagLowFrequency(int period)
+void SimulateTagHfListen(void)
 {
+       BYTE *dest = (BYTE *)BigBuf;
+       int n = sizeof(BigBuf);
+       BYTE v = 0;
        int i;
-       BYTE *tab = (BYTE *)BigBuf;
-
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);
+       int p = 0;
 
-       PIO_ENABLE = (1 << GPIO_SSC_DOUT) | (1 << GPIO_SSC_CLK);
+       // We're using this mode just so that I can test it out; the simulated
+       // tag mode would work just as well and be simpler.
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
 
-       PIO_OUTPUT_ENABLE = (1 << GPIO_SSC_DOUT);
-       PIO_OUTPUT_DISABLE = (1 << GPIO_SSC_CLK);
+       // We need to listen to the high-frequency, peak-detected path.
+       SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
 
-#define SHORT_COIL()   LOW(GPIO_SSC_DOUT)
-#define OPEN_COIL()    HIGH(GPIO_SSC_DOUT)
+       FpgaSetupSsc();
 
        i = 0;
        for(;;) {
-               while(!(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK))) {
-                       if(BUTTON_PRESS()) {
-                               DbpString("Stopped");
-                               return;
-                       }
-                       WDT_HIT();
+               if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
+                       SSC_TRANSMIT_HOLDING = 0xff;
                }
+               if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
+                       BYTE r = (BYTE)SSC_RECEIVE_HOLDING;
 
-               LED_D_ON();
-               if(tab[i]) {
-                       OPEN_COIL();
-               } else {
-                       SHORT_COIL();
-               }
-               LED_D_OFF();
+                       v <<= 1;
+                       if(r & 1) {
+                               v |= 1;
+                       }
+                       p++;
 
-               while(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK)) {
-                       if(BUTTON_PRESS()) {
-                               DbpString("Stopped");
-                               return;
+                       if(p >= 8) {
+                               dest[i] = v;
+                               v = 0;
+                               p = 0;
+                               i++;
+
+                               if(i >= n) {
+                                       break;
+                               }
                        }
-                       WDT_HIT();
                }
-
-               i++;
-               if(i == period) i = 0;
        }
+       DbpString("simulate tag (now type bitsamples)");
 }
 
-// compose fc/8 fc/10 waveform
-static void fc(int c, int *n) {
-       BYTE *dest = (BYTE *)BigBuf;
-       int idx;
-
-       // for when we want an fc8 pattern every 4 logical bits
-       if(c==0) {
-               dest[((*n)++)]=1;
-               dest[((*n)++)]=1;
-               dest[((*n)++)]=0;
-               dest[((*n)++)]=0;
-               dest[((*n)++)]=0;
-               dest[((*n)++)]=0;
-               dest[((*n)++)]=0;
-               dest[((*n)++)]=0;
-       }
-       //      an fc/8  encoded bit is a bit pattern of  11000000  x6 = 48 samples
-       if(c==8) {
-               for (idx=0; idx<6; idx++) {
-                       dest[((*n)++)]=1;
-                       dest[((*n)++)]=1;
-                       dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
-               }
-       }
+void ReadMem(int addr)
+{
+       const DWORD *data = ((DWORD *)addr);
+       int i;
 
-       //      an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
-       if(c==10) {
-               for (idx=0; idx<5; idx++) {
-                       dest[((*n)++)]=1;
-                       dest[((*n)++)]=1;
-                       dest[((*n)++)]=1;
-                       dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
-               }
-       }
+       DbpString("Reading memory at address");
+       DbpIntegers(0, 0, addr);
+       for (i = 0; i < 8; i+= 2)
+               DbpIntegers(0, data[i], data[i+1]);
 }
 
-// prepare a waveform pattern in the buffer based on the ID given then
-// simulate a HID tag until the button is pressed
-static void CmdHIDsimTAG(int hi, int lo)
+/* osimage version information is linked in */
+extern struct version_information version_information;
+/* bootrom version information is pointed to from _bootphase1_version_pointer */
+extern char _bootphase1_version_pointer, _flash_start, _flash_end;
+void SendVersion(void)
 {
-       int n=0, i=0;
-       /*
-        HID tag bitstream format
-        The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
-        A 1 bit is represented as 6 fc8 and 5 fc10 patterns
-        A 0 bit is represented as 5 fc10 and 6 fc8 patterns
-        A fc8 is inserted before every 4 bits
-        A special start of frame pattern is used consisting a0b0 where a and b are neither 0
-        nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
-       */
-
-       if (hi>0xFFF) {
-               DbpString("Tags can only have 44 bits.");
-               return;
-       }
-       fc(0,&n);
-       // special start of frame marker containing invalid bit sequences
-       fc(8,  &n);     fc(8,  &n);     // invalid
-       fc(8,  &n);     fc(10, &n); // logical 0
-       fc(10, &n);     fc(10, &n); // invalid
-       fc(8,  &n);     fc(10, &n); // logical 0
-
-       WDT_HIT();
-       // manchester encode bits 43 to 32
-       for (i=11; i>=0; i--) {
-               if ((i%4)==3) fc(0,&n);
-               if ((hi>>i)&1) {
-                       fc(10, &n);     fc(8,  &n);             // low-high transition
-               } else {
-                       fc(8,  &n);     fc(10, &n);             // high-low transition
-               }
-       }
-
-       WDT_HIT();
-       // manchester encode bits 31 to 0
-       for (i=31; i>=0; i--) {
-               if ((i%4)==3) fc(0,&n);
-               if ((lo>>i)&1) {
-                       fc(10, &n);     fc(8,  &n);             // low-high transition
-               } else {
-                       fc(8,  &n);     fc(10, &n);             // high-low transition
-               }
+       char temp[48]; /* Limited data payload in USB packets */
+       DbpString("Prox/RFID mark3 RFID instrument");
+       
+       /* Try to find the bootrom version information. Expect to find a pointer at 
+        * symbol _bootphase1_version_pointer, perform slight sanity checks on the
+        * pointer, then use it.
+        */
+       void *bootrom_version = *(void**)&_bootphase1_version_pointer;
+       if( bootrom_version < (void*)&_flash_start || bootrom_version >= (void*)&_flash_end ) {
+               DbpString("bootrom version information appears invalid");
+       } else {
+               FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
+               DbpString(temp);
        }
-
-       LED_A_ON();
-       SimulateTagLowFrequency(n);
-       LED_A_OFF();
+       
+       FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
+       DbpString(temp);
+       
+       FpgaGatherVersion(temp, sizeof(temp));
+       DbpString(temp);
 }
 
-// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
-static void CmdHIDdemodFSK(void)
+// samy's sniff and repeat routine
+void SamyRun()
 {
-       BYTE *dest = (BYTE *)BigBuf;
-       int m=0, n=0, i=0, idx=0, found=0, lastval=0;
-       DWORD hi=0, lo=0;
+       DbpString("Stand-alone mode! No PC necessary.");
 
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
+       // 3 possible options? no just 2 for now
+#define OPTS 2
 
-       // Connect the A/D to the peak-detected low-frequency path.
-       SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+       int high[OPTS], low[OPTS];
 
-       // Give it a bit of time for the resonant antenna to settle.
-       SpinDelay(50);
+       // Oooh pretty -- notify user we're in elite samy mode now
+       LED(LED_RED,    200);
+       LED(LED_ORANGE, 200);
+       LED(LED_GREEN,  200);
+       LED(LED_ORANGE, 200);
+       LED(LED_RED,    200);
+       LED(LED_ORANGE, 200);
+       LED(LED_GREEN,  200);
+       LED(LED_ORANGE, 200);
+       LED(LED_RED,    200);
 
-       // Now set up the SSC to get the ADC samples that are now streaming at us.
-       FpgaSetupSsc();
+       int selected = 0;
+       int playing = 0;
 
-       for(;;) {
+       // Turn on selected LED
+       LED(selected + 1, 0);
+
+       for (;;)
+       {
+               UsbPoll(FALSE);
                WDT_HIT();
-               LED_A_ON();
-               if(BUTTON_PRESS()) {
-                       DbpString("Stopped");
-                       LED_A_OFF();
-                       return;
-               }
 
-               i = 0;
-               m = sizeof(BigBuf);
-               memset(dest,128,m);
-               for(;;) {
-                       if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
-                               SSC_TRANSMIT_HOLDING = 0x43;
-                               LED_D_ON();
-                       }
-                       if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
-                               dest[i] = (BYTE)SSC_RECEIVE_HOLDING;
-                               // we don't care about actual value, only if it's more or less than a
-                               // threshold essentially we capture zero crossings for later analysis
-                               if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
-                               i++;
-                               LED_D_OFF();
-                               if(i >= m) {
-                                       break;
-                               }
-                       }
-               }
+               // Was our button held down or pressed?
+               int button_pressed = BUTTON_HELD(1000);
+               SpinDelay(300);
 
-               // FSK demodulator
+               // Button was held for a second, begin recording
+               if (button_pressed > 0)
+               {
+                       LEDsoff();
+                       LED(selected + 1, 0);
+                       LED(LED_RED2, 0);
 
-               // sync to first lo-hi transition
-               for( idx=1; idx<m; idx++) {
-                       if (dest[idx-1]<dest[idx])
-                               lastval=idx;
-                               break;
-               }
-               WDT_HIT();
+                       // record
+                       DbpString("Starting recording");
 
-               // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
-               // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
-               // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
-               for( i=0; idx<m; idx++) {
-                       if (dest[idx-1]<dest[idx]) {
-                               dest[i]=idx-lastval;
-                               if (dest[i] <= 8) {
-                                               dest[i]=1;
-                               } else {
-                                               dest[i]=0;
-                               }
+                       // wait for button to be released
+                       while(BUTTON_PRESS())
+                               WDT_HIT();
 
-                               lastval=idx;
-                               i++;
-                       }
-               }
-               m=i;
-               WDT_HIT();
+                       /* need this delay to prevent catching some weird data */
+                       SpinDelay(500);
 
-               // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
-               lastval=dest[0];
-               idx=0;
-               i=0;
-               n=0;
-               for( idx=0; idx<m; idx++) {
-                       if (dest[idx]==lastval) {
-                               n++;
-                       } else {
-                               // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
-                               // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
-                               // swallowed up by rounding
-                               // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
-                               // special start of frame markers use invalid manchester states (no transitions) by using sequences
-                               // like 111000
-                               if (dest[idx-1]) {
-                                       n=(n+1)/6;                      // fc/8 in sets of 6
-                               } else {
-                                       n=(n+1)/5;                      // fc/10 in sets of 5
-                               }
-                               switch (n) {                    // stuff appropriate bits in buffer
-                                       case 0:
-                                       case 1: // one bit
-                                               dest[i++]=dest[idx-1];
-                                               break;
-                                       case 2: // two bits
-                                               dest[i++]=dest[idx-1];
-                                               dest[i++]=dest[idx-1];
-                                               break;
-                                       case 3: // 3 bit start of frame markers
-                                               dest[i++]=dest[idx-1];
-                                               dest[i++]=dest[idx-1];
-                                               dest[i++]=dest[idx-1];
-                                               break;
-                                       // When a logic 0 is immediately followed by the start of the next transmisson
-                                       // (special pattern) a pattern of 4 bit duration lengths is created.
-                                       case 4:
-                                               dest[i++]=dest[idx-1];
-                                               dest[i++]=dest[idx-1];
-                                               dest[i++]=dest[idx-1];
-                                               dest[i++]=dest[idx-1];
-                                               break;
-                                       default:        // this shouldn't happen, don't stuff any bits
-                                               break;
-                               }
-                               n=0;
-                               lastval=dest[idx];
-                       }
+                       CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
+                       DbpString("Recorded");
+                       DbpIntegers(selected, high[selected], low[selected]);
+
+                       LEDsoff();
+                       LED(selected + 1, 0);
+                       // Finished recording
+
+                       // If we were previously playing, set playing off
+                       // so next button push begins playing what we recorded
+                       playing = 0;
                }
-               m=i;
-               WDT_HIT();
 
-               // final loop, go over previously decoded manchester data and decode into usable tag ID
-               // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
-               for( idx=0; idx<m-6; idx++) {
-                       // search for a start of frame marker
-                       if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
-                       {
-                               found=1;
-                               idx+=6;
-                               if (found && (hi|lo)) {
-                                       DbpString("TAG ID");
-                                       DbpIntegers(hi, lo, (lo>>1)&0xffff);
-                                       hi=0;
-                                       lo=0;
-                                       found=0;
-                               }
-                       }
-                       if (found) {
-                               if (dest[idx] && (!dest[idx+1]) ) {
-                                       hi=(hi<<1)|(lo>>31);
-                                       lo=(lo<<1)|0;
-                               } else if ( (!dest[idx]) && dest[idx+1]) {
-                                       hi=(hi<<1)|(lo>>31);
-                                       lo=(lo<<1)|1;
-                               } else {
-                                       found=0;
-                                       hi=0;
-                                       lo=0;
-                               }
-                               idx++;
-                       }
-                       if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
+               // Change where to record (or begin playing)
+               else if (button_pressed)
+               {
+                       // Next option if we were previously playing
+                       if (playing)
+                               selected = (selected + 1) % OPTS;
+                       playing = !playing;
+
+                       LEDsoff();
+                       LED(selected + 1, 0);
+
+                       // Begin transmitting
+                       if (playing)
                        {
-                               found=1;
-                               idx+=6;
-                               if (found && (hi|lo)) {
-                                       DbpString("TAG ID");
-                                       DbpIntegers(hi, lo, (lo>>1)&0xffff);
-                                       hi=0;
-                                       lo=0;
-                                       found=0;
-                               }
+                               LED(LED_GREEN, 0);
+                               DbpString("Playing");
+                               // wait for button to be released
+                               while(BUTTON_PRESS())
+                                       WDT_HIT();
+                               DbpIntegers(selected, high[selected], low[selected]);
+                               CmdHIDsimTAG(high[selected], low[selected], 0);
+                               DbpString("Done playing");
+                               if (BUTTON_HELD(1000) > 0)
+                                       {
+                                       DbpString("Exiting");
+                                       LEDsoff();
+                                       return;
+                                       }
+
+                               /* We pressed a button so ignore it here with a delay */
+                               SpinDelay(300);
+
+                               // when done, we're done playing, move to next option
+                               selected = (selected + 1) % OPTS;
+                               playing = !playing;
+                               LEDsoff();
+                               LED(selected + 1, 0);
                        }
+                       else
+                               while(BUTTON_PRESS())
+                                       WDT_HIT();
                }
-               WDT_HIT();
        }
 }
 
-void SimulateTagHfListen(void)
+
+/*
+OBJECTIVE
+Listen and detect an external reader. Determine the best location
+for the antenna.
+
+INSTRUCTIONS:
+Inside the ListenReaderField() function, there is two mode.
+By default, when you call the function, you will enter mode 1.
+If you press the PM3 button one time, you will enter mode 2.
+If you press the PM3 button a second time, you will exit the function.
+
+DESCRIPTION OF MODE 1:
+This mode just listens for an external reader field and lights up green
+for HF and/or red for LF. This is the original mode of the detectreader
+function.
+
+DESCRIPTION OF MODE 2:
+This mode will visually represent, using the LEDs, the actual strength of the
+current compared to the maximum current detected. Basically, once you know
+what kind of external reader is present, it will help you spot the best location to place
+your antenna. You will probably not get some good results if there is a LF and a HF reader
+at the same place! :-)
+
+LIGHT SCHEME USED:
+*/
+static const char LIGHT_SCHEME[] = {
+               0x0, /* ----     | No field detected */
+               0x1, /* X---     | 14% of maximum current detected */
+               0x2, /* -X--     | 29% of maximum current detected */
+               0x4, /* --X-     | 43% of maximum current detected */
+               0x8, /* ---X     | 57% of maximum current detected */
+               0xC, /* --XX     | 71% of maximum current detected */
+               0xE, /* -XXX     | 86% of maximum current detected */
+               0xF, /* XXXX     | 100% of maximum current detected */
+};
+static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
+
+void ListenReaderField(int limit)
 {
-       BYTE *dest = (BYTE *)BigBuf;
-       int n = sizeof(BigBuf);
-       BYTE v = 0;
-       int i;
-       int p = 0;
+       int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
+       int hf_av, hf_av_new,  hf_baseline= 0, hf_count= 0, hf_max;
+       int mode=1, display_val, display_max, i;
 
-       // We're using this mode just so that I can test it out; the simulated
-       // tag mode would work just as well and be simpler.
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
+#define LF_ONLY                1
+#define HF_ONLY                2
 
-       // We need to listen to the high-frequency, peak-detected path.
-       SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+       LEDsoff();
 
-       FpgaSetupSsc();
+       lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
+
+       if(limit != HF_ONLY) {
+               DbpString("LF 125/134 Baseline:");
+               DbpIntegers(lf_av,0,0);
+               lf_baseline= lf_av;
+       }
+
+       hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
+
+       if (limit != LF_ONLY) {
+               DbpString("HF 13.56 Baseline:");
+               DbpIntegers(hf_av,0,0);
+               hf_baseline= hf_av;
+       }
 
-       i = 0;
        for(;;) {
-               if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
-                       SSC_TRANSMIT_HOLDING = 0xff;
+               if (BUTTON_PRESS()) {
+                       SpinDelay(500);
+                       switch (mode) {
+                               case 1:
+                                       mode=2;
+                                       DbpString("Signal Strength Mode");
+                                       break;
+                               case 2:
+                               default:
+                                       DbpString("Stopped");
+                                       LEDsoff();
+                                       return;
+                                       break;
+                       }
                }
-               if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
-                       BYTE r = (BYTE)SSC_RECEIVE_HOLDING;
+               WDT_HIT();
 
-                       v <<= 1;
-                       if(r & 1) {
-                               v |= 1;
+               if (limit != HF_ONLY) {
+                       if(mode==1) {
+                               if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
+                               else                               LED_D_OFF();
                        }
-                       p++;
-
-                       if(p >= 8) {
-                               dest[i] = v;
-                               v = 0;
-                               p = 0;
-                               i++;
+                       
+                       ++lf_count;
+                       lf_av_new= ReadAdc(ADC_CHAN_LF);
+                       // see if there's a significant change
+                       if(abs(lf_av - lf_av_new) > 10) {
+                               DbpString("LF 125/134 Field Change:");
+                               DbpIntegers(lf_av,lf_av_new,lf_count);
+                               lf_av= lf_av_new;
+                               if (lf_av > lf_max)
+                                       lf_max = lf_av;
+                               lf_count= 0;
+                       }
+               }
 
-                               if(i >= n) {
+               if (limit != LF_ONLY) {
+                       if (mode == 1){
+                               if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
+                               else                               LED_B_OFF();
+                       }
+                       
+                       ++hf_count;
+                       hf_av_new= ReadAdc(ADC_CHAN_HF);
+                       // see if there's a significant change
+                       if(abs(hf_av - hf_av_new) > 10) {
+                               DbpString("HF 13.56 Field Change:");
+                               DbpIntegers(hf_av,hf_av_new,hf_count);
+                               hf_av= hf_av_new;
+                               if (hf_av > hf_max)
+                                       hf_max = hf_av;
+                               hf_count= 0;
+                       }
+               }
+               
+               if(mode == 2) {
+                       if (limit == LF_ONLY) {
+                               display_val = lf_av;
+                               display_max = lf_max;
+                       } else if (limit == HF_ONLY) {
+                               display_val = hf_av;
+                               display_max = hf_max;
+                       } else { /* Pick one at random */
+                               if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
+                                       display_val = hf_av;
+                                       display_max = hf_max;
+                               } else {
+                                       display_val = lf_av;
+                                       display_max = lf_max;
+                               }
+                       }
+                       for (i=0; i<LIGHT_LEN; i++) {
+                               if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
+                                       if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
+                                       if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
+                                       if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
+                                       if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
                                        break;
                                }
                        }
                }
        }
-       DbpString("simulate tag (now type bitsamples)");
 }
 
 void UsbPacketReceived(BYTE *packet, int len)
@@ -759,11 +595,11 @@ void UsbPacketReceived(BYTE *packet, int len)
                        break;
 
                case CMD_HID_DEMOD_FSK:
-                       CmdHIDdemodFSK();                               // Demodulate HID tag
+                       CmdHIDdemodFSK(0, 0, 0, 1);                             // Demodulate HID tag
                        break;
 
                case CMD_HID_SIM_TAG:
-                       CmdHIDsimTAG(c->ext1, c->ext2);                                 // Simulate HID tag by ID
+                       CmdHIDsimTAG(c->ext1, c->ext2, 1);                                      // Simulate HID tag by ID
                        break;
 
                case CMD_FPGA_MAJOR_MODE_OFF:           // ## FPGA Control
@@ -772,8 +608,15 @@ void UsbPacketReceived(BYTE *packet, int len)
                        LED_D_OFF(); // LED D indicates field ON or OFF
                        break;
 
-               case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
-               case CMD_DOWNLOAD_RAW_BITS_TI_TYPE: {
+               case CMD_READ_TI_TYPE:
+                       ReadTItag();
+                       break;
+
+               case CMD_WRITE_TI_TYPE:
+                       WriteTItag(c->ext1,c->ext2,c->ext3);
+                       break;
+
+               case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {
                        UsbCommand n;
                        if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
                                n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
@@ -792,27 +635,30 @@ void UsbPacketReceived(BYTE *packet, int len)
                }
                case CMD_SIMULATE_TAG_125K:
                        LED_A_ON();
-                       SimulateTagLowFrequency(c->ext1);
+                       SimulateTagLowFrequency(c->ext1, 1);
                        LED_A_OFF();
                        break;
-#ifdef WITH_LCD
-               case CMD_LCD_RESET:
-                       LCDReset();
-                       break;
-#endif
-               case CMD_SWEEP_LF:
-                       SweepLFrange();
+               case CMD_READ_MEM:
+                       ReadMem(c->ext1);
                        break;
-
                case CMD_SET_LF_DIVISOR:
                        FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->ext1);
                        break;
+               case CMD_VERSION:
+                       SendVersion();
+                       break;
+               case CMD_LF_SIMULATE_BIDIR:
+                       SimulateTagLowFrequencyBidir(c->ext1, c->ext2);
+                       break;
 #ifdef WITH_LCD
+               case CMD_LCD_RESET:
+                       LCDReset();
+                       break;
                case CMD_LCD:
                        LCDSend(c->ext1);
                        break;
 #endif
-        case CMD_SETUP_WRITE:
+               case CMD_SETUP_WRITE:
                case CMD_FINISH_WRITE:
                case CMD_HARDWARE_RESET:
                        USB_D_PLUS_PULLUP_OFF();
@@ -823,8 +669,23 @@ void UsbPacketReceived(BYTE *packet, int len)
                                // We're going to reset, and the bootrom will take control.
                        }
                        break;
-
-
+               case CMD_START_FLASH:
+                       if(common_area.flags.bootrom_present) {
+                               common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
+                       }
+                       USB_D_PLUS_PULLUP_OFF();
+                       RSTC_CONTROL = RST_CONTROL_KEY | RST_CONTROL_PROCESSOR_RESET;
+                       for(;;);
+                       break;
+                       
+               case CMD_DEVICE_INFO: {
+                       UsbCommand c;
+                       c.cmd = CMD_DEVICE_INFO;
+                       c.ext1 = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
+                       if(common_area.flags.bootrom_present) c.ext1 |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
+                       UsbSendPacket((BYTE*)&c, sizeof(c));
+               }
+                       break;
                default:
                        DbpString("unknown command");
                        break;
@@ -835,11 +696,19 @@ void AppMain(void)
 {
        memset(BigBuf,0,sizeof(BigBuf));
        SpinDelay(100);
+       
+       if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
+               /* Initialize common area */
+               memset(&common_area, 0, sizeof(common_area));
+               common_area.magic = COMMON_AREA_MAGIC;
+               common_area.version = 1;
+       }
+       common_area.flags.osimage_present = 1;
 
-    LED_D_OFF();
-    LED_C_OFF();
-    LED_B_OFF();
-    LED_A_OFF();
+       LED_D_OFF();
+       LED_C_OFF();
+       LED_B_OFF();
+       LED_A_OFF();
 
        UsbStart();
 
@@ -865,14 +734,14 @@ void AppMain(void)
        LCDInit();
 
        // test text on different colored backgrounds
-    LCDString(" The quick brown fox  ",        &FONT6x8,1,1+8*0,WHITE  ,BLACK );
-    LCDString("  jumped over the     ",        &FONT6x8,1,1+8*1,BLACK  ,WHITE );
-    LCDString("     lazy dog.        ",        &FONT6x8,1,1+8*2,YELLOW ,RED   );
-    LCDString(" AaBbCcDdEeFfGgHhIiJj ",        &FONT6x8,1,1+8*3,RED    ,GREEN );
-    LCDString(" KkLlMmNnOoPpQqRrSsTt ",        &FONT6x8,1,1+8*4,MAGENTA,BLUE  );
-    LCDString("UuVvWwXxYyZz0123456789",        &FONT6x8,1,1+8*5,BLUE   ,YELLOW);
-    LCDString("`-=[]_;',./~!@#$%^&*()",        &FONT6x8,1,1+8*6,BLACK  ,CYAN  );
-    LCDString("     _+{}|:\\\"<>?     ",&FONT6x8,1,1+8*7,BLUE  ,MAGENTA);
+       LCDString(" The quick brown fox  ",     &FONT6x8,1,1+8*0,WHITE  ,BLACK );
+       LCDString("  jumped over the     ",     &FONT6x8,1,1+8*1,BLACK  ,WHITE );
+       LCDString("     lazy dog.        ",     &FONT6x8,1,1+8*2,YELLOW ,RED   );
+       LCDString(" AaBbCcDdEeFfGgHhIiJj ",     &FONT6x8,1,1+8*3,RED    ,GREEN );
+       LCDString(" KkLlMmNnOoPpQqRrSsTt ",     &FONT6x8,1,1+8*4,MAGENTA,BLUE  );
+       LCDString("UuVvWwXxYyZz0123456789",     &FONT6x8,1,1+8*5,BLUE   ,YELLOW);
+       LCDString("`-=[]_;',./~!@#$%^&*()",     &FONT6x8,1,1+8*6,BLACK  ,CYAN  );
+       LCDString("     _+{}|:\\\"<>?     ",&FONT6x8,1,1+8*7,BLUE  ,MAGENTA);
 
        // color bands
        LCDFill(0, 1+8* 8, 132, 8, BLACK);
@@ -889,132 +758,8 @@ void AppMain(void)
        for(;;) {
                UsbPoll(FALSE);
                WDT_HIT();
-       }
-}
-
-void SpinDelayUs(int us)
-{
-       int ticks = (48*us) >> 10;
-
-       // Borrow a PWM unit for my real-time clock
-       PWM_ENABLE = PWM_CHANNEL(0);
-       // 48 MHz / 1024 gives 46.875 kHz
-       PWM_CH_MODE(0) = PWM_CH_MODE_PRESCALER(10);
-       PWM_CH_DUTY_CYCLE(0) = 0;
-       PWM_CH_PERIOD(0) = 0xffff;
-
-       WORD start = (WORD)PWM_CH_COUNTER(0);
-
-       for(;;) {
-               WORD now = (WORD)PWM_CH_COUNTER(0);
-               if(now == (WORD)(start + ticks)) {
-                       return;
-               }
-               WDT_HIT();
-       }
-}
-
-void SpinDelay(int ms)
-{
-       int ticks = (48000*ms) >> 10;
 
-       // Borrow a PWM unit for my real-time clock
-       PWM_ENABLE = PWM_CHANNEL(0);
-       // 48 MHz / 1024 gives 46.875 kHz
-       PWM_CH_MODE(0) = PWM_CH_MODE_PRESCALER(10);
-       PWM_CH_DUTY_CYCLE(0) = 0;
-       PWM_CH_PERIOD(0) = 0xffff;
-
-       WORD start = (WORD)PWM_CH_COUNTER(0);
-
-       for(;;) {
-               WORD now = (WORD)PWM_CH_COUNTER(0);
-               if(now == (WORD)(start + ticks)) {
-                       return;
-               }
-               WDT_HIT();
+               if (BUTTON_HELD(1000) > 0)
+                       SamyRun();
        }
 }
-
-// listen for external reader 
-void ListenReaderField(int limit)
-{
-       int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0;
-       int hf_av, hf_av_new,  hf_baseline= 0, hf_count= 0;
-
-#define LF_ONLY                1
-#define HF_ONLY                2
-
-       LED_A_OFF();
-       LED_B_OFF();
-       LED_C_OFF();
-       LED_D_OFF();
-
-       lf_av= ReadAdc(ADC_CHAN_LF);
-
-       if(limit != HF_ONLY) 
-               {
-               DbpString("LF 125/134 Baseline:");
-               DbpIntegers(lf_av,0,0);
-               lf_baseline= lf_av;
-               }
-
-       hf_av= ReadAdc(ADC_CHAN_HF);
-
-
-       if (limit != LF_ONLY) 
-               {
-               DbpString("HF 13.56 Baseline:");
-               DbpIntegers(hf_av,0,0);
-               hf_baseline= hf_av;
-               }
-
-       for(;;) 
-               {
-               if(BUTTON_PRESS()) 
-                       {
-                       DbpString("Stopped");
-                       LED_B_OFF();
-                       LED_D_OFF();
-                       return;
-                       }
-               WDT_HIT();
-
-
-               if (limit != HF_ONLY) 
-                       {
-                       if (abs(lf_av - lf_baseline) > 10)
-                               LED_D_ON();
-                       else
-                               LED_D_OFF();
-                       ++lf_count;
-                       lf_av_new= ReadAdc(ADC_CHAN_LF);
-                       // see if there's a significant change
-                       if(abs(lf_av - lf_av_new) > 10) 
-                               {
-                               DbpString("LF 125/134 Field Change:");
-                               DbpIntegers(lf_av,lf_av_new,lf_count);
-                               lf_av= lf_av_new;
-                               lf_count= 0;
-                               }
-                       }
-
-               if (limit != LF_ONLY) 
-                       {
-                       if (abs(hf_av - hf_baseline) > 10)
-                               LED_B_ON();
-                       else
-                               LED_B_OFF();
-                       ++hf_count;
-                       hf_av_new= ReadAdc(ADC_CHAN_HF);
-                       // see if there's a significant change
-                       if(abs(hf_av - hf_av_new) > 10) 
-                               {
-                               DbpString("HF 13.56 Field Change:");
-                               DbpIntegers(hf_av,hf_av_new,hf_count);
-                               hf_av= hf_av_new;
-                               hf_count= 0;
-                               }
-                       }
-               }
-}
Impressum, Datenschutz