return (a + 15) >> 5;
}
-/*
- * Sweeps the useful LF range of the proxmark from
- * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
- * reads the voltage in the antenna: the result is a graph
- * which should clearly show the resonating frequency of your
- * LF antenna ( hopefully around 90 if it is tuned to 125kHz!)
- */
-void SweepLFrange()
+void MeasureAntennaTuning(void)
{
BYTE *dest = (BYTE *)BigBuf;
- char dummy[12];
- int i, peak= 0, ptr= 0;
- double freq;
+ int i, ptr = 0, adcval = 0, peak = 0, peakv = 0, peakf = 0;;
+ int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
- // clear buffer
+ UsbCommand c;
+
+ DbpString("Measuring antenna characteristics, please wait.");
memset(BigBuf,0,sizeof(BigBuf));
+/*
+ * Sweeps the useful LF range of the proxmark from
+ * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
+ * read the voltage in the antenna, the result left
+ * in the buffer is a graph which should clearly show
+ * the resonating frequency of your LF antenna
+ * ( hopefully around 95 if it is tuned to 125kHz!)
+ */
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
for (i=255; i>19; i--) {
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
SpinDelay(20);
- dest[i] = (137500 * AvgAdc(ADC_CHAN_LF)) >> 18;
+ // Vref = 3.3V, and a 10000:240 voltage divider on the input
+ // can measure voltages up to 137500 mV
+ adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
+ if (i==95) vLf125 = adcval; // voltage at 125Khz
+ if (i==89) vLf134 = adcval; // voltage at 134Khz
+
+ dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes
if(dest[i] > peak) {
- peak= dest[i];
- ptr= i;
- }
- }
- dummy[11]= '\0';
- dummy[10]= 'z';
- dummy[9]= 'H';
- dummy[8]= 'k';
- dummy[7]= ' ';
- freq= 12000000/(ptr + 1);
- for(i= 6; i > 3 ; --i) {
- dummy[i]= '0' + ((int) freq) % 10;
- freq /= 10;
+ peakv = adcval;
+ peak = dest[i];
+ peakf = i;
+ ptr = i;
}
- dummy[3]= '.';
- for(i= 2; i >= 0 ; --i) {
- dummy[i]= '0' + ((int) freq) % 10;
- freq /= 10;
- }
- DbpString("Antenna resonates at:");
- DbpString(dummy);
-}
-
-void MeasureAntennaTuning(void)
-{
-// Impedances are Zc = 1/(j*omega*C), in ohms
-#define LF_TUNING_CAP_Z 1273 // 1 nF @ 125 kHz
-#define HF_TUNING_CAP_Z 235 // 50 pF @ 13.56 MHz
-
- int vLf125, vLf134, vHf; // in mV
-
- UsbCommand c;
-
- // Let the FPGA drive the low-frequency antenna around 125 kHz.
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
- SpinDelay(20);
- vLf125 = AvgAdc(ADC_CHAN_LF);
- // Vref = 3.3V, and a 10000:240 voltage divider on the input
- // can measure voltages up to 137500 mV
- vLf125 = (137500 * vLf125) >> 10;
-
- // Let the FPGA drive the low-frequency antenna around 134 kHz.
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
- SpinDelay(20);
- vLf134 = AvgAdc(ADC_CHAN_LF);
- // Vref = 3.3V, and a 10000:240 voltage divider on the input
- // can measure voltages up to 137500 mV
- vLf134 = (137500 * vLf134) >> 10;
+ }
// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
SpinDelay(20);
- vHf = AvgAdc(ADC_CHAN_HF);
// Vref = 3300mV, and an 10:1 voltage divider on the input
// can measure voltages up to 33000 mV
- vHf = (33000 * vHf) >> 10;
+ vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
c.cmd = CMD_MEASURED_ANTENNA_TUNING;
c.ext1 = (vLf125 << 0) | (vLf134 << 16);
c.ext2 = vHf;
- c.ext3 = (LF_TUNING_CAP_Z << 0) | (HF_TUNING_CAP_Z << 16);
+ c.ext3 = peakf | (peakv << 16);
UsbSendPacket((BYTE *)&c, sizeof(c));
}
case CMD_READ_MEM:
ReadMem(c->ext1);
break;
- case CMD_SWEEP_LF:
- SweepLFrange();
- break;
-
case CMD_SET_LF_DIVISOR:
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->ext1);
break;
memset(BigBuf,0,sizeof(BigBuf));
SpinDelay(100);
- LED_D_OFF();
- LED_C_OFF();
- LED_B_OFF();
- LED_A_OFF();
+ LED_D_OFF();
+ LED_C_OFF();
+ LED_B_OFF();
+ LED_A_OFF();
UsbStart();
LCDInit();
// test text on different colored backgrounds
- LCDString(" The quick brown fox ", &FONT6x8,1,1+8*0,WHITE ,BLACK );
- LCDString(" jumped over the ", &FONT6x8,1,1+8*1,BLACK ,WHITE );
- LCDString(" lazy dog. ", &FONT6x8,1,1+8*2,YELLOW ,RED );
- LCDString(" AaBbCcDdEeFfGgHhIiJj ", &FONT6x8,1,1+8*3,RED ,GREEN );
- LCDString(" KkLlMmNnOoPpQqRrSsTt ", &FONT6x8,1,1+8*4,MAGENTA,BLUE );
- LCDString("UuVvWwXxYyZz0123456789", &FONT6x8,1,1+8*5,BLUE ,YELLOW);
- LCDString("`-=[]_;',./~!@#$%^&*()", &FONT6x8,1,1+8*6,BLACK ,CYAN );
- LCDString(" _+{}|:\\\"<>? ",&FONT6x8,1,1+8*7,BLUE ,MAGENTA);
+ LCDString(" The quick brown fox ", &FONT6x8,1,1+8*0,WHITE ,BLACK );
+ LCDString(" jumped over the ", &FONT6x8,1,1+8*1,BLACK ,WHITE );
+ LCDString(" lazy dog. ", &FONT6x8,1,1+8*2,YELLOW ,RED );
+ LCDString(" AaBbCcDdEeFfGgHhIiJj ", &FONT6x8,1,1+8*3,RED ,GREEN );
+ LCDString(" KkLlMmNnOoPpQqRrSsTt ", &FONT6x8,1,1+8*4,MAGENTA,BLUE );
+ LCDString("UuVvWwXxYyZz0123456789", &FONT6x8,1,1+8*5,BLUE ,YELLOW);
+ LCDString("`-=[]_;',./~!@#$%^&*()", &FONT6x8,1,1+8*6,BLACK ,CYAN );
+ LCDString(" _+{}|:\\\"<>? ",&FONT6x8,1,1+8*7,BLUE ,MAGENTA);
// color bands
LCDFill(0, 1+8* 8, 132, 8, BLACK);
// record
DbpString("Starting recording");
-
+
+ // wait for button to be released
+ while(BUTTON_PRESS())
+ WDT_HIT();
+
/* need this delay to prevent catching some weird data */
SpinDelay(500);
+
CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
DbpString("Recorded");
DbpIntegers(selected, high[selected], low[selected]);
{
LED(LED_GREEN, 0);
DbpString("Playing");
+ // wait for button to be released
+ while(BUTTON_PRESS())
+ WDT_HIT();
DbpIntegers(selected, high[selected], low[selected]);
CmdHIDsimTAG(high[selected], low[selected], 0);
DbpString("Done playing");
+ if (BUTTON_HELD(1000) > 0)
+ {
+ DbpString("Exiting");
+ LEDsoff();
+ return;
+ }
/* We pressed a button so ignore it here with a delay */
SpinDelay(300);
LEDsoff();
LED(selected + 1, 0);
}
+ else
+ while(BUTTON_PRESS())
+ WDT_HIT();
}
}
}