]> cvs.zerfleddert.de Git - proxmark3-svn/blobdiff - armsrc/iso14443a.c
bug: hf mf chk - wrong size
[proxmark3-svn] / armsrc / iso14443a.c
index bbfc0b75b92352ba39cfd7d99a1b5a7469d5cdd1..d648beee338f293b08c45bc9db62d2bf5f019d75 100644 (file)
 // Routines to support ISO 14443 type A.
 //-----------------------------------------------------------------------------
 
+#include "iso14443a.h"
+
 #include "proxmark3.h"
 #include "apps.h"
 #include "util.h"
 #include "string.h"
 #include "cmd.h"
-
 #include "iso14443crc.h"
-#include "iso14443a.h"
-#include "crapto1.h"
+#include "crapto1/crapto1.h"
 #include "mifareutil.h"
+#include "mifaresniff.h"
+#include "BigBuf.h"
+#include "protocols.h"
+#include "parity.h"
+
+typedef struct {
+       enum {
+               DEMOD_UNSYNCD,
+               // DEMOD_HALF_SYNCD,
+               // DEMOD_MOD_FIRST_HALF,
+               // DEMOD_NOMOD_FIRST_HALF,
+               DEMOD_MANCHESTER_DATA
+       } state;
+       uint16_t twoBits;
+       uint16_t highCnt;
+       uint16_t bitCount;
+       uint16_t collisionPos;
+       uint16_t syncBit;
+       uint8_t  parityBits;
+       uint8_t  parityLen;
+       uint16_t shiftReg;
+       uint16_t samples;
+       uint16_t len;
+       uint32_t startTime, endTime;
+       uint8_t  *output;
+       uint8_t  *parity;
+} tDemod;
+
+typedef enum {
+       MOD_NOMOD = 0,
+       MOD_SECOND_HALF,
+       MOD_FIRST_HALF,
+       MOD_BOTH_HALVES
+       } Modulation_t;
+
+typedef struct {
+       enum {
+               STATE_UNSYNCD,
+               STATE_START_OF_COMMUNICATION,
+               STATE_MILLER_X,
+               STATE_MILLER_Y,
+               STATE_MILLER_Z,
+               // DROP_NONE,
+               // DROP_FIRST_HALF,
+               } state;
+       uint16_t shiftReg;
+       int16_t  bitCount;
+       uint16_t len;
+       uint16_t byteCntMax;
+       uint16_t posCnt;
+       uint16_t syncBit;
+       uint8_t  parityBits;
+       uint8_t  parityLen;
+       uint32_t fourBits;
+       uint32_t startTime, endTime;
+    uint8_t *output;
+       uint8_t *parity;
+} tUart;
 
 static uint32_t iso14a_timeout;
-uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET;
 int rsamples = 0;
-int traceLen = 0;
-int tracing = TRUE;
 uint8_t trigger = 0;
 // the block number for the ISO14443-4 PCB
 static uint8_t iso14_pcb_blocknum = 0;
@@ -37,7 +92,7 @@ static uint8_t iso14_pcb_blocknum = 0;
 #define REQUEST_GUARD_TIME (7000/16 + 1)
 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles 
 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1) 
-// bool LastCommandWasRequest = FALSE;
+// bool LastCommandWasRequest = false;
 
 //
 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
@@ -104,9 +159,9 @@ uint16_t FpgaSendQueueDelay;
 
 //variables used for timing purposes:
 //these are in ssp_clk cycles:
-uint32_t NextTransferTime;
-uint32_t LastTimeProxToAirStart;
-uint32_t LastProxToAirDuration;
+static uint32_t NextTransferTime;
+static uint32_t LastTimeProxToAirStart;
+static uint32_t LastProxToAirDuration;
 
 
 
@@ -125,63 +180,65 @@ uint32_t LastProxToAirDuration;
 #define        SEC_Y 0x00
 #define        SEC_Z 0xc0
 
-const uint8_t OddByteParity[256] = {
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
-};
-
-
 void iso14a_set_trigger(bool enable) {
        trigger = enable;
 }
 
-void iso14a_clear_trace() {
-       memset(trace, 0x44, TRACE_SIZE);
-       traceLen = 0;
-}
-
-void iso14a_set_tracing(bool enable) {
-       tracing = enable;
-}
 
 void iso14a_set_timeout(uint32_t timeout) {
        iso14a_timeout = timeout;
+       if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
 }
 
+
+void iso14a_set_ATS_timeout(uint8_t *ats) {
+
+       uint8_t tb1;
+       uint8_t fwi; 
+       uint32_t fwt;
+       
+       if (ats[0] > 1) {                                                       // there is a format byte T0
+               if ((ats[1] & 0x20) == 0x20) {                  // there is an interface byte TB(1)
+                       if ((ats[1] & 0x10) == 0x10) {          // there is an interface byte TA(1) preceding TB(1)
+                               tb1 = ats[3];
+                       } else {
+                               tb1 = ats[2];
+                       }
+                       fwi = (tb1 & 0xf0) >> 4;                        // frame waiting indicator (FWI)
+                       fwt = 256 * 16 * (1 << fwi);            // frame waiting time (FWT) in 1/fc
+                       
+                       iso14a_set_timeout(fwt/(8*16));
+               }
+       }
+}
+
+
 //-----------------------------------------------------------------------------
 // Generate the parity value for a byte sequence
 //
 //-----------------------------------------------------------------------------
-byte_t oddparity (const byte_t bt)
-{
-       return OddByteParity[bt];
-}
-
-uint32_t GetParity(const uint8_t * pbtCmd, int iLen)
+void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
 {
-       int i;
-       uint32_t dwPar = 0;
-
-       // Generate the parity bits
-       for (i = 0; i < iLen; i++) {
-               // and save them to a 32Bit word
-               dwPar |= ((OddByteParity[pbtCmd[i]]) << i);
+       uint16_t paritybit_cnt = 0;
+       uint16_t paritybyte_cnt = 0;
+       uint8_t parityBits = 0;
+
+       for (uint16_t i = 0; i < iLen; i++) {
+               // Generate the parity bits
+               parityBits |= ((oddparity8(pbtCmd[i])) << (7-paritybit_cnt));
+               if (paritybit_cnt == 7) {
+                       par[paritybyte_cnt] = parityBits;       // save 8 Bits parity
+                       parityBits = 0;                                         // and advance to next Parity Byte
+                       paritybyte_cnt++;
+                       paritybit_cnt = 0;
+               } else {
+                       paritybit_cnt++;
+               }
        }
-       return dwPar;
+
+       // save remaining parity bits
+       par[paritybyte_cnt] = parityBits;
+       
 }
 
 void AppendCrc14443a(uint8_t* data, int len)
@@ -189,37 +246,12 @@ void AppendCrc14443a(uint8_t* data, int len)
        ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
 }
 
-// The function LogTrace() is also used by the iClass implementation in iClass.c
-bool RAMFUNC LogTrace(const uint8_t * btBytes, uint8_t iLen, uint32_t timestamp, uint32_t dwParity, bool readerToTag)
+void AppendCrc14443b(uint8_t* data, int len)
 {
-       if (!tracing) return FALSE;
-       // Return when trace is full
-       if (traceLen + sizeof(timestamp) + sizeof(dwParity) + iLen >= TRACE_SIZE) {
-               tracing = FALSE;        // don't trace any more
-               return FALSE;
-       }
-       
-       // Trace the random, i'm curious
-       trace[traceLen++] = ((timestamp >> 0) & 0xff);
-       trace[traceLen++] = ((timestamp >> 8) & 0xff);
-       trace[traceLen++] = ((timestamp >> 16) & 0xff);
-       trace[traceLen++] = ((timestamp >> 24) & 0xff);
-
-       if (!readerToTag) {
-               trace[traceLen - 1] |= 0x80;
-       }
-       trace[traceLen++] = ((dwParity >> 0) & 0xff);
-       trace[traceLen++] = ((dwParity >> 8) & 0xff);
-       trace[traceLen++] = ((dwParity >> 16) & 0xff);
-       trace[traceLen++] = ((dwParity >> 24) & 0xff);
-       trace[traceLen++] = iLen;
-       if (btBytes != NULL && iLen != 0) {
-               memcpy(trace + traceLen, btBytes, iLen);
-       }
-       traceLen += iLen;
-       return TRUE;
+       ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1);
 }
 
+
 //=============================================================================
 // ISO 14443 Type A - Miller decoder
 //=============================================================================
@@ -239,70 +271,77 @@ bool RAMFUNC LogTrace(const uint8_t * btBytes, uint8_t iLen, uint32_t timestamp,
 static tUart Uart;
 
 // Lookup-Table to decide if 4 raw bits are a modulation.
-// We accept two or three consecutive "0" in any position with the rest "1"
+// We accept the following:
+// 0001  -   a 3 tick wide pause
+// 0011  -   a 2 tick wide pause, or a three tick wide pause shifted left
+// 0111  -   a 2 tick wide pause shifted left
+// 1001  -   a 2 tick wide pause shifted right
 const bool Mod_Miller_LUT[] = {
-       TRUE,  TRUE,  FALSE, TRUE,  FALSE, FALSE, FALSE, FALSE,
-       TRUE,  TRUE,  FALSE, FALSE, TRUE,  FALSE, FALSE, FALSE
+       false,  true, false, true,  false, false, false, true,
+       false,  true, false, false, false, false, false, false
 };
-#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
-#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
+#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
+#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
 
 void UartReset()
 {
        Uart.state = STATE_UNSYNCD;
        Uart.bitCount = 0;
        Uart.len = 0;                                           // number of decoded data bytes
+       Uart.parityLen = 0;                                     // number of decoded parity bytes
        Uart.shiftReg = 0;                                      // shiftreg to hold decoded data bits
-       Uart.parityBits = 0;                            // 
-       Uart.twoBits = 0x0000;                          // buffer for 2 Bits
-       Uart.highCnt = 0;
+       Uart.parityBits = 0;                            // holds 8 parity bits
        Uart.startTime = 0;
        Uart.endTime = 0;
 }
 
+void UartInit(uint8_t *data, uint8_t *parity)
+{
+       Uart.output = data;
+       Uart.parity = parity;
+       Uart.fourBits = 0x00000000;                     // clear the buffer for 4 Bits
+       UartReset();
+}
 
 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
 static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
 {
 
-       Uart.twoBits = (Uart.twoBits << 8) | bit;
+       Uart.fourBits = (Uart.fourBits << 8) | bit;
        
-       if (Uart.state == STATE_UNSYNCD) {                                                                                              // not yet synced
-               if (Uart.highCnt < 7) {                                                                                                 // wait for a stable unmodulated signal
-                       if (Uart.twoBits == 0xffff) {
-                               Uart.highCnt++;
-                       } else {
-                               Uart.highCnt = 0;
-                       }
-               } else {        
-                       Uart.syncBit = 0xFFFF; // not set
-                       // look for 00xx1111 (the start bit)
-                       if              ((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7; 
-                       else if ((Uart.twoBits & 0x33C0) == 0x03C0) Uart.syncBit = 6;
-                       else if ((Uart.twoBits & 0x19E0) == 0x01E0) Uart.syncBit = 5;
-                       else if ((Uart.twoBits & 0x0CF0) == 0x00F0) Uart.syncBit = 4;
-                       else if ((Uart.twoBits & 0x0678) == 0x0078) Uart.syncBit = 3;
-                       else if ((Uart.twoBits & 0x033C) == 0x003C) Uart.syncBit = 2;
-                       else if ((Uart.twoBits & 0x019E) == 0x001E) Uart.syncBit = 1;
-                       else if ((Uart.twoBits & 0x00CF) == 0x000F) Uart.syncBit = 0;
-                       if (Uart.syncBit != 0xFFFF) {
-                               Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
-                               Uart.startTime -= Uart.syncBit;
-                               Uart.endTime = Uart.startTime;
-                               Uart.state = STATE_START_OF_COMMUNICATION;
-                       }
+       if (Uart.state == STATE_UNSYNCD) {                                                                                      // not yet synced
+       
+               Uart.syncBit = 9999;                                                                                                    // not set
+               // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
+               // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
+               // we therefore look for a ...xx11111111111100x11111xxxxxx... pattern 
+               // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
+               #define ISO14443A_STARTBIT_MASK         0x07FFEF80                                                      // mask is    00000111 11111111 11101111 10000000
+               #define ISO14443A_STARTBIT_PATTERN      0x07FF8F80                                                      // pattern is 00000111 11111111 10001111 10000000
+               if              ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
+               else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
+               else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
+               else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
+               else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
+               else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
+               else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
+               else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
+
+               if (Uart.syncBit != 9999) {                                                                                             // found a sync bit
+                       Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
+                       Uart.startTime -= Uart.syncBit;
+                       Uart.endTime = Uart.startTime;
+                       Uart.state = STATE_START_OF_COMMUNICATION;
                }
 
        } else {
 
-               if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {                  
-                       if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) {          // Modulation in both halves - error
+               if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {                 
+                       if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) {         // Modulation in both halves - error
                                UartReset();
-                               Uart.highCnt = 6;
                        } else {                                                                                                                        // Modulation in first half = Sequence Z = logic "0"
                                if (Uart.state == STATE_MILLER_X) {                                                             // error - must not follow after X
                                        UartReset();
-                                       Uart.highCnt = 6;
                                } else {
                                        Uart.bitCount++;
                                        Uart.shiftReg = (Uart.shiftReg >> 1);                                           // add a 0 to the shiftreg
@@ -314,11 +353,15 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
                                                Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01);               // store parity bit
                                                Uart.bitCount = 0;
                                                Uart.shiftReg = 0;
+                                               if((Uart.len&0x0007) == 0) {                                                    // every 8 data bytes
+                                                       Uart.parity[Uart.parityLen++] = Uart.parityBits;        // store 8 parity bits
+                                                       Uart.parityBits = 0;
+                                               }
                                        }
                                }
                        }
                } else {
-                       if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) {          // Modulation second half = Sequence X = logic "1"
+                       if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) {         // Modulation second half = Sequence X = logic "1"
                                Uart.bitCount++;
                                Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100;                                   // add a 1 to the shiftreg
                                Uart.state = STATE_MILLER_X;
@@ -329,21 +372,35 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
                                        Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01);                       // store parity bit
                                        Uart.bitCount = 0;
                                        Uart.shiftReg = 0;
+                                       if ((Uart.len&0x0007) == 0) {                                                           // every 8 data bytes
+                                               Uart.parity[Uart.parityLen++] = Uart.parityBits;                // store 8 parity bits
+                                               Uart.parityBits = 0;
+                                       }
                                }
                        } else {                                                                                                                        // no modulation in both halves - Sequence Y
                                if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) {     // Y after logic "0" - End of Communication
                                        Uart.state = STATE_UNSYNCD;
-                                       if(Uart.len == 0 && Uart.bitCount > 0) {                                                                                // if we decoded some bits
-                                               Uart.shiftReg >>= (9 - Uart.bitCount);                                  // add them to the output
-                                               Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
-                                               Uart.parityBits <<= 1;                                                                  // no parity bit - add "0"
-                                               Uart.bitCount--;                                                                                // last "0" was part of the EOC sequence
+                                       Uart.bitCount--;                                                                                        // last "0" was part of EOC sequence
+                                       Uart.shiftReg <<= 1;                                                                            // drop it
+                                       if(Uart.bitCount > 0) {                                                                         // if we decoded some bits
+                                               Uart.shiftReg >>= (9 - Uart.bitCount);                                  // right align them
+                                               Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);               // add last byte to the output
+                                               Uart.parityBits <<= 1;                                                                  // add a (void) parity bit
+                                               Uart.parityBits <<= (8 - (Uart.len&0x0007));                    // left align parity bits
+                                               Uart.parity[Uart.parityLen++] = Uart.parityBits;                // and store it
+                                               return true;
+                                       } else if (Uart.len & 0x0007) {                                                         // there are some parity bits to store
+                                               Uart.parityBits <<= (8 - (Uart.len&0x0007));                    // left align remaining parity bits
+                                               Uart.parity[Uart.parityLen++] = Uart.parityBits;                // and store them
+                                       }
+                                       if (Uart.len) {
+                                               return true;                                                                                    // we are finished with decoding the raw data sequence
+                                       } else {
+                                               UartReset();                                                                                    // Nothing received - start over
                                        }
-                                       return TRUE;
                                }
                                if (Uart.state == STATE_START_OF_COMMUNICATION) {                               // error - must not follow directly after SOC
                                        UartReset();
-                                       Uart.highCnt = 6;
                                } else {                                                                                                                // a logic "0"
                                        Uart.bitCount++;
                                        Uart.shiftReg = (Uart.shiftReg >> 1);                                           // add a 0 to the shiftreg
@@ -354,6 +411,10 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
                                                Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01);               // store parity bit
                                                Uart.bitCount = 0;
                                                Uart.shiftReg = 0;
+                                               if ((Uart.len&0x0007) == 0) {                                                   // every 8 data bytes
+                                                       Uart.parity[Uart.parityLen++] = Uart.parityBits;        // store 8 parity bits
+                                                       Uart.parityBits = 0;
+                                               }
                                        }
                                }
                        }
@@ -361,7 +422,7 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
                        
        } 
 
-    return FALSE;      // not finished yet, need more data
+    return false;      // not finished yet, need more data
 }
 
 
@@ -386,8 +447,8 @@ static tDemod Demod;
 // Lookup-Table to decide if 4 raw bits are a modulation.
 // We accept three or four "1" in any position
 const bool Mod_Manchester_LUT[] = {
-       FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
-       FALSE, FALSE, FALSE, TRUE,  FALSE, TRUE,  TRUE,  TRUE
+       false, false, false, false, false, false, false, true,
+       false, false, false, true,  false, true,  true,  true
 };
 
 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
@@ -398,6 +459,7 @@ void DemodReset()
 {
        Demod.state = DEMOD_UNSYNCD;
        Demod.len = 0;                                          // number of decoded data bytes
+       Demod.parityLen = 0;
        Demod.shiftReg = 0;                                     // shiftreg to hold decoded data bits
        Demod.parityBits = 0;                           // 
        Demod.collisionPos = 0;                         // Position of collision bit
@@ -407,6 +469,13 @@ void DemodReset()
        Demod.endTime = 0;
 }
 
+void DemodInit(uint8_t *data, uint8_t *parity)
+{
+       Demod.output = data;
+       Demod.parity = parity;
+       DemodReset();
+}
+
 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
 static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
 {
@@ -455,6 +524,10 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non
                                Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01);     // store parity bit
                                Demod.bitCount = 0;
                                Demod.shiftReg = 0;
+                               if((Demod.len&0x0007) == 0) {                                                   // every 8 data bytes
+                                       Demod.parity[Demod.parityLen++] = Demod.parityBits;     // store 8 parity bits
+                                       Demod.parityBits = 0;
+                               }
                        }
                        Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
                } else {                                                                                                                // no modulation in first half
@@ -467,17 +540,26 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non
                                        Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
                                        Demod.bitCount = 0;
                                        Demod.shiftReg = 0;
+                                       if ((Demod.len&0x0007) == 0) {                                          // every 8 data bytes
+                                               Demod.parity[Demod.parityLen++] = Demod.parityBits;     // store 8 parity bits1
+                                               Demod.parityBits = 0;
+                                       }
                                }
                                Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
                        } else {                                                                                                        // no modulation in both halves - End of communication
-                               if (Demod.len > 0 || Demod.bitCount > 0) {                              // received something
-                                       if(Demod.bitCount > 0) {                                                        // if we decoded bits
-                                               Demod.shiftReg >>= (9 - Demod.bitCount);                // add the remaining decoded bits to the output
-                                               Demod.output[Demod.len++] = Demod.shiftReg & 0xff;
-                                               // No parity bit, so just shift a 0
-                                               Demod.parityBits <<= 1;
-                                       }
-                                       return TRUE;                                                                            // we are finished with decoding the raw data sequence
+                               if(Demod.bitCount > 0) {                                                                // there are some remaining data bits
+                                       Demod.shiftReg >>= (9 - Demod.bitCount);                        // right align the decoded bits
+                                       Demod.output[Demod.len++] = Demod.shiftReg & 0xff;      // and add them to the output
+                                       Demod.parityBits <<= 1;                                                         // add a (void) parity bit
+                                       Demod.parityBits <<= (8 - (Demod.len&0x0007));          // left align remaining parity bits
+                                       Demod.parity[Demod.parityLen++] = Demod.parityBits;     // and store them
+                                       return true;
+                               } else if (Demod.len & 0x0007) {                                                // there are some parity bits to store
+                                       Demod.parityBits <<= (8 - (Demod.len&0x0007));          // left align remaining parity bits
+                                       Demod.parity[Demod.parityLen++] = Demod.parityBits;     // and store them
+                               }
+                               if (Demod.len) {
+                                       return true;                                                                            // we are finished with decoding the raw data sequence
                                } else {                                                                                                // nothing received. Start over
                                        DemodReset();
                                }
@@ -486,7 +568,7 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non
                        
        } 
 
-    return FALSE;      // not finished yet, need more data
+    return false;      // not finished yet, need more data
 }
 
 //=============================================================================
@@ -505,49 +587,52 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
        // bit 1 - trigger from first reader 7-bit request
        
        LEDsoff();
-       // init trace buffer
-       iso14a_clear_trace();
-       iso14a_set_tracing(TRUE);
 
-       // We won't start recording the frames that we acquire until we trigger;
-       // a good trigger condition to get started is probably when we see a
-       // response from the tag.
-       // triggered == FALSE -- to wait first for card
-       bool triggered = !(param & 0x03); 
-       
+       iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
+
+       // Allocate memory from BigBuf for some buffers
+       // free all previous allocations first
+       BigBuf_free();
+
        // The command (reader -> tag) that we're receiving.
-       // The length of a received command will in most cases be no more than 18 bytes.
-       // So 32 should be enough!
-       uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
+       uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
+       uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
+       
        // The response (tag -> reader) that we're receiving.
-       uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
-
-       // As we receive stuff, we copy it from receivedCmd or receivedResponse
-       // into trace, along with its length and other annotations.
-       //uint8_t *trace = (uint8_t *)BigBuf;
+       uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
+       uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
        
        // The DMA buffer, used to stream samples from the FPGA
-       uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+       uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
+
+       // init trace buffer
+       clear_trace();
+       set_tracing(true);
+
        uint8_t *data = dmaBuf;
        uint8_t previous_data = 0;
        int maxDataLen = 0;
        int dataLen = 0;
-       bool TagIsActive = FALSE;
-       bool ReaderIsActive = FALSE;
+       bool TagIsActive = false;
+       bool ReaderIsActive = false;
        
-       iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
-
        // Set up the demodulator for tag -> reader responses.
-       Demod.output = receivedResponse;
-
+       DemodInit(receivedResponse, receivedResponsePar);
+       
        // Set up the demodulator for the reader -> tag commands
-       Uart.output = receivedCmd;
-
+       UartInit(receivedCmd, receivedCmdPar);
+       
        // Setup and start DMA.
        FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
        
+       // We won't start recording the frames that we acquire until we trigger;
+       // a good trigger condition to get started is probably when we see a
+       // response from the tag.
+       // triggered == false -- to wait first for card
+       bool triggered = !(param & 0x03); 
+       
        // And now we loop, receiving samples.
-       for(uint32_t rsamples = 0; TRUE; ) {
+       for(uint32_t rsamples = 0; true; ) {
 
                if(BUTTON_PRESS()) {
                        DbpString("cancelled by button");
@@ -567,7 +652,7 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
                // test for length of buffer
                if(dataLen > maxDataLen) {
                        maxDataLen = dataLen;
-                       if(dataLen > 400) {
+                       if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
                                Dbprintf("blew circular buffer! dataLen=%d", dataLen);
                                break;
                        }
@@ -596,11 +681,15 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
                                        LED_C_ON();
 
                                        // check - if there is a short 7bit request from reader
-                                       if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
+                                       if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = true;
 
                                        if(triggered) {
-                                               if (!LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, Uart.parityBits, TRUE)) break;
-                                               if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break;
+                                               if (!LogTrace(receivedCmd, 
+                                                                               Uart.len, 
+                                                                               Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
+                                                                               Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
+                                                                               Uart.parity, 
+                                                                               true)) break;
                                        }
                                        /* And ready to receive another command. */
                                        UartReset();
@@ -617,13 +706,20 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
                                if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
                                        LED_B_ON();
 
-                                       if (!LogTrace(receivedResponse, Demod.len, Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, Demod.parityBits, FALSE)) break;
-                                       if (!LogTrace(NULL, 0, Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, 0, FALSE)) break;
+                                       if (!LogTrace(receivedResponse, 
+                                                                       Demod.len, 
+                                                                       Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, 
+                                                                       Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
+                                                                       Demod.parity,
+                                                                       false)) break;
 
-                                       if ((!triggered) && (param & 0x01)) triggered = TRUE;
+                                       if ((!triggered) && (param & 0x01)) triggered = true;
 
                                        // And ready to receive another response.
                                        DemodReset();
+                                       // And reset the Miller decoder including itS (now outdated) input buffer
+                                       UartInit(receivedCmd, receivedCmdPar);
+
                                        LED_C_OFF();
                                } 
                                TagIsActive = (Demod.state != DEMOD_UNSYNCD);
@@ -642,17 +738,15 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 
        FpgaDisableSscDma();
        Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
-       Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen, (uint32_t)Uart.output[0]);
+       Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
        LEDsoff();
 }
 
 //-----------------------------------------------------------------------------
 // Prepare tag messages
 //-----------------------------------------------------------------------------
-static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity)
+static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
 {
-       int i;
-
        ToSendReset();
 
        // Correction bit, might be removed when not needed
@@ -669,12 +763,11 @@ static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity
        ToSend[++ToSendMax] = SEC_D;
        LastProxToAirDuration = 8 * ToSendMax - 4;
 
-       for(i = 0; i < len; i++) {
-               int j;
+       for(uint16_t i = 0; i < len; i++) {
                uint8_t b = cmd[i];
 
                // Data bits
-               for(j = 0; j < 8; j++) {
+               for(uint16_t j = 0; j < 8; j++) {
                        if(b & 1) {
                                ToSend[++ToSendMax] = SEC_D;
                        } else {
@@ -684,7 +777,7 @@ static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity
                }
 
                // Get the parity bit
-               if ((dwParity >> i) & 0x01) {
+               if (parity[i>>3] & (0x80>>(i&0x0007))) {
                        ToSend[++ToSendMax] = SEC_D;
                        LastProxToAirDuration = 8 * ToSendMax - 4;
                } else {
@@ -700,8 +793,12 @@ static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity
        ToSendMax++;
 }
 
-static void CodeIso14443aAsTag(const uint8_t *cmd, int len){
-       CodeIso14443aAsTagPar(cmd, len, GetParity(cmd, len));
+static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
+{
+       uint8_t par[MAX_PARITY_SIZE];
+       
+       GetParity(cmd, len, par);
+       CodeIso14443aAsTagPar(cmd, len, par);
 }
 
 
@@ -746,9 +843,9 @@ static void Code4bitAnswerAsTag(uint8_t cmd)
 //-----------------------------------------------------------------------------
 // Wait for commands from reader
 // Stop when button is pressed
-// Or return TRUE when command is captured
+// Or return true when command is captured
 //-----------------------------------------------------------------------------
-static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen)
+static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
 {
     // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
     // only, since we are receiving, not transmitting).
@@ -757,8 +854,7 @@ static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen
     FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
 
     // Now run a `software UART' on the stream of incoming samples.
-       UartReset();
-    Uart.output = received;
+       UartInit(received, parity);
 
        // clear RXRDY:
     uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
@@ -766,30 +862,29 @@ static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen
     for(;;) {
         WDT_HIT();
 
-        if(BUTTON_PRESS()) return FALSE;
+        if(BUTTON_PRESS()) return false;
                
         if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
             b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
                        if(MillerDecoding(b, 0)) {
                                *len = Uart.len;
-                               return TRUE;
+                               return true;
                        }
                }
     }
 }
 
-static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded);
+static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
 int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
 int EmSend4bit(uint8_t resp);
-int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par);
-int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par);
-int EmSendCmdEx(uint8_t *resp, int respLen, bool correctionNeeded);
-int EmSendCmd(uint8_t *resp, int respLen);
-int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par);
-bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint32_t reader_Parity,
-                                uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint32_t tag_Parity);
+int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
+int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
+int EmSendCmd(uint8_t *resp, uint16_t respLen);
+int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
+bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
+                                uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
 
-static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
+static uint8_t* free_buffer_pointer;
 
 typedef struct {
   uint8_t* response;
@@ -799,10 +894,6 @@ typedef struct {
   uint32_t ProxToAirDuration;
 } tag_response_info_t;
 
-void reset_free_buffer() {
-  free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
-}
-
 bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
        // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
        // This will need the following byte array for a modulation sequence
@@ -814,7 +905,8 @@ bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffe
        // ----------- +
        //    166 bytes, since every bit that needs to be send costs us a byte
        //
-  
   // Prepare the tag modulation bits from the message
   CodeIso14443aAsTag(response_info->response,response_info->response_n);
   
@@ -835,15 +927,22 @@ bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffe
   return true;
 }
 
+
+// "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
+// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) 
+// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
+// -> need 273 bytes buffer
+#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
+
 bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
   // Retrieve and store the current buffer index
   response_info->modulation = free_buffer_pointer;
   
   // Determine the maximum size we can use from our buffer
-  size_t max_buffer_size = (((uint8_t *)BigBuf)+FREE_BUFFER_OFFSET+FREE_BUFFER_SIZE)-free_buffer_pointer;
+  size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
   
   // Forward the prepare tag modulation function to the inner function
-  if (prepare_tag_modulation(response_info,max_buffer_size)) {
+  if (prepare_tag_modulation(response_info, max_buffer_size)) {
     // Update the free buffer offset
     free_buffer_pointer += ToSendMax;
     return true;
@@ -858,10 +957,6 @@ bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
 //-----------------------------------------------------------------------------
 void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 {
-       // Enable and clear the trace
-       iso14a_clear_trace();
-       iso14a_set_tracing(TRUE);
-
        uint8_t sak;
 
        // The first response contains the ATQA (note: bytes are transmitted in reverse order).
@@ -892,6 +987,12 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                        response1[1] = 0x00;
                        sak = 0x28;
                } break;
+               case 5: { // MIFARE TNP3XXX
+                       // Says: I am a toy
+                       response1[0] = 0x01;
+                       response1[1] = 0x0f;
+                       sak = 0x01;
+               } break;                
                default: {
                        Dbprintf("Error: unkown tagtype (%d)",tagType);
                        return;
@@ -899,10 +1000,11 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
        }
        
        // The second response contains the (mandatory) first 24 bits of the UID
-       uint8_t response2[5];
+       uint8_t response2[5] = {0x00};
 
        // Check if the uid uses the (optional) part
-       uint8_t response2a[5];
+       uint8_t response2a[5] = {0x00};
+       
        if (uid_2nd) {
                response2[0] = 0x88;
                num_to_bytes(uid_1st,3,response2+1);
@@ -923,17 +1025,21 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
        response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
 
        // Prepare the mandatory SAK (for 4 and 7 byte UID)
-       uint8_t response3[3];
+       uint8_t response3[3]  = {0x00};
        response3[0] = sak;
        ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
 
        // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
-       uint8_t response3a[3];
+       uint8_t response3a[3]  = {0x00};
        response3a[0] = sak & 0xFB;
        ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
 
        uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
-       uint8_t response6[] = { 0x04, 0x58, 0x00, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS
+       uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS: 
+       // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present, 
+       // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
+       // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
+       // TC(1) = 0x02: CID supported, NAD not supported
        ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
 
        #define TAG_RESPONSE_COUNT 7
@@ -960,16 +1066,26 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                .modulation_n = 0
        };
   
-       // Reset the offset pointer of the free buffer
-       reset_free_buffer();
-  
+       // We need to listen to the high-frequency, peak-detected path.
+       iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
+       BigBuf_free_keep_EM();
+
+       // allocate buffers:
+       uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
+       uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
+       free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
+
+       // clear trace
+       clear_trace();
+       set_tracing(true);
+
        // Prepare the responses of the anticollision phase
        // there will be not enough time to do this at the moment the reader sends it REQA
        for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
                prepare_allocated_tag_modulation(&responses[i]);
        }
 
-       uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
        int len = 0;
 
        // To control where we are in the protocol
@@ -981,24 +1097,19 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
        int happened2 = 0;
        int cmdsRecvd = 0;
 
-       // We need to listen to the high-frequency, peak-detected path.
-       iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
-
        cmdsRecvd = 0;
        tag_response_info_t* p_response;
 
        LED_A_ON();
        for(;;) {
                // Clean receive command buffer
-               
-               if(!GetIso14443aCommandFromReader(receivedCmd, &len, RECV_CMD_SIZE)) {
+               if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
                        DbpString("Button press");
                        break;
                }
 
                p_response = NULL;
                
-               // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
                // Okay, look at the command now.
                lastorder = order;
                if(receivedCmd[0] == 0x26) { // Received a REQUEST
@@ -1007,22 +1118,21 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                        p_response = &responses[0]; order = 6;
                } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) {   // Received request for UID (cascade 1)
                        p_response = &responses[1]; order = 2;
-               } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
+               } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) {   // Received request for UID (cascade 2)
                        p_response = &responses[2]; order = 20;
                } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) {   // Received a SELECT (cascade 1)
                        p_response = &responses[3]; order = 3;
                } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) {   // Received a SELECT (cascade 2)
                        p_response = &responses[4]; order = 30;
                } else if(receivedCmd[0] == 0x30) {     // Received a (plain) READ
-                       EmSendCmdEx(data+(4*receivedCmd[0]),16,false);
+                       EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
                        // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
                        // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
                        p_response = NULL;
                } else if(receivedCmd[0] == 0x50) {     // Received a HALT
-//                     DbpString("Reader requested we HALT!:");
+
                        if (tracing) {
-                               LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-                               LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+                               LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
                        }
                        p_response = NULL;
                } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) {   // Received an authentication request
@@ -1034,10 +1144,9 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                        } else {
                                p_response = &responses[6]; order = 70;
                        }
-               } else if (order == 7 && len == 8) { // Received authentication request
+               } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
                        if (tracing) {
-                               LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-                               LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+                               LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
                        }
                        uint32_t nr = bytes_to_num(receivedCmd,4);
                        uint32_t ar = bytes_to_num(receivedCmd+4,4);
@@ -1081,8 +1190,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                                default: {
                                        // Never seen this command before
                                        if (tracing) {
-                                               LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-                                               LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+                                               LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
                                        }
                                        Dbprintf("Received unknown command (len=%d):",len);
                                        Dbhexdump(len,receivedCmd,false);
@@ -1102,8 +1210,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                                if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
                                        Dbprintf("Error preparing tag response");
                                        if (tracing) {
-                                               LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-                                               LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+                                               LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
                                        }
                                        break;
                                }
@@ -1126,16 +1233,19 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                if (p_response != NULL) {
                        EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
                        // do the tracing for the previous reader request and this tag answer:
+                       uint8_t par[MAX_PARITY_SIZE];
+                       GetParity(p_response->response, p_response->response_n, par);
+       
                        EmLogTrace(Uart.output, 
                                                Uart.len, 
                                                Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, 
                                                Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 
-                                               Uart.parityBits,
+                                               Uart.parity,
                                                p_response->response, 
                                                p_response->response_n,
                                                LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
                                                (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, 
-                                               SwapBits(GetParity(p_response->response, p_response->response_n), p_response->response_n));
+                                               par);
                }
                
                if (!tracing) {
@@ -1146,6 +1256,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 
        Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
        LED_A_OFF();
+       BigBuf_free_keep_EM();
 }
 
 
@@ -1181,7 +1292,7 @@ void PrepareDelayedTransfer(uint16_t delay)
 // if == 0:    transfer immediately and return time of transfer
 // if != 0: delay transfer until time specified
 //-------------------------------------------------------------------------------------
-static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing)
+static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
 {
        
        FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
@@ -1206,13 +1317,6 @@ static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing)
        // clear TXRDY
        AT91C_BASE_SSC->SSC_THR = SEC_Y;
 
-       // for(uint16_t c = 0; c < 10;) {       // standard delay for each transfer (allow tag to be ready after last transmission)
-               // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
-                       // AT91C_BASE_SSC->SSC_THR = SEC_Y;     
-                       // c++;
-               // }
-       // }
-
        uint16_t c = 0;
        for(;;) {
                if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
@@ -1225,14 +1329,13 @@ static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing)
        }
        
        NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
-       
 }
 
 
 //-----------------------------------------------------------------------------
 // Prepare reader command (in bits, support short frames) to send to FPGA
 //-----------------------------------------------------------------------------
-void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, int bits, uint32_t dwParity)
+void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
 {
        int i, j;
        int last;
@@ -1272,10 +1375,10 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, int bits, uint32_t dwPari
                        b >>= 1;
                }
 
-               // Only transmit (last) parity bit if we transmitted a complete byte
-               if (j == 8) {
+               // Only transmit parity bit if we transmitted a complete byte
+               if (j == 8 && parity != NULL) {
                        // Get the parity bit
-                       if ((dwParity >> i) & 0x01) {
+                       if (parity[i>>3] & (0x80 >> (i&0x0007))) {
                                // Sequence X
                                ToSend[++ToSendMax] = SEC_X;
                                LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
@@ -1313,17 +1416,18 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, int bits, uint32_t dwPari
 //-----------------------------------------------------------------------------
 // Prepare reader command to send to FPGA
 //-----------------------------------------------------------------------------
-void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity)
+void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
 {
-  CodeIso14443aBitsAsReaderPar(cmd,len*8,dwParity);
+  CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
 }
 
+
 //-----------------------------------------------------------------------------
 // Wait for commands from reader
 // Stop when button is pressed (return 1) or field was gone (return 2)
 // Or return 0 when command is captured
 //-----------------------------------------------------------------------------
-static int EmGetCmd(uint8_t *received, int *len)
+static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
 {
        *len = 0;
 
@@ -1340,20 +1444,19 @@ static int EmGetCmd(uint8_t *received, int *len)
        // Set ADC to read field strength
        AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
        AT91C_BASE_ADC->ADC_MR =
-                               ADC_MODE_PRESCALE(32) |
-                               ADC_MODE_STARTUP_TIME(16) |
-                               ADC_MODE_SAMPLE_HOLD_TIME(8);
+                               ADC_MODE_PRESCALE(63) |
+                               ADC_MODE_STARTUP_TIME(1) |
+                               ADC_MODE_SAMPLE_HOLD_TIME(15);
        AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
        // start ADC
        AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
        
        // Now run a 'software UART' on the stream of incoming samples.
-       UartReset();
-       Uart.output = received;
+       UartInit(received, parity);
 
        // Clear RXRDY:
     uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-
+       
        for(;;) {
                WDT_HIT();
 
@@ -1365,7 +1468,7 @@ static int EmGetCmd(uint8_t *received, int *len)
                        analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
                        AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
                        if (analogCnt >= 32) {
-                               if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
+                               if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
                                        vtime = GetTickCount();
                                        if (!timer) timer = vtime;
                                        // 50ms no field --> card to idle state
@@ -1390,7 +1493,7 @@ static int EmGetCmd(uint8_t *received, int *len)
 }
 
 
-static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded)
+static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
 {
        uint8_t b;
        uint16_t i = 0;
@@ -1401,7 +1504,7 @@ static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded)
 
        // include correction bit if necessary
        if (Uart.parityBits & 0x01) {
-               correctionNeeded = TRUE;
+               correctionNeeded = true;
        }
        if(correctionNeeded) {
                // 1236, so correction bit needed
@@ -1428,7 +1531,7 @@ static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded)
        AT91C_BASE_SSC->SSC_THR = SEC_F;
 
        // send cycle
-       for(; i <= respLen; ) {
+       for(; i < respLen; ) {
                if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
                        AT91C_BASE_SSC->SSC_THR = resp[i++];
                        FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
@@ -1440,14 +1543,15 @@ static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded)
        }
 
        // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
-       for (i = 0; i < 2 ; ) {
+       uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
+       for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
                if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
                        AT91C_BASE_SSC->SSC_THR = SEC_F;
                        FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
                        i++;
                }
        }
-       
+
        LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
 
        return 0;
@@ -1457,16 +1561,18 @@ int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
        Code4bitAnswerAsTag(resp);
        int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
        // do the tracing for the previous reader request and this tag answer:
+       uint8_t par[1];
+       GetParity(&resp, 1, par);
        EmLogTrace(Uart.output, 
                                Uart.len, 
                                Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, 
                                Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 
-                               Uart.parityBits,
+                               Uart.parity,
                                &resp, 
                                1, 
                                LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
                                (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, 
-                               SwapBits(GetParity(&resp, 1), 1));
+                               par);
        return res;
 }
 
@@ -1474,7 +1580,7 @@ int EmSend4bit(uint8_t resp){
        return EmSend4bitEx(resp, false);
 }
 
-int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par){
+int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
        CodeIso14443aAsTagPar(resp, respLen, par);
        int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
        // do the tracing for the previous reader request and this tag answer:
@@ -1482,29 +1588,33 @@ int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t p
                                Uart.len, 
                                Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, 
                                Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 
-                               Uart.parityBits,
+                               Uart.parity,
                                resp, 
                                respLen, 
                                LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
                                (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, 
-                               SwapBits(GetParity(resp, respLen), respLen));
+                               par);
        return res;
 }
 
-int EmSendCmdEx(uint8_t *resp, int respLen, bool correctionNeeded){
-       return EmSendCmdExPar(resp, respLen, correctionNeeded, GetParity(resp, respLen));
+int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
+       uint8_t par[MAX_PARITY_SIZE];
+       GetParity(resp, respLen, par);
+       return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
 }
 
-int EmSendCmd(uint8_t *resp, int respLen){
-       return EmSendCmdExPar(resp, respLen, false, GetParity(resp, respLen));
+int EmSendCmd(uint8_t *resp, uint16_t respLen){
+       uint8_t par[MAX_PARITY_SIZE];
+       GetParity(resp, respLen, par);
+       return EmSendCmdExPar(resp, respLen, false, par);
 }
 
-int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){
+int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
        return EmSendCmdExPar(resp, respLen, false, par);
 }
 
-bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint32_t reader_Parity,
-                                uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint32_t tag_Parity)
+bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
+                                uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
 {
        if (tracing) {
                // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
@@ -1515,28 +1625,22 @@ bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_Start
                uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
                reader_EndTime = tag_StartTime - exact_fdt;
                reader_StartTime = reader_EndTime - reader_modlen;
-               if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_Parity, TRUE)) {
-                       return FALSE;
-               } else if (!LogTrace(NULL, 0, reader_EndTime, 0, TRUE)) {
-                       return FALSE;
-               } else if (!LogTrace(tag_data, tag_len, tag_StartTime, tag_Parity, FALSE)) {
-                       return FALSE;
-               } else {
-                       return (!LogTrace(NULL, 0, tag_EndTime, 0, FALSE));
-               }
+               if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, true)) {
+                       return false;
+               } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, false));
        } else {
-               return TRUE;
+               return true;
        }
 }
 
 //-----------------------------------------------------------------------------
 // Wait a certain time for tag response
-//  If a response is captured return TRUE
-//  If it takes too long return FALSE
+//  If a response is captured return true
+//  If it takes too long return false
 //-----------------------------------------------------------------------------
-static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset, int maxLen)
+static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
 {
-       uint16_t c;
+       uint32_t c;
        
        // Set FPGA mode to "reader listen mode", no modulation (listen
        // only, since we are receiving, not transmitting).
@@ -1545,12 +1649,11 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset,
        FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
        
        // Now get the answer from the card
-       DemodReset();
-       Demod.output = receivedResponse;
+       DemodInit(receivedResponse, receivedResponsePar);
 
        // clear RXRDY:
     uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-       
+
        c = 0;
        for(;;) {
                WDT_HIT();
@@ -1559,18 +1662,18 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset,
                        b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
                        if(ManchesterDecoding(b, offset, 0)) {
                                NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
-                               return TRUE;
-                       } else if(c++ > iso14a_timeout) {
-                               return FALSE
+                               return true;
+                       } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
+                               return false
                        }
                }
        }
 }
 
-void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par, uint32_t *timing)
-{
 
-       CodeIso14443aBitsAsReaderPar(frame,bits,par);
+void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
+{
+       CodeIso14443aBitsAsReaderPar(frame, bits, par);
   
        // Send command to tag
        TransmitFor14443a(ToSend, ToSendMax, timing);
@@ -1579,196 +1682,211 @@ void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par, uint32_t *tim
   
        // Log reader command in trace buffer
        if (tracing) {
-               LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
-               LogTrace(NULL, 0, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, 0, TRUE);
+               LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, true);
        }
 }
 
-void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par, uint32_t *timing)
+
+void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
 {
-  ReaderTransmitBitsPar(frame,len*8,par, timing);
+  ReaderTransmitBitsPar(frame, len*8, par, timing);
 }
 
-void ReaderTransmitBits(uint8_t* frame, int len, uint32_t *timing)
+
+void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
 {
   // Generate parity and redirect
-  ReaderTransmitBitsPar(frame,len,GetParity(frame,len/8), timing);
+  uint8_t par[MAX_PARITY_SIZE];
+  GetParity(frame, len/8, par);
+  ReaderTransmitBitsPar(frame, len, par, timing);
 }
 
-void ReaderTransmit(uint8_t* frame, int len, uint32_t *timing)
+
+void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
 {
   // Generate parity and redirect
-  ReaderTransmitBitsPar(frame,len*8,GetParity(frame,len), timing);
+  uint8_t par[MAX_PARITY_SIZE];
+  GetParity(frame, len, par);
+  ReaderTransmitBitsPar(frame, len*8, par, timing);
 }
 
-int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset)
+int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
 {
-       if (!GetIso14443aAnswerFromTag(receivedAnswer,offset,160)) return FALSE;
+       if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return false;
        if (tracing) {
-               LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.parityBits, FALSE);
-               LogTrace(NULL, 0, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, 0, FALSE);
+               LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, false);
        }
        return Demod.len;
 }
 
-int ReaderReceive(uint8_t* receivedAnswer)
+int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
 {
-       return ReaderReceiveOffset(receivedAnswer, 0);
-}
-
-int ReaderReceivePar(uint8_t *receivedAnswer, uint32_t *parptr)
-{
-       if (!GetIso14443aAnswerFromTag(receivedAnswer,0,160)) return FALSE;
+       if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return false;
        if (tracing) {
-               LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.parityBits, FALSE);
-               LogTrace(NULL, 0, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, 0, FALSE);
+               LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, false);
        }
-       *parptr = Demod.parityBits;
        return Demod.len;
 }
 
-/* performs iso14443a anticollision procedure
- * fills the uid pointer unless NULL
- * fills resp_data unless NULL */
-int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, uint32_t* cuid_ptr) {
-  uint8_t wupa[]       = { 0x52 };  // 0x26 - REQA  0x52 - WAKE-UP
-  uint8_t sel_all[]    = { 0x93,0x20 };
-  uint8_t sel_uid[]    = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
-  uint8_t rats[]       = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
-  uint8_t* resp = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);  // was 3560 - tied to other size changes
-  byte_t uid_resp[4];
-  size_t uid_resp_len;
-
-  uint8_t sak = 0x04; // cascade uid
-  int cascade_level = 0;
-  int len;
-        
-  // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
-    ReaderTransmitBitsPar(wupa,7,0, NULL);
+// performs iso14443a anticollision (optional) and card select procedure
+// fills the uid and cuid pointer unless NULL
+// fills the card info record unless NULL
+// if anticollision is false, then the UID must be provided in uid_ptr[] 
+// and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
+int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades) {
+       uint8_t wupa[]       = { 0x52 };  // 0x26 - REQA  0x52 - WAKE-UP
+       uint8_t sel_all[]    = { 0x93,0x20 };
+       uint8_t sel_uid[]    = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
+       uint8_t rats[]       = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
+       uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
+       uint8_t resp_par[MAX_PARITY_SIZE];
+       byte_t uid_resp[4];
+       size_t uid_resp_len;
+
+       uint8_t sak = 0x04; // cascade uid
+       int cascade_level = 0;
+       int len;
+
+       // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
+    ReaderTransmitBitsPar(wupa, 7, NULL, NULL);
        
-  // Receive the ATQA
-  if(!ReaderReceive(resp)) return 0;
-  // Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
-
-  if(p_hi14a_card) {
-    memcpy(p_hi14a_card->atqa, resp, 2);
-    p_hi14a_card->uidlen = 0;
-    memset(p_hi14a_card->uid,0,10);
-  }
+       // Receive the ATQA
+       if(!ReaderReceive(resp, resp_par)) return 0;
 
-  // clear uid
-  if (uid_ptr) {
-    memset(uid_ptr,0,10);
-  }
+       if(p_hi14a_card) {
+               memcpy(p_hi14a_card->atqa, resp, 2);
+               p_hi14a_card->uidlen = 0;
+               memset(p_hi14a_card->uid,0,10);
+       }
+
+       if (anticollision) {
+               // clear uid
+               if (uid_ptr) {
+                       memset(uid_ptr,0,10);
+               }
+       }
+
+       // check for proprietary anticollision:
+       if ((resp[0] & 0x1F) == 0) {
+               return 3;
+       }
+       
+       // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
+       // which case we need to make a cascade 2 request and select - this is a long UID
+       // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
+       for(; sak & 0x04; cascade_level++) {
+               // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
+               sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
+
+               if (anticollision) {
+                       // SELECT_ALL
+                       ReaderTransmit(sel_all, sizeof(sel_all), NULL);
+                       if (!ReaderReceive(resp, resp_par)) return 0;
+
+                       if (Demod.collisionPos) {                       // we had a collision and need to construct the UID bit by bit
+                               memset(uid_resp, 0, 4);
+                               uint16_t uid_resp_bits = 0;
+                               uint16_t collision_answer_offset = 0;
+                               // anti-collision-loop:
+                               while (Demod.collisionPos) {
+                                       Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
+                                       for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) {      // add valid UID bits before collision point
+                                               uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
+                                               uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
+                                       }
+                                       uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8);                                  // next time select the card(s) with a 1 in the collision position
+                                       uid_resp_bits++;
+                                       // construct anticollosion command:
+                                       sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07);     // length of data in bytes and bits
+                                       for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
+                                               sel_uid[2+i] = uid_resp[i];
+                                       }
+                                       collision_answer_offset = uid_resp_bits%8;
+                                       ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
+                                       if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
+                               }
+                               // finally, add the last bits and BCC of the UID
+                               for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
+                                       uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
+                                       uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
+                               }
 
-  // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
-  // which case we need to make a cascade 2 request and select - this is a long UID
-  // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
-  for(; sak & 0x04; cascade_level++) {
-    // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
-    sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
-
-    // SELECT_ALL
-    ReaderTransmit(sel_all,sizeof(sel_all), NULL);
-    if (!ReaderReceive(resp)) return 0;
-
-       if (Demod.collisionPos) {                       // we had a collision and need to construct the UID bit by bit
-               memset(uid_resp, 0, 4);
-               uint16_t uid_resp_bits = 0;
-               uint16_t collision_answer_offset = 0;
-               // anti-collision-loop:
-               while (Demod.collisionPos) {
-                       Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
-                       for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) {      // add valid UID bits before collision point
-                               uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
-                               uid_resp[uid_resp_bits & 0xf8] |= UIDbit << (uid_resp_bits % 8);
+                       } else {                // no collision, use the response to SELECT_ALL as current uid
+                               memcpy(uid_resp, resp, 4);
                        }
-                       uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8);                                  // next time select the card(s) with a 1 in the collision position
-                       uid_resp_bits++;
-                       // construct anticollosion command:
-                       sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07);     // length of data in bytes and bits
-                       for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
-                               sel_uid[2+i] = uid_resp[i];
+               } else {
+                       if (cascade_level < num_cascades - 1) {
+                               uid_resp[0] = 0x88;
+                               memcpy(uid_resp+1, uid_ptr+cascade_level*3, 3);
+                       } else {
+                               memcpy(uid_resp, uid_ptr+cascade_level*3, 4);
                        }
-                       collision_answer_offset = uid_resp_bits%8;
-                       ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
-                       if (!ReaderReceiveOffset(resp, collision_answer_offset)) return 0;
                }
-               // finally, add the last bits and BCC of the UID
-               for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
-                       uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
-                       uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
+               uid_resp_len = 4;
+
+               // calculate crypto UID. Always use last 4 Bytes.
+               if(cuid_ptr) {
+                       *cuid_ptr = bytes_to_num(uid_resp, 4);
                }
 
-       } else {                // no collision, use the response to SELECT_ALL as current uid
-               memcpy(uid_resp,resp,4);
-       }
-       uid_resp_len = 4;
-       // Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
+               // Construct SELECT UID command
+               sel_uid[1] = 0x70;                                                                                                      // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
+               memcpy(sel_uid+2, uid_resp, 4);                                                                         // the UID received during anticollision, or the provided UID
+               sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5];         // calculate and add BCC
+               AppendCrc14443a(sel_uid, 7);                                                                            // calculate and add CRC
+               ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
 
-    // calculate crypto UID. Always use last 4 Bytes.
-    if(cuid_ptr) {
-        *cuid_ptr = bytes_to_num(uid_resp, 4);
-    }
+               // Receive the SAK
+               if (!ReaderReceive(resp, resp_par)) return 0;
+               sak = resp[0];
+       
+               // Test if more parts of the uid are coming
+               if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
+                       // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
+                       // http://www.nxp.com/documents/application_note/AN10927.pdf
+                       uid_resp[0] = uid_resp[1];
+                       uid_resp[1] = uid_resp[2];
+                       uid_resp[2] = uid_resp[3]; 
+                       uid_resp_len = 3;
+               }
 
-    // Construct SELECT UID command
-       sel_uid[1] = 0x70;                                                                                                      // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
-    memcpy(sel_uid+2,uid_resp,4);                                                                              // the UID
-       sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5];         // calculate and add BCC
-    AppendCrc14443a(sel_uid,7);                                                                                        // calculate and add CRC
-    ReaderTransmit(sel_uid,sizeof(sel_uid), NULL);
-
-    // Receive the SAK
-    if (!ReaderReceive(resp)) return 0;
-    sak = resp[0];
-
-    // Test if more parts of the uid are comming
-    if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
-      // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
-      // http://www.nxp.com/documents/application_note/AN10927.pdf
-      // This was earlier:
-      //memcpy(uid_resp, uid_resp + 1, 3);
-      // But memcpy should not be used for overlapping arrays, 
-      // and memmove appears to not be available in the arm build. 
-      // So this has been replaced with a for-loop:
-      for(int xx = 0; xx < 3; xx++) uid_resp[xx] = uid_resp[xx+1];
-
-      uid_resp_len = 3;
-    }
+               if(uid_ptr && anticollision) {
+                       memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
+               }
 
-    if(uid_ptr) {
-      memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
-    }
+               if(p_hi14a_card) {
+                       memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
+                       p_hi14a_card->uidlen += uid_resp_len;
+               }
+       }
 
-    if(p_hi14a_card) {
-      memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
-      p_hi14a_card->uidlen += uid_resp_len;
-    }
-  }
+       if(p_hi14a_card) {
+               p_hi14a_card->sak = sak;
+               p_hi14a_card->ats_len = 0;
+       }
 
-  if(p_hi14a_card) {
-    p_hi14a_card->sak = sak;
-    p_hi14a_card->ats_len = 0;
-  }
+       // non iso14443a compliant tag
+       if( (sak & 0x20) == 0) return 2; 
 
-  if( (sak & 0x20) == 0) {
-    return 2; // non iso14443a compliant tag
-  }
+       // Request for answer to select
+       AppendCrc14443a(rats, 2);
+       ReaderTransmit(rats, sizeof(rats), NULL);
 
-  // Request for answer to select
-  AppendCrc14443a(rats, 2);
-  ReaderTransmit(rats, sizeof(rats), NULL);
+       if (!(len = ReaderReceive(resp, resp_par))) return 0;
 
-  if (!(len = ReaderReceive(resp))) return 0;
+       
+       if(p_hi14a_card) {
+               memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
+               p_hi14a_card->ats_len = len;
+       }
 
-  if(p_hi14a_card) {
-    memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
-    p_hi14a_card->ats_len = len;
-  }
+       // reset the PCB block number
+       iso14_pcb_blocknum = 0;
 
-  // reset the PCB block number
-  iso14_pcb_blocknum = 0;
-  return 1;
+       // set default timeout based on ATS
+       iso14a_set_ATS_timeout(resp);
+
+       return 1;       
 }
 
 void iso14443a_setup(uint8_t fpga_minor_mode) {
@@ -1796,7 +1914,8 @@ void iso14443a_setup(uint8_t fpga_minor_mode) {
        iso14a_set_timeout(1050); // 10ms default
 }
 
-int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) {
+int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
+       uint8_t parity[MAX_PARITY_SIZE];
        uint8_t real_cmd[cmd_len+4];
        real_cmd[0] = 0x0a; //I-Block
        // put block number into the PCB
@@ -1806,8 +1925,8 @@ int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) {
        AppendCrc14443a(real_cmd,cmd_len+2);
  
        ReaderTransmit(real_cmd, cmd_len+4, NULL);
-       size_t len = ReaderReceive(data);
-       uint8_t * data_bytes = (uint8_t *) data;
+       size_t len = ReaderReceive(data, parity);
+       uint8_t *data_bytes = (uint8_t *) data;
        if (!len)
                return 0; //DATA LINK ERROR
        // if we received an I- or R(ACK)-Block with a block number equal to the
@@ -1831,32 +1950,34 @@ void ReaderIso14443a(UsbCommand *c)
 {
        iso14a_command_t param = c->arg[0];
        uint8_t *cmd = c->d.asBytes;
-       size_t len = c->arg[1];
-       size_t lenbits = c->arg[2];
+       size_t len = c->arg[1] & 0xffff;
+       size_t lenbits = c->arg[1] >> 16;
+       uint32_t timeout = c->arg[2];
        uint32_t arg0 = 0;
        byte_t buf[USB_CMD_DATA_SIZE];
+       uint8_t par[MAX_PARITY_SIZE];
   
        if(param & ISO14A_CONNECT) {
-               iso14a_clear_trace();
+               clear_trace();
        }
 
-       iso14a_set_tracing(TRUE);
+       set_tracing(true);
 
        if(param & ISO14A_REQUEST_TRIGGER) {
-               iso14a_set_trigger(TRUE);
+               iso14a_set_trigger(true);
        }
 
        if(param & ISO14A_CONNECT) {
                iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
                if(!(param & ISO14A_NO_SELECT)) {
                        iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
-                       arg0 = iso14443a_select_card(NULL,card,NULL);
+                       arg0 = iso14443a_select_card(NULL, card, NULL, true, 0);
                        cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
                }
        }
 
        if(param & ISO14A_SET_TIMEOUT) {
-               iso14a_timeout = c->arg[2];
+               iso14a_set_timeout(timeout);
        }
 
        if(param & ISO14A_APDU) {
@@ -1866,21 +1987,45 @@ void ReaderIso14443a(UsbCommand *c)
 
        if(param & ISO14A_RAW) {
                if(param & ISO14A_APPEND_CRC) {
-                       AppendCrc14443a(cmd,len);
+                       if(param & ISO14A_TOPAZMODE) {
+                               AppendCrc14443b(cmd,len);
+                       } else {
+                               AppendCrc14443a(cmd,len);
+                       }
                        len += 2;
                        if (lenbits) lenbits += 16;
                }
-               if(lenbits>0) {
-                       ReaderTransmitBitsPar(cmd,lenbits,GetParity(cmd,lenbits/8), NULL);
-               } else {
-                       ReaderTransmit(cmd,len, NULL);
+               if(lenbits>0) {                         // want to send a specific number of bits (e.g. short commands)
+                       if(param & ISO14A_TOPAZMODE) {
+                               int bits_to_send = lenbits;
+                               uint16_t i = 0;
+                               ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL);             // first byte is always short (7bits) and no parity
+                               bits_to_send -= 7;
+                               while (bits_to_send > 0) {
+                                       ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL);     // following bytes are 8 bit and no parity
+                                       bits_to_send -= 8;
+                               }
+                       } else {
+                               GetParity(cmd, lenbits/8, par);
+                               ReaderTransmitBitsPar(cmd, lenbits, par, NULL);                                                 // bytes are 8 bit with odd parity
+                       }
+               } else {                                        // want to send complete bytes only
+                       if(param & ISO14A_TOPAZMODE) {
+                               uint16_t i = 0;
+                               ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL);                                                // first byte: 7 bits, no paritiy
+                               while (i < len) {
+                                       ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL);                                        // following bytes: 8 bits, no paritiy
+                               }
+                       } else {
+                               ReaderTransmit(cmd,len, NULL);                                                                                  // 8 bits, odd parity
+                       }
                }
-               arg0 = ReaderReceive(buf);
+               arg0 = ReaderReceive(buf, par);
                cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
        }
 
        if(param & ISO14A_REQUEST_TRIGGER) {
-               iso14a_set_trigger(FALSE);
+               iso14a_set_trigger(false);
        }
 
        if(param & ISO14A_NO_DISCONNECT) {
@@ -1909,7 +2054,7 @@ int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
                nttmp1 = prng_successor(nttmp1, 1);
                if (nttmp1 == nt2) return i;
                nttmp2 = prng_successor(nttmp2, 1);
-                       if (nttmp2 == nt1) return -i;
+               if (nttmp2 == nt1) return -i;
                }
        
        return(-99999); // either nt1 or nt2 are invalid nonces
@@ -1929,85 +2074,140 @@ void ReaderMifare(bool first_try)
        uint8_t mf_nr_ar[]   = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
        static uint8_t mf_nr_ar3;
 
-       uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
+       uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
+       uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
 
-       iso14a_clear_trace();
-       iso14a_set_tracing(TRUE);
+       if (first_try) { 
+               iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+       }
+       
+       // free eventually allocated BigBuf memory. We want all for tracing.
+       BigBuf_free();
+       
+       clear_trace();
+       set_tracing(true);
 
        byte_t nt_diff = 0;
-       byte_t par = 0;
-       //byte_t par_mask = 0xff;
+       uint8_t par[1] = {0};   // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
        static byte_t par_low = 0;
-       bool led_on = TRUE;
-       uint8_t uid[10];
+       bool led_on = true;
+       uint8_t uid[10]  ={0};
        uint32_t cuid;
 
-       uint32_t nt =;
+       uint32_t nt = 0;
        uint32_t previous_nt = 0;
        static uint32_t nt_attacked = 0;
-       byte_t par_list[8] = {0,0,0,0,0,0,0,0};
-       byte_t ks_list[8] = {0,0,0,0,0,0,0,0};
+       byte_t par_list[8] = {0x00};
+       byte_t ks_list[8] = {0x00};
 
+       #define PRNG_SEQUENCE_LENGTH  (1 << 16);
        static uint32_t sync_time;
-       static uint32_t sync_cycles;
+       static int32_t sync_cycles;
        int catch_up_cycles = 0;
        int last_catch_up = 0;
+       uint16_t elapsed_prng_sequences;
        uint16_t consecutive_resyncs = 0;
        int isOK = 0;
 
-
-
        if (first_try) { 
                mf_nr_ar3 = 0;
-               iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
                sync_time = GetCountSspClk() & 0xfffffff8;
-               sync_cycles = 65536;                                                                    // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
+               sync_cycles = PRNG_SEQUENCE_LENGTH;                                                     // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the tag nonces).
                nt_attacked = 0;
-               nt = 0;
-               par = 0;
+               par[0] = 0;
        }
        else {
                // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
-               // nt_attacked = prng_successor(nt_attacked, 1);
                mf_nr_ar3++;
                mf_nr_ar[3] = mf_nr_ar3;
-               par = par_low;
+               par[0] = par_low;
        }
 
        LED_A_ON();
        LED_B_OFF();
        LED_C_OFF();
        
-  
-       for(uint16_t i = 0; TRUE; i++) {
+
+       #define MAX_UNEXPECTED_RANDOM   4               // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
+       #define MAX_SYNC_TRIES                  32
+       #define NUM_DEBUG_INFOS                 8               // per strategy
+       #define MAX_STRATEGY                    3
+       uint16_t unexpected_random = 0;
+       uint16_t sync_tries = 0;
+       int16_t debug_info_nr = -1;
+       uint16_t strategy = 0;
+       int32_t debug_info[MAX_STRATEGY][NUM_DEBUG_INFOS];
+       uint32_t select_time;
+       uint32_t halt_time;
+       
+       for(uint16_t i = 0; true; i++) {
                
+               LED_C_ON();
                WDT_HIT();
 
                // Test if the action was cancelled
                if(BUTTON_PRESS()) {
+                       isOK = -1;
                        break;
                }
                
-               LED_C_ON();
+               if (strategy == 2) {
+                       // test with additional hlt command
+                       halt_time = 0;
+                       int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time);
+                       if (len && MF_DBGLEVEL >= 3) {
+                               Dbprintf("Unexpected response of %d bytes to hlt command (additional debugging).", len);
+                       }
+               }
 
-               if(!iso14443a_select_card(uid, NULL, &cuid)) {
+               if (strategy == 3) {
+                       // test with FPGA power off/on
+                       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+                       SpinDelay(200);
+                       iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+                       SpinDelay(100);
+               }
+               
+               if(!iso14443a_select_card(uid, NULL, &cuid, true, 0)) {
                        if (MF_DBGLEVEL >= 1)   Dbprintf("Mifare: Can't select card");
                        continue;
                }
+               select_time = GetCountSspClk();
 
-               sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
-               catch_up_cycles = 0;
+               elapsed_prng_sequences = 1;
+               if (debug_info_nr == -1) {
+                       sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
+                       catch_up_cycles = 0;
 
-               // if we missed the sync time already, advance to the next nonce repeat
-               while(GetCountSspClk() > sync_time) {
-                       sync_time = (sync_time & 0xfffffff8) + sync_cycles;
-               }
+                       // if we missed the sync time already, advance to the next nonce repeat
+                       while(GetCountSspClk() > sync_time) {
+                               elapsed_prng_sequences++;
+                               sync_time = (sync_time & 0xfffffff8) + sync_cycles;
+                       }
 
-               // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked) 
-               ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+                       // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked) 
+                       ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+               } else {
+                       // collect some information on tag nonces for debugging:
+                       #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH
+                       if (strategy == 0) {
+                               // nonce distances at fixed time after card select:
+                               sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES;
+                       } else if (strategy == 1) {
+                               // nonce distances at fixed time between authentications:
+                               sync_time = sync_time + DEBUG_FIXED_SYNC_CYCLES;
+                       } else if (strategy == 2) {
+                               // nonce distances at fixed time after halt:
+                               sync_time = halt_time + DEBUG_FIXED_SYNC_CYCLES;
+                       } else {
+                               // nonce_distances at fixed time after power on
+                               sync_time = DEBUG_FIXED_SYNC_CYCLES;
+                       }
+                       ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+               }                       
 
                // Receive the (4 Byte) "random" nonce
-               if (!ReaderReceive(receivedAnswer)) {
+               if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
                        if (MF_DBGLEVEL >= 1)   Dbprintf("Mifare: Couldn't receive tag nonce");
                        continue;
                  }
@@ -2022,13 +2222,37 @@ void ReaderMifare(bool first_try)
                        int nt_distance = dist_nt(previous_nt, nt);
                        if (nt_distance == 0) {
                                nt_attacked = nt;
-                       }
-                       else {
-                               if (nt_distance == -99999) { // invalid nonce received, try again
-                                       continue;
+                       } else {
+                               if (nt_distance == -99999) { // invalid nonce received
+                                       unexpected_random++;
+                                       if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
+                                               isOK = -3;              // Card has an unpredictable PRNG. Give up      
+                                               break;
+                                       } else {
+                                               continue;               // continue trying...
+                                       }
+                               }
+                               if (++sync_tries > MAX_SYNC_TRIES) {
+                                       if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) {
+                                               isOK = -4;                      // Card's PRNG runs at an unexpected frequency or resets unexpectedly
+                                               break;
+                                       } else {                                // continue for a while, just to collect some debug info
+                                               debug_info[strategy][debug_info_nr] = nt_distance;
+                                               debug_info_nr++;
+                                               if (debug_info_nr == NUM_DEBUG_INFOS) {
+                                                       strategy++;
+                                                       debug_info_nr = 0;
+                                               }
+                                               continue;
+                                       }
+                               }
+                               sync_cycles = (sync_cycles - nt_distance/elapsed_prng_sequences);
+                               if (sync_cycles <= 0) {
+                                       sync_cycles += PRNG_SEQUENCE_LENGTH;
+                               }
+                               if (MF_DBGLEVEL >= 3) {
+                                       Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
                                }
-                               sync_cycles = (sync_cycles - nt_distance);
-                               if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
                                continue;
                        }
                }
@@ -2039,6 +2263,7 @@ void ReaderMifare(bool first_try)
                                catch_up_cycles = 0;
                                continue;
                        }
+                       catch_up_cycles /= elapsed_prng_sequences;
                        if (catch_up_cycles == last_catch_up) {
                                consecutive_resyncs++;
                        }
@@ -2052,6 +2277,9 @@ void ReaderMifare(bool first_try)
                        else {  
                                sync_cycles = sync_cycles + catch_up_cycles;
                                if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
+                               last_catch_up = 0;
+                               catch_up_cycles = 0;
+                               consecutive_resyncs = 0;
                        }
                        continue;
                }
@@ -2059,19 +2287,17 @@ void ReaderMifare(bool first_try)
                consecutive_resyncs = 0;
                
                // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
-               if (ReaderReceive(receivedAnswer))
-               {
+               if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
                        catch_up_cycles = 8;    // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
        
-                       if (nt_diff == 0)
-                       {
-                               par_low = par & 0x07; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
+                       if (nt_diff == 0) {
+                               par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
                        }
 
                        led_on = !led_on;
                        if(led_on) LED_B_ON(); else LED_B_OFF();
 
-                       par_list[nt_diff] = par;
+                       par_list[nt_diff] = SwapBits(par[0], 8);
                        ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
 
                        // Test if the information is complete
@@ -2082,19 +2308,33 @@ void ReaderMifare(bool first_try)
 
                        nt_diff = (nt_diff + 1) & 0x07;
                        mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
-                       par = par_low;
+                       par[0] = par_low;
                } else {
                        if (nt_diff == 0 && first_try)
                        {
-                               par++;
+                               par[0]++;
+                               if (par[0] == 0x00) {           // tried all 256 possible parities without success. Card doesn't send NACK.
+                                       isOK = -2;
+                                       break;
+                               }
                        } else {
-                               par = (((par >> 3) + 1) << 3) | par_low;
+                               par[0] = ((par[0] & 0x1F) + 1) | par_low;
                        }
                }
        }
 
 
        mf_nr_ar[3] &= 0x1F;
+
+       if (isOK == -4) {
+               if (MF_DBGLEVEL >= 3) {
+                       for (uint16_t i = 0; i <= MAX_STRATEGY; i++) {
+                               for(uint16_t j = 0; j < NUM_DEBUG_INFOS; j++) {
+                                       Dbprintf("collected debug info[%d][%d] = %d", i, j, debug_info[i][j]);
+                               }
+                       }
+               }
+       }
        
        byte_t buf[28];
        memcpy(buf + 0,  uid, 4);
@@ -2103,35 +2343,49 @@ void ReaderMifare(bool first_try)
        memcpy(buf + 16, ks_list, 8);
        memcpy(buf + 24, mf_nr_ar, 4);
                
-       cmd_send(CMD_ACK,isOK,0,0,buf,28);
+       cmd_send(CMD_ACK, isOK, 0, 0, buf, 28);
 
        // Thats it...
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        LEDsoff();
 
-       iso14a_set_tracing(FALSE);
+       set_tracing(false);
 }
 
+typedef struct {
+  uint32_t cuid;
+  uint8_t  sector;
+  uint8_t  keytype;
+  uint32_t nonce;
+  uint32_t ar;
+  uint32_t nr;
+  uint32_t nonce2;
+  uint32_t ar2;
+  uint32_t nr2;
+} nonces_t;
+
 /**
   *MIFARE 1K simulate.
   *
   *@param flags :
   *    FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
-  * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
-  * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
+  * FLAG_4B_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
+  * FLAG_7B_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
+  * FLAG_10B_UID_IN_DATA       - use 10-byte UID in the data-section not finished
   *    FLAG_NR_AR_ATTACK  - means we should collect NR_AR responses for bruteforcing later
-  *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
+  * FLAG_RANDOM_NONCE - means we should generate some pseudo-random nonce data (only allows moebius attack)
+  *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is infinite ...
+  * (unless reader attack mode enabled then it runs util it gets enough nonces to recover all keys attmpted)
   */
 void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
 {
        int cardSTATE = MFEMUL_NOFIELD;
-       int _7BUID = 0;
+       int _UID_LEN = 0; // 4, 7, 10
        int vHf = 0;    // in mV
        int res;
        uint32_t selTimer = 0;
        uint32_t authTimer = 0;
-       uint32_t par = 0;
-       int len = 0;
+       uint16_t len = 0;
        uint8_t cardWRBL = 0;
        uint8_t cardAUTHSC = 0;
        uint8_t cardAUTHKEY = 0xff;  // no authentication
@@ -2145,30 +2399,45 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
        struct Crypto1State *pcs;
        pcs = &mpcs;
        uint32_t numReads = 0;//Counts numer of times reader read a block
-       uint8_t* receivedCmd = eml_get_bigbufptr_recbuf();
-       uint8_t *response = eml_get_bigbufptr_sendbuf();
+       uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
+       uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
+       uint8_t response[MAX_MIFARE_FRAME_SIZE];
+       uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
        
-       uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
+       uint8_t rATQA[]    = {0x04, 0x00}; // Mifare classic 1k 4BUID
        uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
        uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
-       uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
-       uint8_t rSAK1[] = {0x04, 0xda, 0x17};
+       uint8_t rUIDBCC3[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
+
+       uint8_t rSAKfinal[]= {0x08, 0xb6, 0xdd};      // mifare 1k indicated
+       uint8_t rSAK1[]    = {0x04, 0xda, 0x17};      // indicate UID not finished
 
        uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
        uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
                
-       //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
-       // This can be used in a reader-only attack.
-       // (it can also be retrieved via 'hf 14a list', but hey...
-       uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
-       uint8_t ar_nr_collected = 0;
-
-       // clear trace
-    iso14a_clear_trace();
-       iso14a_set_tracing(TRUE);
+       //Here, we collect UID,sector,keytype,NT,AR,NR,NT2,AR2,NR2
+       // This will be used in the reader-only attack.
+
+       //allow collecting up to 7 sets of nonces to allow recovery of up to 7 keys
+       #define ATTACK_KEY_COUNT 7 // keep same as define in cmdhfmf.c -> readerAttack() (Cannot be more than 7)
+       nonces_t ar_nr_resp[ATTACK_KEY_COUNT*2]; //*2 for 2 separate attack types (nml, moebius)
+       memset(ar_nr_resp, 0x00, sizeof(ar_nr_resp));
+
+       uint8_t ar_nr_collected[ATTACK_KEY_COUNT*2]; //*2 for 2nd attack type (moebius)
+       memset(ar_nr_collected, 0x00, sizeof(ar_nr_collected));
+       uint8_t nonce1_count = 0;
+       uint8_t nonce2_count = 0;
+       uint8_t moebius_n_count = 0;
+       bool gettingMoebius = false;
+       uint8_t mM = 0; //moebius_modifier for collection storage
 
        // Authenticate response - nonce
-       uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
+       uint32_t nonce;
+       if (flags & FLAG_RANDOM_NONCE) {
+               nonce = prand();
+       } else {
+               nonce = bytes_to_num(rAUTH_NT, 4);
+       }
        
        //-- Determine the UID
        // Can be set from emulator memory, incoming data
@@ -2178,69 +2447,125 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                // 4B uid comes from data-portion of packet
                memcpy(rUIDBCC1,datain,4);
                rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
-
+               _UID_LEN = 4;
        } else if (flags & FLAG_7B_UID_IN_DATA) {
                // 7B uid comes from data-portion of packet
                memcpy(&rUIDBCC1[1],datain,3);
                memcpy(rUIDBCC2, datain+3, 4);
-               _7BUID = true;
+               _UID_LEN = 7;
+       } else if (flags & FLAG_10B_UID_IN_DATA) {
+               memcpy(&rUIDBCC1[1], datain,   3);
+               memcpy(&rUIDBCC2[1], datain+3, 3);
+               memcpy( rUIDBCC3,    datain+6, 4);
+               _UID_LEN = 10;
        } else {
-               // get UID from emul memory
+               // get UID from emul memory - guess at length
                emlGetMemBt(receivedCmd, 7, 1);
-               _7BUID = !(receivedCmd[0] == 0x00);
-               if (!_7BUID) {                     // ---------- 4BUID
+               if (receivedCmd[0] == 0x00) {      // ---------- 4BUID
                        emlGetMemBt(rUIDBCC1, 0, 4);
+                       _UID_LEN = 4;
                } else {                           // ---------- 7BUID
                        emlGetMemBt(&rUIDBCC1[1], 0, 3);
                        emlGetMemBt(rUIDBCC2, 3, 4);
+                       _UID_LEN = 7;
                }
        }
 
-       /*
-        * Regardless of what method was used to set the UID, set fifth byte and modify
-        * the ATQA for 4 or 7-byte UID
-        */
-       rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
-       if (_7BUID) {
-               rATQA[0] = 0x44;
-               rUIDBCC1[0] = 0x88;
-               rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
+       switch (_UID_LEN) {
+               case 4:
+                       // save CUID
+                       cuid = bytes_to_num(rUIDBCC1, 4);
+                       // BCC
+                       rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
+                       if (MF_DBGLEVEL >= 2)   {
+                               Dbprintf("4B UID: %02x%02x%02x%02x", 
+                                       rUIDBCC1[0],
+                                       rUIDBCC1[1],
+                                       rUIDBCC1[2],
+                                       rUIDBCC1[3]
+                               );
+                       }
+                       break;
+               case 7:
+                       rATQA[0] |= 0x40;
+                       // save CUID
+                       cuid = bytes_to_num(rUIDBCC2, 4);
+                        // CascadeTag, CT
+                       rUIDBCC1[0] = 0x88;
+                       // BCC
+                       rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; 
+                       rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; 
+                       if (MF_DBGLEVEL >= 2)   {
+                               Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x",
+                                       rUIDBCC1[1],
+                                       rUIDBCC1[2],
+                                       rUIDBCC1[3],
+                                       rUIDBCC2[0],
+                                       rUIDBCC2[1],
+                                       rUIDBCC2[2],
+                                       rUIDBCC2[3]
+                               );
+                       }
+                       break;
+               case 10:
+                       rATQA[0] |= 0x80;
+                       //sak_10[0] &= 0xFB;                                    
+                       // save CUID
+                       cuid = bytes_to_num(rUIDBCC3, 4);
+                        // CascadeTag, CT
+                       rUIDBCC1[0] = 0x88;
+                       rUIDBCC2[0] = 0x88;
+                       // BCC
+                       rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
+                       rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
+                       rUIDBCC3[4] = rUIDBCC3[0] ^ rUIDBCC3[1] ^ rUIDBCC3[2] ^ rUIDBCC3[3];
+
+                       if (MF_DBGLEVEL >= 2)   {
+                               Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
+                                       rUIDBCC1[1],
+                                       rUIDBCC1[2],
+                                       rUIDBCC1[3],
+                                       rUIDBCC2[1],
+                                       rUIDBCC2[2],
+                                       rUIDBCC2[3],
+                                       rUIDBCC3[0],
+                                       rUIDBCC3[1],
+                                       rUIDBCC3[2],
+                                       rUIDBCC3[3]
+                               );
+                       }
+                       break;
+               default: 
+                       break;
        }
 
        // We need to listen to the high-frequency, peak-detected path.
        iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
 
+       // free eventually allocated BigBuf memory but keep Emulator Memory
+       BigBuf_free_keep_EM();
 
-       if (MF_DBGLEVEL >= 1)   {
-               if (!_7BUID) {
-                       Dbprintf("4B UID: %02x%02x%02x%02x", 
-                               rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
-               } else {
-                       Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
-                               rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
-                               rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
-               }
-       }
+       // clear trace
+       clear_trace();
+       set_tracing(true);
 
-       bool finished = FALSE;
-       while (!BUTTON_PRESS() && !finished) {
+       bool finished = false;
+       bool button_pushed = BUTTON_PRESS();
+       while (!button_pushed && !finished && !usb_poll_validate_length()) {
                WDT_HIT();
 
                // find reader field
-               // Vref = 3300mV, and an 10:1 voltage divider on the input
-               // can measure voltages up to 33000 mV
                if (cardSTATE == MFEMUL_NOFIELD) {
-                       vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
+                       vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
                        if (vHf > MF_MINFIELDV) {
                                cardSTATE_TO_IDLE();
                                LED_A_ON();
                        }
-               } 
-               if(cardSTATE == MFEMUL_NOFIELD) continue;
+               }
+               if (cardSTATE == MFEMUL_NOFIELD) continue;
 
                //Now, get data
-
-               res = EmGetCmd(receivedCmd, &len);
+               res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
                if (res == 2) { //Field is off!
                        cardSTATE = MFEMUL_NOFIELD;
                        LEDsoff();
@@ -2248,11 +2573,11 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                } else if (res == 1) {
                        break;  //return value 1 means button press
                }
-                       
+
                // REQ or WUP request in ANY state and WUP in HALTED state
-               if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
+               if (len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) {
                        selTimer = GetTickCount();
-                       EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
+                       EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == ISO14443A_CMD_WUPA));
                        cardSTATE = MFEMUL_SELECT1;
 
                        // init crypto block
@@ -2260,6 +2585,9 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                        LED_C_OFF();
                        crypto1_destroy(pcs);
                        cardAUTHKEY = 0xff;
+                       if (flags & FLAG_RANDOM_NONCE) {
+                               nonce = prand();
+                       }
                        continue;
                }
                
@@ -2267,64 +2595,145 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                        case MFEMUL_NOFIELD:
                        case MFEMUL_HALTED:
                        case MFEMUL_IDLE:{
-                               LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-                               LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+                               LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
                                break;
                        }
                        case MFEMUL_SELECT1:{
-                               // select all
-                               if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
+                               // select all - 0x93 0x20
+                               if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x20)) {
                                        if (MF_DBGLEVEL >= 4)   Dbprintf("SELECT ALL received");
                                        EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
                                        break;
                                }
 
-                               if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
-                               {
-                                       Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
+                               // select card - 0x93 0x70 ...
+                               if (len == 9 &&
+                                               (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
+                                       if (MF_DBGLEVEL >= 4) 
+                                               Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
+                                       
+                                       switch(_UID_LEN) {
+                                               case 4:
+                                                       cardSTATE = MFEMUL_WORK;
+                                                       LED_B_ON();
+                                                       if (MF_DBGLEVEL >= 4)   Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
+                                                       EmSendCmd(rSAKfinal, sizeof(rSAKfinal));
+                                                       break;
+                                               case 7:
+                                                       cardSTATE       = MFEMUL_SELECT2;
+                                                       EmSendCmd(rSAK1, sizeof(rSAK1));
+                                                       break;
+                                               case 10:
+                                                       cardSTATE       = MFEMUL_SELECT2;
+                                                       EmSendCmd(rSAK1, sizeof(rSAK1));
+                                                       break;
+                                               default:break;
+                                       }
+                               } else {
+                                       cardSTATE_TO_IDLE();
                                }
-                               // select card
+                               break;
+                       }
+                       case MFEMUL_SELECT3:{
+                               if (!len) { 
+                                       LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
+                                       break;
+                               }
+                               // select all cl3 - 0x97 0x20
+                               if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 && receivedCmd[1] == 0x20)) {
+                                       EmSendCmd(rUIDBCC3, sizeof(rUIDBCC3));
+                                       break;
+                               }
+                               // select card cl3 - 0x97 0x70
                                if (len == 9 && 
-                                               (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
-                                       EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
-                                       cuid = bytes_to_num(rUIDBCC1, 4);
-                                       if (!_7BUID) {
-                                               cardSTATE = MFEMUL_WORK;
-                                               LED_B_ON();
-                                               if (MF_DBGLEVEL >= 4)   Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
-                                               break;
-                                       } else {
-                                               cardSTATE = MFEMUL_SELECT2;
-                                       }
+                                               (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 &&
+                                                receivedCmd[1] == 0x70 && 
+                                                memcmp(&receivedCmd[2], rUIDBCC3, 4) == 0) ) {
+
+                                       EmSendCmd(rSAKfinal, sizeof(rSAKfinal));
+                                       cardSTATE = MFEMUL_WORK;
+                                       LED_B_ON();
+                                       if (MF_DBGLEVEL >= 4)   Dbprintf("--> WORK. anticol3 time: %d", GetTickCount() - selTimer);
+                                       break;
                                }
+                               cardSTATE_TO_IDLE();
                                break;
                        }
                        case MFEMUL_AUTH1:{
-                               if( len != 8)
-                               {
+                               if( len != 8) {
                                        cardSTATE_TO_IDLE();
-                                       LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-                                       LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+                                       LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
                                        break;
                                }
-                               uint32_t ar = bytes_to_num(receivedCmd, 4);
-                               uint32_t nr= bytes_to_num(&receivedCmd[4], 4);
-
-                               //Collect AR/NR
-                               if(ar_nr_collected < 2){
-                                       if(ar_nr_responses[2] != ar)
-                                       {// Avoid duplicates... probably not necessary, ar should vary. 
-                                               ar_nr_responses[ar_nr_collected*4] = cuid;
-                                               ar_nr_responses[ar_nr_collected*4+1] = nonce;
-                                               ar_nr_responses[ar_nr_collected*4+2] = ar;
-                                               ar_nr_responses[ar_nr_collected*4+3] = nr;
-                                               ar_nr_collected++;
+
+                               uint32_t nr = bytes_to_num(receivedCmd, 4);
+                               uint32_t ar = bytes_to_num(&receivedCmd[4], 4);
+       
+                               // Collect AR/NR per keytype & sector
+                               if(flags & FLAG_NR_AR_ATTACK) {
+                                       for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
+                                               if ( ar_nr_collected[i+mM]==0 || ((cardAUTHSC == ar_nr_resp[i+mM].sector) && (cardAUTHKEY == ar_nr_resp[i+mM].keytype) && (ar_nr_collected[i+mM] > 0)) ) {
+                                                       // if first auth for sector, or matches sector and keytype of previous auth
+                                                       if (ar_nr_collected[i+mM] < 2) {
+                                                               // if we haven't already collected 2 nonces for this sector
+                                                               if (ar_nr_resp[ar_nr_collected[i+mM]].ar != ar) {
+                                                                       // Avoid duplicates... probably not necessary, ar should vary. 
+                                                                       if (ar_nr_collected[i+mM]==0) {
+                                                                               // first nonce collect
+                                                                               ar_nr_resp[i+mM].cuid = cuid;
+                                                                               ar_nr_resp[i+mM].sector = cardAUTHSC;
+                                                                               ar_nr_resp[i+mM].keytype = cardAUTHKEY;
+                                                                               ar_nr_resp[i+mM].nonce = nonce;
+                                                                               ar_nr_resp[i+mM].nr = nr;
+                                                                               ar_nr_resp[i+mM].ar = ar;
+                                                                               nonce1_count++;
+                                                                               // add this nonce to first moebius nonce
+                                                                               ar_nr_resp[i+ATTACK_KEY_COUNT].cuid = cuid;
+                                                                               ar_nr_resp[i+ATTACK_KEY_COUNT].sector = cardAUTHSC;
+                                                                               ar_nr_resp[i+ATTACK_KEY_COUNT].keytype = cardAUTHKEY;
+                                                                               ar_nr_resp[i+ATTACK_KEY_COUNT].nonce = nonce;
+                                                                               ar_nr_resp[i+ATTACK_KEY_COUNT].nr = nr;
+                                                                               ar_nr_resp[i+ATTACK_KEY_COUNT].ar = ar;
+                                                                               ar_nr_collected[i+ATTACK_KEY_COUNT]++;
+                                                                       } else { // second nonce collect (std and moebius)
+                                                                               ar_nr_resp[i+mM].nonce2 = nonce;
+                                                                               ar_nr_resp[i+mM].nr2 = nr;
+                                                                               ar_nr_resp[i+mM].ar2 = ar;
+                                                                               if (!gettingMoebius) {
+                                                                                       nonce2_count++;
+                                                                                       // check if this was the last second nonce we need for std attack
+                                                                                       if ( nonce2_count == nonce1_count ) {
+                                                                                               // done collecting std test switch to moebius
+                                                                                               // first finish incrementing last sample
+                                                                                               ar_nr_collected[i+mM]++; 
+                                                                                               // switch to moebius collection
+                                                                                               gettingMoebius = true;
+                                                                                               mM = ATTACK_KEY_COUNT;
+                                                                                               if (flags & FLAG_RANDOM_NONCE) {
+                                                                                                       nonce = prand();
+                                                                                               } else {
+                                                                                                       nonce = nonce*7;
+                                                                                               }
+                                                                                               break;
+                                                                                       }
+                                                                               } else {
+                                                                                       moebius_n_count++;
+                                                                                       // if we've collected all the nonces we need - finish.
+                                                                                       if (nonce1_count == moebius_n_count) finished = true;
+                                                                               }
+                                                                       }
+                                                                       ar_nr_collected[i+mM]++;
+                                                               }
+                                                       }
+                                                       // we found right spot for this nonce stop looking
+                                                       break;
+                                               }
                                        }
                                }
 
                                // --- crypto
-                               crypto1_word(pcs, ar , 1);
-                               cardRr = nr ^ crypto1_word(pcs, 0, 0);
+                               crypto1_word(pcs, nr , 1);
+                               cardRr = ar ^ crypto1_word(pcs, 0, 0);
 
                                // test if auth OK
                                if (cardRr != prng_successor(nonce, 64)){
@@ -2336,11 +2745,11 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                                        // reader to do a WUPA after a while. /Martin
                                        // -- which is the correct response. /piwi
                                        cardSTATE_TO_IDLE();
-                                       LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-                                       LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+                                       LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
                                        break;
                                }
 
+                               //auth successful
                                ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
 
                                num_to_bytes(ans, 4, rAUTH_AT);
@@ -2355,30 +2764,37 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                        }
                        case MFEMUL_SELECT2:{
                                if (!len) { 
-                                       LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-                                       LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+                                       LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
                                        break;
-                               }
-                               if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
+                               }       
+                               // select all cl2 - 0x95 0x20
+                               if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x20)) {
                                        EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
                                        break;
                                }
 
-                               // select 2 card
+                               // select cl2 card - 0x95 0x70 xxxxxxxxxxxx
                                if (len == 9 && 
-                                               (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
-                                       EmSendCmd(rSAK, sizeof(rSAK));
-                                       cuid = bytes_to_num(rUIDBCC2, 4);
-                                       cardSTATE = MFEMUL_WORK;
-                                       LED_B_ON();
-                                       if (MF_DBGLEVEL >= 4)   Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
+                                               (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
+                                       switch(_UID_LEN) {
+                                               case 7:
+                                                       EmSendCmd(rSAKfinal, sizeof(rSAKfinal));
+                                                       cardSTATE = MFEMUL_WORK;
+                                                       LED_B_ON();
+                                                       if (MF_DBGLEVEL >= 4)   Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
+                                                       break;
+                                               case 10:
+                                                       EmSendCmd(rSAK1, sizeof(rSAK1));
+                                                       cardSTATE = MFEMUL_SELECT3;
+                                                       break;
+                                               default:break;
+                                       }
                                        break;
                                }
                                
                                // i guess there is a command). go into the work state.
                                if (len != 4) {
-                                       LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-                                       LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+                                       LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
                                        break;
                                }
                                cardSTATE = MFEMUL_WORK;
@@ -2388,8 +2804,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 
                        case MFEMUL_WORK:{
                                if (len == 0) {
-                                       LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-                                       LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+                                       LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
                                        break;
                                }
                                
@@ -2401,11 +2816,22 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                                }
                                
                                if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
+
+                                       // if authenticating to a block that shouldn't exist - as long as we are not doing the reader attack
+                                       if (receivedCmd[1] >= 16 * 4 && !(flags & FLAG_NR_AR_ATTACK)) {
+                                               //is this the correct response to an auth on a out of range block? marshmellow
+                                               EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+                                               if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
+                                               break;
+                                       }
+
                                        authTimer = GetTickCount();
                                        cardAUTHSC = receivedCmd[1] / 4;  // received block num
                                        cardAUTHKEY = receivedCmd[0] - 0x60;
                                        crypto1_destroy(pcs);//Added by martin
                                        crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
+                                       //uint64_t key=emlGetKey(cardAUTHSC, cardAUTHKEY);
+                                       //Dbprintf("key: %04x%08x",(uint32_t)(key>>32)&0xFFFF,(uint32_t)(key&0xFFFFFFFF));
 
                                        if (!encrypted_data) { // first authentication
                                                if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY  );
@@ -2417,6 +2843,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                                                ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); 
                                                num_to_bytes(ans, 4, rAUTH_AT);
                                        }
+
                                        EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
                                        //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
                                        cardSTATE = MFEMUL_AUTH1;
@@ -2437,8 +2864,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                                }
                                
                                if(len != 4) {
-                                       LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-                                       LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+                                       LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
                                        break;
                                }
 
@@ -2450,13 +2876,13 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                                                || receivedCmd[0] == 0xB0) { // transfer
                                        if (receivedCmd[1] >= 16 * 4) {
                                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-                                               if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
+                                               if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
                                                break;
                                        }
 
                                        if (receivedCmd[1] / 4 != cardAUTHSC) {
                                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-                                               if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
+                                               if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
                                                break;
                                        }
                                }
@@ -2467,8 +2893,8 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                                        }
                                        emlGetMem(response, receivedCmd[1], 1);
                                        AppendCrc14443a(response, 16);
-                                       mf_crypto1_encrypt(pcs, response, 18, &par);
-                                       EmSendCmdPar(response, 18, par);
+                                       mf_crypto1_encrypt(pcs, response, 18, response_par);
+                                       EmSendCmdPar(response, 18, response_par);
                                        numReads++;
                                        if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
                                                Dbprintf("%d reads done, exiting", numReads);
@@ -2517,8 +2943,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                                        LED_C_OFF();
                                        cardSTATE = MFEMUL_HALTED;
                                        if (MF_DBGLEVEL >= 4)   Dbprintf("--> HALTED. Selected time: %d ms",  GetTickCount() - selTimer);
-                                       LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-                                       LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+                                       LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
                                        break;
                                }
                                // RATS
@@ -2539,8 +2964,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                                        cardSTATE = MFEMUL_WORK;
                                } else {
                                        cardSTATE_TO_IDLE();
-                                       LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-                                       LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+                                       LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
                                }
                                break;
                        }
@@ -2553,8 +2977,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                                        cardSTATE_TO_IDLE();
                                        break;
                                } 
-                               LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-                               LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+                               LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
                                cardINTREG = cardINTREG + ans;
                                cardSTATE = MFEMUL_WORK;
                                break;
@@ -2567,8 +2990,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                                        cardSTATE_TO_IDLE();
                                        break;
                                }
-                               LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-                               LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+                               LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
                                cardINTREG = cardINTREG - ans;
                                cardSTATE = MFEMUL_WORK;
                                break;
@@ -2581,50 +3003,53 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                                        cardSTATE_TO_IDLE();
                                        break;
                                }
-                               LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-                               LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+                               LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
                                cardSTATE = MFEMUL_WORK;
                                break;
                        }
                }
+               button_pushed = BUTTON_PRESS();
        }
 
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        LEDsoff();
 
-       if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
-       {
-               //May just aswell send the collected ar_nr in the response aswell
-               cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4);
-       }
-
-       if(flags & FLAG_NR_AR_ATTACK)
-       {
-               if(ar_nr_collected > 1) {
-                       Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
-                       Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
-                                        ar_nr_responses[0], // UID
-                                       ar_nr_responses[1], //NT
-                                       ar_nr_responses[2], //AR1
-                                       ar_nr_responses[3], //NR1
-                                       ar_nr_responses[6], //AR2
-                                       ar_nr_responses[7] //NR2
-                                       );
-               } else {
-                       Dbprintf("Failed to obtain two AR/NR pairs!");
-                       if(ar_nr_collected >0) {
-                               Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
-                                               ar_nr_responses[0], // UID
-                                               ar_nr_responses[1], //NT
-                                               ar_nr_responses[2], //AR1
-                                               ar_nr_responses[3] //NR1
+       if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1) {
+               for ( uint8_t   i = 0; i < ATTACK_KEY_COUNT; i++) {
+                       if (ar_nr_collected[i] == 2) {
+                               Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
+                               Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
+                                               ar_nr_resp[i].cuid,  //UID
+                                               ar_nr_resp[i].nonce, //NT
+                                               ar_nr_resp[i].nr,    //NR1
+                                               ar_nr_resp[i].ar,    //AR1
+                                               ar_nr_resp[i].nr2,   //NR2
+                                               ar_nr_resp[i].ar2    //AR2
+                                               );
+                       }
+               }       
+               for ( uint8_t   i = ATTACK_KEY_COUNT; i < ATTACK_KEY_COUNT*2; i++) {
+                       if (ar_nr_collected[i] == 2) {
+                               Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
+                               Dbprintf("../tools/mfkey/mfkey32v2 %08x %08x %08x %08x %08x %08x %08x",
+                                               ar_nr_resp[i].cuid,  //UID
+                                               ar_nr_resp[i].nonce, //NT
+                                               ar_nr_resp[i].nr,    //NR1
+                                               ar_nr_resp[i].ar,    //AR1
+                                               ar_nr_resp[i].nonce2,//NT2
+                                               ar_nr_resp[i].nr2,   //NR2
+                                               ar_nr_resp[i].ar2    //AR2
                                                );
                        }
                }
        }
-       if (MF_DBGLEVEL >= 1)   Dbprintf("Emulator stopped. Tracing: %d  trace length: %d ",    tracing, traceLen);
-}
+       if (MF_DBGLEVEL >= 1)   Dbprintf("Emulator stopped. Tracing: %d  trace length: %d ",    tracing, BigBuf_get_traceLen());
 
+       if(flags & FLAG_INTERACTIVE) { // Interactive mode flag, means we need to send ACK
+               //Send the collected ar_nr in the response
+               cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,button_pushed,0,&ar_nr_resp,sizeof(ar_nr_resp));
+       }
+}
 
 
 //-----------------------------------------------------------------------------
@@ -2639,36 +3064,36 @@ void RAMFUNC SniffMifare(uint8_t param) {
        // C(red) A(yellow) B(green)
        LEDsoff();
        // init trace buffer
-       iso14a_clear_trace();
-       iso14a_set_tracing(TRUE);
+       clear_trace();
+       set_tracing(true);
 
        // The command (reader -> tag) that we're receiving.
        // The length of a received command will in most cases be no more than 18 bytes.
        // So 32 should be enough!
-       uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
+       uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
+       uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
        // The response (tag -> reader) that we're receiving.
-       uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
+       uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
+       uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
 
-       // As we receive stuff, we copy it from receivedCmd or receivedResponse
-       // into trace, along with its length and other annotations.
-       //uint8_t *trace = (uint8_t *)BigBuf;
-       
-       // The DMA buffer, used to stream samples from the FPGA
-       uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+       iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
+
+       // free eventually allocated BigBuf memory
+       BigBuf_free();
+       // allocate the DMA buffer, used to stream samples from the FPGA
+       uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
        uint8_t *data = dmaBuf;
        uint8_t previous_data = 0;
        int maxDataLen = 0;
        int dataLen = 0;
-       bool ReaderIsActive = FALSE;
-       bool TagIsActive = FALSE;
-
-       iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
+       bool ReaderIsActive = false;
+       bool TagIsActive = false;
 
        // Set up the demodulator for tag -> reader responses.
-       Demod.output = receivedResponse;
+       DemodInit(receivedResponse, receivedResponsePar);
 
        // Set up the demodulator for the reader -> tag commands
-       Uart.output = receivedCmd;
+       UartInit(receivedCmd, receivedCmdPar);
 
        // Setup for the DMA.
        FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
@@ -2679,7 +3104,7 @@ void RAMFUNC SniffMifare(uint8_t param) {
        MfSniffInit();
 
        // And now we loop, receiving samples.
-       for(uint32_t sniffCounter = 0; TRUE; ) {
+       for(uint32_t sniffCounter = 0; true; ) {
        
                if(BUTTON_PRESS()) {
                        DbpString("cancelled by button");
@@ -2697,8 +3122,8 @@ void RAMFUNC SniffMifare(uint8_t param) {
                                sniffCounter = 0;
                                data = dmaBuf;
                                maxDataLen = 0;
-                               ReaderIsActive = FALSE;
-                               TagIsActive = FALSE;
+                               ReaderIsActive = false;
+                               TagIsActive = false;
                                FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
                        }
                }
@@ -2713,7 +3138,7 @@ void RAMFUNC SniffMifare(uint8_t param) {
                // test for length of buffer
                if(dataLen > maxDataLen) {                                      // we are more behind than ever...
                        maxDataLen = dataLen;                                   
-                       if(dataLen > 400) {
+                       if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
                                Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
                                break;
                        }
@@ -2740,10 +3165,10 @@ void RAMFUNC SniffMifare(uint8_t param) {
                                uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
                                if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
                                        LED_C_INV();
-                                       if (MfSniffLogic(receivedCmd, Uart.len, Uart.parityBits, Uart.bitCount, TRUE)) break;
+                                       if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, true)) break;
 
                                        /* And ready to receive another command. */
-                                       UartReset();
+                                       UartInit(receivedCmd, receivedCmdPar);
                                        
                                        /* And also reset the demod code */
                                        DemodReset();
@@ -2756,10 +3181,12 @@ void RAMFUNC SniffMifare(uint8_t param) {
                                if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
                                        LED_C_INV();
 
-                                       if (MfSniffLogic(receivedResponse, Demod.len, Demod.parityBits, Demod.bitCount, FALSE)) break;
+                                       if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, false)) break;
 
                                        // And ready to receive another response.
                                        DemodReset();
+                                       // And reset the Miller decoder including its (now outdated) input buffer
+                                       UartInit(receivedCmd, receivedCmdPar);
                                }
                                TagIsActive = (Demod.state != DEMOD_UNSYNCD);
                        }
Impressum, Datenschutz