-//-----------------------------------------------------------------------------\r
-// Routines to support ISO 14443 type A.\r
-//\r
-// Gerhard de Koning Gans - May 2008\r
-//-----------------------------------------------------------------------------\r
-#include <proxmark3.h>\r
-#include "apps.h"\r
-#include "../common/iso14443_crc.c"\r
-\r
-typedef enum {\r
- SEC_D = 1,\r
- SEC_E = 2,\r
- SEC_F = 3,\r
- SEC_X = 4,\r
- SEC_Y = 5,\r
- SEC_Z = 6\r
-} SecType;\r
-\r
-//-----------------------------------------------------------------------------\r
-// The software UART that receives commands from the reader, and its state\r
-// variables.\r
-//-----------------------------------------------------------------------------\r
-static struct {\r
- enum {\r
- STATE_UNSYNCD,\r
- STATE_START_OF_COMMUNICATION,\r
- STATE_MILLER_X,\r
- STATE_MILLER_Y,\r
- STATE_MILLER_Z,\r
- STATE_ERROR_WAIT\r
- } state;\r
- WORD shiftReg;\r
- int bitCnt;\r
- int byteCnt;\r
- int byteCntMax;\r
- int posCnt;\r
- int syncBit;\r
- int parityBits;\r
- int samples;\r
- int highCnt;\r
- int bitBuffer;\r
- enum {\r
- DROP_NONE,\r
- DROP_FIRST_HALF,\r
- DROP_SECOND_HALF\r
- } drop;\r
- BYTE *output;\r
-} Uart;\r
-\r
-static BOOL MillerDecoding(int bit)\r
-{\r
- int error = 0;\r
- int bitright;\r
-\r
- if(!Uart.bitBuffer) {\r
- Uart.bitBuffer = bit ^ 0xFF0;\r
- return FALSE;\r
- }\r
- else {\r
- Uart.bitBuffer <<= 4;\r
- Uart.bitBuffer ^= bit;\r
- }\r
-\r
- BOOL EOC = FALSE;\r
-\r
- if(Uart.state != STATE_UNSYNCD) {\r
- Uart.posCnt++;\r
-\r
- if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {\r
- bit = 0x00;\r
- }\r
- else {\r
- bit = 0x01;\r
- }\r
- if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {\r
- bitright = 0x00;\r
- }\r
- else {\r
- bitright = 0x01;\r
- }\r
- if(bit != bitright) { bit = bitright; }\r
-\r
- if(Uart.posCnt == 1) {\r
- // measurement first half bitperiod\r
- if(!bit) {\r
- Uart.drop = DROP_FIRST_HALF;\r
- }\r
- }\r
- else {\r
- // measurement second half bitperiod\r
- if(!bit & (Uart.drop == DROP_NONE)) {\r
- Uart.drop = DROP_SECOND_HALF;\r
- }\r
- else if(!bit) {\r
- // measured a drop in first and second half\r
- // which should not be possible\r
- Uart.state = STATE_ERROR_WAIT;\r
- error = 0x01;\r
- }\r
-\r
- Uart.posCnt = 0;\r
-\r
- switch(Uart.state) {\r
- case STATE_START_OF_COMMUNICATION:\r
- Uart.shiftReg = 0;\r
- if(Uart.drop == DROP_SECOND_HALF) {\r
- // error, should not happen in SOC\r
- Uart.state = STATE_ERROR_WAIT;\r
- error = 0x02;\r
- }\r
- else {\r
- // correct SOC\r
- Uart.state = STATE_MILLER_Z;\r
- }\r
- break;\r
-\r
- case STATE_MILLER_Z:\r
- Uart.bitCnt++;\r
- Uart.shiftReg >>= 1;\r
- if(Uart.drop == DROP_NONE) {\r
- // logic '0' followed by sequence Y\r
- // end of communication\r
- Uart.state = STATE_UNSYNCD;\r
- EOC = TRUE;\r
- }\r
- // if(Uart.drop == DROP_FIRST_HALF) {\r
- // Uart.state = STATE_MILLER_Z; stay the same\r
- // we see a logic '0' }\r
- if(Uart.drop == DROP_SECOND_HALF) {\r
- // we see a logic '1'\r
- Uart.shiftReg |= 0x100;\r
- Uart.state = STATE_MILLER_X;\r
- }\r
- break;\r
-\r
- case STATE_MILLER_X:\r
- Uart.shiftReg >>= 1;\r
- if(Uart.drop == DROP_NONE) {\r
- // sequence Y, we see a '0'\r
- Uart.state = STATE_MILLER_Y;\r
- Uart.bitCnt++;\r
- }\r
- if(Uart.drop == DROP_FIRST_HALF) {\r
- // Would be STATE_MILLER_Z\r
- // but Z does not follow X, so error\r
- Uart.state = STATE_ERROR_WAIT;\r
- error = 0x03;\r
- }\r
- if(Uart.drop == DROP_SECOND_HALF) {\r
- // We see a '1' and stay in state X\r
- Uart.shiftReg |= 0x100;\r
- Uart.bitCnt++;\r
- }\r
- break;\r
-\r
- case STATE_MILLER_Y:\r
- Uart.bitCnt++;\r
- Uart.shiftReg >>= 1;\r
- if(Uart.drop == DROP_NONE) {\r
- // logic '0' followed by sequence Y\r
- // end of communication\r
- Uart.state = STATE_UNSYNCD;\r
- EOC = TRUE;\r
- }\r
- if(Uart.drop == DROP_FIRST_HALF) {\r
- // we see a '0'\r
- Uart.state = STATE_MILLER_Z;\r
- }\r
- if(Uart.drop == DROP_SECOND_HALF) {\r
- // We see a '1' and go to state X\r
- Uart.shiftReg |= 0x100;\r
- Uart.state = STATE_MILLER_X;\r
- }\r
- break;\r
-\r
- case STATE_ERROR_WAIT:\r
- // That went wrong. Now wait for at least two bit periods\r
- // and try to sync again\r
- if(Uart.drop == DROP_NONE) {\r
- Uart.highCnt = 6;\r
- Uart.state = STATE_UNSYNCD;\r
- }\r
- break;\r
-\r
- default:\r
- Uart.state = STATE_UNSYNCD;\r
- Uart.highCnt = 0;\r
- break;\r
- }\r
-\r
- Uart.drop = DROP_NONE;\r
-\r
- // should have received at least one whole byte...\r
- if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) {\r
- return TRUE;\r
- }\r
-\r
- if(Uart.bitCnt == 9) {\r
- Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);\r
- Uart.byteCnt++;\r
-\r
- Uart.parityBits <<= 1;\r
- Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01);\r
-\r
- if(EOC) {\r
- // when End of Communication received and\r
- // all data bits processed..\r
- return TRUE;\r
- }\r
- Uart.bitCnt = 0;\r
- }\r
-\r
- /*if(error) {\r
- Uart.output[Uart.byteCnt] = 0xAA;\r
- Uart.byteCnt++;\r
- Uart.output[Uart.byteCnt] = error & 0xFF;\r
- Uart.byteCnt++;\r
- Uart.output[Uart.byteCnt] = 0xAA;\r
- Uart.byteCnt++;\r
- Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;\r
- Uart.byteCnt++;\r
- Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;\r
- Uart.byteCnt++;\r
- Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;\r
- Uart.byteCnt++;\r
- Uart.output[Uart.byteCnt] = 0xAA;\r
- Uart.byteCnt++;\r
- return TRUE;\r
- }*/\r
- }\r
-\r
- }\r
- else {\r
- bit = Uart.bitBuffer & 0xf0;\r
- bit >>= 4;\r
- bit ^= 0x0F;\r
- if(bit) {\r
- // should have been high or at least (4 * 128) / fc\r
- // according to ISO this should be at least (9 * 128 + 20) / fc\r
- if(Uart.highCnt == 8) {\r
- // we went low, so this could be start of communication\r
- // it turns out to be safer to choose a less significant\r
- // syncbit... so we check whether the neighbour also represents the drop\r
- Uart.posCnt = 1; // apparently we are busy with our first half bit period\r
- Uart.syncBit = bit & 8;\r
- Uart.samples = 3;\r
- if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }\r
- else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }\r
- if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }\r
- else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }\r
- if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;\r
- if(Uart.syncBit & (Uart.bitBuffer & 8)) {\r
- Uart.syncBit = 8;\r
-\r
- // the first half bit period is expected in next sample\r
- Uart.posCnt = 0;\r
- Uart.samples = 3;\r
- }\r
- }\r
- else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }\r
-\r
- Uart.syncBit <<= 4;\r
- Uart.state = STATE_START_OF_COMMUNICATION;\r
- Uart.drop = DROP_FIRST_HALF;\r
- Uart.bitCnt = 0;\r
- Uart.byteCnt = 0;\r
- Uart.parityBits = 0;\r
- error = 0;\r
- }\r
- else {\r
- Uart.highCnt = 0;\r
- }\r
- }\r
- else {\r
- if(Uart.highCnt < 8) {\r
- Uart.highCnt++;\r
- }\r
- }\r
- }\r
-\r
- return FALSE;\r
-}\r
-\r
-//=============================================================================\r
-// ISO 14443 Type A - Manchester\r
-//=============================================================================\r
-\r
-static struct {\r
- enum {\r
- DEMOD_UNSYNCD,\r
- DEMOD_START_OF_COMMUNICATION,\r
- DEMOD_MANCHESTER_D,\r
- DEMOD_MANCHESTER_E,\r
- DEMOD_MANCHESTER_F,\r
- DEMOD_ERROR_WAIT\r
- } state;\r
- int bitCount;\r
- int posCount;\r
- int syncBit;\r
- int parityBits;\r
- WORD shiftReg;\r
- int buffer;\r
- int buff;\r
- int samples;\r
- int len;\r
- enum {\r
- SUB_NONE,\r
- SUB_FIRST_HALF,\r
- SUB_SECOND_HALF\r
- } sub;\r
- BYTE *output;\r
-} Demod;\r
-\r
-static BOOL ManchesterDecoding(int v)\r
-{\r
- int bit;\r
- int modulation;\r
- int error = 0;\r
-\r
- if(!Demod.buff) {\r
- Demod.buff = 1;\r
- Demod.buffer = v;\r
- return FALSE;\r
- }\r
- else {\r
- bit = Demod.buffer;\r
- Demod.buffer = v;\r
- }\r
-\r
- if(Demod.state==DEMOD_UNSYNCD) {\r
- Demod.output[Demod.len] = 0xfa;\r
- Demod.syncBit = 0;\r
- //Demod.samples = 0;\r
- Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part\r
- if(bit & 0x08) { Demod.syncBit = 0x08; }\r
- if(!Demod.syncBit) {\r
- if(bit & 0x04) { Demod.syncBit = 0x04; }\r
- }\r
- else if(bit & 0x04) { Demod.syncBit = 0x04; bit <<= 4; }\r
- if(!Demod.syncBit) {\r
- if(bit & 0x02) { Demod.syncBit = 0x02; }\r
- }\r
- else if(bit & 0x02) { Demod.syncBit = 0x02; bit <<= 4; }\r
- if(!Demod.syncBit) {\r
- if(bit & 0x01) { Demod.syncBit = 0x01; }\r
-\r
- if(Demod.syncBit & (Demod.buffer & 0x08)) {\r
- Demod.syncBit = 0x08;\r
-\r
- // The first half bitperiod is expected in next sample\r
- Demod.posCount = 0;\r
- Demod.output[Demod.len] = 0xfb;\r
- }\r
- }\r
- else if(bit & 0x01) { Demod.syncBit = 0x01; }\r
-\r
- if(Demod.syncBit) {\r
- Demod.len = 0;\r
- Demod.state = DEMOD_START_OF_COMMUNICATION;\r
- Demod.sub = SUB_FIRST_HALF;\r
- Demod.bitCount = 0;\r
- Demod.shiftReg = 0;\r
- Demod.parityBits = 0;\r
- Demod.samples = 0;\r
- if(Demod.posCount) {\r
- switch(Demod.syncBit) {\r
- case 0x08: Demod.samples = 3; break;\r
- case 0x04: Demod.samples = 2; break;\r
- case 0x02: Demod.samples = 1; break;\r
- case 0x01: Demod.samples = 0; break;\r
- }\r
- }\r
- error = 0;\r
- }\r
- }\r
- else {\r
- //modulation = bit & Demod.syncBit;\r
- modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;\r
-\r
- Demod.samples += 4;\r
-\r
- if(Demod.posCount==0) {\r
- Demod.posCount = 1;\r
- if(modulation) {\r
- Demod.sub = SUB_FIRST_HALF;\r
- }\r
- else {\r
- Demod.sub = SUB_NONE;\r
- }\r
- }\r
- else {\r
- Demod.posCount = 0;\r
- if(modulation && (Demod.sub == SUB_FIRST_HALF)) {\r
- if(Demod.state!=DEMOD_ERROR_WAIT) {\r
- Demod.state = DEMOD_ERROR_WAIT;\r
- Demod.output[Demod.len] = 0xaa;\r
- error = 0x01;\r
- }\r
- }\r
- else if(modulation) {\r
- Demod.sub = SUB_SECOND_HALF;\r
- }\r
-\r
- switch(Demod.state) {\r
- case DEMOD_START_OF_COMMUNICATION:\r
- if(Demod.sub == SUB_FIRST_HALF) {\r
- Demod.state = DEMOD_MANCHESTER_D;\r
- }\r
- else {\r
- Demod.output[Demod.len] = 0xab;\r
- Demod.state = DEMOD_ERROR_WAIT;\r
- error = 0x02;\r
- }\r
- break;\r
-\r
- case DEMOD_MANCHESTER_D:\r
- case DEMOD_MANCHESTER_E:\r
- if(Demod.sub == SUB_FIRST_HALF) {\r
- Demod.bitCount++;\r
- Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;\r
- Demod.state = DEMOD_MANCHESTER_D;\r
- }\r
- else if(Demod.sub == SUB_SECOND_HALF) {\r
- Demod.bitCount++;\r
- Demod.shiftReg >>= 1;\r
- Demod.state = DEMOD_MANCHESTER_E;\r
- }\r
- else {\r
- Demod.state = DEMOD_MANCHESTER_F;\r
- }\r
- break;\r
-\r
- case DEMOD_MANCHESTER_F:\r
- // Tag response does not need to be a complete byte!\r
- if(Demod.len > 0 || Demod.bitCount > 0) {\r
- if(Demod.bitCount > 0) {\r
- Demod.shiftReg >>= (9 - Demod.bitCount);\r
- Demod.output[Demod.len] = Demod.shiftReg & 0xff;\r
- Demod.len++;\r
- // No parity bit, so just shift a 0\r
- Demod.parityBits <<= 1;\r
- }\r
-\r
- Demod.state = DEMOD_UNSYNCD;\r
- return TRUE;\r
- }\r
- else {\r
- Demod.output[Demod.len] = 0xad;\r
- Demod.state = DEMOD_ERROR_WAIT;\r
- error = 0x03;\r
- }\r
- break;\r
-\r
- case DEMOD_ERROR_WAIT:\r
- Demod.state = DEMOD_UNSYNCD;\r
- break;\r
-\r
- default:\r
- Demod.output[Demod.len] = 0xdd;\r
- Demod.state = DEMOD_UNSYNCD;\r
- break;\r
- }\r
-\r
- if(Demod.bitCount>=9) {\r
- Demod.output[Demod.len] = Demod.shiftReg & 0xff;\r
- Demod.len++;\r
-\r
- Demod.parityBits <<= 1;\r
- Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);\r
-\r
- Demod.bitCount = 0;\r
- Demod.shiftReg = 0;\r
- }\r
-\r
- /*if(error) {\r
- Demod.output[Demod.len] = 0xBB;\r
- Demod.len++;\r
- Demod.output[Demod.len] = error & 0xFF;\r
- Demod.len++;\r
- Demod.output[Demod.len] = 0xBB;\r
- Demod.len++;\r
- Demod.output[Demod.len] = bit & 0xFF;\r
- Demod.len++;\r
- Demod.output[Demod.len] = Demod.buffer & 0xFF;\r
- Demod.len++;\r
- Demod.output[Demod.len] = Demod.syncBit & 0xFF;\r
- Demod.len++;\r
- Demod.output[Demod.len] = 0xBB;\r
- Demod.len++;\r
- return TRUE;\r
- }*/\r
-\r
- }\r
-\r
- } // end (state != UNSYNCED)\r
-\r
- return FALSE;\r
-}\r
-\r
-//=============================================================================\r
-// Finally, a `sniffer' for ISO 14443 Type A\r
-// Both sides of communication!\r
-//=============================================================================\r
-\r
-//-----------------------------------------------------------------------------\r
-// Record the sequence of commands sent by the reader to the tag, with\r
-// triggering so that we start recording at the point that the tag is moved\r
-// near the reader.\r
-//-----------------------------------------------------------------------------\r
-void SnoopIso14443a(void)\r
-{\r
-\r
- // BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT\r
-\r
- #define RECV_CMD_OFFSET 3032\r
- #define RECV_RES_OFFSET 3096\r
- #define DMA_BUFFER_OFFSET 3160\r
- #define DMA_BUFFER_SIZE 4096\r
- #define TRACE_LENGTH 3000 \r
- \r
-// #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values\r
-// #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values\r
-// #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values\r
-// #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values\r
-// #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values\r
-\r
- // We won't start recording the frames that we acquire until we trigger;\r
- // a good trigger condition to get started is probably when we see a\r
- // response from the tag.\r
- BOOL triggered = TRUE; // FALSE to wait first for card\r
-\r
- // The command (reader -> tag) that we're receiving.\r
- // The length of a received command will in most cases be no more than 18 bytes.\r
- // So 32 should be enough!\r
- BYTE *receivedCmd = (((BYTE *)BigBuf) + RECV_CMD_OFFSET);\r
- // The response (tag -> reader) that we're receiving.\r
- BYTE *receivedResponse = (((BYTE *)BigBuf) + RECV_RES_OFFSET);\r
-\r
- // As we receive stuff, we copy it from receivedCmd or receivedResponse\r
- // into trace, along with its length and other annotations.\r
- BYTE *trace = (BYTE *)BigBuf;\r
- int traceLen = 0;\r
-\r
- // The DMA buffer, used to stream samples from the FPGA\r
- SBYTE *dmaBuf = ((SBYTE *)BigBuf) + DMA_BUFFER_OFFSET;\r
- int lastRxCounter;\r
- SBYTE *upTo;\r
- int smpl;\r
- int maxBehindBy = 0;\r
-\r
- // Count of samples received so far, so that we can include timing\r
- // information in the trace buffer.\r
- int samples = 0;\r
- int rsamples = 0;\r
-\r
- memset(trace, 0x44, RECV_CMD_OFFSET);\r
-\r
- // Set up the demodulator for tag -> reader responses.\r
- Demod.output = receivedResponse;\r
- Demod.len = 0;\r
- Demod.state = DEMOD_UNSYNCD;\r
-\r
- // And the reader -> tag commands\r
- memset(&Uart, 0, sizeof(Uart));\r
- Uart.output = receivedCmd;\r
- Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////\r
- Uart.state = STATE_UNSYNCD;\r
-\r
- // And put the FPGA in the appropriate mode\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);\r
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
-\r
- // Setup for the DMA.\r
- FpgaSetupSsc();\r
- upTo = dmaBuf;\r
- lastRxCounter = DMA_BUFFER_SIZE;\r
- FpgaSetupSscDma((BYTE *)dmaBuf, DMA_BUFFER_SIZE);\r
-\r
- LED_A_ON();\r
-\r
- // And now we loop, receiving samples.\r
- for(;;) {\r
- WDT_HIT();\r
- int behindBy = (lastRxCounter - PDC_RX_COUNTER(SSC_BASE)) &\r
- (DMA_BUFFER_SIZE-1);\r
- if(behindBy > maxBehindBy) {\r
- maxBehindBy = behindBy;\r
- if(behindBy > 400) {\r
- DbpString("blew circular buffer!");\r
- goto done;\r
- }\r
- }\r
- if(behindBy < 1) continue;\r
-\r
- smpl = upTo[0];\r
- upTo++;\r
- lastRxCounter -= 1;\r
- if(upTo - dmaBuf > DMA_BUFFER_SIZE) {\r
- upTo -= DMA_BUFFER_SIZE;\r
- lastRxCounter += DMA_BUFFER_SIZE;\r
- PDC_RX_NEXT_POINTER(SSC_BASE) = (DWORD)upTo;\r
- PDC_RX_NEXT_COUNTER(SSC_BASE) = DMA_BUFFER_SIZE;\r
- }\r
-\r
- samples += 4;\r
-#define HANDLE_BIT_IF_BODY \\r
- LED_C_ON(); \\r
- if(triggered) { \\r
- trace[traceLen++] = ((rsamples >> 0) & 0xff); \\r
- trace[traceLen++] = ((rsamples >> 8) & 0xff); \\r
- trace[traceLen++] = ((rsamples >> 16) & 0xff); \\r
- trace[traceLen++] = ((rsamples >> 24) & 0xff); \\r
- trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff); \\r
- trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff); \\r
- trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); \\r
- trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); \\r
- trace[traceLen++] = Uart.byteCnt; \\r
- memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); \\r
- traceLen += Uart.byteCnt; \\r
- if(traceLen > TRACE_LENGTH) break; \\r
- } \\r
- /* And ready to receive another command. */ \\r
- Uart.state = STATE_UNSYNCD; \\r
- /* And also reset the demod code, which might have been */ \\r
- /* false-triggered by the commands from the reader. */ \\r
- Demod.state = DEMOD_UNSYNCD; \\r
- LED_B_OFF(); \\r
-\r
- if(MillerDecoding((smpl & 0xF0) >> 4)) {\r
- rsamples = samples - Uart.samples;\r
- HANDLE_BIT_IF_BODY\r
- }\r
- if(ManchesterDecoding(smpl & 0x0F)) {\r
- rsamples = samples - Demod.samples;\r
- LED_B_ON();\r
-\r
- // timestamp, as a count of samples\r
- trace[traceLen++] = ((rsamples >> 0) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 8) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 16) & 0xff);\r
- trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r
- // length\r
- trace[traceLen++] = Demod.len;\r
- memcpy(trace+traceLen, receivedResponse, Demod.len);\r
- traceLen += Demod.len;\r
- if(traceLen > TRACE_LENGTH) break;\r
-\r
- triggered = TRUE;\r
-\r
- // And ready to receive another response.\r
- memset(&Demod, 0, sizeof(Demod));\r
- Demod.output = receivedResponse;\r
- Demod.state = DEMOD_UNSYNCD;\r
- LED_C_OFF();\r
- }\r
-\r
- if(BUTTON_PRESS()) {\r
- DbpString("cancelled_a");\r
- goto done;\r
- }\r
- }\r
-\r
- DbpString("COMMAND FINISHED");\r
-\r
- DbpIntegers(maxBehindBy, Uart.state, Uart.byteCnt);\r
- DbpIntegers(Uart.byteCntMax, traceLen, (int)Uart.output[0]);\r
-\r
-done:\r
- PDC_CONTROL(SSC_BASE) = PDC_RX_DISABLE;\r
- DbpIntegers(maxBehindBy, Uart.state, Uart.byteCnt);\r
- DbpIntegers(Uart.byteCntMax, traceLen, (int)Uart.output[0]);\r
- LED_A_OFF();\r
- LED_B_OFF();\r
- LED_C_OFF();\r
- LED_D_OFF();\r
-}\r
-\r
-// Prepare communication bits to send to FPGA\r
-void Sequence(SecType seq)\r
-{\r
- ToSendMax++;\r
- switch(seq) {\r
- // CARD TO READER\r
- case SEC_D:\r
- // Sequence D: 11110000\r
- // modulation with subcarrier during first half\r
- ToSend[ToSendMax] = 0xf0;\r
- break;\r
- case SEC_E:\r
- // Sequence E: 00001111\r
- // modulation with subcarrier during second half\r
- ToSend[ToSendMax] = 0x0f;\r
- break;\r
- case SEC_F:\r
- // Sequence F: 00000000\r
- // no modulation with subcarrier\r
- ToSend[ToSendMax] = 0x00;\r
- break;\r
- // READER TO CARD\r
- case SEC_X:\r
- // Sequence X: 00001100\r
- // drop after half a period\r
- ToSend[ToSendMax] = 0x0c;\r
- break;\r
- case SEC_Y:\r
- default:\r
- // Sequence Y: 00000000\r
- // no drop\r
- ToSend[ToSendMax] = 0x00;\r
- break;\r
- case SEC_Z:\r
- // Sequence Z: 11000000\r
- // drop at start\r
- ToSend[ToSendMax] = 0xc0;\r
- break;\r
- }\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Prepare tag messages\r
-//-----------------------------------------------------------------------------\r
-static void CodeIso14443aAsTag(const BYTE *cmd, int len)\r
-{\r
- int i;\r
- int oddparity;\r
-\r
- ToSendReset();\r
-\r
- // Correction bit, might be removed when not needed\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(1); // 1\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
-\r
- // Send startbit\r
- Sequence(SEC_D);\r
-\r
- for(i = 0; i < len; i++) {\r
- int j;\r
- BYTE b = cmd[i];\r
-\r
- // Data bits\r
- oddparity = 0x01;\r
- for(j = 0; j < 8; j++) {\r
- oddparity ^= (b & 1);\r
- if(b & 1) {\r
- Sequence(SEC_D);\r
- } else {\r
- Sequence(SEC_E);\r
- }\r
- b >>= 1;\r
- }\r
-\r
- // Parity bit\r
- if(oddparity) {\r
- Sequence(SEC_D);\r
- } else {\r
- Sequence(SEC_E);\r
- }\r
- }\r
-\r
- // Send stopbit\r
- Sequence(SEC_F);\r
-\r
- // Flush the buffer in FPGA!!\r
- for(i = 0; i < 5; i++) {\r
- Sequence(SEC_F);\r
- }\r
-\r
- // Convert from last byte pos to length\r
- ToSendMax++;\r
-\r
- // Add a few more for slop\r
- ToSend[ToSendMax++] = 0x00;\r
- ToSend[ToSendMax++] = 0x00;\r
- //ToSendMax += 2;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// This is to send a NACK kind of answer, its only 3 bits, I know it should be 4\r
-//-----------------------------------------------------------------------------\r
-static void CodeStrangeAnswer()\r
-{\r
- int i;\r
-\r
- ToSendReset();\r
-\r
- // Correction bit, might be removed when not needed\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(1); // 1\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
-\r
- // Send startbit\r
- Sequence(SEC_D);\r
-\r
- // 0\r
- Sequence(SEC_E);\r
-\r
- // 0\r
- Sequence(SEC_E);\r
-\r
- // 1\r
- Sequence(SEC_D);\r
-\r
- // Send stopbit\r
- Sequence(SEC_F);\r
-\r
- // Flush the buffer in FPGA!!\r
- for(i = 0; i < 5; i++) {\r
- Sequence(SEC_F);\r
- }\r
-\r
- // Convert from last byte pos to length\r
- ToSendMax++;\r
-\r
- // Add a few more for slop\r
- ToSend[ToSendMax++] = 0x00;\r
- ToSend[ToSendMax++] = 0x00;\r
- //ToSendMax += 2;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Wait for commands from reader\r
-// Stop when button is pressed\r
-// Or return TRUE when command is captured\r
-//-----------------------------------------------------------------------------\r
-static BOOL GetIso14443aCommandFromReader(BYTE *received, int *len, int maxLen)\r
-{\r
- // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen\r
- // only, since we are receiving, not transmitting).\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);\r
-\r
- // Now run a `software UART' on the stream of incoming samples.\r
- Uart.output = received;\r
- Uart.byteCntMax = maxLen;\r
- Uart.state = STATE_UNSYNCD;\r
-\r
- for(;;) {\r
- WDT_HIT();\r
-\r
- if(BUTTON_PRESS()) return FALSE;\r
-\r
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
- SSC_TRANSMIT_HOLDING = 0x00;\r
- }\r
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
- BYTE b = (BYTE)SSC_RECEIVE_HOLDING;\r
- if(MillerDecoding((b & 0xf0) >> 4)) {\r
- *len = Uart.byteCnt;\r
- return TRUE;\r
- }\r
- if(MillerDecoding(b & 0x0f)) {\r
- *len = Uart.byteCnt;\r
- return TRUE;\r
- }\r
- }\r
- }\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Main loop of simulated tag: receive commands from reader, decide what\r
-// response to send, and send it.\r
-//-----------------------------------------------------------------------------\r
-void SimulateIso14443aTag(int tagType, int TagUid)\r
-{\r
- // This function contains the tag emulation\r
-\r
- // Prepare protocol messages\r
- // static const BYTE cmd1[] = { 0x26 };\r
-// static const BYTE response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg\r
-//\r
- static const BYTE response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me\r
-// static const BYTE response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me\r
-\r
- // UID response\r
- // static const BYTE cmd2[] = { 0x93, 0x20 };\r
- //static const BYTE response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg\r
-\r
-\r
-\r
-// my desfire\r
- static const BYTE response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips\r
- \r
- \r
-// When reader selects us during cascade1 it will send cmd3\r
-//BYTE response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE)\r
-BYTE response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire)\r
-ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);\r
-\r
-// send cascade2 2nd half of UID\r
-static const BYTE response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck\r
-// NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID\r
-\r
-\r
-// When reader selects us during cascade2 it will send cmd3a\r
-//BYTE response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE)\r
-BYTE response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire)\r
-ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);\r
- \r
-// When reader tries to authenticate\r
- // static const BYTE cmd5[] = { 0x60, 0x00, 0xf5, 0x7b };\r
- static const BYTE response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce\r
-\r
- BYTE *resp;\r
- int respLen;\r
-\r
- // Longest possible response will be 16 bytes + 2 CRC = 18 bytes\r
- // This will need\r
- // 144 data bits (18 * 8)\r
- // 18 parity bits\r
- // 2 Start and stop\r
- // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)\r
- // 1 just for the case\r
- // ----------- +\r
- // 166\r
- //\r
- // 166 bytes, since every bit that needs to be send costs us a byte\r
- //\r
-\r
-\r
- // Respond with card type\r
- BYTE *resp1 = (((BYTE *)BigBuf) + 800);\r
- int resp1Len;\r
-\r
- // Anticollision cascade1 - respond with uid\r
- BYTE *resp2 = (((BYTE *)BigBuf) + 970);\r
- int resp2Len;\r
-\r
- // Anticollision cascade2 - respond with 2nd half of uid if asked\r
- // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88\r
- BYTE *resp2a = (((BYTE *)BigBuf) + 1140);\r
- int resp2aLen;\r
-\r
- // Acknowledge select - cascade 1\r
- BYTE *resp3 = (((BYTE *)BigBuf) + 1310);\r
- int resp3Len;\r
-\r
- // Acknowledge select - cascade 2\r
- BYTE *resp3a = (((BYTE *)BigBuf) + 1480);\r
- int resp3aLen;\r
-\r
- // Response to a read request - not implemented atm\r
- BYTE *resp4 = (((BYTE *)BigBuf) + 1550);\r
- int resp4Len;\r
-\r
- // Authenticate response - nonce\r
- BYTE *resp5 = (((BYTE *)BigBuf) + 1720);\r
- int resp5Len;\r
-\r
- BYTE *receivedCmd = (BYTE *)BigBuf;\r
- int len;\r
-\r
- int i;\r
- int u;\r
- BYTE b;\r
-\r
- // To control where we are in the protocol\r
- int order = 0;\r
- int lastorder;\r
-\r
- // Just to allow some checks\r
- int happened = 0;\r
- int happened2 = 0;\r
-\r
- int cmdsRecvd = 0;\r
-\r
- BOOL fdt_indicator;\r
-\r
- memset(receivedCmd, 0x44, 400);\r
-\r
- // Prepare the responses of the anticollision phase\r
- // there will be not enough time to do this at the moment the reader sends it REQA\r
-\r
- // Answer to request\r
- CodeIso14443aAsTag(response1, sizeof(response1));\r
- memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;\r
-\r
- // Send our UID (cascade 1)\r
- CodeIso14443aAsTag(response2, sizeof(response2));\r
- memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;\r
-\r
- // Answer to select (cascade1)\r
- CodeIso14443aAsTag(response3, sizeof(response3));\r
- memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;\r
-\r
- // Send the cascade 2 2nd part of the uid\r
- CodeIso14443aAsTag(response2a, sizeof(response2a));\r
- memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax;\r
-\r
- // Answer to select (cascade 2)\r
- CodeIso14443aAsTag(response3a, sizeof(response3a));\r
- memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax;\r
-\r
- // Strange answer is an example of rare message size (3 bits)\r
- CodeStrangeAnswer();\r
- memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;\r
-\r
- // Authentication answer (random nonce)\r
- CodeIso14443aAsTag(response5, sizeof(response5));\r
- memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax;\r
-\r
- // We need to listen to the high-frequency, peak-detected path.\r
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
- FpgaSetupSsc();\r
-\r
- cmdsRecvd = 0;\r
-\r
- LED_A_ON();\r
- for(;;) {\r
-\r
- if(!GetIso14443aCommandFromReader(receivedCmd, &len, 100)) {\r
- DbpString("button press");\r
- break;\r
- }\r
- // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated\r
- // Okay, look at the command now.\r
- lastorder = order;\r
- i = 1; // first byte transmitted\r
- if(receivedCmd[0] == 0x26) {\r
- // Received a REQUEST\r
- resp = resp1; respLen = resp1Len; order = 1;\r
- //DbpString("Hello request from reader:");\r
- } else if(receivedCmd[0] == 0x52) {\r
- // Received a WAKEUP\r
- resp = resp1; respLen = resp1Len; order = 6;\r
-// //DbpString("Wakeup request from reader:");\r
-\r
- } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // greg - cascade 1 anti-collision\r
- // Received request for UID (cascade 1)\r
- resp = resp2; respLen = resp2Len; order = 2;\r
-// DbpString("UID (cascade 1) request from reader:");\r
-// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
-\r
-\r
- } else if(receivedCmd[1] == 0x20 && receivedCmd[0] ==0x95) { // greg - cascade 2 anti-collision\r
- // Received request for UID (cascade 2)\r
- resp = resp2a; respLen = resp2aLen; order = 20;\r
-// DbpString("UID (cascade 2) request from reader:");\r
-// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
-\r
-\r
- } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x93) { // greg - cascade 1 select\r
- // Received a SELECT\r
- resp = resp3; respLen = resp3Len; order = 3;\r
-// DbpString("Select (cascade 1) request from reader:");\r
-// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
-\r
-\r
- } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x95) { // greg - cascade 2 select\r
- // Received a SELECT\r
- resp = resp3a; respLen = resp3aLen; order = 30;\r
-// DbpString("Select (cascade 2) request from reader:");\r
-// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
-\r
-\r
- } else if(receivedCmd[0] == 0x30) {\r
- // Received a READ\r
- resp = resp4; respLen = resp4Len; order = 4; // Do nothing\r
- DbpString("Read request from reader:");\r
- DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
-\r
-\r
- } else if(receivedCmd[0] == 0x50) {\r
- // Received a HALT\r
- resp = resp1; respLen = 0; order = 5; // Do nothing\r
- DbpString("Reader requested we HALT!:");\r
-\r
- } else if(receivedCmd[0] == 0x60) {\r
- // Received an authentication request\r
- resp = resp5; respLen = resp5Len; order = 7;\r
- DbpString("Authenticate request from reader:");\r
- DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
-\r
- } else if(receivedCmd[0] == 0xE0) {\r
- // Received a RATS request\r
- resp = resp1; respLen = 0;order = 70;\r
- DbpString("RATS request from reader:");\r
- DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
- } else {\r
- // Never seen this command before\r
- DbpString("Unknown command received from reader:");\r
- DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
- DbpIntegers(receivedCmd[3], receivedCmd[4], receivedCmd[5]);\r
- DbpIntegers(receivedCmd[6], receivedCmd[7], receivedCmd[8]);\r
-\r
- // Do not respond\r
- resp = resp1; respLen = 0; order = 0;\r
- }\r
-\r
- // Count number of wakeups received after a halt\r
- if(order == 6 && lastorder == 5) { happened++; }\r
-\r
- // Count number of other messages after a halt\r
- if(order != 6 && lastorder == 5) { happened2++; }\r
-\r
- // Look at last parity bit to determine timing of answer\r
- if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) {\r
- // 1236, so correction bit needed\r
- i = 0;\r
- }\r
-\r
- memset(receivedCmd, 0x44, 32);\r
-\r
- if(cmdsRecvd > 999) {\r
- DbpString("1000 commands later...");\r
- break;\r
- }\r
- else {\r
- cmdsRecvd++;\r
- }\r
-\r
- if(respLen <= 0) continue;\r
-\r
- // Modulate Manchester\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);\r
- SSC_TRANSMIT_HOLDING = 0x00;\r
- FpgaSetupSsc();\r
-\r
- // ### Transmit the response ###\r
- u = 0;\r
- b = 0x00;\r
- fdt_indicator = FALSE;\r
- for(;;) {\r
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
- volatile BYTE b = (BYTE)SSC_RECEIVE_HOLDING;\r
- (void)b;\r
- }\r
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
- if(i > respLen) {\r
- b = 0x00;\r
- u++;\r
- } else {\r
- b = resp[i];\r
- i++;\r
- }\r
- SSC_TRANSMIT_HOLDING = b;\r
-\r
- if(u > 4) {\r
- break;\r
- }\r
- }\r
- if(BUTTON_PRESS()) {\r
- break;\r
- }\r
- }\r
-\r
- }\r
-\r
- DbpIntegers(happened, happened2, cmdsRecvd);\r
- LED_A_OFF();\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Transmit the command (to the tag) that was placed in ToSend[].\r
-//-----------------------------------------------------------------------------\r
-static void TransmitFor14443a(const BYTE *cmd, int len, int *samples, int *wait)\r
-{\r
- int c;\r
-\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);\r
-\r
- if(*wait < 10) { *wait = 10; }\r
-\r
- for(c = 0; c < *wait;) {\r
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
- SSC_TRANSMIT_HOLDING = 0x00; // For exact timing!\r
- c++;\r
- }\r
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
- volatile DWORD r = SSC_RECEIVE_HOLDING;\r
- (void)r;\r
- }\r
- WDT_HIT();\r
- }\r
-\r
- c = 0;\r
- for(;;) {\r
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
- SSC_TRANSMIT_HOLDING = cmd[c];\r
- c++;\r
- if(c >= len) {\r
- break;\r
- }\r
- }\r
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
- volatile DWORD r = SSC_RECEIVE_HOLDING;\r
- (void)r;\r
- }\r
- WDT_HIT();\r
- }\r
- *samples = (c + *wait) << 3;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// To generate an arbitrary stream from reader\r
-//\r
-//-----------------------------------------------------------------------------\r
-void ArbitraryFromReader(const BYTE *cmd, int parity, int len)\r
-{\r
- int i;\r
- int j;\r
- int last;\r
- BYTE b;\r
-\r
- ToSendReset();\r
-\r
- // Start of Communication (Seq. Z)\r
- Sequence(SEC_Z);\r
- last = 0;\r
-\r
- for(i = 0; i < len; i++) {\r
- // Data bits\r
- b = cmd[i];\r
- for(j = 0; j < 8; j++) {\r
- if(b & 1) {\r
- // Sequence X\r
- Sequence(SEC_X);\r
- last = 1;\r
- } else {\r
- if(last == 0) {\r
- // Sequence Z\r
- Sequence(SEC_Z);\r
- }\r
- else {\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
- last = 0;\r
- }\r
- }\r
- b >>= 1;\r
-\r
- }\r
-\r
- // Predefined parity bit, the flipper flips when needed, because of flips in byte sent\r
- if(((parity >> (len - i - 1)) & 1)) {\r
- // Sequence X\r
- Sequence(SEC_X);\r
- last = 1;\r
- } else {\r
- if(last == 0) {\r
- // Sequence Z\r
- Sequence(SEC_Z);\r
- }\r
- else {\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
- last = 0;\r
- }\r
- }\r
- }\r
-\r
- // End of Communication\r
- if(last == 0) {\r
- // Sequence Z\r
- Sequence(SEC_Z);\r
- }\r
- else {\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
- last = 0;\r
- }\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
-\r
- // Just to be sure!\r
- Sequence(SEC_Y);\r
- Sequence(SEC_Y);\r
- Sequence(SEC_Y);\r
-\r
- // Convert from last character reference to length\r
- ToSendMax++;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Code a 7-bit command without parity bit\r
-// This is especially for 0x26 and 0x52 (REQA and WUPA)\r
-//-----------------------------------------------------------------------------\r
-void ShortFrameFromReader(const BYTE *cmd)\r
-{\r
- int j;\r
- int last;\r
- BYTE b;\r
-\r
- ToSendReset();\r
-\r
- // Start of Communication (Seq. Z)\r
- Sequence(SEC_Z);\r
- last = 0;\r
-\r
- b = cmd[0];\r
- for(j = 0; j < 7; j++) {\r
- if(b & 1) {\r
- // Sequence X\r
- Sequence(SEC_X);\r
- last = 1;\r
- } else {\r
- if(last == 0) {\r
- // Sequence Z\r
- Sequence(SEC_Z);\r
- }\r
- else {\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
- last = 0;\r
- }\r
- }\r
- b >>= 1;\r
- }\r
-\r
- // End of Communication\r
- if(last == 0) {\r
- // Sequence Z\r
- Sequence(SEC_Z);\r
- }\r
- else {\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
- last = 0;\r
- }\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
-\r
- // Just to be sure!\r
- Sequence(SEC_Y);\r
- Sequence(SEC_Y);\r
- Sequence(SEC_Y);\r
-\r
- // Convert from last character reference to length\r
- ToSendMax++;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Prepare reader command to send to FPGA\r
-//\r
-//-----------------------------------------------------------------------------\r
-void CodeIso14443aAsReader(const BYTE *cmd, int len)\r
-{\r
- int i, j;\r
- int last;\r
- int oddparity;\r
- BYTE b;\r
-\r
- ToSendReset();\r
-\r
- // Start of Communication (Seq. Z)\r
- Sequence(SEC_Z);\r
- last = 0;\r
-\r
- for(i = 0; i < len; i++) {\r
- // Data bits\r
- b = cmd[i];\r
- oddparity = 0x01;\r
- for(j = 0; j < 8; j++) {\r
- oddparity ^= (b & 1);\r
- if(b & 1) {\r
- // Sequence X\r
- Sequence(SEC_X);\r
- last = 1;\r
- } else {\r
- if(last == 0) {\r
- // Sequence Z\r
- Sequence(SEC_Z);\r
- }\r
- else {\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
- last = 0;\r
- }\r
- }\r
- b >>= 1;\r
- }\r
-\r
- // Parity bit\r
- if(oddparity) {\r
- // Sequence X\r
- Sequence(SEC_X);\r
- last = 1;\r
- } else {\r
- if(last == 0) {\r
- // Sequence Z\r
- Sequence(SEC_Z);\r
- }\r
- else {\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
- last = 0;\r
- }\r
- }\r
- }\r
-\r
- // End of Communication\r
- if(last == 0) {\r
- // Sequence Z\r
- Sequence(SEC_Z);\r
- }\r
- else {\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
- last = 0;\r
- }\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
-\r
- // Just to be sure!\r
- Sequence(SEC_Y);\r
- Sequence(SEC_Y);\r
- Sequence(SEC_Y);\r
-\r
- // Convert from last character reference to length\r
- ToSendMax++;\r
-}\r
-\r
-\r
-//-----------------------------------------------------------------------------\r
-// Wait a certain time for tag response\r
-// If a response is captured return TRUE\r
-// If it takes to long return FALSE\r
-//-----------------------------------------------------------------------------\r
-static BOOL GetIso14443aAnswerFromTag(BYTE *receivedResponse, int maxLen, int *samples, int *elapsed) //BYTE *buffer\r
-{\r
- // buffer needs to be 512 bytes\r
- int c;\r
-\r
- // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen\r
- // only, since we are receiving, not transmitting).\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);\r
-\r
- // Now get the answer from the card\r
- Demod.output = receivedResponse;\r
- Demod.len = 0;\r
- Demod.state = DEMOD_UNSYNCD;\r
-\r
- BYTE b;\r
- *elapsed = 0;\r
-\r
- c = 0;\r
- for(;;) {\r
- WDT_HIT();\r
-\r
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
- SSC_TRANSMIT_HOLDING = 0x00; // To make use of exact timing of next command from reader!!\r
- (*elapsed)++;\r
- }\r
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
- if(c < 512) { c++; } else { return FALSE; }\r
- b = (BYTE)SSC_RECEIVE_HOLDING;\r
- if(ManchesterDecoding((b & 0xf0) >> 4)) {\r
- *samples = ((c - 1) << 3) + 4;\r
- return TRUE;\r
- }\r
- if(ManchesterDecoding(b & 0x0f)) {\r
- *samples = c << 3;\r
- return TRUE;\r
- }\r
- }\r
- }\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Read an ISO 14443a tag. Send out commands and store answers.\r
-//\r
-//-----------------------------------------------------------------------------\r
-void ReaderIso14443a(DWORD parameter)\r
-{\r
- // Anticollision\r
- static const BYTE cmd1[] = { 0x52 }; // or 0x26\r
- static const BYTE cmd2[] = { 0x93,0x20 };\r
- // UID = 0x2a,0x69,0x8d,0x43,0x8d, last two bytes are CRC bytes\r
- BYTE cmd3[] = { 0x93,0x70,0x2a,0x69,0x8d,0x43,0x8d,0x52,0x55 };\r
-\r
- // For Ultralight add an extra anticollission layer -> 95 20 and then 95 70\r
-\r
- // greg - here we will add our cascade level 2 anticolission and select functions to deal with ultralight // and 7-byte UIDs in generall...\r
- BYTE cmd4[] = {0x95,0x20}; // ask for cascade 2 select\r
- // 95 20\r
- //BYTE cmd3a[] = { 0x95,0x70,0x2a,0x69,0x8d,0x43,0x8d,0x52,0x55 };\r
- // 95 70\r
-\r
- // cascade 2 select\r
- BYTE cmd5[] = { 0x95,0x70,0x2a,0x69,0x8d,0x43,0x8d,0x52,0x55 };\r
-\r
-\r
- // RATS (request for answer to select)\r
- //BYTE cmd6[] = { 0xe0,0x50,0xbc,0xa5 }; // original RATS\r
- BYTE cmd6[] = { 0xe0,0x21,0xb2,0xc7 }; // Desfire RATS\r
-\r
- int reqaddr = 2024; // was 2024 - tied to other size changes\r
- int reqsize = 60;\r
-\r
- BYTE *req1 = (((BYTE *)BigBuf) + reqaddr);\r
- int req1Len;\r
-\r
- BYTE *req2 = (((BYTE *)BigBuf) + reqaddr + reqsize);\r
- int req2Len;\r
-\r
- BYTE *req3 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 2));\r
- int req3Len;\r
-\r
-// greg added req 4 & 5 to deal with cascade 2 section\r
- BYTE *req4 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 3));\r
- int req4Len;\r
-\r
- BYTE *req5 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 4));\r
- int req5Len;\r
-\r
- BYTE *req6 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 5));\r
- int req6Len;\r
-\r
- //BYTE *req7 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 6));\r
- //int req7Len;\r
-\r
- BYTE *receivedAnswer = (((BYTE *)BigBuf) + 3560); // was 3560 - tied to other size changes\r
-\r
- BYTE *trace = (BYTE *)BigBuf;\r
- int traceLen = 0;\r
- int rsamples = 0;\r
-\r
- memset(trace, 0x44, 2000); // was 2000 - tied to oter size chnages \r
- // setting it to 3000 causes no tag responses to be detected (2900 is ok)\r
- // setting it to 1000 causes no tag responses to be detected\r
-\r
- // Prepare some commands!\r
- ShortFrameFromReader(cmd1);\r
- memcpy(req1, ToSend, ToSendMax); req1Len = ToSendMax;\r
-\r
- CodeIso14443aAsReader(cmd2, sizeof(cmd2));\r
- memcpy(req2, ToSend, ToSendMax); req2Len = ToSendMax;\r
-\r
- CodeIso14443aAsReader(cmd3, sizeof(cmd3));\r
- memcpy(req3, ToSend, ToSendMax); req3Len = ToSendMax;\r
-\r
-\r
- CodeIso14443aAsReader(cmd4, sizeof(cmd4)); // 4 is cascade 2 request\r
- memcpy(req4, ToSend, ToSendMax); req4Len = ToSendMax;\r
-\r
-\r
- CodeIso14443aAsReader(cmd5, sizeof(cmd5)); // 5 is cascade 2 select\r
- memcpy(req5, ToSend, ToSendMax); req5Len = ToSendMax;\r
-\r
-\r
- CodeIso14443aAsReader(cmd6, sizeof(cmd6));\r
- memcpy(req6, ToSend, ToSendMax); req6Len = ToSendMax;\r
-\r
- // Setup SSC\r
- FpgaSetupSsc();\r
-\r
- // Start from off (no field generated)\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
- SpinDelay(200);\r
-\r
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
- FpgaSetupSsc();\r
-\r
- // Now give it time to spin up.\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);\r
- SpinDelay(200);\r
-\r
- LED_A_ON();\r
- LED_B_OFF();\r
- LED_C_OFF();\r
- LED_D_OFF();\r
-\r
- int samples = 0;\r
- int tsamples = 0;\r
- int wait = 0;\r
- int elapsed = 0;\r
-\r
- for(;;) {\r
- // Send WUPA (or REQA)\r
- TransmitFor14443a(req1, req1Len, &tsamples, &wait);\r
- // Store answer in buffer\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 1;\r
- memcpy(trace+traceLen, cmd1, 1);\r
- traceLen += 1;\r
- if(traceLen > TRACE_LENGTH) goto done;\r
-\r
- while(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {\r
- if(BUTTON_PRESS()) goto done;\r
-\r
- // No answer, just continue polling\r
- TransmitFor14443a(req1, req1Len, &tsamples, &wait);\r
- // Store answer in buffer\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 1;\r
- memcpy(trace+traceLen, cmd1, 1);\r
- traceLen += 1;\r
- if(traceLen > TRACE_LENGTH) goto done;\r
- }\r
-\r
- // Store answer in buffer\r
- rsamples = rsamples + (samples - Demod.samples);\r
- trace[traceLen++] = ((rsamples >> 0) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 8) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 16) & 0xff);\r
- trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r
- trace[traceLen++] = Demod.len;\r
- memcpy(trace+traceLen, receivedAnswer, Demod.len);\r
- traceLen += Demod.len;\r
- if(traceLen > TRACE_LENGTH) goto done;\r
-\r
- // Ask for card UID\r
- TransmitFor14443a(req2, req2Len, &tsamples, &wait);\r
- // Store answer in buffer\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 2;\r
- memcpy(trace+traceLen, cmd2, 2);\r
- traceLen += 2;\r
- if(traceLen > TRACE_LENGTH) goto done;\r
-\r
- if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {\r
- continue;\r
- }\r
-\r
- // Store answer in buffer\r
- rsamples = rsamples + (samples - Demod.samples);\r
- trace[traceLen++] = ((rsamples >> 0) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 8) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 16) & 0xff);\r
- trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r
- trace[traceLen++] = Demod.len;\r
- memcpy(trace+traceLen, receivedAnswer, Demod.len);\r
- traceLen += Demod.len;\r
- if(traceLen > TRACE_LENGTH) goto done;\r
-\r
- // Construct SELECT UID command\r
- // First copy the 5 bytes (Mifare Classic) after the 93 70\r
- memcpy(cmd3+2,receivedAnswer,5);\r
- // Secondly compute the two CRC bytes at the end\r
- ComputeCrc14443(CRC_14443_A, cmd3, 7, &cmd3[7], &cmd3[8]);\r
- // Prepare the bit sequence to modulate the subcarrier\r
- // Store answer in buffer\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 9;\r
- memcpy(trace+traceLen, cmd3, 9);\r
- traceLen += 9;\r
- if(traceLen > TRACE_LENGTH) goto done;\r
- CodeIso14443aAsReader(cmd3, sizeof(cmd3));\r
- memcpy(req3, ToSend, ToSendMax); req3Len = ToSendMax;\r
-\r
- // Select the card\r
- TransmitFor14443a(req3, req3Len, &samples, &wait);\r
- if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {\r
- continue;\r
- }\r
-\r
- // Store answer in buffer\r
- rsamples = rsamples + (samples - Demod.samples);\r
- trace[traceLen++] = ((rsamples >> 0) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 8) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 16) & 0xff);\r
- trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r
- trace[traceLen++] = Demod.len;\r
- memcpy(trace+traceLen, receivedAnswer, Demod.len);\r
- traceLen += Demod.len;\r
- if(traceLen > TRACE_LENGTH) goto done;\r
-\r
-// OK we have selected at least at cascade 1, lets see if first byte of UID was 0x88 in \r
-// which case we need to make a cascade 2 request and select - this is a long UID\r
- if (receivedAnswer[0] == 0x88)\r
- {\r
- // Do cascade level 2 stuff\r
- ///////////////////////////////////////////////////////////////////\r
- // First issue a '95 20' identify request\r
- // Ask for card UID (part 2)\r
- TransmitFor14443a(req4, req4Len, &tsamples, &wait);\r
- // Store answer in buffer\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 2;\r
- memcpy(trace+traceLen, cmd4, 2);\r
- traceLen += 2;\r
- if(traceLen > TRACE_LENGTH) {\r
- DbpString("Bugging out, just popped tracelength");\r
- goto done;}\r
-\r
- if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {\r
- continue;\r
- }\r
- // Store answer in buffer\r
- rsamples = rsamples + (samples - Demod.samples);\r
- trace[traceLen++] = ((rsamples >> 0) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 8) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 16) & 0xff);\r
- trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r
- trace[traceLen++] = Demod.len;\r
- memcpy(trace+traceLen, receivedAnswer, Demod.len);\r
- traceLen += Demod.len;\r
- if(traceLen > TRACE_LENGTH) goto done;\r
- //////////////////////////////////////////////////////////////////\r
- // Then Construct SELECT UID (cascasde 2) command\r
- DbpString("Just about to copy the UID out of the cascade 2 id req");\r
- // First copy the 5 bytes (Mifare Classic) after the 95 70\r
- memcpy(cmd5+2,receivedAnswer,5);\r
- // Secondly compute the two CRC bytes at the end\r
- ComputeCrc14443(CRC_14443_A, cmd4, 7, &cmd5[7], &cmd5[8]);\r
- // Prepare the bit sequence to modulate the subcarrier\r
- // Store answer in buffer\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 9;\r
- memcpy(trace+traceLen, cmd5, 9);\r
- traceLen += 9;\r
- if(traceLen > TRACE_LENGTH) goto done;\r
- CodeIso14443aAsReader(cmd5, sizeof(cmd5));\r
- memcpy(req5, ToSend, ToSendMax); req5Len = ToSendMax;\r
-\r
- // Select the card\r
- TransmitFor14443a(req4, req4Len, &samples, &wait);\r
- if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {\r
- continue;\r
- }\r
-\r
- // Store answer in buffer\r
- rsamples = rsamples + (samples - Demod.samples);\r
- trace[traceLen++] = ((rsamples >> 0) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 8) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 16) & 0xff);\r
- trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r
- trace[traceLen++] = Demod.len;\r
- memcpy(trace+traceLen, receivedAnswer, Demod.len);\r
- traceLen += Demod.len;\r
- if(traceLen > TRACE_LENGTH) goto done;\r
-\r
-\r
-\r
-\r
-\r
-\r
- } \r
-\r
- \r
-\r
- // Secondly compute the two CRC bytes at the end\r
- ComputeCrc14443(CRC_14443_A, cmd5, 2, &cmd5[2], &cmd5[3]);\r
- // Send authentication request (Mifare Classic)\r
- TransmitFor14443a(req5, req5Len, &samples, &wait);\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 4;\r
- memcpy(trace+traceLen, cmd5, 4);\r
- traceLen += 4;\r
- if(traceLen > TRACE_LENGTH) goto done;\r
- if(GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {\r
- rsamples++;\r
- // We received probably a random, continue and trace!\r
- }\r
- else {\r
- // Received nothing\r
- continue;\r
- }\r
-\r
- // Trace the random, i'm curious\r
- rsamples = rsamples + (samples - Demod.samples);\r
- trace[traceLen++] = ((rsamples >> 0) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 8) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 16) & 0xff);\r
- trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r
- trace[traceLen++] = Demod.len;\r
- memcpy(trace+traceLen, receivedAnswer, Demod.len);\r
- traceLen += Demod.len;\r
- if(traceLen > TRACE_LENGTH) goto done;\r
-\r
- // Thats it...\r
- }\r
-\r
-done:\r
- LED_A_OFF();\r
- LED_B_OFF();\r
- LED_C_OFF();\r
- LED_D_OFF();\r
- DbpIntegers(rsamples, 0xCC, 0xCC);\r
- DbpString("ready..");\r
-}\r
+//-----------------------------------------------------------------------------
+// Routines to support ISO 14443 type A.
+//
+// Gerhard de Koning Gans - May 2008
+//-----------------------------------------------------------------------------
+#include <proxmark3.h>
+#include "apps.h"
+#include "iso14443crc.h"
+
+static BYTE *trace = (BYTE *) BigBuf;
+static int traceLen = 0;
+static int rsamples = 0;
+static BOOL tracing = TRUE;
+
+typedef enum {
+ SEC_D = 1,
+ SEC_E = 2,
+ SEC_F = 3,
+ SEC_X = 4,
+ SEC_Y = 5,
+ SEC_Z = 6
+} SecType;
+
+static const BYTE OddByteParity[256] = {
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
+};
+
+// BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT
+#define RECV_CMD_OFFSET 3032
+#define RECV_RES_OFFSET 3096
+#define DMA_BUFFER_OFFSET 3160
+#define DMA_BUFFER_SIZE 4096
+#define TRACE_LENGTH 3000
+
+//-----------------------------------------------------------------------------
+// Generate the parity value for a byte sequence
+//
+//-----------------------------------------------------------------------------
+DWORD GetParity(const BYTE * pbtCmd, int iLen)
+{
+ int i;
+ DWORD dwPar = 0;
+
+ // Generate the encrypted data
+ for (i = 0; i < iLen; i++) {
+ // Save the encrypted parity bit
+ dwPar |= ((OddByteParity[pbtCmd[i]]) << i);
+ }
+ return dwPar;
+}
+
+static void AppendCrc14443a(BYTE* data, int len)
+{
+ ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
+}
+
+BOOL LogTrace(const BYTE * btBytes, int iLen, int iSamples, DWORD dwParity, BOOL bReader)
+{
+ // Return when trace is full
+ if (traceLen >= TRACE_LENGTH) return FALSE;
+
+ // Trace the random, i'm curious
+ rsamples += iSamples;
+ trace[traceLen++] = ((rsamples >> 0) & 0xff);
+ trace[traceLen++] = ((rsamples >> 8) & 0xff);
+ trace[traceLen++] = ((rsamples >> 16) & 0xff);
+ trace[traceLen++] = ((rsamples >> 24) & 0xff);
+ if (!bReader) {
+ trace[traceLen - 1] |= 0x80;
+ }
+ trace[traceLen++] = ((dwParity >> 0) & 0xff);
+ trace[traceLen++] = ((dwParity >> 8) & 0xff);
+ trace[traceLen++] = ((dwParity >> 16) & 0xff);
+ trace[traceLen++] = ((dwParity >> 24) & 0xff);
+ trace[traceLen++] = iLen;
+ memcpy(trace + traceLen, btBytes, iLen);
+ traceLen += iLen;
+ return TRUE;
+}
+
+BOOL LogTraceInfo(byte_t* data, size_t len)
+{
+ return LogTrace(data,len,0,GetParity(data,len),TRUE);
+}
+
+//-----------------------------------------------------------------------------
+// The software UART that receives commands from the reader, and its state
+// variables.
+//-----------------------------------------------------------------------------
+static struct {
+ enum {
+ STATE_UNSYNCD,
+ STATE_START_OF_COMMUNICATION,
+ STATE_MILLER_X,
+ STATE_MILLER_Y,
+ STATE_MILLER_Z,
+ STATE_ERROR_WAIT
+ } state;
+ WORD shiftReg;
+ int bitCnt;
+ int byteCnt;
+ int byteCntMax;
+ int posCnt;
+ int syncBit;
+ int parityBits;
+ int samples;
+ int highCnt;
+ int bitBuffer;
+ enum {
+ DROP_NONE,
+ DROP_FIRST_HALF,
+ DROP_SECOND_HALF
+ } drop;
+ BYTE *output;
+} Uart;
+
+static BOOL MillerDecoding(int bit)
+{
+ int error = 0;
+ int bitright;
+
+ if(!Uart.bitBuffer) {
+ Uart.bitBuffer = bit ^ 0xFF0;
+ return FALSE;
+ }
+ else {
+ Uart.bitBuffer <<= 4;
+ Uart.bitBuffer ^= bit;
+ }
+
+ BOOL EOC = FALSE;
+
+ if(Uart.state != STATE_UNSYNCD) {
+ Uart.posCnt++;
+
+ if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
+ bit = 0x00;
+ }
+ else {
+ bit = 0x01;
+ }
+ if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
+ bitright = 0x00;
+ }
+ else {
+ bitright = 0x01;
+ }
+ if(bit != bitright) { bit = bitright; }
+
+ if(Uart.posCnt == 1) {
+ // measurement first half bitperiod
+ if(!bit) {
+ Uart.drop = DROP_FIRST_HALF;
+ }
+ }
+ else {
+ // measurement second half bitperiod
+ if(!bit & (Uart.drop == DROP_NONE)) {
+ Uart.drop = DROP_SECOND_HALF;
+ }
+ else if(!bit) {
+ // measured a drop in first and second half
+ // which should not be possible
+ Uart.state = STATE_ERROR_WAIT;
+ error = 0x01;
+ }
+
+ Uart.posCnt = 0;
+
+ switch(Uart.state) {
+ case STATE_START_OF_COMMUNICATION:
+ Uart.shiftReg = 0;
+ if(Uart.drop == DROP_SECOND_HALF) {
+ // error, should not happen in SOC
+ Uart.state = STATE_ERROR_WAIT;
+ error = 0x02;
+ }
+ else {
+ // correct SOC
+ Uart.state = STATE_MILLER_Z;
+ }
+ break;
+
+ case STATE_MILLER_Z:
+ Uart.bitCnt++;
+ Uart.shiftReg >>= 1;
+ if(Uart.drop == DROP_NONE) {
+ // logic '0' followed by sequence Y
+ // end of communication
+ Uart.state = STATE_UNSYNCD;
+ EOC = TRUE;
+ }
+ // if(Uart.drop == DROP_FIRST_HALF) {
+ // Uart.state = STATE_MILLER_Z; stay the same
+ // we see a logic '0' }
+ if(Uart.drop == DROP_SECOND_HALF) {
+ // we see a logic '1'
+ Uart.shiftReg |= 0x100;
+ Uart.state = STATE_MILLER_X;
+ }
+ break;
+
+ case STATE_MILLER_X:
+ Uart.shiftReg >>= 1;
+ if(Uart.drop == DROP_NONE) {
+ // sequence Y, we see a '0'
+ Uart.state = STATE_MILLER_Y;
+ Uart.bitCnt++;
+ }
+ if(Uart.drop == DROP_FIRST_HALF) {
+ // Would be STATE_MILLER_Z
+ // but Z does not follow X, so error
+ Uart.state = STATE_ERROR_WAIT;
+ error = 0x03;
+ }
+ if(Uart.drop == DROP_SECOND_HALF) {
+ // We see a '1' and stay in state X
+ Uart.shiftReg |= 0x100;
+ Uart.bitCnt++;
+ }
+ break;
+
+ case STATE_MILLER_Y:
+ Uart.bitCnt++;
+ Uart.shiftReg >>= 1;
+ if(Uart.drop == DROP_NONE) {
+ // logic '0' followed by sequence Y
+ // end of communication
+ Uart.state = STATE_UNSYNCD;
+ EOC = TRUE;
+ }
+ if(Uart.drop == DROP_FIRST_HALF) {
+ // we see a '0'
+ Uart.state = STATE_MILLER_Z;
+ }
+ if(Uart.drop == DROP_SECOND_HALF) {
+ // We see a '1' and go to state X
+ Uart.shiftReg |= 0x100;
+ Uart.state = STATE_MILLER_X;
+ }
+ break;
+
+ case STATE_ERROR_WAIT:
+ // That went wrong. Now wait for at least two bit periods
+ // and try to sync again
+ if(Uart.drop == DROP_NONE) {
+ Uart.highCnt = 6;
+ Uart.state = STATE_UNSYNCD;
+ }
+ break;
+
+ default:
+ Uart.state = STATE_UNSYNCD;
+ Uart.highCnt = 0;
+ break;
+ }
+
+ Uart.drop = DROP_NONE;
+
+ // should have received at least one whole byte...
+ if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) {
+ return TRUE;
+ }
+
+ if(Uart.bitCnt == 9) {
+ Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
+ Uart.byteCnt++;
+
+ Uart.parityBits <<= 1;
+ Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01);
+
+ if(EOC) {
+ // when End of Communication received and
+ // all data bits processed..
+ return TRUE;
+ }
+ Uart.bitCnt = 0;
+ }
+
+ /*if(error) {
+ Uart.output[Uart.byteCnt] = 0xAA;
+ Uart.byteCnt++;
+ Uart.output[Uart.byteCnt] = error & 0xFF;
+ Uart.byteCnt++;
+ Uart.output[Uart.byteCnt] = 0xAA;
+ Uart.byteCnt++;
+ Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
+ Uart.byteCnt++;
+ Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
+ Uart.byteCnt++;
+ Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
+ Uart.byteCnt++;
+ Uart.output[Uart.byteCnt] = 0xAA;
+ Uart.byteCnt++;
+ return TRUE;
+ }*/
+ }
+
+ }
+ else {
+ bit = Uart.bitBuffer & 0xf0;
+ bit >>= 4;
+ bit ^= 0x0F;
+ if(bit) {
+ // should have been high or at least (4 * 128) / fc
+ // according to ISO this should be at least (9 * 128 + 20) / fc
+ if(Uart.highCnt == 8) {
+ // we went low, so this could be start of communication
+ // it turns out to be safer to choose a less significant
+ // syncbit... so we check whether the neighbour also represents the drop
+ Uart.posCnt = 1; // apparently we are busy with our first half bit period
+ Uart.syncBit = bit & 8;
+ Uart.samples = 3;
+ if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
+ else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
+ if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
+ else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
+ if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
+ if(Uart.syncBit & (Uart.bitBuffer & 8)) {
+ Uart.syncBit = 8;
+
+ // the first half bit period is expected in next sample
+ Uart.posCnt = 0;
+ Uart.samples = 3;
+ }
+ }
+ else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
+
+ Uart.syncBit <<= 4;
+ Uart.state = STATE_START_OF_COMMUNICATION;
+ Uart.drop = DROP_FIRST_HALF;
+ Uart.bitCnt = 0;
+ Uart.byteCnt = 0;
+ Uart.parityBits = 0;
+ error = 0;
+ }
+ else {
+ Uart.highCnt = 0;
+ }
+ }
+ else {
+ if(Uart.highCnt < 8) {
+ Uart.highCnt++;
+ }
+ }
+ }
+
+ return FALSE;
+}
+
+//=============================================================================
+// ISO 14443 Type A - Manchester
+//=============================================================================
+
+static struct {
+ enum {
+ DEMOD_UNSYNCD,
+ DEMOD_START_OF_COMMUNICATION,
+ DEMOD_MANCHESTER_D,
+ DEMOD_MANCHESTER_E,
+ DEMOD_MANCHESTER_F,
+ DEMOD_ERROR_WAIT
+ } state;
+ int bitCount;
+ int posCount;
+ int syncBit;
+ int parityBits;
+ WORD shiftReg;
+ int buffer;
+ int buff;
+ int samples;
+ int len;
+ enum {
+ SUB_NONE,
+ SUB_FIRST_HALF,
+ SUB_SECOND_HALF
+ } sub;
+ BYTE *output;
+} Demod;
+
+static BOOL ManchesterDecoding(int v)
+{
+ int bit;
+ int modulation;
+ int error = 0;
+
+ if(!Demod.buff) {
+ Demod.buff = 1;
+ Demod.buffer = v;
+ return FALSE;
+ }
+ else {
+ bit = Demod.buffer;
+ Demod.buffer = v;
+ }
+
+ if(Demod.state==DEMOD_UNSYNCD) {
+ Demod.output[Demod.len] = 0xfa;
+ Demod.syncBit = 0;
+ //Demod.samples = 0;
+ Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
+ if(bit & 0x08) { Demod.syncBit = 0x08; }
+ if(!Demod.syncBit) {
+ if(bit & 0x04) { Demod.syncBit = 0x04; }
+ }
+ else if(bit & 0x04) { Demod.syncBit = 0x04; bit <<= 4; }
+ if(!Demod.syncBit) {
+ if(bit & 0x02) { Demod.syncBit = 0x02; }
+ }
+ else if(bit & 0x02) { Demod.syncBit = 0x02; bit <<= 4; }
+ if(!Demod.syncBit) {
+ if(bit & 0x01) { Demod.syncBit = 0x01; }
+
+ if(Demod.syncBit & (Demod.buffer & 0x08)) {
+ Demod.syncBit = 0x08;
+
+ // The first half bitperiod is expected in next sample
+ Demod.posCount = 0;
+ Demod.output[Demod.len] = 0xfb;
+ }
+ }
+ else if(bit & 0x01) { Demod.syncBit = 0x01; }
+
+ if(Demod.syncBit) {
+ Demod.len = 0;
+ Demod.state = DEMOD_START_OF_COMMUNICATION;
+ Demod.sub = SUB_FIRST_HALF;
+ Demod.bitCount = 0;
+ Demod.shiftReg = 0;
+ Demod.parityBits = 0;
+ Demod.samples = 0;
+ if(Demod.posCount) {
+ switch(Demod.syncBit) {
+ case 0x08: Demod.samples = 3; break;
+ case 0x04: Demod.samples = 2; break;
+ case 0x02: Demod.samples = 1; break;
+ case 0x01: Demod.samples = 0; break;
+ }
+ }
+ error = 0;
+ }
+ }
+ else {
+ //modulation = bit & Demod.syncBit;
+ modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
+
+ Demod.samples += 4;
+
+ if(Demod.posCount==0) {
+ Demod.posCount = 1;
+ if(modulation) {
+ Demod.sub = SUB_FIRST_HALF;
+ }
+ else {
+ Demod.sub = SUB_NONE;
+ }
+ }
+ else {
+ Demod.posCount = 0;
+ if(modulation && (Demod.sub == SUB_FIRST_HALF)) {
+ if(Demod.state!=DEMOD_ERROR_WAIT) {
+ Demod.state = DEMOD_ERROR_WAIT;
+ Demod.output[Demod.len] = 0xaa;
+ error = 0x01;
+ }
+ }
+ else if(modulation) {
+ Demod.sub = SUB_SECOND_HALF;
+ }
+
+ switch(Demod.state) {
+ case DEMOD_START_OF_COMMUNICATION:
+ if(Demod.sub == SUB_FIRST_HALF) {
+ Demod.state = DEMOD_MANCHESTER_D;
+ }
+ else {
+ Demod.output[Demod.len] = 0xab;
+ Demod.state = DEMOD_ERROR_WAIT;
+ error = 0x02;
+ }
+ break;
+
+ case DEMOD_MANCHESTER_D:
+ case DEMOD_MANCHESTER_E:
+ if(Demod.sub == SUB_FIRST_HALF) {
+ Demod.bitCount++;
+ Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
+ Demod.state = DEMOD_MANCHESTER_D;
+ }
+ else if(Demod.sub == SUB_SECOND_HALF) {
+ Demod.bitCount++;
+ Demod.shiftReg >>= 1;
+ Demod.state = DEMOD_MANCHESTER_E;
+ }
+ else {
+ Demod.state = DEMOD_MANCHESTER_F;
+ }
+ break;
+
+ case DEMOD_MANCHESTER_F:
+ // Tag response does not need to be a complete byte!
+ if(Demod.len > 0 || Demod.bitCount > 0) {
+ if(Demod.bitCount > 0) {
+ Demod.shiftReg >>= (9 - Demod.bitCount);
+ Demod.output[Demod.len] = Demod.shiftReg & 0xff;
+ Demod.len++;
+ // No parity bit, so just shift a 0
+ Demod.parityBits <<= 1;
+ }
+
+ Demod.state = DEMOD_UNSYNCD;
+ return TRUE;
+ }
+ else {
+ Demod.output[Demod.len] = 0xad;
+ Demod.state = DEMOD_ERROR_WAIT;
+ error = 0x03;
+ }
+ break;
+
+ case DEMOD_ERROR_WAIT:
+ Demod.state = DEMOD_UNSYNCD;
+ break;
+
+ default:
+ Demod.output[Demod.len] = 0xdd;
+ Demod.state = DEMOD_UNSYNCD;
+ break;
+ }
+
+ if(Demod.bitCount>=9) {
+ Demod.output[Demod.len] = Demod.shiftReg & 0xff;
+ Demod.len++;
+
+ Demod.parityBits <<= 1;
+ Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
+
+ Demod.bitCount = 0;
+ Demod.shiftReg = 0;
+ }
+
+ /*if(error) {
+ Demod.output[Demod.len] = 0xBB;
+ Demod.len++;
+ Demod.output[Demod.len] = error & 0xFF;
+ Demod.len++;
+ Demod.output[Demod.len] = 0xBB;
+ Demod.len++;
+ Demod.output[Demod.len] = bit & 0xFF;
+ Demod.len++;
+ Demod.output[Demod.len] = Demod.buffer & 0xFF;
+ Demod.len++;
+ Demod.output[Demod.len] = Demod.syncBit & 0xFF;
+ Demod.len++;
+ Demod.output[Demod.len] = 0xBB;
+ Demod.len++;
+ return TRUE;
+ }*/
+
+ }
+
+ } // end (state != UNSYNCED)
+
+ return FALSE;
+}
+
+//=============================================================================
+// Finally, a `sniffer' for ISO 14443 Type A
+// Both sides of communication!
+//=============================================================================
+
+//-----------------------------------------------------------------------------
+// Record the sequence of commands sent by the reader to the tag, with
+// triggering so that we start recording at the point that the tag is moved
+// near the reader.
+//-----------------------------------------------------------------------------
+void SnoopIso14443a(void)
+{
+// #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values
+// #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values
+// #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values
+// #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values
+// #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values
+
+ // We won't start recording the frames that we acquire until we trigger;
+ // a good trigger condition to get started is probably when we see a
+ // response from the tag.
+ BOOL triggered = TRUE; // FALSE to wait first for card
+
+ // The command (reader -> tag) that we're receiving.
+ // The length of a received command will in most cases be no more than 18 bytes.
+ // So 32 should be enough!
+ BYTE *receivedCmd = (((BYTE *)BigBuf) + RECV_CMD_OFFSET);
+ // The response (tag -> reader) that we're receiving.
+ BYTE *receivedResponse = (((BYTE *)BigBuf) + RECV_RES_OFFSET);
+
+ // As we receive stuff, we copy it from receivedCmd or receivedResponse
+ // into trace, along with its length and other annotations.
+ //BYTE *trace = (BYTE *)BigBuf;
+ //int traceLen = 0;
+
+ // The DMA buffer, used to stream samples from the FPGA
+ SBYTE *dmaBuf = ((SBYTE *)BigBuf) + DMA_BUFFER_OFFSET;
+ int lastRxCounter;
+ SBYTE *upTo;
+ int smpl;
+ int maxBehindBy = 0;
+
+ // Count of samples received so far, so that we can include timing
+ // information in the trace buffer.
+ int samples = 0;
+ int rsamples = 0;
+
+ memset(trace, 0x44, RECV_CMD_OFFSET);
+
+ // Set up the demodulator for tag -> reader responses.
+ Demod.output = receivedResponse;
+ Demod.len = 0;
+ Demod.state = DEMOD_UNSYNCD;
+
+ // And the reader -> tag commands
+ memset(&Uart, 0, sizeof(Uart));
+ Uart.output = receivedCmd;
+ Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
+ Uart.state = STATE_UNSYNCD;
+
+ // And put the FPGA in the appropriate mode
+ // Signal field is off with the appropriate LED
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+ // Setup for the DMA.
+ FpgaSetupSsc();
+ upTo = dmaBuf;
+ lastRxCounter = DMA_BUFFER_SIZE;
+ FpgaSetupSscDma((BYTE *)dmaBuf, DMA_BUFFER_SIZE);
+
+ LED_A_ON();
+
+ // And now we loop, receiving samples.
+ for(;;) {
+ WDT_HIT();
+ int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
+ (DMA_BUFFER_SIZE-1);
+ if(behindBy > maxBehindBy) {
+ maxBehindBy = behindBy;
+ if(behindBy > 400) {
+ DbpString("blew circular buffer!");
+ goto done;
+ }
+ }
+ if(behindBy < 1) continue;
+
+ smpl = upTo[0];
+ upTo++;
+ lastRxCounter -= 1;
+ if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
+ upTo -= DMA_BUFFER_SIZE;
+ lastRxCounter += DMA_BUFFER_SIZE;
+ AT91C_BASE_PDC_SSC->PDC_RNPR = (DWORD)upTo;
+ AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
+ }
+
+ samples += 4;
+#define HANDLE_BIT_IF_BODY \
+ LED_C_ON(); \
+ if(triggered) { \
+ trace[traceLen++] = ((rsamples >> 0) & 0xff); \
+ trace[traceLen++] = ((rsamples >> 8) & 0xff); \
+ trace[traceLen++] = ((rsamples >> 16) & 0xff); \
+ trace[traceLen++] = ((rsamples >> 24) & 0xff); \
+ trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff); \
+ trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff); \
+ trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); \
+ trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); \
+ trace[traceLen++] = Uart.byteCnt; \
+ memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); \
+ traceLen += Uart.byteCnt; \
+ if(traceLen > TRACE_LENGTH) break; \
+ } \
+ /* And ready to receive another command. */ \
+ Uart.state = STATE_UNSYNCD; \
+ /* And also reset the demod code, which might have been */ \
+ /* false-triggered by the commands from the reader. */ \
+ Demod.state = DEMOD_UNSYNCD; \
+ LED_B_OFF(); \
+
+ if(MillerDecoding((smpl & 0xF0) >> 4)) {
+ rsamples = samples - Uart.samples;
+ HANDLE_BIT_IF_BODY
+ }
+ if(ManchesterDecoding(smpl & 0x0F)) {
+ rsamples = samples - Demod.samples;
+ LED_B_ON();
+
+ // timestamp, as a count of samples
+ trace[traceLen++] = ((rsamples >> 0) & 0xff);
+ trace[traceLen++] = ((rsamples >> 8) & 0xff);
+ trace[traceLen++] = ((rsamples >> 16) & 0xff);
+ trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);
+ trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);
+ trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);
+ trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);
+ trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);
+ // length
+ trace[traceLen++] = Demod.len;
+ memcpy(trace+traceLen, receivedResponse, Demod.len);
+ traceLen += Demod.len;
+ if(traceLen > TRACE_LENGTH) break;
+
+ triggered = TRUE;
+
+ // And ready to receive another response.
+ memset(&Demod, 0, sizeof(Demod));
+ Demod.output = receivedResponse;
+ Demod.state = DEMOD_UNSYNCD;
+ LED_C_OFF();
+ }
+
+ if(BUTTON_PRESS()) {
+ DbpString("cancelled_a");
+ goto done;
+ }
+ }
+
+ DbpString("COMMAND FINISHED");
+
+ Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
+ Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
+
+done:
+ AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
+ Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
+ Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
+ LED_A_OFF();
+ LED_B_OFF();
+ LED_C_OFF();
+ LED_D_OFF();
+}
+
+// Prepare communication bits to send to FPGA
+void Sequence(SecType seq)
+{
+ ToSendMax++;
+ switch(seq) {
+ // CARD TO READER
+ case SEC_D:
+ // Sequence D: 11110000
+ // modulation with subcarrier during first half
+ ToSend[ToSendMax] = 0xf0;
+ break;
+ case SEC_E:
+ // Sequence E: 00001111
+ // modulation with subcarrier during second half
+ ToSend[ToSendMax] = 0x0f;
+ break;
+ case SEC_F:
+ // Sequence F: 00000000
+ // no modulation with subcarrier
+ ToSend[ToSendMax] = 0x00;
+ break;
+ // READER TO CARD
+ case SEC_X:
+ // Sequence X: 00001100
+ // drop after half a period
+ ToSend[ToSendMax] = 0x0c;
+ break;
+ case SEC_Y:
+ default:
+ // Sequence Y: 00000000
+ // no drop
+ ToSend[ToSendMax] = 0x00;
+ break;
+ case SEC_Z:
+ // Sequence Z: 11000000
+ // drop at start
+ ToSend[ToSendMax] = 0xc0;
+ break;
+ }
+}
+
+//-----------------------------------------------------------------------------
+// Prepare tag messages
+//-----------------------------------------------------------------------------
+static void CodeIso14443aAsTag(const BYTE *cmd, int len)
+{
+ int i;
+ int oddparity;
+
+ ToSendReset();
+
+ // Correction bit, might be removed when not needed
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(1); // 1
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+
+ // Send startbit
+ Sequence(SEC_D);
+
+ for(i = 0; i < len; i++) {
+ int j;
+ BYTE b = cmd[i];
+
+ // Data bits
+ oddparity = 0x01;
+ for(j = 0; j < 8; j++) {
+ oddparity ^= (b & 1);
+ if(b & 1) {
+ Sequence(SEC_D);
+ } else {
+ Sequence(SEC_E);
+ }
+ b >>= 1;
+ }
+
+ // Parity bit
+ if(oddparity) {
+ Sequence(SEC_D);
+ } else {
+ Sequence(SEC_E);
+ }
+ }
+
+ // Send stopbit
+ Sequence(SEC_F);
+
+ // Flush the buffer in FPGA!!
+ for(i = 0; i < 5; i++) {
+ Sequence(SEC_F);
+ }
+
+ // Convert from last byte pos to length
+ ToSendMax++;
+
+ // Add a few more for slop
+ ToSend[ToSendMax++] = 0x00;
+ ToSend[ToSendMax++] = 0x00;
+ //ToSendMax += 2;
+}
+
+//-----------------------------------------------------------------------------
+// This is to send a NACK kind of answer, its only 3 bits, I know it should be 4
+//-----------------------------------------------------------------------------
+static void CodeStrangeAnswer()
+{
+ int i;
+
+ ToSendReset();
+
+ // Correction bit, might be removed when not needed
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(1); // 1
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+
+ // Send startbit
+ Sequence(SEC_D);
+
+ // 0
+ Sequence(SEC_E);
+
+ // 0
+ Sequence(SEC_E);
+
+ // 1
+ Sequence(SEC_D);
+
+ // Send stopbit
+ Sequence(SEC_F);
+
+ // Flush the buffer in FPGA!!
+ for(i = 0; i < 5; i++) {
+ Sequence(SEC_F);
+ }
+
+ // Convert from last byte pos to length
+ ToSendMax++;
+
+ // Add a few more for slop
+ ToSend[ToSendMax++] = 0x00;
+ ToSend[ToSendMax++] = 0x00;
+ //ToSendMax += 2;
+}
+
+//-----------------------------------------------------------------------------
+// Wait for commands from reader
+// Stop when button is pressed
+// Or return TRUE when command is captured
+//-----------------------------------------------------------------------------
+static BOOL GetIso14443aCommandFromReader(BYTE *received, int *len, int maxLen)
+{
+ // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
+ // only, since we are receiving, not transmitting).
+ // Signal field is off with the appropriate LED
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
+ // Now run a `software UART' on the stream of incoming samples.
+ Uart.output = received;
+ Uart.byteCntMax = maxLen;
+ Uart.state = STATE_UNSYNCD;
+
+ for(;;) {
+ WDT_HIT();
+
+ if(BUTTON_PRESS()) return FALSE;
+
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = 0x00;
+ }
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ BYTE b = (BYTE)AT91C_BASE_SSC->SSC_RHR;
+ if(MillerDecoding((b & 0xf0) >> 4)) {
+ *len = Uart.byteCnt;
+ return TRUE;
+ }
+ if(MillerDecoding(b & 0x0f)) {
+ *len = Uart.byteCnt;
+ return TRUE;
+ }
+ }
+ }
+}
+
+//-----------------------------------------------------------------------------
+// Main loop of simulated tag: receive commands from reader, decide what
+// response to send, and send it.
+//-----------------------------------------------------------------------------
+void SimulateIso14443aTag(int tagType, int TagUid)
+{
+ // This function contains the tag emulation
+
+ // Prepare protocol messages
+ // static const BYTE cmd1[] = { 0x26 };
+// static const BYTE response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg
+//
+ static const BYTE response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me
+// static const BYTE response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me
+
+ // UID response
+ // static const BYTE cmd2[] = { 0x93, 0x20 };
+ //static const BYTE response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg
+
+
+
+// my desfire
+ static const BYTE response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips
+
+
+// When reader selects us during cascade1 it will send cmd3
+//BYTE response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE)
+BYTE response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire)
+ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
+
+// send cascade2 2nd half of UID
+static const BYTE response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck
+// NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID
+
+
+// When reader selects us during cascade2 it will send cmd3a
+//BYTE response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE)
+BYTE response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire)
+ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
+
+ static const BYTE response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
+
+ BYTE *resp;
+ int respLen;
+
+ // Longest possible response will be 16 bytes + 2 CRC = 18 bytes
+ // This will need
+ // 144 data bits (18 * 8)
+ // 18 parity bits
+ // 2 Start and stop
+ // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
+ // 1 just for the case
+ // ----------- +
+ // 166
+ //
+ // 166 bytes, since every bit that needs to be send costs us a byte
+ //
+
+
+ // Respond with card type
+ BYTE *resp1 = (((BYTE *)BigBuf) + 800);
+ int resp1Len;
+
+ // Anticollision cascade1 - respond with uid
+ BYTE *resp2 = (((BYTE *)BigBuf) + 970);
+ int resp2Len;
+
+ // Anticollision cascade2 - respond with 2nd half of uid if asked
+ // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88
+ BYTE *resp2a = (((BYTE *)BigBuf) + 1140);
+ int resp2aLen;
+
+ // Acknowledge select - cascade 1
+ BYTE *resp3 = (((BYTE *)BigBuf) + 1310);
+ int resp3Len;
+
+ // Acknowledge select - cascade 2
+ BYTE *resp3a = (((BYTE *)BigBuf) + 1480);
+ int resp3aLen;
+
+ // Response to a read request - not implemented atm
+ BYTE *resp4 = (((BYTE *)BigBuf) + 1550);
+ int resp4Len;
+
+ // Authenticate response - nonce
+ BYTE *resp5 = (((BYTE *)BigBuf) + 1720);
+ int resp5Len;
+
+ BYTE *receivedCmd = (BYTE *)BigBuf;
+ int len;
+
+ int i;
+ int u;
+ BYTE b;
+
+ // To control where we are in the protocol
+ int order = 0;
+ int lastorder;
+
+ // Just to allow some checks
+ int happened = 0;
+ int happened2 = 0;
+
+ int cmdsRecvd = 0;
+
+ BOOL fdt_indicator;
+
+ memset(receivedCmd, 0x44, 400);
+
+ // Prepare the responses of the anticollision phase
+ // there will be not enough time to do this at the moment the reader sends it REQA
+
+ // Answer to request
+ CodeIso14443aAsTag(response1, sizeof(response1));
+ memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
+
+ // Send our UID (cascade 1)
+ CodeIso14443aAsTag(response2, sizeof(response2));
+ memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;
+
+ // Answer to select (cascade1)
+ CodeIso14443aAsTag(response3, sizeof(response3));
+ memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;
+
+ // Send the cascade 2 2nd part of the uid
+ CodeIso14443aAsTag(response2a, sizeof(response2a));
+ memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax;
+
+ // Answer to select (cascade 2)
+ CodeIso14443aAsTag(response3a, sizeof(response3a));
+ memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax;
+
+ // Strange answer is an example of rare message size (3 bits)
+ CodeStrangeAnswer();
+ memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;
+
+ // Authentication answer (random nonce)
+ CodeIso14443aAsTag(response5, sizeof(response5));
+ memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax;
+
+ // We need to listen to the high-frequency, peak-detected path.
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+ FpgaSetupSsc();
+
+ cmdsRecvd = 0;
+
+ LED_A_ON();
+ for(;;) {
+
+ if(!GetIso14443aCommandFromReader(receivedCmd, &len, 100)) {
+ DbpString("button press");
+ break;
+ }
+ // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
+ // Okay, look at the command now.
+ lastorder = order;
+ i = 1; // first byte transmitted
+ if(receivedCmd[0] == 0x26) {
+ // Received a REQUEST
+ resp = resp1; respLen = resp1Len; order = 1;
+ //DbpString("Hello request from reader:");
+ } else if(receivedCmd[0] == 0x52) {
+ // Received a WAKEUP
+ resp = resp1; respLen = resp1Len; order = 6;
+// //DbpString("Wakeup request from reader:");
+
+ } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // greg - cascade 1 anti-collision
+ // Received request for UID (cascade 1)
+ resp = resp2; respLen = resp2Len; order = 2;
+// DbpString("UID (cascade 1) request from reader:");
+// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
+
+
+ } else if(receivedCmd[1] == 0x20 && receivedCmd[0] ==0x95) { // greg - cascade 2 anti-collision
+ // Received request for UID (cascade 2)
+ resp = resp2a; respLen = resp2aLen; order = 20;
+// DbpString("UID (cascade 2) request from reader:");
+// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
+
+
+ } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x93) { // greg - cascade 1 select
+ // Received a SELECT
+ resp = resp3; respLen = resp3Len; order = 3;
+// DbpString("Select (cascade 1) request from reader:");
+// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
+
+
+ } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x95) { // greg - cascade 2 select
+ // Received a SELECT
+ resp = resp3a; respLen = resp3aLen; order = 30;
+// DbpString("Select (cascade 2) request from reader:");
+// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
+
+
+ } else if(receivedCmd[0] == 0x30) {
+ // Received a READ
+ resp = resp4; respLen = resp4Len; order = 4; // Do nothing
+ Dbprintf("Read request from reader: %x %x %x",
+ receivedCmd[0], receivedCmd[1], receivedCmd[2]);
+
+
+ } else if(receivedCmd[0] == 0x50) {
+ // Received a HALT
+ resp = resp1; respLen = 0; order = 5; // Do nothing
+ DbpString("Reader requested we HALT!:");
+
+ } else if(receivedCmd[0] == 0x60) {
+ // Received an authentication request
+ resp = resp5; respLen = resp5Len; order = 7;
+ Dbprintf("Authenticate request from reader: %x %x %x",
+ receivedCmd[0], receivedCmd[1], receivedCmd[2]);
+
+ } else if(receivedCmd[0] == 0xE0) {
+ // Received a RATS request
+ resp = resp1; respLen = 0;order = 70;
+ Dbprintf("RATS request from reader: %x %x %x",
+ receivedCmd[0], receivedCmd[1], receivedCmd[2]);
+ } else {
+ // Never seen this command before
+ Dbprintf("Unknown command received from reader: %x %x %x %x %x %x %x %x %x",
+ receivedCmd[0], receivedCmd[1], receivedCmd[2],
+ receivedCmd[3], receivedCmd[3], receivedCmd[4],
+ receivedCmd[5], receivedCmd[6], receivedCmd[7]);
+ // Do not respond
+ resp = resp1; respLen = 0; order = 0;
+ }
+
+ // Count number of wakeups received after a halt
+ if(order == 6 && lastorder == 5) { happened++; }
+
+ // Count number of other messages after a halt
+ if(order != 6 && lastorder == 5) { happened2++; }
+
+ // Look at last parity bit to determine timing of answer
+ if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) {
+ // 1236, so correction bit needed
+ i = 0;
+ }
+
+ memset(receivedCmd, 0x44, 32);
+
+ if(cmdsRecvd > 999) {
+ DbpString("1000 commands later...");
+ break;
+ }
+ else {
+ cmdsRecvd++;
+ }
+
+ if(respLen <= 0) continue;
+
+ // Modulate Manchester
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
+ AT91C_BASE_SSC->SSC_THR = 0x00;
+ FpgaSetupSsc();
+
+ // ### Transmit the response ###
+ u = 0;
+ b = 0x00;
+ fdt_indicator = FALSE;
+ for(;;) {
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ volatile BYTE b = (BYTE)AT91C_BASE_SSC->SSC_RHR;
+ (void)b;
+ }
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ if(i > respLen) {
+ b = 0x00;
+ u++;
+ } else {
+ b = resp[i];
+ i++;
+ }
+ AT91C_BASE_SSC->SSC_THR = b;
+
+ if(u > 4) {
+ break;
+ }
+ }
+ if(BUTTON_PRESS()) {
+ break;
+ }
+ }
+
+ }
+
+ Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
+ LED_A_OFF();
+}
+
+//-----------------------------------------------------------------------------
+// Transmit the command (to the tag) that was placed in ToSend[].
+//-----------------------------------------------------------------------------
+static void TransmitFor14443a(const BYTE *cmd, int len, int *samples, int *wait)
+{
+ int c;
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+
+ if (wait)
+ if(*wait < 10)
+ *wait = 10;
+
+ for(c = 0; c < *wait;) {
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
+ c++;
+ }
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ volatile DWORD r = AT91C_BASE_SSC->SSC_RHR;
+ (void)r;
+ }
+ WDT_HIT();
+ }
+
+ c = 0;
+ for(;;) {
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = cmd[c];
+ c++;
+ if(c >= len) {
+ break;
+ }
+ }
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ volatile DWORD r = AT91C_BASE_SSC->SSC_RHR;
+ (void)r;
+ }
+ WDT_HIT();
+ }
+ if (samples) *samples = (c + *wait) << 3;
+}
+
+//-----------------------------------------------------------------------------
+// To generate an arbitrary stream from reader
+//
+//-----------------------------------------------------------------------------
+void ArbitraryFromReader(const BYTE *cmd, int parity, int len)
+{
+ int i;
+ int j;
+ int last;
+ BYTE b;
+
+ ToSendReset();
+
+ // Start of Communication (Seq. Z)
+ Sequence(SEC_Z);
+ last = 0;
+
+ for(i = 0; i < len; i++) {
+ // Data bits
+ b = cmd[i];
+ for(j = 0; j < 8; j++) {
+ if(b & 1) {
+ // Sequence X
+ Sequence(SEC_X);
+ last = 1;
+ } else {
+ if(last == 0) {
+ // Sequence Z
+ Sequence(SEC_Z);
+ }
+ else {
+ // Sequence Y
+ Sequence(SEC_Y);
+ last = 0;
+ }
+ }
+ b >>= 1;
+
+ }
+
+ // Predefined parity bit, the flipper flips when needed, because of flips in byte sent
+ if(((parity >> (len - i - 1)) & 1)) {
+ // Sequence X
+ Sequence(SEC_X);
+ last = 1;
+ } else {
+ if(last == 0) {
+ // Sequence Z
+ Sequence(SEC_Z);
+ }
+ else {
+ // Sequence Y
+ Sequence(SEC_Y);
+ last = 0;
+ }
+ }
+ }
+
+ // End of Communication
+ if(last == 0) {
+ // Sequence Z
+ Sequence(SEC_Z);
+ }
+ else {
+ // Sequence Y
+ Sequence(SEC_Y);
+ last = 0;
+ }
+ // Sequence Y
+ Sequence(SEC_Y);
+
+ // Just to be sure!
+ Sequence(SEC_Y);
+ Sequence(SEC_Y);
+ Sequence(SEC_Y);
+
+ // Convert from last character reference to length
+ ToSendMax++;
+}
+
+//-----------------------------------------------------------------------------
+// Code a 7-bit command without parity bit
+// This is especially for 0x26 and 0x52 (REQA and WUPA)
+//-----------------------------------------------------------------------------
+void ShortFrameFromReader(const BYTE bt)
+{
+ int j;
+ int last;
+ BYTE b;
+
+ ToSendReset();
+
+ // Start of Communication (Seq. Z)
+ Sequence(SEC_Z);
+ last = 0;
+
+ b = bt;
+ for(j = 0; j < 7; j++) {
+ if(b & 1) {
+ // Sequence X
+ Sequence(SEC_X);
+ last = 1;
+ } else {
+ if(last == 0) {
+ // Sequence Z
+ Sequence(SEC_Z);
+ }
+ else {
+ // Sequence Y
+ Sequence(SEC_Y);
+ last = 0;
+ }
+ }
+ b >>= 1;
+ }
+
+ // End of Communication
+ if(last == 0) {
+ // Sequence Z
+ Sequence(SEC_Z);
+ }
+ else {
+ // Sequence Y
+ Sequence(SEC_Y);
+ last = 0;
+ }
+ // Sequence Y
+ Sequence(SEC_Y);
+
+ // Just to be sure!
+ Sequence(SEC_Y);
+ Sequence(SEC_Y);
+ Sequence(SEC_Y);
+
+ // Convert from last character reference to length
+ ToSendMax++;
+}
+
+//-----------------------------------------------------------------------------
+// Prepare reader command to send to FPGA
+//
+//-----------------------------------------------------------------------------
+void CodeIso14443aAsReaderPar(const BYTE * cmd, int len, DWORD dwParity)
+{
+ int i, j;
+ int last;
+ BYTE b;
+
+ ToSendReset();
+
+ // Start of Communication (Seq. Z)
+ Sequence(SEC_Z);
+ last = 0;
+
+ // Generate send structure for the data bits
+ for (i = 0; i < len; i++) {
+ // Get the current byte to send
+ b = cmd[i];
+
+ for (j = 0; j < 8; j++) {
+ if (b & 1) {
+ // Sequence X
+ Sequence(SEC_X);
+ last = 1;
+ } else {
+ if (last == 0) {
+ // Sequence Z
+ Sequence(SEC_Z);
+ } else {
+ // Sequence Y
+ Sequence(SEC_Y);
+ last = 0;
+ }
+ }
+ b >>= 1;
+ }
+
+ // Get the parity bit
+ if ((dwParity >> i) & 0x01) {
+ // Sequence X
+ Sequence(SEC_X);
+ last = 1;
+ } else {
+ if (last == 0) {
+ // Sequence Z
+ Sequence(SEC_Z);
+ } else {
+ // Sequence Y
+ Sequence(SEC_Y);
+ last = 0;
+ }
+ }
+ }
+
+ // End of Communication
+ if (last == 0) {
+ // Sequence Z
+ Sequence(SEC_Z);
+ } else {
+ // Sequence Y
+ Sequence(SEC_Y);
+ last = 0;
+ }
+ // Sequence Y
+ Sequence(SEC_Y);
+
+ // Just to be sure!
+ Sequence(SEC_Y);
+ Sequence(SEC_Y);
+ Sequence(SEC_Y);
+
+ // Convert from last character reference to length
+ ToSendMax++;
+}
+
+//-----------------------------------------------------------------------------
+// Wait a certain time for tag response
+// If a response is captured return TRUE
+// If it takes to long return FALSE
+//-----------------------------------------------------------------------------
+static BOOL GetIso14443aAnswerFromTag(BYTE *receivedResponse, int maxLen, int *samples, int *elapsed) //BYTE *buffer
+{
+ // buffer needs to be 512 bytes
+ int c;
+
+ // Set FPGA mode to "reader listen mode", no modulation (listen
+ // only, since we are receiving, not transmitting).
+ // Signal field is on with the appropriate LED
+ LED_D_ON();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
+
+ // Now get the answer from the card
+ Demod.output = receivedResponse;
+ Demod.len = 0;
+ Demod.state = DEMOD_UNSYNCD;
+
+ BYTE b;
+ if (elapsed) *elapsed = 0;
+
+ c = 0;
+ for(;;) {
+ WDT_HIT();
+
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
+ if (elapsed) (*elapsed)++;
+ }
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ if(c < 512) { c++; } else { return FALSE; }
+ b = (BYTE)AT91C_BASE_SSC->SSC_RHR;
+ if(ManchesterDecoding((b & 0xf0) >> 4)) {
+ *samples = ((c - 1) << 3) + 4;
+ return TRUE;
+ }
+ if(ManchesterDecoding(b & 0x0f)) {
+ *samples = c << 3;
+ return TRUE;
+ }
+ }
+ }
+}
+
+void ReaderTransmitShort(const BYTE* bt)
+{
+ int wait = 0;
+ int samples = 0;
+
+ ShortFrameFromReader(*bt);
+
+ // Select the card
+ TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
+
+ // Store reader command in buffer
+ if (tracing) LogTrace(bt,1,0,GetParity(bt,1),TRUE);
+}
+
+void ReaderTransmitPar(BYTE* frame, int len, DWORD par)
+{
+ int wait = 0;
+ int samples = 0;
+
+ // This is tied to other size changes
+ // BYTE* frame_addr = ((BYTE*)BigBuf) + 2024;
+ CodeIso14443aAsReaderPar(frame,len,par);
+
+ // Select the card
+ TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
+
+ // Store reader command in buffer
+ if (tracing) LogTrace(frame,len,0,par,TRUE);
+}
+
+
+void ReaderTransmit(BYTE* frame, int len)
+{
+ // Generate parity and redirect
+ ReaderTransmitPar(frame,len,GetParity(frame,len));
+}
+
+BOOL ReaderReceive(BYTE* receivedAnswer)
+{
+ int samples = 0;
+ if (!GetIso14443aAnswerFromTag(receivedAnswer,100,&samples,0)) return FALSE;
+ if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
+ return TRUE;
+}
+
+//-----------------------------------------------------------------------------
+// Read an ISO 14443a tag. Send out commands and store answers.
+//
+//-----------------------------------------------------------------------------
+void ReaderIso14443a(DWORD parameter)
+{
+ // Anticollision
+ BYTE wupa[] = { 0x52 };
+ BYTE sel_all[] = { 0x93,0x20 };
+ BYTE sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
+ BYTE sel_all_c2[] = { 0x95,0x20 };
+ BYTE sel_uid_c2[] = { 0x95,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
+
+ // Mifare AUTH
+ BYTE mf_auth[] = { 0x60,0x00,0xf5,0x7b };
+// BYTE mf_nr_ar[] = { 0x00,0x00,0x00,0x00 };
+
+ BYTE* receivedAnswer = (((BYTE *)BigBuf) + 3560); // was 3560 - tied to other size changes
+ traceLen = 0;
+
+ // Setup SSC
+ FpgaSetupSsc();
+
+ // Start from off (no field generated)
+ // Signal field is off with the appropriate LED
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(200);
+
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+ FpgaSetupSsc();
+
+ // Now give it time to spin up.
+ // Signal field is on with the appropriate LED
+ LED_D_ON();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+ SpinDelay(200);
+
+ LED_A_ON();
+ LED_B_OFF();
+ LED_C_OFF();
+
+ while(traceLen < TRACE_LENGTH)
+ {
+ // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
+ ReaderTransmitShort(wupa);
+
+ // Test if the action was cancelled
+ if(BUTTON_PRESS()) {
+ break;
+ }
+
+ // Receive the ATQA
+ if (!ReaderReceive(receivedAnswer)) continue;
+
+ // Transmit SELECT_ALL
+ ReaderTransmit(sel_all,sizeof(sel_all));
+
+ // Receive the UID
+ if (!ReaderReceive(receivedAnswer)) continue;
+
+ // Construct SELECT UID command
+ // First copy the 5 bytes (Mifare Classic) after the 93 70
+ memcpy(sel_uid+2,receivedAnswer,5);
+ // Secondly compute the two CRC bytes at the end
+ AppendCrc14443a(sel_uid,7);
+
+ // Transmit SELECT_UID
+ ReaderTransmit(sel_uid,sizeof(sel_uid));
+
+ // Receive the SAK
+ if (!ReaderReceive(receivedAnswer)) continue;
+
+ // OK we have selected at least at cascade 1, lets see if first byte of UID was 0x88 in
+ // which case we need to make a cascade 2 request and select - this is a long UID
+ // When the UID is not complete, the 3nd bit (from the right) is set in the SAK.
+ if (receivedAnswer[0] &= 0x04)
+ {
+ // Transmit SELECT_ALL
+ ReaderTransmit(sel_all_c2,sizeof(sel_all_c2));
+
+ // Receive the UID
+ if (!ReaderReceive(receivedAnswer)) continue;
+
+ // Construct SELECT UID command
+ memcpy(sel_uid_c2+2,receivedAnswer,5);
+ // Secondly compute the two CRC bytes at the end
+ AppendCrc14443a(sel_uid_c2,7);
+
+ // Transmit SELECT_UID
+ ReaderTransmit(sel_uid_c2,sizeof(sel_uid_c2));
+
+ // Receive the SAK
+ if (!ReaderReceive(receivedAnswer)) continue;
+ }
+
+ // Transmit MIFARE_CLASSIC_AUTH
+ ReaderTransmit(mf_auth,sizeof(mf_auth));
+
+ // Receive the (16 bit) "random" nonce
+ if (!ReaderReceive(receivedAnswer)) continue;
+ }
+
+ // Thats it...
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LEDsoff();
+ Dbprintf("%x %x %x", rsamples, 0xCC, 0xCC);
+ DbpString("ready..");
+}
+
+//-----------------------------------------------------------------------------
+// Read an ISO 14443a tag. Send out commands and store answers.
+//
+//-----------------------------------------------------------------------------
+void ReaderMifare(DWORD parameter)
+{
+
+ // Anticollision
+ BYTE wupa[] = { 0x52 };
+ BYTE sel_all[] = { 0x93,0x20 };
+ BYTE sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
+
+ // Mifare AUTH
+ BYTE mf_auth[] = { 0x60,0x00,0xf5,0x7b };
+ BYTE mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
+
+ BYTE* receivedAnswer = (((BYTE *)BigBuf) + 3560); // was 3560 - tied to other size changes
+ traceLen = 0;
+ tracing = false;
+
+ // Setup SSC
+ FpgaSetupSsc();
+
+ // Start from off (no field generated)
+ // Signal field is off with the appropriate LED
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(200);
+
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+ FpgaSetupSsc();
+
+ // Now give it time to spin up.
+ // Signal field is on with the appropriate LED
+ LED_D_ON();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+ SpinDelay(200);
+
+ LED_A_ON();
+ LED_B_OFF();
+ LED_C_OFF();
+
+ // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
+ ReaderTransmitShort(wupa);
+ // Receive the ATQA
+ ReaderReceive(receivedAnswer);
+ // Transmit SELECT_ALL
+ ReaderTransmit(sel_all,sizeof(sel_all));
+ // Receive the UID
+ ReaderReceive(receivedAnswer);
+ // Construct SELECT UID command
+ // First copy the 5 bytes (Mifare Classic) after the 93 70
+ memcpy(sel_uid+2,receivedAnswer,5);
+ // Secondly compute the two CRC bytes at the end
+ AppendCrc14443a(sel_uid,7);
+
+ byte_t nt_diff = 0;
+ LED_A_OFF();
+ byte_t par = 0;
+ byte_t par_mask = 0xff;
+ byte_t par_low = 0;
+ BOOL led_on = TRUE;
+
+ tracing = FALSE;
+ byte_t nt[4];
+ byte_t nt_attacked[4];
+ byte_t par_list[8];
+ byte_t ks_list[8];
+ num_to_bytes(parameter,4,nt_attacked);
+
+ while(TRUE)
+ {
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(200);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+
+ // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
+ ReaderTransmitShort(wupa);
+
+ // Test if the action was cancelled
+ if(BUTTON_PRESS()) {
+ break;
+ }
+
+ // Receive the ATQA
+ if (!ReaderReceive(receivedAnswer)) continue;
+
+ // Transmit SELECT_ALL
+ ReaderTransmit(sel_all,sizeof(sel_all));
+
+ // Receive the UID
+ if (!ReaderReceive(receivedAnswer)) continue;
+
+ // Transmit SELECT_UID
+ ReaderTransmit(sel_uid,sizeof(sel_uid));
+
+ // Receive the SAK
+ if (!ReaderReceive(receivedAnswer)) continue;
+
+ // Transmit MIFARE_CLASSIC_AUTH
+ ReaderTransmit(mf_auth,sizeof(mf_auth));
+
+ // Receive the (16 bit) "random" nonce
+ if (!ReaderReceive(receivedAnswer)) continue;
+ memcpy(nt,receivedAnswer,4);
+
+ // Transmit reader nonce and reader answer
+ ReaderTransmitPar(mf_nr_ar,sizeof(mf_nr_ar),par);
+
+ // Receive 4 bit answer
+ if (ReaderReceive(receivedAnswer))
+ {
+ if (nt_diff == 0)
+ {
+ LED_A_ON();
+ memcpy(nt_attacked,nt,4);
+ par_mask = 0xf8;
+ par_low = par & 0x07;
+ }
+
+ if (memcmp(nt,nt_attacked,4) != 0) continue;
+
+ led_on = !led_on;
+ if(led_on) LED_B_ON(); else LED_B_OFF();
+ par_list[nt_diff] = par;
+ ks_list[nt_diff] = receivedAnswer[0]^0x05;
+
+ // Test if the information is complete
+ if (nt_diff == 0x07) break;
+
+ nt_diff = (nt_diff+1) & 0x07;
+ mf_nr_ar[3] = nt_diff << 5;
+ par = par_low;
+ } else {
+ if (nt_diff == 0)
+ {
+ par++;
+ } else {
+ par = (((par>>3)+1) << 3) | par_low;
+ }
+ }
+ }
+
+ LogTraceInfo(sel_uid+2,4);
+ LogTraceInfo(nt,4);
+ LogTraceInfo(par_list,8);
+ LogTraceInfo(ks_list,8);
+
+ // Thats it...
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LEDsoff();
+ tracing = TRUE;
+}