]> cvs.zerfleddert.de Git - proxmark3-svn/blobdiff - common/lfdemod.c
Fixed indents to Tabs from Spaces
[proxmark3-svn] / common / lfdemod.c
index 92ad633e7e8e200abf8214da1c9ffd5c8b3e3ae4..fae612060b462392bd4e1e99457b4d40577a2b01 100644 (file)
@@ -58,65 +58,65 @@ uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType)
 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
 uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx)
 {
-  uint8_t foundCnt=0;
-  for (int idx=0; idx < *size - pLen; idx++){
-    if (memcmp(BitStream+idx, preamble, pLen) == 0){
-      //first index found
-      foundCnt++;
-      if (foundCnt == 1){
-        *startIdx = idx;
-      }
-      if (foundCnt == 2){
-        *size = idx - *startIdx;
-        return 1;
-      }
-    }
-  }
-  return 0;
+       uint8_t foundCnt=0;
+       for (int idx=0; idx < *size - pLen; idx++){
+               if (memcmp(BitStream+idx, preamble, pLen) == 0){
+                       //first index found
+                       foundCnt++;
+                       if (foundCnt == 1){
+                               *startIdx = idx;
+                       }
+                       if (foundCnt == 2){
+                               *size = idx - *startIdx;
+                               return 1;
+                       }
+               }
+       }
+       return 0;
 }
 
 //by marshmellow
 //takes 1s and 0s and searches for EM410x format - output EM ID
 uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo)
 {
-  //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
-  //  otherwise could be a void with no arguments
-  //set defaults
-  uint32_t i = 0;
-  if (BitStream[1]>1){  //allow only 1s and 0s
-    // PrintAndLog("no data found");
-    return 0;
-  }
-  // 111111111 bit pattern represent start of frame
-  //  include 0 in front to help get start pos
-  uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1};
-  uint32_t idx = 0;
-  uint32_t parityBits = 0;
-  uint8_t errChk = 0;
-  uint8_t FmtLen = 10;
-  *startIdx = 0;
-  errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx);
-  if (errChk == 0 || *size < 64) return 0;
-  if (*size > 64) FmtLen = 22;
-  *startIdx += 1; //get rid of 0 from preamble
-  idx = *startIdx + 9;
-  for (i=0; i<FmtLen; i++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
-    parityBits = bytebits_to_byte(BitStream+(i*5)+idx,5);
-    //check even parity
-    if (parityTest(parityBits, 5, 0) == 0){
-      //parity failed quit
-       return 0;
-    }
-    //set uint64 with ID from BitStream
-    for (uint8_t ii=0; ii<4; ii++){
-      *hi = (*hi << 1) | (*lo >> 63);
-      *lo = (*lo << 1) | (BitStream[(i*5)+ii+idx]);
-    }
-  }
-  if (errChk != 0) return 1;
-  //skip last 5 bit parity test for simplicity.
-  // *size = 64 | 128;
-  return 0;
+       //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
+       //  otherwise could be a void with no arguments
+       //set defaults
+       uint32_t i = 0;
+       if (BitStream[1]>1){  //allow only 1s and 0s
+               // PrintAndLog("no data found");
+               return 0;
+       }
+       // 111111111 bit pattern represent start of frame
+       //  include 0 in front to help get start pos
+       uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1};
+       uint32_t idx = 0;
+       uint32_t parityBits = 0;
+       uint8_t errChk = 0;
+       uint8_t FmtLen = 10;
+       *startIdx = 0;
+       errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx);
+       if (errChk == 0 || *size < 64) return 0;
+       if (*size > 64) FmtLen = 22;
+       *startIdx += 1; //get rid of 0 from preamble
+       idx = *startIdx + 9;
+       for (i=0; i<FmtLen; i++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
+               parityBits = bytebits_to_byte(BitStream+(i*5)+idx,5);
+               //check even parity
+               if (parityTest(parityBits, 5, 0) == 0){
+                       //parity failed quit
+                       return 0;
+               }
+               //set uint64 with ID from BitStream
+               for (uint8_t ii=0; ii<4; ii++){
+                       *hi = (*hi << 1) | (*lo >> 63);
+                       *lo = (*lo << 1) | (BitStream[(i*5)+ii+idx]);
+               }
+       }
+       if (errChk != 0) return 1;
+       //skip last 5 bit parity test for simplicity.
+       // *size = 64 | 128;
+       return 0;
 }
 
 //by marshmellow
@@ -443,9 +443,9 @@ int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int max
        int lastBit = 0;  //set first clock check
        uint32_t bitnum = 0;     //output counter
        uint8_t tol = 0;  //clock tolerance adjust - waves will be accepted as within the clock
-                         //  if they fall + or - this value + clock from last valid wave
+                                                                               //  if they fall + or - this value + clock from last valid wave
        if (*clk == 32) tol=0;    //clock tolerance may not be needed anymore currently set to
-                                 //  + or - 1 but could be increased for poor waves or removed entirely
+                                                                                                               //  + or - 1 but could be increased for poor waves or removed entirely
        uint32_t iii = 0;
        uint32_t gLen = *size;
        if (gLen > 500) gLen=500;
@@ -647,7 +647,7 @@ uint32_t myround2(float f)
 
 //translate 11111100000 to 10
 size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits,
-    uint8_t invert, uint8_t fchigh, uint8_t fclow)
+               uint8_t invert, uint8_t fchigh, uint8_t fclow)
 {
        uint8_t lastval=dest[0];
        uint32_t idx=0;
@@ -719,33 +719,33 @@ int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t
 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
 int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
 {
-  if (justNoise(dest, *size)) return -1;
-
-  size_t numStart=0, size2=*size, startIdx=0; 
-  // FSK demodulator
-  *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
-  if (*size < 96) return -2;
-  // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
-  uint8_t preamble[] = {0,0,0,1,1,1,0,1};
-  // find bitstring in array  
-  uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
-  if (errChk == 0) return -3; //preamble not found
-
-  numStart = startIdx + sizeof(preamble);
-  // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
-  for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
-    if (dest[idx] == dest[idx+1]){
-      return -4; //not manchester data
-    }
-    *hi2 = (*hi2<<1)|(*hi>>31);
-    *hi = (*hi<<1)|(*lo>>31);
-    //Then, shift in a 0 or one into low
-    if (dest[idx] && !dest[idx+1])  // 1 0
-      *lo=(*lo<<1)|1;
-    else // 0 1
-      *lo=(*lo<<1)|0;
-  }
-  return (int)startIdx;
+       if (justNoise(dest, *size)) return -1;
+
+       size_t numStart=0, size2=*size, startIdx=0; 
+       // FSK demodulator
+       *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
+       if (*size < 96) return -2;
+       // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
+       uint8_t preamble[] = {0,0,0,1,1,1,0,1};
+       // find bitstring in array  
+       uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+       if (errChk == 0) return -3; //preamble not found
+
+       numStart = startIdx + sizeof(preamble);
+       // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
+       for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
+               if (dest[idx] == dest[idx+1]){
+                       return -4; //not manchester data
+               }
+               *hi2 = (*hi2<<1)|(*hi>>31);
+               *hi = (*hi<<1)|(*lo>>31);
+               //Then, shift in a 0 or one into low
+               if (dest[idx] && !dest[idx+1])  // 1 0
+                       *lo=(*lo<<1)|1;
+               else // 0 1
+                       *lo=(*lo<<1)|0;
+       }
+       return (int)startIdx;
 }
 
 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
@@ -909,7 +909,7 @@ uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, int high, int low)
 int DetectStrongAskClock(uint8_t dest[], size_t size)
 {
        int clk[]={0,8,16,32,40,50,64,100,128,256};
-  size_t idx = 40;
+       size_t idx = 40;
        uint8_t high=0;
        size_t cnt = 0;
        size_t highCnt = 0;
@@ -960,87 +960,87 @@ int DetectStrongAskClock(uint8_t dest[], size_t size)
 // return start index of best starting position for that clock and return clock (by reference)
 int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr)
 {
-  int i=0;
-  int clk[]={8,16,32,40,50,64,100,128,256};
-  int loopCnt = 256;  //don't need to loop through entire array...
-  if (size == 0) return -1;
-  if (size<loopCnt) loopCnt = size;
-  //if we already have a valid clock quit
-  
-  for (;i<8;++i)
-    if (clk[i] == *clock) return 0;
-
-  //get high and low peak
-  int peak, low;
-  getHiLo(dest, loopCnt, &peak, &low, 75, 75);
-  
-  //test for large clean peaks
-  if (DetectCleanAskWave(dest, size, peak, low)==1){
-       int ans = DetectStrongAskClock(dest, size);
-         for (i=7; i>0; i--){
-               if (clk[i] == ans) {
-                       *clock=ans;
-                       return 0;
-               }
-         }
-  }
-  int ii;
-  int clkCnt;
-  int tol = 0;
-  int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
-  int bestStart[]={0,0,0,0,0,0,0,0,0};
-  int errCnt=0;
-  //test each valid clock from smallest to greatest to see which lines up
-  for(clkCnt=0; clkCnt < 8; clkCnt++){
-    if (clk[clkCnt] == 32){
-      tol=1;
-    }else{
-      tol=0;
-    }
-       if (!maxErr) loopCnt=clk[clkCnt]*2;
-    bestErr[clkCnt]=1000;
-    //try lining up the peaks by moving starting point (try first 256)
-    for (ii=0; ii < loopCnt; ii++){
-      if ((dest[ii] >= peak) || (dest[ii] <= low)){
-        errCnt=0;
-        // now that we have the first one lined up test rest of wave array
-        for (i=0; i<((int)((size-ii-tol)/clk[clkCnt])-1); ++i){
-          if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
-          }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){
-          }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){
-          }else{  //error no peak detected
-            errCnt++;
-          }
-        }
-        //if we found no errors then we can stop here
-        //  this is correct one - return this clock
-            //PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i);
-        if(errCnt==0 && clkCnt<6) {
-          *clock = clk[clkCnt];
-          return ii;
-        }
-        //if we found errors see if it is lowest so far and save it as best run
-        if(errCnt<bestErr[clkCnt]){
-          bestErr[clkCnt]=errCnt;
-          bestStart[clkCnt]=ii;
-        }
-      }
-    }
-  }
-  uint8_t iii=0;
-  uint8_t best=0;
-  for (iii=0; iii<8; ++iii){
-    if (bestErr[iii]<bestErr[best]){
-      if (bestErr[iii]==0) bestErr[iii]=1;
-      // current best bit to error ratio     vs  new bit to error ratio
-      if (((size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii]) ){
-        best = iii;
-      }
-    }
-  }
-  if (bestErr[best]>maxErr) return -1;
-  *clock=clk[best];
-  return bestStart[best];
+       int i=0;
+       int clk[]={8,16,32,40,50,64,100,128,256};
+       int loopCnt = 256;  //don't need to loop through entire array...
+       if (size == 0) return -1;
+       if (size<loopCnt) loopCnt = size;
+       //if we already have a valid clock quit
+       
+       for (;i<8;++i)
+               if (clk[i] == *clock) return 0;
+
+       //get high and low peak
+       int peak, low;
+       getHiLo(dest, loopCnt, &peak, &low, 75, 75);
+       
+       //test for large clean peaks
+       if (DetectCleanAskWave(dest, size, peak, low)==1){
+               int ans = DetectStrongAskClock(dest, size);
+               for (i=7; i>0; i--){
+                       if (clk[i] == ans) {
+                               *clock=ans;
+                               return 0;
+                       }
+               }
+       }
+       int ii;
+       int clkCnt;
+       int tol = 0;
+       int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
+       int bestStart[]={0,0,0,0,0,0,0,0,0};
+       int errCnt=0;
+       //test each valid clock from smallest to greatest to see which lines up
+       for(clkCnt=0; clkCnt < 8; clkCnt++){
+               if (clk[clkCnt] == 32){
+                       tol=1;
+               }else{
+                       tol=0;
+               }
+               if (!maxErr) loopCnt=clk[clkCnt]*2;
+               bestErr[clkCnt]=1000;
+               //try lining up the peaks by moving starting point (try first 256)
+               for (ii=0; ii < loopCnt; ii++){
+                       if ((dest[ii] >= peak) || (dest[ii] <= low)){
+                               errCnt=0;
+                               // now that we have the first one lined up test rest of wave array
+                               for (i=0; i<((int)((size-ii-tol)/clk[clkCnt])-1); ++i){
+                                       if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
+                                       }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){
+                                       }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){
+                                       }else{  //error no peak detected
+                                               errCnt++;
+                                       }
+                               }
+                               //if we found no errors then we can stop here
+                               //  this is correct one - return this clock
+                                               //PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i);
+                               if(errCnt==0 && clkCnt<6) {
+                                       *clock = clk[clkCnt];
+                                       return ii;
+                               }
+                               //if we found errors see if it is lowest so far and save it as best run
+                               if(errCnt<bestErr[clkCnt]){
+                                       bestErr[clkCnt]=errCnt;
+                                       bestStart[clkCnt]=ii;
+                               }
+                       }
+               }
+       }
+       uint8_t iii=0;
+       uint8_t best=0;
+       for (iii=0; iii<8; ++iii){
+               if (bestErr[iii]<bestErr[best]){
+                       if (bestErr[iii]==0) bestErr[iii]=1;
+                       // current best bit to error ratio     vs  new bit to error ratio
+                       if (((size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii]) ){
+                               best = iii;
+                       }
+               }
+       }
+       if (bestErr[best]>maxErr) return -1;
+       *clock=clk[best];
+       return bestStart[best];
 }
 
 //by marshmellow
@@ -1048,165 +1048,165 @@ int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr)
 // a phase shift is determined by measuring the sample length of each wave
 int DetectPSKClock(uint8_t dest[], size_t size, int clock)
 {
-  uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
-  uint16_t loopCnt = 4096;  //don't need to loop through entire array...
-  if (size == 0) return 0;
-  if (size<loopCnt) loopCnt = size;
-
-  //if we already have a valid clock quit
-  size_t i=1;
-  for (; i < 8; ++i)
-    if (clk[i] == clock) return clock;
-
-  size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0;
-  uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1;
-  uint16_t peakcnt=0, errCnt=0, waveLenCnt=0;
-  uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
-  uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0};
-  countFC(dest, size, &fc);
-  //PrintAndLog("DEBUG: FC: %d",fc);
-
-  //find first full wave
-  for (i=0; i<loopCnt; i++){
-    if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
-      if (waveStart == 0) {
-        waveStart = i+1;
-        //PrintAndLog("DEBUG: waveStart: %d",waveStart);
-      } else {
-        waveEnd = i+1;
-        //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
-        waveLenCnt = waveEnd-waveStart;
-        if (waveLenCnt > fc){
-          firstFullWave = waveStart;
-          fullWaveLen=waveLenCnt;
-          break;
-        } 
-        waveStart=0;
-      }
-    }
-  }
-  //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
-  
-  //test each valid clock from greatest to smallest to see which lines up
-  for(clkCnt=7; clkCnt >= 1 ; clkCnt--){
-    lastClkBit = firstFullWave; //set end of wave as clock align
-    waveStart = 0;
-    errCnt=0;
-    peakcnt=0;
-    //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
-
-    for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){
-      //top edge of wave = start of new wave 
-      if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
-        if (waveStart == 0) {
-          waveStart = i+1;
-          waveLenCnt=0;
-        } else { //waveEnd
-          waveEnd = i+1;
-          waveLenCnt = waveEnd-waveStart;
-          if (waveLenCnt > fc){ 
-            //if this wave is a phase shift
-            //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc);
-            if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit
-              peakcnt++;
-              lastClkBit+=clk[clkCnt];
-            } else if (i<lastClkBit+8){
-              //noise after a phase shift - ignore
-            } else { //phase shift before supposed to based on clock
-              errCnt++;
-            }
-          } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){
-            lastClkBit+=clk[clkCnt]; //no phase shift but clock bit
-          }
-          waveStart=i+1;
-        }
-      }
-    }
-    if (errCnt == 0){
-      return clk[clkCnt];
-    }
-    if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
-    if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt;
-  } 
-  //all tested with errors 
-  //return the highest clk with the most peaks found
-  uint8_t best=7;
-  for (i=7; i>=1; i--){
-    if (peaksdet[i] > peaksdet[best]) {
-      best = i;
-    }
-    //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
-  }
-  return clk[best];
+       uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
+       uint16_t loopCnt = 4096;  //don't need to loop through entire array...
+       if (size == 0) return 0;
+       if (size<loopCnt) loopCnt = size;
+
+       //if we already have a valid clock quit
+       size_t i=1;
+       for (; i < 8; ++i)
+               if (clk[i] == clock) return clock;
+
+       size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0;
+       uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1;
+       uint16_t peakcnt=0, errCnt=0, waveLenCnt=0;
+       uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
+       uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0};
+       countFC(dest, size, &fc);
+       //PrintAndLog("DEBUG: FC: %d",fc);
+
+       //find first full wave
+       for (i=0; i<loopCnt; i++){
+               if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
+                       if (waveStart == 0) {
+                               waveStart = i+1;
+                               //PrintAndLog("DEBUG: waveStart: %d",waveStart);
+                       } else {
+                               waveEnd = i+1;
+                               //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
+                               waveLenCnt = waveEnd-waveStart;
+                               if (waveLenCnt > fc){
+                                       firstFullWave = waveStart;
+                                       fullWaveLen=waveLenCnt;
+                                       break;
+                               
+                               waveStart=0;
+                       }
+               }
+       }
+       //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
+       
+       //test each valid clock from greatest to smallest to see which lines up
+       for(clkCnt=7; clkCnt >= 1 ; clkCnt--){
+               lastClkBit = firstFullWave; //set end of wave as clock align
+               waveStart = 0;
+               errCnt=0;
+               peakcnt=0;
+               //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
+
+               for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){
+                       //top edge of wave = start of new wave 
+                       if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
+                               if (waveStart == 0) {
+                                       waveStart = i+1;
+                                       waveLenCnt=0;
+                               } else { //waveEnd
+                                       waveEnd = i+1;
+                                       waveLenCnt = waveEnd-waveStart;
+                                       if (waveLenCnt > fc){ 
+                                               //if this wave is a phase shift
+                                               //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc);
+                                               if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit
+                                                       peakcnt++;
+                                                       lastClkBit+=clk[clkCnt];
+                                               } else if (i<lastClkBit+8){
+                                                       //noise after a phase shift - ignore
+                                               } else { //phase shift before supposed to based on clock
+                                                       errCnt++;
+                                               }
+                                       } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){
+                                               lastClkBit+=clk[clkCnt]; //no phase shift but clock bit
+                                       }
+                                       waveStart=i+1;
+                               }
+                       }
+               }
+               if (errCnt == 0){
+                       return clk[clkCnt];
+               }
+               if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
+               if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt;
+       
+       //all tested with errors 
+       //return the highest clk with the most peaks found
+       uint8_t best=7;
+       for (i=7; i>=1; i--){
+               if (peaksdet[i] > peaksdet[best]) {
+                       best = i;
+               }
+               //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
+       }
+       return clk[best];
 }
 
 //by marshmellow
 //detect nrz clock by reading #peaks vs no peaks(or errors)
 int DetectNRZClock(uint8_t dest[], size_t size, int clock)
 {
-  int i=0;
-  int clk[]={8,16,32,40,50,64,100,128,256};
-  int loopCnt = 4096;  //don't need to loop through entire array...
-  if (size == 0) return 0;
-  if (size<loopCnt) loopCnt = size;
-
-  //if we already have a valid clock quit
-  for (; i < 8; ++i)
-    if (clk[i] == clock) return clock;
-
-  //get high and low peak
-  int peak, low;
-  getHiLo(dest, loopCnt, &peak, &low, 75, 75);
-
-  //PrintAndLog("DEBUG: peak: %d, low: %d",peak,low);
-  int ii;
-  uint8_t clkCnt;
-  uint8_t tol = 0;
-  int peakcnt=0;
-  int peaksdet[]={0,0,0,0,0,0,0,0};
-  int maxPeak=0;
-  //test for large clipped waves
-  for (i=0; i<loopCnt; i++){
-       if (dest[i] >= peak || dest[i] <= low){
-               peakcnt++;
-       } else {
-               if (peakcnt>0 && maxPeak < peakcnt){
-                       maxPeak = peakcnt;
-               }
-               peakcnt=0;
-       }
-  }
-  peakcnt=0;
-  //test each valid clock from smallest to greatest to see which lines up
-  for(clkCnt=0; clkCnt < 8; ++clkCnt){
-       //ignore clocks smaller than largest peak
-       if (clk[clkCnt]<maxPeak) continue;
-
-    //try lining up the peaks by moving starting point (try first 256)
-    for (ii=0; ii< loopCnt; ++ii){
-      if ((dest[ii] >= peak) || (dest[ii] <= low)){
-        peakcnt=0;
-        // now that we have the first one lined up test rest of wave array
-        for (i=0; i < ((int)((size-ii-tol)/clk[clkCnt])-1); ++i){
-          if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
-            peakcnt++;
-          }
-        }
-        if(peakcnt>peaksdet[clkCnt]) {
-          peaksdet[clkCnt]=peakcnt;
-        }
-      }
-    }
-  }
-  int iii=7;
-  int best=0;
-  for (iii=7; iii > 0; iii--){
-    if (peaksdet[iii] > peaksdet[best]){
-       best = iii;
-    }
-    //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
-  }
-  return clk[best];
+       int i=0;
+       int clk[]={8,16,32,40,50,64,100,128,256};
+       int loopCnt = 4096;  //don't need to loop through entire array...
+       if (size == 0) return 0;
+       if (size<loopCnt) loopCnt = size;
+
+       //if we already have a valid clock quit
+       for (; i < 8; ++i)
+               if (clk[i] == clock) return clock;
+
+       //get high and low peak
+       int peak, low;
+       getHiLo(dest, loopCnt, &peak, &low, 75, 75);
+
+       //PrintAndLog("DEBUG: peak: %d, low: %d",peak,low);
+       int ii;
+       uint8_t clkCnt;
+       uint8_t tol = 0;
+       int peakcnt=0;
+       int peaksdet[]={0,0,0,0,0,0,0,0};
+       int maxPeak=0;
+       //test for large clipped waves
+       for (i=0; i<loopCnt; i++){
+               if (dest[i] >= peak || dest[i] <= low){
+                       peakcnt++;
+               } else {
+                       if (peakcnt>0 && maxPeak < peakcnt){
+                               maxPeak = peakcnt;
+                       }
+                       peakcnt=0;
+               }
+       }
+       peakcnt=0;
+       //test each valid clock from smallest to greatest to see which lines up
+       for(clkCnt=0; clkCnt < 8; ++clkCnt){
+               //ignore clocks smaller than largest peak
+               if (clk[clkCnt]<maxPeak) continue;
+
+               //try lining up the peaks by moving starting point (try first 256)
+               for (ii=0; ii< loopCnt; ++ii){
+                       if ((dest[ii] >= peak) || (dest[ii] <= low)){
+                               peakcnt=0;
+                               // now that we have the first one lined up test rest of wave array
+                               for (i=0; i < ((int)((size-ii-tol)/clk[clkCnt])-1); ++i){
+                                       if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
+                                               peakcnt++;
+                                       }
+                               }
+                               if(peakcnt>peaksdet[clkCnt]) {
+                                       peaksdet[clkCnt]=peakcnt;
+                               }
+                       }
+               }
+       }
+       int iii=7;
+       int best=0;
+       for (iii=7; iii > 0; iii--){
+               if (peaksdet[iii] > peaksdet[best]){
+                       best = iii;
+               }
+               //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
+       }
+       return clk[best];
 }
 
 // by marshmellow
@@ -1313,275 +1313,275 @@ int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
 // there probably is a much simpler way to do this.... 
 int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert, int maxErr)
 {
-  if (justNoise(dest, *size)) return -1;
-  *clk = DetectNRZClock(dest, *size, *clk);
-  if (*clk==0) return -2;
-  uint32_t i;
-  uint32_t gLen = 4096;
-  if (gLen>*size) gLen = *size;
-  int high, low;
-  if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
-  int lastBit = 0;  //set first clock check
-  uint32_t bitnum = 0;     //output counter
-  uint8_t tol = 1;  //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
-  uint32_t iii = 0;
-  uint16_t errCnt =0;
-  uint16_t MaxBits = 1000;
-  uint32_t bestErrCnt = maxErr+1;
-  uint32_t bestPeakCnt = 0;
-  uint32_t bestPeakStart=0;
-  uint8_t bestFirstPeakHigh=0;
-  uint8_t firstPeakHigh=0;
-  uint8_t curBit=0;
-  uint8_t bitHigh=0;
-  uint8_t errBitHigh=0;
-  uint16_t peakCnt=0;
-  uint8_t ignoreWindow=4;
-  uint8_t ignoreCnt=ignoreWindow; //in case of noice near peak
-  //loop to find first wave that works - align to clock
-  for (iii=0; iii < gLen; ++iii){
-    if ((dest[iii]>=high) || (dest[iii]<=low)){
-      if (dest[iii]>=high) firstPeakHigh=1;
-      else firstPeakHigh=0;
-      lastBit=iii-*clk;
-      peakCnt=0;
-      errCnt=0;
-      bitnum=0;
-      //loop through to see if this start location works
-      for (i = iii; i < *size; ++i) {
-        //if we found a high bar and we are at a clock bit
-        if ((dest[i]>=high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
-          bitHigh=1;
-          lastBit+=*clk;
-          bitnum++;
-          peakCnt++;
-          errBitHigh=0;
-          ignoreCnt=ignoreWindow;
-        //else if low bar found and we are at a clock point
-        }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
-          bitHigh=1;
-          lastBit+=*clk;
-          bitnum++;
-          peakCnt++;
-          errBitHigh=0;
-          ignoreCnt=ignoreWindow;
-        //else if no bars found
-        }else if(dest[i] < high && dest[i] > low) {
-          if (ignoreCnt==0){
-            bitHigh=0;
-            if (errBitHigh==1){
-              errCnt++;
-            }
-            errBitHigh=0;
-          } else {
-            ignoreCnt--;
-          }
-          //if we are past a clock point
-          if (i >= lastBit+*clk+tol){ //clock val
-            lastBit+=*clk;
-            bitnum++;
-          }
-        //else if bar found but we are not at a clock bit and we did not just have a clock bit
-        }else if ((dest[i]>=high || dest[i]<=low) && (i<lastBit+*clk-tol || i>lastBit+*clk+tol) && (bitHigh==0)){
-          //error bar found no clock...
-          errBitHigh=1;
-        }
-        if (bitnum>=MaxBits) break;
-      }
-      //we got more than 64 good bits and not all errors
-      if (bitnum > (64) && (errCnt <= (maxErr))) {
-        //possible good read
-        if (errCnt == 0){
-          //bestStart = iii;
-          bestFirstPeakHigh=firstPeakHigh;
-          bestErrCnt = errCnt;
-          bestPeakCnt = peakCnt;
-          bestPeakStart = iii;
-          break;  //great read - finish
-        }
-        if (errCnt < bestErrCnt){  //set this as new best run
-          bestErrCnt = errCnt;
-          //bestStart = iii;
-        }
-        if (peakCnt > bestPeakCnt){
-          bestFirstPeakHigh=firstPeakHigh;
-          bestPeakCnt=peakCnt;
-          bestPeakStart=iii;
-        } 
-      }
-    }
-  }
-  //PrintAndLog("DEBUG: bestErrCnt: %d, maxErr: %d, bestStart: %d, bestPeakCnt: %d, bestPeakStart: %d",bestErrCnt,maxErr,bestStart,bestPeakCnt,bestPeakStart);
-  if (bestErrCnt <= maxErr){
-    //best run is good enough set to best run and set overwrite BinStream
-    iii=bestPeakStart;
-    lastBit=bestPeakStart-*clk;
-    bitnum=0;
-    memset(dest, bestFirstPeakHigh^1, bestPeakStart / *clk);
-    bitnum += (bestPeakStart / *clk);
-    for (i = iii; i < *size; ++i) {
-      //if we found a high bar and we are at a clock bit
-      if ((dest[i] >= high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
-        bitHigh=1;
-        lastBit+=*clk;
-        curBit=1-*invert;
-        dest[bitnum]=curBit;
-        bitnum++;
-        errBitHigh=0;
-        ignoreCnt=ignoreWindow;
-      //else if low bar found and we are at a clock point
-      }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
-        bitHigh=1;
-        lastBit+=*clk;
-        curBit=*invert;
-        dest[bitnum]=curBit;
-        bitnum++;
-        errBitHigh=0;
-        ignoreCnt=ignoreWindow;
-      //else if no bars found
-      }else if(dest[i]<high && dest[i]>low) {
-        if (ignoreCnt==0){
-          bitHigh=0;
-          //if peak is done was it an error peak?
-          if (errBitHigh==1){
-            dest[bitnum]=77;
-            bitnum++;
-            errCnt++;
-          }
-          errBitHigh=0;
-        } else {
-          ignoreCnt--;
-        }
-        //if we are past a clock point
-        if (i>=lastBit+*clk+tol){ //clock val
-          lastBit+=*clk;
-          dest[bitnum]=curBit;
-          bitnum++;
-        }
-      //else if bar found but we are not at a clock bit and we did not just have a clock bit
-      }else if ((dest[i]>=high || dest[i]<=low) && ((i<lastBit+*clk-tol) || (i>lastBit+*clk+tol)) && (bitHigh==0)){
-        //error bar found no clock...
-        errBitHigh=1;
-      }
-      if (bitnum >= MaxBits) break;
-    }
-    *size=bitnum;
-  } else{
-    *size=bitnum;
-    return bestErrCnt;
-  }
-
-  if (bitnum>16){
-    *size=bitnum;
-  } else return -5;
-  return errCnt;
+       if (justNoise(dest, *size)) return -1;
+       *clk = DetectNRZClock(dest, *size, *clk);
+       if (*clk==0) return -2;
+       uint32_t i;
+       uint32_t gLen = 4096;
+       if (gLen>*size) gLen = *size;
+       int high, low;
+       if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
+       int lastBit = 0;  //set first clock check
+       uint32_t bitnum = 0;     //output counter
+       uint8_t tol = 1;  //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
+       uint32_t iii = 0;
+       uint16_t errCnt =0;
+       uint16_t MaxBits = 1000;
+       uint32_t bestErrCnt = maxErr+1;
+       uint32_t bestPeakCnt = 0;
+       uint32_t bestPeakStart=0;
+       uint8_t bestFirstPeakHigh=0;
+       uint8_t firstPeakHigh=0;
+       uint8_t curBit=0;
+       uint8_t bitHigh=0;
+       uint8_t errBitHigh=0;
+       uint16_t peakCnt=0;
+       uint8_t ignoreWindow=4;
+       uint8_t ignoreCnt=ignoreWindow; //in case of noice near peak
+       //loop to find first wave that works - align to clock
+       for (iii=0; iii < gLen; ++iii){
+               if ((dest[iii]>=high) || (dest[iii]<=low)){
+                       if (dest[iii]>=high) firstPeakHigh=1;
+                       else firstPeakHigh=0;
+                       lastBit=iii-*clk;
+                       peakCnt=0;
+                       errCnt=0;
+                       bitnum=0;
+                       //loop through to see if this start location works
+                       for (i = iii; i < *size; ++i) {
+                               //if we found a high bar and we are at a clock bit
+                               if ((dest[i]>=high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
+                                       bitHigh=1;
+                                       lastBit+=*clk;
+                                       bitnum++;
+                                       peakCnt++;
+                                       errBitHigh=0;
+                                       ignoreCnt=ignoreWindow;
+                               //else if low bar found and we are at a clock point
+                               }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
+                                       bitHigh=1;
+                                       lastBit+=*clk;
+                                       bitnum++;
+                                       peakCnt++;
+                                       errBitHigh=0;
+                                       ignoreCnt=ignoreWindow;
+                               //else if no bars found
+                               }else if(dest[i] < high && dest[i] > low) {
+                                       if (ignoreCnt==0){
+                                               bitHigh=0;
+                                               if (errBitHigh==1){
+                                                       errCnt++;
+                                               }
+                                               errBitHigh=0;
+                                       } else {
+                                               ignoreCnt--;
+                                       }
+                                       //if we are past a clock point
+                                       if (i >= lastBit+*clk+tol){ //clock val
+                                               lastBit+=*clk;
+                                               bitnum++;
+                                       }
+                               //else if bar found but we are not at a clock bit and we did not just have a clock bit
+                               }else if ((dest[i]>=high || dest[i]<=low) && (i<lastBit+*clk-tol || i>lastBit+*clk+tol) && (bitHigh==0)){
+                                       //error bar found no clock...
+                                       errBitHigh=1;
+                               }
+                               if (bitnum>=MaxBits) break;
+                       }
+                       //we got more than 64 good bits and not all errors
+                       if (bitnum > (64) && (errCnt <= (maxErr))) {
+                               //possible good read
+                               if (errCnt == 0){
+                                       //bestStart = iii;
+                                       bestFirstPeakHigh=firstPeakHigh;
+                                       bestErrCnt = errCnt;
+                                       bestPeakCnt = peakCnt;
+                                       bestPeakStart = iii;
+                                       break;  //great read - finish
+                               }
+                               if (errCnt < bestErrCnt){  //set this as new best run
+                                       bestErrCnt = errCnt;
+                                       //bestStart = iii;
+                               }
+                               if (peakCnt > bestPeakCnt){
+                                       bestFirstPeakHigh=firstPeakHigh;
+                                       bestPeakCnt=peakCnt;
+                                       bestPeakStart=iii;
+                               
+                       }
+               }
+       }
+       //PrintAndLog("DEBUG: bestErrCnt: %d, maxErr: %d, bestStart: %d, bestPeakCnt: %d, bestPeakStart: %d",bestErrCnt,maxErr,bestStart,bestPeakCnt,bestPeakStart);
+       if (bestErrCnt <= maxErr){
+               //best run is good enough set to best run and set overwrite BinStream
+               iii=bestPeakStart;
+               lastBit=bestPeakStart-*clk;
+               bitnum=0;
+               memset(dest, bestFirstPeakHigh^1, bestPeakStart / *clk);
+               bitnum += (bestPeakStart / *clk);
+               for (i = iii; i < *size; ++i) {
+                       //if we found a high bar and we are at a clock bit
+                       if ((dest[i] >= high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
+                               bitHigh=1;
+                               lastBit+=*clk;
+                               curBit=1-*invert;
+                               dest[bitnum]=curBit;
+                               bitnum++;
+                               errBitHigh=0;
+                               ignoreCnt=ignoreWindow;
+                       //else if low bar found and we are at a clock point
+                       }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
+                               bitHigh=1;
+                               lastBit+=*clk;
+                               curBit=*invert;
+                               dest[bitnum]=curBit;
+                               bitnum++;
+                               errBitHigh=0;
+                               ignoreCnt=ignoreWindow;
+                       //else if no bars found
+                       }else if(dest[i]<high && dest[i]>low) {
+                               if (ignoreCnt==0){
+                                       bitHigh=0;
+                                       //if peak is done was it an error peak?
+                                       if (errBitHigh==1){
+                                               dest[bitnum]=77;
+                                               bitnum++;
+                                               errCnt++;
+                                       }
+                                       errBitHigh=0;
+                               } else {
+                                       ignoreCnt--;
+                               }
+                               //if we are past a clock point
+                               if (i>=lastBit+*clk+tol){ //clock val
+                                       lastBit+=*clk;
+                                       dest[bitnum]=curBit;
+                                       bitnum++;
+                               }
+                       //else if bar found but we are not at a clock bit and we did not just have a clock bit
+                       }else if ((dest[i]>=high || dest[i]<=low) && ((i<lastBit+*clk-tol) || (i>lastBit+*clk+tol)) && (bitHigh==0)){
+                               //error bar found no clock...
+                               errBitHigh=1;
+                       }
+                       if (bitnum >= MaxBits) break;
+               }
+               *size=bitnum;
+       } else{
+               *size=bitnum;
+               return bestErrCnt;
+       }
+
+       if (bitnum>16){
+               *size=bitnum;
+       } else return -5;
+       return errCnt;
 }
 
 //by marshmellow
 //detects the bit clock for FSK given the high and low Field Clocks
 uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow)
 {
-  uint8_t clk[] = {8,16,32,40,50,64,100,128,0};
-  uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
-  uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
-  uint8_t rfLensFnd = 0;
-  uint8_t lastFCcnt=0;
-  uint32_t fcCounter = 0;
-  uint16_t rfCounter = 0;
-  uint8_t firstBitFnd = 0;
-  size_t i;
-  if (size == 0) return 0;
-
-  uint8_t fcTol = (uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
-  rfLensFnd=0;
-  fcCounter=0;
-  rfCounter=0;
-  firstBitFnd=0;
-  //PrintAndLog("DEBUG: fcTol: %d",fcTol);
-  // prime i to first up transition
-  for (i = 1; i < size-1; i++)
-    if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1])
-      break;
-
-  for (; i < size-1; i++){
-    if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]){
-      // new peak 
-      fcCounter++;
-      rfCounter++;
-      // if we got less than the small fc + tolerance then set it to the small fc
-      if (fcCounter < fcLow+fcTol) 
-        fcCounter = fcLow;
-      else //set it to the large fc
-        fcCounter = fcHigh;
-
-      //look for bit clock  (rf/xx)
-      if ((fcCounter<lastFCcnt || fcCounter>lastFCcnt)){
-        //not the same size as the last wave - start of new bit sequence
-
-        if (firstBitFnd>1){ //skip first wave change - probably not a complete bit
-          for (int ii=0; ii<15; ii++){
-            if (rfLens[ii]==rfCounter){
-              rfCnts[ii]++;
-              rfCounter=0;
-              break;
-            }
-          }
-          if (rfCounter>0 && rfLensFnd<15){
-            //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
-            rfCnts[rfLensFnd]++;
-            rfLens[rfLensFnd++]=rfCounter;
-          }
-        } else {
-          firstBitFnd++;
-        }
-        rfCounter=0;
-        lastFCcnt=fcCounter;
-      }
-      fcCounter=0;
-    } else {
-      // count sample
-      fcCounter++;
-      rfCounter++;
-    }
-  }
-  uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15;
-
-  for (i=0; i<15; i++){
-    //PrintAndLog("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]);
-    //get highest 2 RF values  (might need to get more values to compare or compare all?)
-    if (rfCnts[i]>rfCnts[rfHighest]){
-      rfHighest3=rfHighest2;
-      rfHighest2=rfHighest;
-      rfHighest=i;
-    } else if(rfCnts[i]>rfCnts[rfHighest2]){
-      rfHighest3=rfHighest2;
-      rfHighest2=i;
-    } else if(rfCnts[i]>rfCnts[rfHighest3]){
-      rfHighest3=i;
-    }
-  }  
-  // set allowed clock remainder tolerance to be 1 large field clock length+1 
-  //   we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off  
-  uint8_t tol1 = fcHigh+1; 
-  
-  //PrintAndLog("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
-
-  // loop to find the highest clock that has a remainder less than the tolerance
-  //   compare samples counted divided by
-  int ii=7;
-  for (; ii>=0; ii--){
-    if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
-      if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
-        if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
-          break;
-        }
-      }
-    }
-  }
-
-  if (ii<0) return 0; // oops we went too far
-
-  return clk[ii];
+       uint8_t clk[] = {8,16,32,40,50,64,100,128,0};
+       uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+       uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+       uint8_t rfLensFnd = 0;
+       uint8_t lastFCcnt=0;
+       uint32_t fcCounter = 0;
+       uint16_t rfCounter = 0;
+       uint8_t firstBitFnd = 0;
+       size_t i;
+       if (size == 0) return 0;
+
+       uint8_t fcTol = (uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
+       rfLensFnd=0;
+       fcCounter=0;
+       rfCounter=0;
+       firstBitFnd=0;
+       //PrintAndLog("DEBUG: fcTol: %d",fcTol);
+       // prime i to first up transition
+       for (i = 1; i < size-1; i++)
+               if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1])
+                       break;
+
+       for (; i < size-1; i++){
+               if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]){
+                       // new peak 
+                       fcCounter++;
+                       rfCounter++;
+                       // if we got less than the small fc + tolerance then set it to the small fc
+                       if (fcCounter < fcLow+fcTol) 
+                               fcCounter = fcLow;
+                       else //set it to the large fc
+                               fcCounter = fcHigh;
+
+                       //look for bit clock  (rf/xx)
+                       if ((fcCounter<lastFCcnt || fcCounter>lastFCcnt)){
+                               //not the same size as the last wave - start of new bit sequence
+
+                               if (firstBitFnd>1){ //skip first wave change - probably not a complete bit
+                                       for (int ii=0; ii<15; ii++){
+                                               if (rfLens[ii]==rfCounter){
+                                                       rfCnts[ii]++;
+                                                       rfCounter=0;
+                                                       break;
+                                               }
+                                       }
+                                       if (rfCounter>0 && rfLensFnd<15){
+                                               //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
+                                               rfCnts[rfLensFnd]++;
+                                               rfLens[rfLensFnd++]=rfCounter;
+                                       }
+                               } else {
+                                       firstBitFnd++;
+                               }
+                               rfCounter=0;
+                               lastFCcnt=fcCounter;
+                       }
+                       fcCounter=0;
+               } else {
+                       // count sample
+                       fcCounter++;
+                       rfCounter++;
+               }
+       }
+       uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15;
+
+       for (i=0; i<15; i++){
+               //PrintAndLog("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]);
+               //get highest 2 RF values  (might need to get more values to compare or compare all?)
+               if (rfCnts[i]>rfCnts[rfHighest]){
+                       rfHighest3=rfHighest2;
+                       rfHighest2=rfHighest;
+                       rfHighest=i;
+               } else if(rfCnts[i]>rfCnts[rfHighest2]){
+                       rfHighest3=rfHighest2;
+                       rfHighest2=i;
+               } else if(rfCnts[i]>rfCnts[rfHighest3]){
+                       rfHighest3=i;
+               }
+       }  
+       // set allowed clock remainder tolerance to be 1 large field clock length+1 
+       //   we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off  
+       uint8_t tol1 = fcHigh+1; 
+       
+       //PrintAndLog("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
+
+       // loop to find the highest clock that has a remainder less than the tolerance
+       //   compare samples counted divided by
+       int ii=7;
+       for (; ii>=0; ii--){
+               if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
+                       if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
+                               if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
+                                       break;
+                               }
+                       }
+               }
+       }
+
+       if (ii<0) return 0; // oops we went too far
+
+       return clk[ii];
 }
 
 //by marshmellow
@@ -1590,84 +1590,84 @@ uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fc
 //mainly used for FSK field clock detection
 uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t *mostFC)
 {
-  uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0};
-  uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0};
-  uint8_t fcLensFnd = 0;
-  uint8_t lastFCcnt=0;
-  uint32_t fcCounter = 0;
-  size_t i;
-  if (size == 0) return 0;
-
-  // prime i to first up transition
-  for (i = 1; i < size-1; i++)
-    if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
-      break;
-
-  for (; i < size-1; i++){
-    if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
-       // new up transition
-       fcCounter++;
-       
-      //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
-      if (lastFCcnt==5 && fcCounter==9) fcCounter--;
-      //if odd and not rc/5 add one (for when we get a fc 9 instead of 10)
-      if ((fcCounter==9 && fcCounter & 1) || fcCounter==4) fcCounter++;
-
-      // save last field clock count  (fc/xx)
-      // find which fcLens to save it to:
-      for (int ii=0; ii<10; ii++){
-        if (fcLens[ii]==fcCounter){
-          fcCnts[ii]++;
-          fcCounter=0;
-          break;
-        }
-      }
-      if (fcCounter>0 && fcLensFnd<10){
-        //add new fc length 
-        fcCnts[fcLensFnd]++;
-        fcLens[fcLensFnd++]=fcCounter;
-      }
-      fcCounter=0;
-    } else {
-      // count sample
-      fcCounter++;
-    }
-  }
-  
-  uint8_t best1=9, best2=9, best3=9;
-  uint16_t maxCnt1=0;
-  // go through fclens and find which ones are bigest 2  
-  for (i=0; i<10; i++){
-    // PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d",fcLens[i],fcCnts[i],errCnt);    
-    // get the 3 best FC values
-    if (fcCnts[i]>maxCnt1) {
-      best3=best2;
-      best2=best1;
-      maxCnt1=fcCnts[i];
-      best1=i;
-    } else if(fcCnts[i]>fcCnts[best2]){
-      best3=best2;
-      best2=i;
-    } else if(fcCnts[i]>fcCnts[best3]){
-      best3=i;
-    }
-  }
-  uint8_t fcH=0, fcL=0;
-  if (fcLens[best1]>fcLens[best2]){
-    fcH=fcLens[best1];
-    fcL=fcLens[best2];
-  } else{
-    fcH=fcLens[best2];
-    fcL=fcLens[best1];
-  }
-
-  *mostFC=fcLens[best1]; 
-  // TODO: take top 3 answers and compare to known Field clocks to get top 2
-
-  uint16_t fcs = (((uint16_t)fcH)<<8) | fcL;
-  // PrintAndLog("DEBUG: Best %d  best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]);
-  
-  return fcs;
+       uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0};
+       uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0};
+       uint8_t fcLensFnd = 0;
+       uint8_t lastFCcnt=0;
+       uint32_t fcCounter = 0;
+       size_t i;
+       if (size == 0) return 0;
+
+       // prime i to first up transition
+       for (i = 1; i < size-1; i++)
+               if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
+                       break;
+
+       for (; i < size-1; i++){
+               if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
+                       // new up transition
+                       fcCounter++;
+                       
+                       //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
+                       if (lastFCcnt==5 && fcCounter==9) fcCounter--;
+                       //if odd and not rc/5 add one (for when we get a fc 9 instead of 10)
+                       if ((fcCounter==9 && fcCounter & 1) || fcCounter==4) fcCounter++;
+
+                       // save last field clock count  (fc/xx)
+                       // find which fcLens to save it to:
+                       for (int ii=0; ii<10; ii++){
+                               if (fcLens[ii]==fcCounter){
+                                       fcCnts[ii]++;
+                                       fcCounter=0;
+                                       break;
+                               }
+                       }
+                       if (fcCounter>0 && fcLensFnd<10){
+                               //add new fc length 
+                               fcCnts[fcLensFnd]++;
+                               fcLens[fcLensFnd++]=fcCounter;
+                       }
+                       fcCounter=0;
+               } else {
+                       // count sample
+                       fcCounter++;
+               }
+       }
+       
+       uint8_t best1=9, best2=9, best3=9;
+       uint16_t maxCnt1=0;
+       // go through fclens and find which ones are bigest 2  
+       for (i=0; i<10; i++){
+               // PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d",fcLens[i],fcCnts[i],errCnt);    
+               // get the 3 best FC values
+               if (fcCnts[i]>maxCnt1) {
+                       best3=best2;
+                       best2=best1;
+                       maxCnt1=fcCnts[i];
+                       best1=i;
+               } else if(fcCnts[i]>fcCnts[best2]){
+                       best3=best2;
+                       best2=i;
+               } else if(fcCnts[i]>fcCnts[best3]){
+                       best3=i;
+               }
+       }
+       uint8_t fcH=0, fcL=0;
+       if (fcLens[best1]>fcLens[best2]){
+               fcH=fcLens[best1];
+               fcL=fcLens[best2];
+       } else{
+               fcH=fcLens[best2];
+               fcL=fcLens[best1];
+       }
+
+       *mostFC=fcLens[best1]; 
+       // TODO: take top 3 answers and compare to known Field clocks to get top 2
+
+       uint16_t fcs = (((uint16_t)fcH)<<8) | fcL;
+       // PrintAndLog("DEBUG: Best %d  best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]);
+       
+       return fcs;
 }
 
 //by marshmellow
@@ -1675,140 +1675,140 @@ uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t *mostFC)
 //counts and returns the 1 most common wave length
 uint8_t countPSK_FC(uint8_t *BitStream, size_t size)
 {
-  uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0};
-  uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0};
-  uint8_t fcLensFnd = 0;
-  uint32_t fcCounter = 0;
-  size_t i;
-  if (size == 0) return 0;
-  
-  // prime i to first up transition
-  for (i = 1; i < size-1; i++)
-    if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
-      break;
-
-  for (; i < size-1; i++){
-    if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
-      // new up transition
-      fcCounter++;
-      
-      // save last field clock count  (fc/xx)
-      // find which fcLens to save it to:
-      for (int ii=0; ii<10; ii++){
-        if (fcLens[ii]==fcCounter){
-          fcCnts[ii]++;
-          fcCounter=0;
-          break;
-        }
-      }
-      if (fcCounter>0 && fcLensFnd<10){
-        //add new fc length 
-        fcCnts[fcLensFnd]++;
-        fcLens[fcLensFnd++]=fcCounter;
-      }
-      fcCounter=0;
-    } else {
-      // count sample
-      fcCounter++;
-    }
-  }
-  
-  uint8_t best1=9;
-  uint16_t maxCnt1=0;
-  // go through fclens and find which ones are bigest  
-  for (i=0; i<10; i++){
-    //PrintAndLog("DEBUG: FC %d, Cnt %d",fcLens[i],fcCnts[i]);    
-    // get the best FC value
-    if (fcCnts[i]>maxCnt1) {
-      maxCnt1=fcCnts[i];
-      best1=i;
-    }
-  }
-  return fcLens[best1]; 
+       uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0};
+       uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0};
+       uint8_t fcLensFnd = 0;
+       uint32_t fcCounter = 0;
+       size_t i;
+       if (size == 0) return 0;
+       
+       // prime i to first up transition
+       for (i = 1; i < size-1; i++)
+               if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
+                       break;
+
+       for (; i < size-1; i++){
+               if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
+                       // new up transition
+                       fcCounter++;
+                       
+                       // save last field clock count  (fc/xx)
+                       // find which fcLens to save it to:
+                       for (int ii=0; ii<10; ii++){
+                               if (fcLens[ii]==fcCounter){
+                                       fcCnts[ii]++;
+                                       fcCounter=0;
+                                       break;
+                               }
+                       }
+                       if (fcCounter>0 && fcLensFnd<10){
+                               //add new fc length 
+                               fcCnts[fcLensFnd]++;
+                               fcLens[fcLensFnd++]=fcCounter;
+                       }
+                       fcCounter=0;
+               } else {
+                       // count sample
+                       fcCounter++;
+               }
+       }
+       
+       uint8_t best1=9;
+       uint16_t maxCnt1=0;
+       // go through fclens and find which ones are bigest  
+       for (i=0; i<10; i++){
+               //PrintAndLog("DEBUG: FC %d, Cnt %d",fcLens[i],fcCnts[i]);    
+               // get the best FC value
+               if (fcCnts[i]>maxCnt1) {
+                       maxCnt1=fcCnts[i];
+                       best1=i;
+               }
+       }
+       return fcLens[best1]; 
 }
 
 //by marshmellow - demodulate PSK1 wave 
 //uses wave lengths (# Samples) 
 int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert)
 {
-  uint16_t loopCnt = 4096;  //don't need to loop through entire array...
-  if (size == 0) return -1;
-  if (*size<loopCnt) loopCnt = *size;
-
-  uint8_t curPhase = *invert;
-  size_t i, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
-  uint8_t fc=0, fullWaveLen=0, tol=1;
-  uint16_t errCnt=0, waveLenCnt=0;
-  fc = countPSK_FC(dest, *size);
-  if (fc!=2 && fc!=4 && fc!=8) return -1;
-  //PrintAndLog("DEBUG: FC: %d",fc);
-  *clock = DetectPSKClock(dest, *size, *clock);
-  if (*clock==0) return -1;
-  int avgWaveVal=0, lastAvgWaveVal=0;
-  //find first phase shift
-  for (i=0; i<loopCnt; i++){
-    if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
-      waveEnd = i+1;
-      //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
-      waveLenCnt = waveEnd-waveStart;
-      if (waveLenCnt > fc && waveStart > fc){ //not first peak and is a large wave 
-        lastAvgWaveVal = avgWaveVal/(waveLenCnt);
-        firstFullWave = waveStart;
-        fullWaveLen=waveLenCnt;
-        //if average wave value is > graph 0 then it is an up wave or a 1
-        if (lastAvgWaveVal > 123) curPhase^=1;  //fudge graph 0 a little 123 vs 128
-        break;
-      } 
-      waveStart = i+1;
-      avgWaveVal = 0;
-    }
-    avgWaveVal+=dest[i+2];
-  }
-  //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);  
-  lastClkBit = firstFullWave; //set start of wave as clock align
-  //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
-  waveStart = 0;
-  errCnt=0;
-  size_t numBits=0;
-  //set skipped bits
-  memset(dest,curPhase^1,firstFullWave / *clock);
-  numBits += (firstFullWave / *clock);
-  dest[numBits++] = curPhase; //set first read bit
-  for (i = firstFullWave+fullWaveLen-1; i < *size-3; i++){
-    //top edge of wave = start of new wave 
-    if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
-      if (waveStart == 0) {
-        waveStart = i+1;
-        waveLenCnt=0;
-        avgWaveVal = dest[i+1];
-      } else { //waveEnd
-        waveEnd = i+1;
-        waveLenCnt = waveEnd-waveStart;
-        lastAvgWaveVal = avgWaveVal/waveLenCnt;
-        if (waveLenCnt > fc){  
-          //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
-          //if this wave is a phase shift
-          //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
-          if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit
-            curPhase^=1;
-            dest[numBits++] = curPhase;
-            lastClkBit += *clock;
-          } else if (i<lastClkBit+10+fc){
-            //noise after a phase shift - ignore
-          } else { //phase shift before supposed to based on clock
-            errCnt++;
-            dest[numBits++] = 77;
-          }
-        } else if (i+1 > lastClkBit + *clock + tol + fc){
-          lastClkBit += *clock; //no phase shift but clock bit
-          dest[numBits++] = curPhase;
-        }
-        avgWaveVal=0;
-        waveStart=i+1;
-      }
-    }
-    avgWaveVal+=dest[i+1];
-  }
-  *size = numBits;
-  return errCnt;
+       uint16_t loopCnt = 4096;  //don't need to loop through entire array...
+       if (size == 0) return -1;
+       if (*size<loopCnt) loopCnt = *size;
+
+       uint8_t curPhase = *invert;
+       size_t i, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
+       uint8_t fc=0, fullWaveLen=0, tol=1;
+       uint16_t errCnt=0, waveLenCnt=0;
+       fc = countPSK_FC(dest, *size);
+       if (fc!=2 && fc!=4 && fc!=8) return -1;
+       //PrintAndLog("DEBUG: FC: %d",fc);
+       *clock = DetectPSKClock(dest, *size, *clock);
+       if (*clock==0) return -1;
+       int avgWaveVal=0, lastAvgWaveVal=0;
+       //find first phase shift
+       for (i=0; i<loopCnt; i++){
+               if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
+                       waveEnd = i+1;
+                       //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
+                       waveLenCnt = waveEnd-waveStart;
+                       if (waveLenCnt > fc && waveStart > fc){ //not first peak and is a large wave 
+                               lastAvgWaveVal = avgWaveVal/(waveLenCnt);
+                               firstFullWave = waveStart;
+                               fullWaveLen=waveLenCnt;
+                               //if average wave value is > graph 0 then it is an up wave or a 1
+                               if (lastAvgWaveVal > 123) curPhase^=1;  //fudge graph 0 a little 123 vs 128
+                               break;
+                       
+                       waveStart = i+1;
+                       avgWaveVal = 0;
+               }
+               avgWaveVal+=dest[i+2];
+       }
+       //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);  
+       lastClkBit = firstFullWave; //set start of wave as clock align
+       //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
+       waveStart = 0;
+       errCnt=0;
+       size_t numBits=0;
+       //set skipped bits
+       memset(dest,curPhase^1,firstFullWave / *clock);
+       numBits += (firstFullWave / *clock);
+       dest[numBits++] = curPhase; //set first read bit
+       for (i = firstFullWave+fullWaveLen-1; i < *size-3; i++){
+               //top edge of wave = start of new wave 
+               if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
+                       if (waveStart == 0) {
+                               waveStart = i+1;
+                               waveLenCnt=0;
+                               avgWaveVal = dest[i+1];
+                       } else { //waveEnd
+                               waveEnd = i+1;
+                               waveLenCnt = waveEnd-waveStart;
+                               lastAvgWaveVal = avgWaveVal/waveLenCnt;
+                               if (waveLenCnt > fc){  
+                                       //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
+                                       //if this wave is a phase shift
+                                       //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
+                                       if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit
+                                               curPhase^=1;
+                                               dest[numBits++] = curPhase;
+                                               lastClkBit += *clock;
+                                       } else if (i<lastClkBit+10+fc){
+                                               //noise after a phase shift - ignore
+                                       } else { //phase shift before supposed to based on clock
+                                               errCnt++;
+                                               dest[numBits++] = 77;
+                                       }
+                               } else if (i+1 > lastClkBit + *clock + tol + fc){
+                                       lastClkBit += *clock; //no phase shift but clock bit
+                                       dest[numBits++] = curPhase;
+                               }
+                               avgWaveVal=0;
+                               waveStart=i+1;
+                       }
+               }
+               avgWaveVal+=dest[i+1];
+       }
+       *size = numBits;
+       return errCnt;
 }
Impressum, Datenschutz