// Edits by Gerhard de Koning Gans, Sep 2007 (##)
//-----------------------------------------------------------------------------
-
#include <proxmark3.h>
#include <stdlib.h>
#include "apps.h"
#include "LCD.h"
#endif
-// The large multi-purpose buffer, typically used to hold A/D samples,
-// maybe pre-processed in some way.
-DWORD BigBuf[16000];
//=============================================================================
// A buffer where we can queue things up to be sent through the FPGA, for
int ToSendMax;
static int ToSendBit;
-
void BufferClear(void)
{
memset(BigBuf,0,sizeof(BigBuf));
void DbpString(char *str)
{
+ /* this holds up stuff unless we're connected to usb */
+ if (!UsbConnected())
+ return;
+
UsbCommand c;
c.cmd = CMD_DEBUG_PRINT_STRING;
c.ext1 = strlen(str);
void DbpIntegers(int x1, int x2, int x3)
{
+ /* this holds up stuff unless we're connected to usb */
+ if (!UsbConnected())
+ return;
+
UsbCommand c;
c.cmd = CMD_DEBUG_PRINT_INTEGERS;
c.ext1 = x1;
SpinDelay(50);
}
-void AcquireRawAdcSamples125k(BOOL at134khz)
-{
- if(at134khz) {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
- } else {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
- }
-
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-
- // Give it a bit of time for the resonant antenna to settle.
- SpinDelay(50);
-
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-
- // Now call the acquisition routine
- DoAcquisition125k(at134khz);
-}
-
-// split into two routines so we can avoid timing issues after sending commands //
-void DoAcquisition125k(BOOL at134khz)
-{
- BYTE *dest = (BYTE *)BigBuf;
- int n = sizeof(BigBuf);
- int i;
-
- memset(dest,0,n);
- i = 0;
- for(;;) {
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
- SSC_TRANSMIT_HOLDING = 0x43;
- LED_D_ON();
- }
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
- dest[i] = (BYTE)SSC_RECEIVE_HOLDING;
- i++;
- LED_D_OFF();
- if(i >= n) {
- break;
- }
- }
- }
- DbpIntegers(dest[0], dest[1], at134khz);
-}
-
-void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYTE *command)
-{
- BOOL at134khz;
-
- // see if 'h' was specified
- if(command[strlen(command) - 1] == 'h')
- at134khz= TRUE;
- else
- at134khz= FALSE;
-
- if(at134khz) {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
- } else {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
- }
-
- // Give it a bit of time for the resonant antenna to settle.
- SpinDelay(50);
-
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-
- // now modulate the reader field
- while(*command != '\0' && *command != ' ')
- {
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LED_D_OFF();
- SpinDelayUs(delay_off);
- if(at134khz) {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
- } else {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
- }
- LED_D_ON();
- if(*(command++) == '0')
- SpinDelayUs(period_0);
- else
- SpinDelayUs(period_1);
- }
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LED_D_OFF();
- SpinDelayUs(delay_off);
- if(at134khz) {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
- } else {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
- }
-
- // now do the read
- DoAcquisition125k(at134khz);
-}
-
//-----------------------------------------------------------------------------
// Read an ADC channel and block till it completes, then return the result
// in ADC units (0 to 1023). Also a routine to average 32 samples and
return (a + 15) >> 5;
}
-/*
- * Sweeps the useful LF range of the proxmark from
- * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
- * reads the voltage in the antenna: the result is a graph
- * which should clearly show the resonating frequency of your
- * LF antenna ( hopefully around 90 if it is tuned to 125kHz!)
- */
-void SweepLFrange()
+void MeasureAntennaTuning(void)
{
BYTE *dest = (BYTE *)BigBuf;
- BYTE dummy[12];
- int i, peak= 0, ptr= 0;
- double freq;
+ int i, ptr = 0, adcval = 0, peak = 0, peakv = 0, peakf = 0;;
+ int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
+
+ UsbCommand c;
- // clear buffer
+ DbpString("Measuring antenna characteristics, please wait.");
memset(BigBuf,0,sizeof(BigBuf));
+/*
+ * Sweeps the useful LF range of the proxmark from
+ * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
+ * read the voltage in the antenna, the result left
+ * in the buffer is a graph which should clearly show
+ * the resonating frequency of your LF antenna
+ * ( hopefully around 95 if it is tuned to 125kHz!)
+ */
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
for (i=255; i>19; i--) {
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
SpinDelay(20);
- dest[i] = (137500 * AvgAdc(ADC_CHAN_LF)) >> 18;
+ // Vref = 3.3V, and a 10000:240 voltage divider on the input
+ // can measure voltages up to 137500 mV
+ adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
+ if (i==95) vLf125 = adcval; // voltage at 125Khz
+ if (i==89) vLf134 = adcval; // voltage at 134Khz
+
+ dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes
if(dest[i] > peak) {
- peak= dest[i];
- ptr= i;
- }
- }
- dummy[11]= '\0';
- dummy[10]= 'z';
- dummy[9]= 'H';
- dummy[8]= 'k';
- dummy[7]= ' ';
- freq= 12000000/(ptr + 1);
- for(i= 6; i > 3 ; --i) {
- dummy[i]= '0' + ((int) freq) % 10;
- freq /= 10;
- }
- dummy[3]= '.';
- for(i= 2; i >= 0 ; --i) {
- dummy[i]= '0' + ((int) freq) % 10;
- freq /= 10;
+ peakv = adcval;
+ peak = dest[i];
+ peakf = i;
+ ptr = i;
}
- DbpString("Antenna resonates at:");
- DbpString(dummy);
-}
-
-void MeasureAntennaTuning(void)
-{
-// Impedances are Zc = 1/(j*omega*C), in ohms
-#define LF_TUNING_CAP_Z 1273 // 1 nF @ 125 kHz
-#define HF_TUNING_CAP_Z 235 // 50 pF @ 13.56 MHz
-
- int vLf125, vLf134, vHf; // in mV
-
- UsbCommand c;
-
- // Let the FPGA drive the low-frequency antenna around 125 kHz.
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
- SpinDelay(20);
- vLf125 = AvgAdc(ADC_CHAN_LF);
- // Vref = 3.3V, and a 10000:240 voltage divider on the input
- // can measure voltages up to 137500 mV
- vLf125 = (137500 * vLf125) >> 10;
-
- // Let the FPGA drive the low-frequency antenna around 134 kHz.
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
- SpinDelay(20);
- vLf134 = AvgAdc(ADC_CHAN_LF);
- // Vref = 3.3V, and a 10000:240 voltage divider on the input
- // can measure voltages up to 137500 mV
- vLf134 = (137500 * vLf134) >> 10;
+ }
// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
SpinDelay(20);
- vHf = AvgAdc(ADC_CHAN_HF);
// Vref = 3300mV, and an 10:1 voltage divider on the input
// can measure voltages up to 33000 mV
- vHf = (33000 * vHf) >> 10;
+ vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
c.cmd = CMD_MEASURED_ANTENNA_TUNING;
c.ext1 = (vLf125 << 0) | (vLf134 << 16);
c.ext2 = vHf;
- c.ext3 = (LF_TUNING_CAP_Z << 0) | (HF_TUNING_CAP_Z << 16);
+ c.ext3 = peakf | (peakv << 16);
UsbSendPacket((BYTE *)&c, sizeof(c));
}
-void SimulateTagLowFrequency(int period)
+void SimulateTagHfListen(void)
{
+ BYTE *dest = (BYTE *)BigBuf;
+ int n = sizeof(BigBuf);
+ BYTE v = 0;
int i;
- BYTE *tab = (BYTE *)BigBuf;
-
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);
+ int p = 0;
- PIO_ENABLE = (1 << GPIO_SSC_DOUT) | (1 << GPIO_SSC_CLK);
+ // We're using this mode just so that I can test it out; the simulated
+ // tag mode would work just as well and be simpler.
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
- PIO_OUTPUT_ENABLE = (1 << GPIO_SSC_DOUT);
- PIO_OUTPUT_DISABLE = (1 << GPIO_SSC_CLK);
+ // We need to listen to the high-frequency, peak-detected path.
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
-#define SHORT_COIL() LOW(GPIO_SSC_DOUT)
-#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
+ FpgaSetupSsc();
i = 0;
for(;;) {
- while(!(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK))) {
- if(BUTTON_PRESS()) {
- return;
- }
- WDT_HIT();
- }
-
- LED_D_ON();
- if(tab[i]) {
- OPEN_COIL();
- } else {
- SHORT_COIL();
+ if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
+ SSC_TRANSMIT_HOLDING = 0xff;
}
- LED_D_OFF();
+ if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
+ BYTE r = (BYTE)SSC_RECEIVE_HOLDING;
- while(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK)) {
- if(BUTTON_PRESS()) {
- return;
+ v <<= 1;
+ if(r & 1) {
+ v |= 1;
}
- WDT_HIT();
- }
-
- i++;
- if(i == period) i = 0;
- }
-}
+ p++;
-// compose fc/8 fc/10 waveform
-static void fc(int c, int *n) {
- BYTE *dest = (BYTE *)BigBuf;
- int idx;
-
- // for when we want an fc8 pattern every 4 logical bits
- if(c==0) {
- dest[((*n)++)]=1;
- dest[((*n)++)]=1;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- }
- // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
- if(c==8) {
- for (idx=0; idx<6; idx++) {
- dest[((*n)++)]=1;
- dest[((*n)++)]=1;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- }
- }
+ if(p >= 8) {
+ dest[i] = v;
+ v = 0;
+ p = 0;
+ i++;
- // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
- if(c==10) {
- for (idx=0; idx<5; idx++) {
- dest[((*n)++)]=1;
- dest[((*n)++)]=1;
- dest[((*n)++)]=1;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
+ if(i >= n) {
+ break;
+ }
+ }
}
}
+ DbpString("simulate tag (now type bitsamples)");
}
-// prepare a waveform pattern in the buffer based on the ID given then
-// simulate a HID tag until the button is pressed
-static void CmdHIDsimTAG(int hi, int lo)
+void ReadMem(int addr)
{
- int n=0, i=0;
- /*
- HID tag bitstream format
- The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
- A 1 bit is represented as 6 fc8 and 5 fc10 patterns
- A 0 bit is represented as 5 fc10 and 6 fc8 patterns
- A fc8 is inserted before every 4 bits
- A special start of frame pattern is used consisting a0b0 where a and b are neither 0
- nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
- */
-
- if (hi>0xFFF) {
- DbpString("Tags can only have 44 bits.");
- return;
- }
- fc(0,&n);
- // special start of frame marker containing invalid bit sequences
- fc(8, &n); fc(8, &n); // invalid
- fc(8, &n); fc(10, &n); // logical 0
- fc(10, &n); fc(10, &n); // invalid
- fc(8, &n); fc(10, &n); // logical 0
-
- WDT_HIT();
- // manchester encode bits 43 to 32
- for (i=11; i>=0; i--) {
- if ((i%4)==3) fc(0,&n);
- if ((hi>>i)&1) {
- fc(10, &n); fc(8, &n); // low-high transition
- } else {
- fc(8, &n); fc(10, &n); // high-low transition
- }
- }
-
- WDT_HIT();
- // manchester encode bits 31 to 0
- for (i=31; i>=0; i--) {
- if ((i%4)==3) fc(0,&n);
- if ((lo>>i)&1) {
- fc(10, &n); fc(8, &n); // low-high transition
- } else {
- fc(8, &n); fc(10, &n); // high-low transition
- }
- }
+ const DWORD *data = ((DWORD *)addr);
+ int i;
- LED_A_ON();
- SimulateTagLowFrequency(n);
- LED_A_OFF();
+ DbpString("Reading memory at address");
+ DbpIntegers(0, 0, addr);
+ for (i = 0; i < 8; i+= 2)
+ DbpIntegers(0, data[i], data[i+1]);
}
-// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
-static void CmdHIDdemodFSK(void)
+// samy's sniff and repeat routine
+void SamyRun()
{
- BYTE *dest = (BYTE *)BigBuf;
- int m=0, n=0, i=0, idx=0, found=0, lastval=0;
- DWORD hi=0, lo=0;
+ DbpString("Stand-alone mode! No PC necessary.");
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
+ // 3 possible options? no just 2 for now
+#define OPTS 2
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+ int high[OPTS], low[OPTS];
- // Give it a bit of time for the resonant antenna to settle.
- SpinDelay(50);
+ // Oooh pretty -- notify user we're in elite samy mode now
+ LED(LED_RED, 200);
+ LED(LED_ORANGE, 200);
+ LED(LED_GREEN, 200);
+ LED(LED_ORANGE, 200);
+ LED(LED_RED, 200);
+ LED(LED_ORANGE, 200);
+ LED(LED_GREEN, 200);
+ LED(LED_ORANGE, 200);
+ LED(LED_RED, 200);
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
+ int selected = 0;
+ int playing = 0;
- for(;;) {
+ // Turn on selected LED
+ LED(selected + 1, 0);
+
+ for (;;)
+ {
+ UsbPoll(FALSE);
WDT_HIT();
- LED_A_ON();
- if(BUTTON_PRESS()) {
- LED_A_OFF();
- return;
- }
- i = 0;
- m = sizeof(BigBuf);
- memset(dest,128,m);
- for(;;) {
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
- SSC_TRANSMIT_HOLDING = 0x43;
- LED_D_ON();
- }
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
- dest[i] = (BYTE)SSC_RECEIVE_HOLDING;
- // we don't care about actual value, only if it's more or less than a
- // threshold essentially we capture zero crossings for later analysis
- if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
- i++;
- LED_D_OFF();
- if(i >= m) {
- break;
- }
- }
- }
+ // Was our button held down or pressed?
+ int button_pressed = BUTTON_HELD(1000);
+ SpinDelay(300);
- // FSK demodulator
+ // Button was held for a second, begin recording
+ if (button_pressed > 0)
+ {
+ LEDsoff();
+ LED(selected + 1, 0);
+ LED(LED_RED2, 0);
- // sync to first lo-hi transition
- for( idx=1; idx<m; idx++) {
- if (dest[idx-1]<dest[idx])
- lastval=idx;
- break;
- }
- WDT_HIT();
+ // record
+ DbpString("Starting recording");
- // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
- // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
- // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
- for( i=0; idx<m; idx++) {
- if (dest[idx-1]<dest[idx]) {
- dest[i]=idx-lastval;
- if (dest[i] <= 8) {
- dest[i]=1;
- } else {
- dest[i]=0;
- }
+ // wait for button to be released
+ while(BUTTON_PRESS())
+ WDT_HIT();
- lastval=idx;
- i++;
- }
- }
- m=i;
- WDT_HIT();
+ /* need this delay to prevent catching some weird data */
+ SpinDelay(500);
- // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
- lastval=dest[0];
- idx=0;
- i=0;
- n=0;
- for( idx=0; idx<m; idx++) {
- if (dest[idx]==lastval) {
- n++;
- } else {
- // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
- // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
- // swallowed up by rounding
- // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
- // special start of frame markers use invalid manchester states (no transitions) by using sequences
- // like 111000
- if (dest[idx-1]) {
- n=(n+1)/6; // fc/8 in sets of 6
- } else {
- n=(n+1)/5; // fc/10 in sets of 5
- }
- switch (n) { // stuff appropriate bits in buffer
- case 0:
- case 1: // one bit
- dest[i++]=dest[idx-1];
- break;
- case 2: // two bits
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- break;
- case 3: // 3 bit start of frame markers
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- break;
- // When a logic 0 is immediately followed by the start of the next transmisson
- // (special pattern) a pattern of 4 bit duration lengths is created.
- case 4:
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- break;
- default: // this shouldn't happen, don't stuff any bits
- break;
- }
- n=0;
- lastval=dest[idx];
- }
+ CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
+ DbpString("Recorded");
+ DbpIntegers(selected, high[selected], low[selected]);
+
+ LEDsoff();
+ LED(selected + 1, 0);
+ // Finished recording
+
+ // If we were previously playing, set playing off
+ // so next button push begins playing what we recorded
+ playing = 0;
}
- m=i;
- WDT_HIT();
- // final loop, go over previously decoded manchester data and decode into usable tag ID
- // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
- for( idx=0; idx<m-6; idx++) {
- // search for a start of frame marker
- if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
- {
- found=1;
- idx+=6;
- if (found && (hi|lo)) {
- DbpString("TAG ID");
- DbpIntegers(hi, lo, (lo>>1)&0xffff);
- hi=0;
- lo=0;
- found=0;
- }
- }
- if (found) {
- if (dest[idx] && (!dest[idx+1]) ) {
- hi=(hi<<1)|(lo>>31);
- lo=(lo<<1)|0;
- } else if ( (!dest[idx]) && dest[idx+1]) {
- hi=(hi<<1)|(lo>>31);
- lo=(lo<<1)|1;
- } else {
- found=0;
- hi=0;
- lo=0;
- }
- idx++;
- }
- if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
+ // Change where to record (or begin playing)
+ else if (button_pressed)
+ {
+ // Next option if we were previously playing
+ if (playing)
+ selected = (selected + 1) % OPTS;
+ playing = !playing;
+
+ LEDsoff();
+ LED(selected + 1, 0);
+
+ // Begin transmitting
+ if (playing)
{
- found=1;
- idx+=6;
- if (found && (hi|lo)) {
- DbpString("TAG ID");
- DbpIntegers(hi, lo, (lo>>1)&0xffff);
- hi=0;
- lo=0;
- found=0;
- }
+ LED(LED_GREEN, 0);
+ DbpString("Playing");
+ // wait for button to be released
+ while(BUTTON_PRESS())
+ WDT_HIT();
+ DbpIntegers(selected, high[selected], low[selected]);
+ CmdHIDsimTAG(high[selected], low[selected], 0);
+ DbpString("Done playing");
+ if (BUTTON_HELD(1000) > 0)
+ {
+ DbpString("Exiting");
+ LEDsoff();
+ return;
+ }
+
+ /* We pressed a button so ignore it here with a delay */
+ SpinDelay(300);
+
+ // when done, we're done playing, move to next option
+ selected = (selected + 1) % OPTS;
+ playing = !playing;
+ LEDsoff();
+ LED(selected + 1, 0);
}
+ else
+ while(BUTTON_PRESS())
+ WDT_HIT();
}
- WDT_HIT();
}
}
-void SimulateTagHfListen(void)
+
+/*
+OBJECTIVE
+Listen and detect an external reader. Determine the best location
+for the antenna.
+
+INSTRUCTIONS:
+Inside the ListenReaderField() function, there is two mode.
+By default, when you call the function, you will enter mode 1.
+If you press the PM3 button one time, you will enter mode 2.
+If you press the PM3 button a second time, you will exit the function.
+
+DESCRIPTION OF MODE 1:
+This mode just listens for an external reader field and lights up green
+for HF and/or red for LF. This is the original mode of the detectreader
+function.
+
+DESCRIPTION OF MODE 2:
+This mode will visually represent, using the LEDs, the actual strength of the
+current compared to the maximum current detected. Basically, once you know
+what kind of external reader is present, it will help you spot the best location to place
+your antenna. You will probably not get some good results if there is a LF and a HF reader
+at the same place! :-)
+
+LIGHT SCHEME USED:
+*/
+static const char LIGHT_SCHEME[] = {
+ 0x0, /* ---- | No field detected */
+ 0x1, /* X--- | 14% of maximum current detected */
+ 0x2, /* -X-- | 29% of maximum current detected */
+ 0x4, /* --X- | 43% of maximum current detected */
+ 0x8, /* ---X | 57% of maximum current detected */
+ 0xC, /* --XX | 71% of maximum current detected */
+ 0xE, /* -XXX | 86% of maximum current detected */
+ 0xF, /* XXXX | 100% of maximum current detected */
+};
+static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
+
+void ListenReaderField(int limit)
{
- BYTE *dest = (BYTE *)BigBuf;
- int n = sizeof(BigBuf);
- BYTE v = 0;
- int i;
- int p = 0;
+ int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
+ int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;
+ int mode=1, display_val, display_max, i;
- // We're using this mode just so that I can test it out; the simulated
- // tag mode would work just as well and be simpler.
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
+#define LF_ONLY 1
+#define HF_ONLY 2
- // We need to listen to the high-frequency, peak-detected path.
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+ LEDsoff();
- FpgaSetupSsc();
+ lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
+
+ if(limit != HF_ONLY) {
+ DbpString("LF 125/134 Baseline:");
+ DbpIntegers(lf_av,0,0);
+ lf_baseline= lf_av;
+ }
+
+ hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
+
+ if (limit != LF_ONLY) {
+ DbpString("HF 13.56 Baseline:");
+ DbpIntegers(hf_av,0,0);
+ hf_baseline= hf_av;
+ }
- i = 0;
for(;;) {
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
- SSC_TRANSMIT_HOLDING = 0xff;
+ if (BUTTON_PRESS()) {
+ SpinDelay(500);
+ switch (mode) {
+ case 1:
+ mode=2;
+ DbpString("Signal Strength Mode");
+ break;
+ case 2:
+ default:
+ DbpString("Stopped");
+ LEDsoff();
+ return;
+ break;
+ }
}
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
- BYTE r = (BYTE)SSC_RECEIVE_HOLDING;
+ WDT_HIT();
- v <<= 1;
- if(r & 1) {
- v |= 1;
+ if (limit != HF_ONLY) {
+ if(mode==1) {
+ if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
+ else LED_D_OFF();
}
- p++;
-
- if(p >= 8) {
- dest[i] = v;
- v = 0;
- p = 0;
- i++;
+
+ ++lf_count;
+ lf_av_new= ReadAdc(ADC_CHAN_LF);
+ // see if there's a significant change
+ if(abs(lf_av - lf_av_new) > 10) {
+ DbpString("LF 125/134 Field Change:");
+ DbpIntegers(lf_av,lf_av_new,lf_count);
+ lf_av= lf_av_new;
+ if (lf_av > lf_max)
+ lf_max = lf_av;
+ lf_count= 0;
+ }
+ }
- if(i >= n) {
+ if (limit != LF_ONLY) {
+ if (mode == 1){
+ if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
+ else LED_B_OFF();
+ }
+
+ ++hf_count;
+ hf_av_new= ReadAdc(ADC_CHAN_HF);
+ // see if there's a significant change
+ if(abs(hf_av - hf_av_new) > 10) {
+ DbpString("HF 13.56 Field Change:");
+ DbpIntegers(hf_av,hf_av_new,hf_count);
+ hf_av= hf_av_new;
+ if (hf_av > hf_max)
+ hf_max = hf_av;
+ hf_count= 0;
+ }
+ }
+
+ if(mode == 2) {
+ if (limit == LF_ONLY) {
+ display_val = lf_av;
+ display_max = lf_max;
+ } else if (limit == HF_ONLY) {
+ display_val = hf_av;
+ display_max = hf_max;
+ } else { /* Pick one at random */
+ if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
+ display_val = hf_av;
+ display_max = hf_max;
+ } else {
+ display_val = lf_av;
+ display_max = lf_max;
+ }
+ }
+ for (i=0; i<LIGHT_LEN; i++) {
+ if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
+ if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
+ if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
+ if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
+ if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
break;
}
}
}
}
- DbpString("simulate tag (now type bitsamples)");
}
void UsbPacketReceived(BYTE *packet, int len)
break;
case CMD_HID_DEMOD_FSK:
- CmdHIDdemodFSK(); // Demodulate HID tag
+ CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
break;
case CMD_HID_SIM_TAG:
- CmdHIDsimTAG(c->ext1, c->ext2); // Simulate HID tag by ID
+ CmdHIDsimTAG(c->ext1, c->ext2, 1); // Simulate HID tag by ID
break;
case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
LED_D_OFF(); // LED D indicates field ON or OFF
break;
- case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
- case CMD_DOWNLOAD_RAW_BITS_TI_TYPE: {
+ case CMD_READ_TI_TYPE:
+ ReadTItag();
+ break;
+
+ case CMD_WRITE_TI_TYPE:
+ WriteTItag(c->ext1,c->ext2,c->ext3);
+ break;
+
+ case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {
UsbCommand n;
if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
}
case CMD_SIMULATE_TAG_125K:
LED_A_ON();
- SimulateTagLowFrequency(c->ext1);
+ SimulateTagLowFrequency(c->ext1, 1);
LED_A_OFF();
break;
-#ifdef WITH_LCD
- case CMD_LCD_RESET:
- LCDReset();
- break;
-#endif
- case CMD_SWEEP_LF:
- SweepLFrange();
+ case CMD_READ_MEM:
+ ReadMem(c->ext1);
break;
-
case CMD_SET_LF_DIVISOR:
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->ext1);
break;
#ifdef WITH_LCD
+ case CMD_LCD_RESET:
+ LCDReset();
+ break;
case CMD_LCD:
LCDSend(c->ext1);
break;
#endif
- case CMD_SETUP_WRITE:
+ case CMD_SETUP_WRITE:
case CMD_FINISH_WRITE:
case CMD_HARDWARE_RESET:
USB_D_PLUS_PULLUP_OFF();
}
break;
-
default:
DbpString("unknown command");
break;
memset(BigBuf,0,sizeof(BigBuf));
SpinDelay(100);
- LED_D_OFF();
- LED_C_OFF();
- LED_B_OFF();
- LED_A_OFF();
+ LED_D_OFF();
+ LED_C_OFF();
+ LED_B_OFF();
+ LED_A_OFF();
UsbStart();
LCDInit();
// test text on different colored backgrounds
- LCDString(" The quick brown fox ", &FONT6x8,1,1+8*0,WHITE ,BLACK );
- LCDString(" jumped over the ", &FONT6x8,1,1+8*1,BLACK ,WHITE );
- LCDString(" lazy dog. ", &FONT6x8,1,1+8*2,YELLOW ,RED );
- LCDString(" AaBbCcDdEeFfGgHhIiJj ", &FONT6x8,1,1+8*3,RED ,GREEN );
- LCDString(" KkLlMmNnOoPpQqRrSsTt ", &FONT6x8,1,1+8*4,MAGENTA,BLUE );
- LCDString("UuVvWwXxYyZz0123456789", &FONT6x8,1,1+8*5,BLUE ,YELLOW);
- LCDString("`-=[]_;',./~!@#$%^&*()", &FONT6x8,1,1+8*6,BLACK ,CYAN );
- LCDString(" _+{}|:\\\"<>? ",&FONT6x8,1,1+8*7,BLUE ,MAGENTA);
+ LCDString(" The quick brown fox ", &FONT6x8,1,1+8*0,WHITE ,BLACK );
+ LCDString(" jumped over the ", &FONT6x8,1,1+8*1,BLACK ,WHITE );
+ LCDString(" lazy dog. ", &FONT6x8,1,1+8*2,YELLOW ,RED );
+ LCDString(" AaBbCcDdEeFfGgHhIiJj ", &FONT6x8,1,1+8*3,RED ,GREEN );
+ LCDString(" KkLlMmNnOoPpQqRrSsTt ", &FONT6x8,1,1+8*4,MAGENTA,BLUE );
+ LCDString("UuVvWwXxYyZz0123456789", &FONT6x8,1,1+8*5,BLUE ,YELLOW);
+ LCDString("`-=[]_;',./~!@#$%^&*()", &FONT6x8,1,1+8*6,BLACK ,CYAN );
+ LCDString(" _+{}|:\\\"<>? ",&FONT6x8,1,1+8*7,BLUE ,MAGENTA);
// color bands
LCDFill(0, 1+8* 8, 132, 8, BLACK);
for(;;) {
UsbPoll(FALSE);
WDT_HIT();
- }
-}
-
-void SpinDelayUs(int us)
-{
- int ticks = (48*us) >> 10;
-
- // Borrow a PWM unit for my real-time clock
- PWM_ENABLE = PWM_CHANNEL(0);
- // 48 MHz / 1024 gives 46.875 kHz
- PWM_CH_MODE(0) = PWM_CH_MODE_PRESCALER(10);
- PWM_CH_DUTY_CYCLE(0) = 0;
- PWM_CH_PERIOD(0) = 0xffff;
-
- WORD start = (WORD)PWM_CH_COUNTER(0);
-
- for(;;) {
- WORD now = (WORD)PWM_CH_COUNTER(0);
- if(now == (WORD)(start + ticks)) {
- return;
- }
- WDT_HIT();
- }
-}
-
-void SpinDelay(int ms)
-{
- int ticks = (48000*ms) >> 10;
-
- // Borrow a PWM unit for my real-time clock
- PWM_ENABLE = PWM_CHANNEL(0);
- // 48 MHz / 1024 gives 46.875 kHz
- PWM_CH_MODE(0) = PWM_CH_MODE_PRESCALER(10);
- PWM_CH_DUTY_CYCLE(0) = 0;
- PWM_CH_PERIOD(0) = 0xffff;
- WORD start = (WORD)PWM_CH_COUNTER(0);
-
- for(;;) {
- WORD now = (WORD)PWM_CH_COUNTER(0);
- if(now == (WORD)(start + ticks)) {
- return;
- }
- WDT_HIT();
+ if (BUTTON_HELD(1000) > 0)
+ SamyRun();
}
}
-
-// listen for external reader
-void ListenReaderField(int limit)
-{
- int lf_av, lf_av_new, lf_baseline= -1, lf_count= 0;
- int hf_av, hf_av_new, hf_baseline= -1, hf_count= 0;
-
-#define LF_ONLY 1
-#define HF_ONLY 2
-
- LED_A_OFF();
- LED_B_OFF();
- LED_C_OFF();
- LED_D_OFF();
-
- lf_av= ReadAdc(ADC_CHAN_LF);
-
- if(limit != HF_ONLY && lf_baseline == -1)
- {
- DbpString("LF 125/134 Baseline:");
- DbpIntegers(lf_av,0,0);
- lf_baseline= lf_av;
- }
-
- hf_av= ReadAdc(ADC_CHAN_HF);
-
-
- if (limit != LF_ONLY && hf_baseline == -1)
- {
- DbpString("HF 13.56 Baseline:");
- DbpIntegers(hf_av,0,0);
- hf_baseline= hf_av;
- }
-
- for(;;)
- {
- if(BUTTON_PRESS())
- {
- LED_B_OFF();
- LED_D_OFF();
- return;
- }
- WDT_HIT();
-
-
- if (limit != HF_ONLY)
- {
- if (abs(lf_av - lf_baseline) > 10)
- LED_D_ON();
- else
- LED_D_OFF();
- ++lf_count;
- lf_av_new= ReadAdc(ADC_CHAN_LF);
- // see if there's a significant change
- if(abs(lf_av - lf_av_new) > 10)
- {
- DbpString("LF 125/134 Field Change:");
- DbpIntegers(lf_av,lf_av_new,lf_count);
- lf_av= lf_av_new;
- lf_count= 0;
- }
- }
-
- if (limit != LF_ONLY)
- {
- if (abs(hf_av - hf_baseline) > 10)
- LED_B_ON();
- else
- LED_B_OFF();
- ++hf_count;
- hf_av_new= ReadAdc(ADC_CHAN_HF);
- // see if there's a significant change
- if(abs(hf_av - hf_av_new) > 10)
- {
- DbpString("HF 13.56 Field Change:");
- DbpIntegers(hf_av,hf_av_new,hf_count);
- hf_av= hf_av_new;
- hf_count= 0;
- }
- }
- }
-}