FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// now do the read
- DoAcquisition_config(false);
+ DoAcquisition_config(false, 0);
}
/* blank r/w tag data stream
int i;
uint8_t *tab = BigBuf_get_addr();
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ //note FpgaDownloadAndGo destroys the bigbuf so be sure this is called before now...
+ //FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
i = 0;
for(;;) {
//wait until SSC_CLK goes HIGH
+ int ii = 0;
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
- if(BUTTON_PRESS() || (usb_poll_validate_length() )) {
- DbpString("Stopped");
- return;
+ //only check every 1000th time (usb_poll_validate_length on some systems was too slow)
+ if ( ii == 1000 ) {
+ if (BUTTON_PRESS() || usb_poll_validate_length() ) {
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ DbpString("Stopped");
+ return;
+ }
+ ii=0;
}
WDT_HIT();
+ ii++;
}
if (ledcontrol)
LED_D_ON();
if (ledcontrol)
LED_D_OFF();
+ ii=0;
//wait until SSC_CLK goes LOW
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
- if(BUTTON_PRESS()) {
- DbpString("Stopped");
- return;
+ //only check every 1000th time (usb_poll_validate_length on some systems was too slow)
+ if ( ii == 1000 ) {
+ if (BUTTON_PRESS() || usb_poll_validate_length() ) {
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ DbpString("Stopped");
+ return;
+ }
+ ii=0;
}
WDT_HIT();
+ ii++;
}
i++;
SpinDelayUs(gap);
}
}
+
}
}
DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
return;
}
+ // set LF so we don't kill the bigbuf we are setting with simulation data.
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
fc(0,&n);
// special start of frame marker containing invalid bit sequences
fc(8, &n); fc(8, &n); // invalid
uint8_t clk = arg2 & 0xFF;
uint8_t invert = (arg2 >> 8) & 1;
+ // set LF so we don't kill the bigbuf we are setting with simulation data.
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
for (i=0; i<size; i++){
if (BitStream[i] == invert){
fcAll(fcLow, &n, clk, &modCnt);
*n += clock;
}
+static void stAskSimBit(int *n, uint8_t clock) {
+ uint8_t *dest = BigBuf_get_addr();
+ uint8_t halfClk = clock/2;
+ //ST = .5 high .5 low 1.5 high .5 low 1 high
+ memset(dest+(*n), 1, halfClk);
+ memset(dest+(*n) + halfClk, 0, halfClk);
+ memset(dest+(*n) + clock, 1, clock + halfClk);
+ memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
+ memset(dest+(*n) + clock*3, 1, clock);
+ *n += clock*4;
+}
+
// args clock, ask/man or askraw, invert, transmission separator
void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
{
uint8_t separator = arg2 & 1;
uint8_t invert = (arg2 >> 8) & 1;
+ // set LF so we don't kill the bigbuf we are setting with simulation data.
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
if (encoding==2){ //biphase
uint8_t phase=0;
for (i=0; i<size; i++){
for (i=0; i<size; i++){
askSimBit(BitStream[i]^invert, &n, clk, encoding);
}
- if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase)
+ if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for ask/raw || biphase phase)
for (i=0; i<size; i++){
askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
}
}
}
-
- if (separator==1) Dbprintf("sorry but separator option not yet available");
+ if (separator==1 && encoding == 1)
+ stAskSimBit(&n, clk);
+ else if (separator==1)
+ Dbprintf("sorry but separator option not yet available");
Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
//DEBUG
uint8_t carrier = arg1 & 0xFF;
uint8_t invert = arg2 & 0xFF;
uint8_t curPhase = 0;
+ // set LF so we don't kill the bigbuf we are setting with simulation data.
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
for (i=0; i<size; i++){
if (BitStream[i] == curPhase){
pskSimBit(carrier, &n, clk, &curPhase, FALSE);
size_t size;
uint32_t hi2=0, hi=0, lo=0;
int idx=0;
+ int dummyIdx = 0;
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
// FSK demodulator
//size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
size = 50*128*2; //big enough to catch 2 sequences of largest format
- idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
+ idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo, &dummyIdx);
if (idx>0 && lo>0 && (size==96 || size==192)){
// go over previously decoded manchester data and decode into usable tag ID
if (ledcontrol) LED_A_OFF();
*high = hi;
*low = lo;
- return;
+ break;
}
// reset
}
hi2 = hi = lo = idx = 0;
WDT_HIT();
}
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
{
uint8_t *dest = BigBuf_get_addr();
size_t size;
- int idx=0;
+ int idx=0, dummyIdx=0;
//clear read buffer
BigBuf_Clear_keep_EM();
// Configure to go in 125Khz listen mode
DoAcquisition_default(-1,true);
// FSK demodulator
size = 50*128*2; //big enough to catch 2 sequences of largest format
- idx = AWIDdemodFSK(dest, &size);
+ idx = AWIDdemodFSK(dest, &size, &dummyIdx);
if (idx<=0 || size!=96) continue;
// Index map
}
if (findone){
if (ledcontrol) LED_A_OFF();
- return;
+ break;
}
// reset
idx = 0;
WDT_HIT();
}
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
if (ledcontrol) LED_A_OFF();
*high=lo>>32;
*low=lo & 0xFFFFFFFF;
- return;
+ break;
}
}
WDT_HIT();
hi = lo = size = idx = 0;
clk = invert = errCnt = 0;
}
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
uint8_t version=0;
uint8_t facilitycode=0;
uint16_t number=0;
+ int dummyIdx=0;
//clear read buffer
BigBuf_Clear_keep_EM();
// Configure to go in 125Khz listen mode
DoAcquisition_default(-1,true);
//fskdemod and get start index
WDT_HIT();
- idx = IOdemodFSK(dest, BigBuf_max_traceLen());
+ idx = IOdemodFSK(dest, BigBuf_max_traceLen(), &dummyIdx);
if (idx<0) continue;
//valid tag found
//LED_A_OFF();
*high=code;
*low=code2;
- return;
+ break;
}
code=code2=0;
version=facilitycode=0;
WDT_HIT();
}
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
void TurnReadLFOn(int delay) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// Give it a bit of time for the resonant antenna to settle.
- SpinDelayUs(delay); //155*8 //50*8
+ WaitUS(delay); //155*8 //50*8
}
// Write one bit to card
else
TurnReadLFOn(WRITE_1);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelayUs(WRITE_GAP);
+ WaitUS(WRITE_GAP);
}
// Send T5577 reset command then read stream (see if we can identify the start of the stream)
// Set up FPGA, 125kHz
LFSetupFPGAForADC(95, true);
-
+ StartTicks();
+ // make sure tag is fully powered up...
+ WaitMS(5);
+
// Trigger T55x7 in mode.
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelayUs(START_GAP);
+ WaitUS(START_GAP);
// reset tag - op code 00
T55xxWriteBit(0);
T55xxWriteBit(0);
- // Turn field on to read the response
TurnReadLFOn(READ_GAP);
// Acquisition
- doT55x7Acquisition(BigBuf_max_traceLen());
+ DoPartialAcquisition(0, true, BigBuf_max_traceLen(), 0);
// Turn the field off
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
LED_A_ON();
bool PwdMode = arg & 0x1;
uint8_t Page = (arg & 0x2)>>1;
+ bool testMode = arg & 0x4;
uint32_t i = 0;
// Set up FPGA, 125kHz
LFSetupFPGAForADC(95, true);
-
+ StartTicks();
+ // make sure tag is fully powered up...
+ WaitMS(5);
// Trigger T55x7 in mode.
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelayUs(START_GAP);
+ WaitUS(START_GAP);
- // Opcode 10
- T55xxWriteBit(1);
- T55xxWriteBit(Page); //Page 0
- if (PwdMode){
+ if (testMode) Dbprintf("TestMODE");
+ // Std Opcode 10
+ T55xxWriteBit(testMode ? 0 : 1);
+ T55xxWriteBit(testMode ? 1 : Page); //Page 0
+
+ if (PwdMode) {
// Send Pwd
for (i = 0x80000000; i != 0; i >>= 1)
T55xxWriteBit(Pwd & i);
// Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
// so wait a little more)
- TurnReadLFOn(20 * 1000);
+
+ // "there is a clock delay before programming"
+ // - programming takes ~5.6ms for t5577 ~18ms for E5550 or t5567
+ // so we should wait 1 clock + 5.6ms then read response?
+ // but we need to know we are dealing with t5577 vs t5567 vs e5550 (or q5) marshmellow...
+ if (testMode) {
+ //TESTMODE TIMING TESTS:
+ // <566us does nothing
+ // 566-568 switches between wiping to 0s and doing nothing
+ // 5184 wipes and allows 1 block to be programmed.
+ // indefinite power on wipes and then programs all blocks with bitshifted data sent.
+ TurnReadLFOn(5184);
+
+ } else {
+ TurnReadLFOn(20 * 1000);
//could attempt to do a read to confirm write took
// as the tag should repeat back the new block
// until it is reset, but to confirm it we would
- // need to know the current block 0 config mode
+ // need to know the current block 0 config mode for
+ // modulation clock an other details to demod the response...
+ // response should be (for t55x7) a 0 bit then (ST if on)
+ // block data written in on repeat until reset.
+
+ //DoPartialAcquisition(20, true, 12000);
+ }
// turn field off
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
bool PwdMode = arg0 & 0x1;
uint8_t Page = (arg0 & 0x2) >> 1;
uint32_t i = 0;
- bool RegReadMode = (Block == 0xFF);
+ bool RegReadMode = (Block == 0xFF);//regular read mode
//clear buffer now so it does not interfere with timing later
BigBuf_Clear_ext(false);
// Set up FPGA, 125kHz to power up the tag
LFSetupFPGAForADC(95, true);
-
+ StartTicks();
+ // make sure tag is fully powered up...
+ WaitMS(5);
// Trigger T55x7 Direct Access Mode with start gap
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelayUs(START_GAP);
+ WaitUS(START_GAP);
// Opcode 1[page]
T55xxWriteBit(1);
T55xxWriteBit(Block & i);
// Turn field on to read the response
- TurnReadLFOn(READ_GAP);
+ // 137*8 seems to get to the start of data pretty well...
+ // but we want to go past the start and let the repeating data settle in...
+ TurnReadLFOn(210*8);
// Acquisition
- doT55x7Acquisition(12000);
+ // Now do the acquisition
+ DoPartialAcquisition(0, true, 12000, 0);
// Turn the field off
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
// Set up FPGA, 125kHz
LFSetupFPGAForADC(95, true);
+ StartTicks();
+ // make sure tag is fully powered up...
+ WaitMS(5);
// Trigger T55x7 Direct Access Mode
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelayUs(START_GAP);
+ WaitUS(START_GAP);
// Opcode 10
T55xxWriteBit(1);
//Program the 7 data blocks for supplied 224bit UID
uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
// and the block 0 for Indala224 format
- //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
- data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT);
+ //Config for Indala (RF/32;PSK2 with RF/2;Maxblock=7)
+ data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK2 | (7 << T55x7_MAXBLOCK_SHIFT);
//TODO add selection of chip for Q5 or T55x7
- // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
+ // data[0] = (((32-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK2 | 7 << T5555_MAXBLOCK_SHIFT;
WriteT55xx(data, 0, 8);
//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
// T5567WriteBlock(0x603E10E2,0);
// clone viking tag to T55xx
void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
- if (Q5) data[0] = (32 << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
+ if (Q5) data[0] = T5555_SET_BITRATE(32) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
// Program the data blocks for supplied ID and the block 0 config
WriteT55xx(data, 0, 3);
LED_D_OFF();
}
data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
} else { //t5555 (Q5)
- clock = (clock-2)>>1; //n = (RF-2)/2
- data[0] = (clock << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
+ data[0] = T5555_SET_BITRATE(clock) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
}
WriteT55xx(data, 0, 3);
fwd_write_ptr = forwardLink_data;
fwd_bit_sz = fwd_bit_count;
- LED_D_ON();
-
- // Set up FPGA, 125kHz
+ // Set up FPGA, 125kHz or 95 divisor
LFSetupFPGAForADC(95, true);
// force 1st mod pulse (start gap must be longer for 4305)
fwd_bit_sz--; //prepare next bit modulation
fwd_write_ptr++;
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
+ WaitUS(55*8); //55 cycles off (8us each)for 4305 //another reader has 37 here...
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
- SpinDelayUs(16*8); //16 cycles on (8us each)
+ WaitUS(18*8); //18 cycles on (8us each)
// now start writting
while(fwd_bit_sz-- > 0) { //prepare next bit modulation
if(((*fwd_write_ptr++) & 1) == 1)
- SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
+ WaitUS(32*8); //32 cycles at 125Khz (8us each)
else {
//These timings work for 4469/4269/4305 (with the 55*8 above)
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- SpinDelayUs(23*8); //16-4 cycles off (8us each)
+ WaitUS(23*8); //23 cycles off (8us each)
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
- SpinDelayUs(9*8); //16 cycles on (8us each)
+ WaitUS(18*8); //18 cycles on (8us each)
}
}
}
void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
uint8_t fwd_bit_count;
- uint8_t *dest = BigBuf_get_addr();
- uint16_t bufferlength = BigBuf_max_traceLen();
- uint32_t i = 0;
// Clear destination buffer before sending the command
BigBuf_Clear_ext(false);
+ LED_A_ON();
+ StartTicks();
//If password mode do login
if (PwdMode == 1) EM4xLogin(Pwd);
fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
fwd_bit_count += Prepare_Addr( Address );
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-
SendForward(fwd_bit_count);
-
+ WaitUS(400);
// Now do the acquisition
- i = 0;
- for(;;) {
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
- AT91C_BASE_SSC->SSC_THR = 0x43;
- }
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
- dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- i++;
- if (i >= bufferlength) break;
- }
- }
+ DoPartialAcquisition(20, true, 6000, 1000);
+
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ LED_A_OFF();
cmd_send(CMD_ACK,0,0,0,0,0);
- LED_D_OFF();
}
-void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
-
+void EM4xWriteWord(uint32_t flag, uint32_t Data, uint32_t Pwd) {
+
+ bool PwdMode = (flag & 0xF);
+ uint8_t Address = (flag >> 8) & 0xFF;
uint8_t fwd_bit_count;
+ //clear buffer now so it does not interfere with timing later
+ BigBuf_Clear_ext(false);
+
+ LED_A_ON();
+ StartTicks();
//If password mode do login
- if (PwdMode == 1) EM4xLogin(Pwd);
+ if (PwdMode) EM4xLogin(Pwd);
forward_ptr = forwardLink_data;
fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
SendForward(fwd_bit_count);
//Wait for write to complete
- SpinDelay(20);
+ //SpinDelay(10);
+
+ WaitUS(6500);
+ //Capture response if one exists
+ DoPartialAcquisition(20, true, 6000, 1000);
+
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- LED_D_OFF();
+ LED_A_OFF();
+ cmd_send(CMD_ACK,0,0,0,0,0);
+}
+/*
+Reading a COTAG.
+
+COTAG needs the reader to send a startsequence and the card has an extreme slow datarate.
+because of this, we can "sample" the data signal but we interpreate it to Manchester direct.
+
+READER START SEQUENCE:
+burst 800 us, gap 2.2 msecs
+burst 3.6 msecs gap 2.2 msecs
+burst 800 us gap 2.2 msecs
+pulse 3.6 msecs
+
+This triggers a COTAG tag to response
+*/
+void Cotag(uint32_t arg0) {
+
+#define OFF { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); }
+#define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); }
+
+ uint8_t rawsignal = arg0 & 0xF;
+
+ LED_A_ON();
+
+ // Switching to LF image on FPGA. This might empty BigBuff
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
+ //clear buffer now so it does not interfere with timing later
+ BigBuf_Clear_ext(false);
+
+ // Set up FPGA, 132kHz to power up the tag
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 89);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // Connect the A/D to the peak-detected low-frequency path.
+ SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+
+ // Now set up the SSC to get the ADC samples that are now streaming at us.
+ FpgaSetupSsc();
+
+ // start clock - 1.5ticks is 1us
+ StartTicks();
+
+ //send COTAG start pulse
+ ON(740) OFF
+ ON(3330) OFF
+ ON(740) OFF
+ ON(1000)
+
+ switch(rawsignal) {
+ case 0: doCotagAcquisition(50000); break;
+ case 1: doCotagAcquisitionManchester(); break;
+ case 2: DoAcquisition_config(true, 0); break;
+ }
+
+ // Turn the field off
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ LED_A_OFF();
}