#include "apps.h"
#include "util.h"
#include "string.h"
-
#include "iso14443crc.h"
+#include "common.h"
+#define RECEIVE_SAMPLES_TIMEOUT 800000
+#define ISO14443B_DMA_BUFFER_SIZE 256
+
-#define RECEIVE_SAMPLES_TIMEOUT 2000
+// PCB Block number for APDUs
+static uint8_t pcb_blocknum = 0;
//=============================================================================
// An ISO 14443 Type B tag. We listen for commands from the reader, using
ToSendStuffBit(0);
ToSendStuffBit(0);
}
- for(i = 0; i < 2; i++) {
+ for(i = 0; i < 10; i++) {
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
LED_A_OFF(); // Finished receiving
Uart.state = STATE_UNSYNCD;
if (Uart.byteCnt != 0) {
- return TRUE;
+ return TRUE;
}
} else {
// this is an error
Uart.state = STATE_UNSYNCD;
Uart.byteCnt = 0;
Uart.bitCnt = 0;
+ Uart.posCnt = 0;
+ memset(Uart.output, 0x00, MAX_FRAME_SIZE);
}
//-----------------------------------------------------------------------------
void SimulateIso14443bTag(void)
{
- // the only commands we understand is REQB, AFI=0, Select All, N=0:
- static const uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
- // ... and REQB, AFI=0, Normal Request, N=0:
- static const uint8_t cmd2[] = { 0x05, 0x00, 0x00, 0x71, 0xFF };
+ // the only commands we understand is WUPB, AFI=0, Select All, N=1:
+ static const uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 }; // WUPB
+ // ... and REQB, AFI=0, Normal Request, N=1:
+ static const uint8_t cmd2[] = { 0x05, 0x00, 0x00, 0x71, 0xFF }; // REQB
+ // ... and HLTB
+ static const uint8_t cmd3[] = { 0x50, 0xff, 0xff, 0xff, 0xff }; // HLTB
+ // ... and ATTRIB
+ static const uint8_t cmd4[] = { 0x1D, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; // ATTRIB
// ... and we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922,
// supports only 106kBit/s in both directions, max frame size = 32Bytes,
0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22,
0x00, 0x21, 0x85, 0x5e, 0xd7
};
+ // response to HLTB and ATTRIB
+ static const uint8_t response2[] = {0x00, 0x78, 0xF0};
+
+ uint8_t parity[MAX_PARITY_SIZE];
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
clear_trace();
set_tracing(TRUE);
uint16_t len;
uint16_t cmdsRecvd = 0;
- FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
-
// prepare the (only one) tag answer:
CodeIso14443bAsTag(response1, sizeof(response1));
uint8_t *resp1Code = BigBuf_malloc(ToSendMax);
memcpy(resp1Code, ToSend, ToSendMax);
uint16_t resp1CodeLen = ToSendMax;
+ // prepare the (other) tag answer:
+ CodeIso14443bAsTag(response2, sizeof(response2));
+ uint8_t *resp2Code = BigBuf_malloc(ToSendMax);
+ memcpy(resp2Code, ToSend, ToSendMax);
+ uint16_t resp2CodeLen = ToSendMax;
+
// We need to listen to the high-frequency, peak-detected path.
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
FpgaSetupSsc();
for(;;) {
if(!GetIso14443bCommandFromReader(receivedCmd, &len)) {
- Dbprintf("button pressed, received %d commands", cmdsRecvd);
- break;
+ Dbprintf("button pressed, received %d commands", cmdsRecvd);
+ break;
}
if (tracing) {
- uint8_t parity[MAX_PARITY_SIZE];
LogTrace(receivedCmd, len, 0, 0, parity, TRUE);
}
respLen = sizeof(response1);
respCode = resp1Code;
respCodeLen = resp1CodeLen;
+ } else if ( (len == sizeof(cmd3) && receivedCmd[0] == cmd3[0])
+ || (len == sizeof(cmd4) && receivedCmd[0] == cmd4[0]) ) {
+ resp = response2;
+ respLen = sizeof(response2);
+ respCode = resp2Code;
+ respCodeLen = resp2CodeLen;
} else {
Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len, cmdsRecvd);
// And print whether the CRC fails, just for good measure
uint8_t b1, b2;
+ if (len >= 3){ // if crc exists
ComputeCrc14443(CRC_14443_B, receivedCmd, len-2, &b1, &b2);
if(b1 != receivedCmd[len-2] || b2 != receivedCmd[len-1]) {
// Not so good, try again.
DbpString("+++CRC fail");
+
} else {
DbpString("CRC passes");
}
- break;
+ }
+ //get rid of compiler warning
+ respCodeLen = 0;
+ resp = response1;
+ respLen = 0;
+ respCode = resp1Code;
+ //don't crash at new command just wait and see if reader will send other new cmds.
+ //break;
}
cmdsRecvd++;
AT91C_BASE_SSC->SSC_THR = 0xff;
FpgaSetupSsc();
+ uint8_t c;
+ // clear receiving shift register and holding register
+ while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
+ c = AT91C_BASE_SSC->SSC_RHR; (void) c;
+ while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
+ c = AT91C_BASE_SSC->SSC_RHR; (void) c;
+
+ // Clear TXRDY:
+ AT91C_BASE_SSC->SSC_THR = 0x00;
+
// Transmit the response.
+ uint16_t FpgaSendQueueDelay = 0;
uint16_t i = 0;
- for(;;) {
+ for(;i < respCodeLen; ) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- uint8_t b = respCode[i];
-
- AT91C_BASE_SSC->SSC_THR = b;
-
- i++;
- if(i > respCodeLen) {
- break;
- }
+ AT91C_BASE_SSC->SSC_THR = respCode[i++];
+ FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
}
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- (void)b;
+ if(BUTTON_PRESS()) break;
+ }
+
+ // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
+ uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
+ for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = 0x00;
+ FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ i++;
}
}
// trace the response:
- if (tracing) {
- uint8_t parity[MAX_PARITY_SIZE];
- LogTrace(resp, respLen, 0, 0, parity, FALSE);
- }
-
+ if (tracing) LogTrace(resp, respLen, 0, 0, parity, FALSE);
}
+ FpgaDisableSscDma();
}
//=============================================================================
static RAMFUNC int Handle14443bSamplesDemod(int ci, int cq)
{
int v;
+ int ai, aq;
// The soft decision on the bit uses an estimate of just the
// quadrant of the reference angle, not the exact angle.
#define MAKE_SOFT_DECISION() { \
- if(Demod.sumI > 0) { \
- v = ci; \
- } else { \
- v = -ci; \
- } \
+ v = (Demod.sumI > 0) ? ci : -ci;\
if(Demod.sumQ > 0) { \
v += cq; \
} else { \
} \
}
*/
+
// Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
#define CHECK_FOR_SUBCARRIER() { \
- if(ci < 0) { \
- if(cq < 0) { /* ci < 0, cq < 0 */ \
- if (cq < ci) { \
- v = -cq - (ci >> 1); \
- } else { \
- v = -ci - (cq >> 1); \
- } \
- } else { /* ci < 0, cq >= 0 */ \
- if (cq < -ci) { \
- v = -ci + (cq >> 1); \
- } else { \
- v = cq - (ci >> 1); \
- } \
- } \
- } else { \
- if(cq < 0) { /* ci >= 0, cq < 0 */ \
- if (-cq < ci) { \
- v = ci - (cq >> 1); \
- } else { \
- v = -cq + (ci >> 1); \
- } \
- } else { /* ci >= 0, cq >= 0 */ \
- if (cq < ci) { \
- v = ci + (cq >> 1); \
- } else { \
- v = cq + (ci >> 1); \
- } \
- } \
- } \
- }
-
+ ai = (abs(ci) >> 1); \
+ aq = (abs(cq) >> 1); \
+ v = MAX(abs(ci), abs(cq)) + MIN(ai, aq); \
+}
+
+
switch(Demod.state) {
case DEMOD_UNSYNCD:
CHECK_FOR_SUBCARRIER();
Demod.sumI = ci;
Demod.sumQ = cq;
Demod.posCount = 1;
- }
+ }
break;
case DEMOD_PHASE_REF_TRAINING:
- if(Demod.posCount < 8) {
+ if(Demod.posCount < 10*2) {
CHECK_FOR_SUBCARRIER();
if (v > SUBCARRIER_DETECT_THRESHOLD) {
// set the reference phase (will code a logic '1') by averaging over 32 1/fs.
case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
MAKE_SOFT_DECISION();
+ //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq );
if(v < 0) { // logic '0' detected
Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
Demod.posCount = 0; // start of SOF sequence
} else {
- if(Demod.posCount > 200/4) { // maximum length of TR1 = 200 1/fs
+ if(Demod.posCount > 25*2) { // maximum length of TR1 = 200 1/fs
Demod.state = DEMOD_UNSYNCD;
}
}
Demod.posCount++;
MAKE_SOFT_DECISION();
if(v > 0) {
- if(Demod.posCount < 9*2) { // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
+ if(Demod.posCount < 10*2) { // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
Demod.state = DEMOD_UNSYNCD;
} else {
LED_C_ON(); // Got SOF
*/
}
} else {
- if(Demod.posCount > 12*2) { // low phase of SOF too long (> 12 etu)
+ if(Demod.posCount > 13*2) { // low phase of SOF too long (> 12 etu)
Demod.state = DEMOD_UNSYNCD;
LED_C_OFF();
}
LED_C_OFF();
break;
}
-
return FALSE;
}
Demod.len = 0;
Demod.state = DEMOD_UNSYNCD;
Demod.posCount = 0;
+ Demod.sumI = 0;
+ Demod.sumQ = 0;
+ Demod.bitCount = 0;
+ Demod.thisBit = 0;
+ Demod.shiftReg = 0;
memset(Demod.output, 0x00, MAX_FRAME_SIZE);
}
// Allocate memory from BigBuf for some buffers
// free all previous allocations first
BigBuf_free();
-
+
+ // And put the FPGA in the appropriate mode
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
+
// The response (tag -> reader) that we're receiving.
- uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
+ // Set up the demodulator for tag -> reader responses.
+ DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
// The DMA buffer, used to stream samples from the FPGA
- int8_t *dmaBuf = (int8_t*) BigBuf_malloc(DMA_BUFFER_SIZE);
-
- // Set up the demodulator for tag -> reader responses.
- DemodInit(receivedResponse);
+ int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE);
// Setup and start DMA.
- FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE);
-
+ FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE);
+
int8_t *upTo = dmaBuf;
- lastRxCounter = DMA_BUFFER_SIZE;
+ lastRxCounter = ISO14443B_DMA_BUFFER_SIZE;
// Signal field is ON with the appropriate LED:
LED_D_ON();
- // And put the FPGA in the appropriate mode
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
-
for(;;) {
int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
if(behindBy > max) max = behindBy;
- while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (DMA_BUFFER_SIZE-1)) > 2) {
+ while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO14443B_DMA_BUFFER_SIZE-1)) > 2) {
ci = upTo[0];
cq = upTo[1];
upTo += 2;
- if(upTo >= dmaBuf + DMA_BUFFER_SIZE) {
+ if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) {
upTo = dmaBuf;
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
- AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
+ AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE;
}
lastRxCounter -= 2;
if(lastRxCounter <= 0) {
- lastRxCounter += DMA_BUFFER_SIZE;
+ lastRxCounter += ISO14443B_DMA_BUFFER_SIZE;
}
samples += 2;
- if(Handle14443bSamplesDemod(ci, cq)) {
- gotFrame = TRUE;
+ //
+ gotFrame = Handle14443bSamplesDemod(ci , cq );
+ if ( gotFrame )
break;
- }
}
if(samples > n || gotFrame) {
AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
- if (!quiet) Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", max, samples, gotFrame, Demod.len, Demod.sumI, Demod.sumQ);
+ if (!quiet && Demod.len == 0) {
+ Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d",
+ max,
+ samples,
+ gotFrame,
+ Demod.len,
+ Demod.sumI,
+ Demod.sumQ
+ );
+ }
+
//Tracing
if (tracing && Demod.len > 0) {
uint8_t parity[MAX_PARITY_SIZE];
- //GetParity(Demod.output, Demod.len, parity);
LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE);
}
}
int c;
FpgaSetupSsc();
-
+
while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0xff;
}
// Signal we are transmitting with the Green LED
LED_B_ON();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
-
+
for(c = 0; c < 10;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0xff;
ToSendStuffBit(1);
}
// Send SOF
- for(i = 0; i < 10; i++) {
+ for(i = 0; i < 11; i++) {
ToSendStuffBit(0);
}
}
// Send EOF
ToSendStuffBit(1);
- for(i = 0; i < 10; i++) {
+ for(i = 0; i < 11; i++) {
ToSendStuffBit(0);
}
for(i = 0; i < 8; i++) {
// And then a little more, to make sure that the last character makes
// it out before we switch to rx mode.
- for(i = 0; i < 24; i++) {
+ for(i = 0; i < 10; i++) {
ToSendStuffBit(1);
}
TransmitFor14443b();
if (tracing) {
uint8_t parity[MAX_PARITY_SIZE];
- GetParity(cmd, len, parity);
LogTrace(cmd,len, 0, 0, parity, TRUE);
}
}
+/* Sends an APDU to the tag
+ * TODO: check CRC and preamble
+ */
+int iso14443b_apdu(uint8_t const *message, size_t message_length, uint8_t *response)
+{
+ uint8_t message_frame[message_length + 4];
+ // PCB
+ message_frame[0] = 0x0A | pcb_blocknum;
+ pcb_blocknum ^= 1;
+ // CID
+ message_frame[1] = 0;
+ // INF
+ memcpy(message_frame + 2, message, message_length);
+ // EDC (CRC)
+ ComputeCrc14443(CRC_14443_B, message_frame, message_length + 2, &message_frame[message_length + 2], &message_frame[message_length + 3]);
+ // send
+ CodeAndTransmit14443bAsReader(message_frame, message_length + 4);
+ // get response
+ GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT*100, TRUE);
+ if(Demod.len < 3)
+ {
+ return 0;
+ }
+ // TODO: Check CRC
+ // copy response contents
+ if(response != NULL)
+ {
+ memcpy(response, Demod.output, Demod.len);
+ }
+ return Demod.len;
+}
+
+/* Perform the ISO 14443 B Card Selection procedure
+ * Currently does NOT do any collision handling.
+ * It expects 0-1 cards in the device's range.
+ * TODO: Support multiple cards (perform anticollision)
+ * TODO: Verify CRC checksums
+ */
+int iso14443b_select_card()
+{
+ // WUPB command (including CRC)
+ // Note: WUPB wakes up all tags, REQB doesn't wake up tags in HALT state
+ static const uint8_t wupb[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
+ // ATTRIB command (with space for CRC)
+ uint8_t attrib[] = { 0x1D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00};
+
+ // first, wake up the tag
+ CodeAndTransmit14443bAsReader(wupb, sizeof(wupb));
+ GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
+ // ATQB too short?
+ if (Demod.len < 14)
+ {
+ return 2;
+ }
+
+ // select the tag
+ // copy the PUPI to ATTRIB
+ memcpy(attrib + 1, Demod.output + 1, 4);
+ /* copy the protocol info from ATQB (Protocol Info -> Protocol_Type) into
+ ATTRIB (Param 3) */
+ attrib[7] = Demod.output[10] & 0x0F;
+ ComputeCrc14443(CRC_14443_B, attrib, 9, attrib + 9, attrib + 10);
+ CodeAndTransmit14443bAsReader(attrib, sizeof(attrib));
+ GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
+ // Answer to ATTRIB too short?
+ if(Demod.len < 3)
+ {
+ return 2;
+ }
+ // reset PCB block number
+ pcb_blocknum = 0;
+ return 1;
+}
+
+// Set up ISO 14443 Type B communication (similar to iso14443a_setup)
+void iso14443b_setup() {
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+
+ BigBuf_free();
+ // Set up the synchronous serial port
+ FpgaSetupSsc();
+ // connect Demodulated Signal to ADC:
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+ // Signal field is on with the appropriate LED
+ LED_D_ON();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
+
+ // Start the timer
+ //StartCountSspClk();
+
+ DemodReset();
+ UartReset();
+}
//-----------------------------------------------------------------------------
// Read a SRI512 ISO 14443B tag.
//-----------------------------------------------------------------------------
void ReadSTMemoryIso14443b(uint32_t dwLast)
{
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+ BigBuf_free();
+
clear_trace();
set_tracing(TRUE);
uint8_t i = 0x00;
- FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// Make sure that we start from off, since the tags are stateful;
// confusing things will happen if we don't reset them between reads.
LED_D_OFF();
// Now give it time to spin up.
// Signal field is on with the appropriate LED
LED_D_ON();
- FpgaWriteConfWord(
- FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
SpinDelay(200);
// First command: wake up the tag using the INITIATE command
uint8_t cmd1[] = {0x06, 0x00, 0x97, 0x5b};
-
CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
-// LED_A_ON();
GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
-// LED_A_OFF();
if (Demod.len == 0) {
- DbpString("No response from tag");
- return;
+ DbpString("No response from tag");
+ return;
} else {
- Dbprintf("Randomly generated UID from tag (+ 2 byte CRC): %02x %02x %02x",
- Demod.output[0], Demod.output[1], Demod.output[2]);
+ Dbprintf("Randomly generated Chip ID (+ 2 byte CRC): %02x %02x %02x",
+ Demod.output[0], Demod.output[1], Demod.output[2]);
}
+
// There is a response, SELECT the uid
DbpString("Now SELECT tag:");
cmd1[0] = 0x0E; // 0x0E is SELECT
cmd1[1] = Demod.output[0];
ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]);
CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
-
-// LED_A_ON();
GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
-// LED_A_OFF();
if (Demod.len != 3) {
Dbprintf("Expected 3 bytes from tag, got %d", Demod.len);
return;
Dbprintf("Bad response to SELECT from Tag, aborting: %02x %02x", cmd1[1], Demod.output[0]);
return;
}
+
// Tag is now selected,
// First get the tag's UID:
cmd1[0] = 0x0B;
ComputeCrc14443(CRC_14443_B, cmd1, 1 , &cmd1[1], &cmd1[2]);
CodeAndTransmit14443bAsReader(cmd1, 3); // Only first three bytes for this one
-
-// LED_A_ON();
GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
-// LED_A_OFF();
if (Demod.len != 10) {
Dbprintf("Expected 10 bytes from tag, got %d", Demod.len);
return;
ComputeCrc14443(CRC_14443_B, Demod.output, 8, &cmd1[2], &cmd1[3]);
if(cmd1[2] != Demod.output[8] || cmd1[3] != Demod.output[9]) {
Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
- (cmd1[2]<<8)+cmd1[3], (Demod.output[8]<<8)+Demod.output[9]);
- // Do not return;, let's go on... (we should retry, maybe ?)
+ (cmd1[2]<<8)+cmd1[3], (Demod.output[8]<<8)+Demod.output[9]);
+ // Do not return;, let's go on... (we should retry, maybe ?)
}
Dbprintf("Tag UID (64 bits): %08x %08x",
- (Demod.output[7]<<24) + (Demod.output[6]<<16) + (Demod.output[5]<<8) + Demod.output[4],
- (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0]);
+ (Demod.output[7]<<24) + (Demod.output[6]<<16) + (Demod.output[5]<<8) + Demod.output[4],
+ (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0]);
// Now loop to read all 16 blocks, address from 0 to last block
Dbprintf("Tag memory dump, block 0 to %d", dwLast);
i = 0x00;
dwLast++;
for (;;) {
- if (i == dwLast) {
+ if (i == dwLast) {
DbpString("System area block (0xff):");
i = 0xff;
}
cmd1[1] = i;
ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]);
CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
-
-// LED_A_ON();
GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
-// LED_A_OFF();
if (Demod.len != 6) { // Check if we got an answer from the tag
- DbpString("Expected 6 bytes from tag, got less...");
- return;
+ DbpString("Expected 6 bytes from tag, got less...");
+ return;
}
// The check the CRC of the answer (use cmd1 as temporary variable):
ComputeCrc14443(CRC_14443_B, Demod.output, 4, &cmd1[2], &cmd1[3]);
- if(cmd1[2] != Demod.output[4] || cmd1[3] != Demod.output[5]) {
+ if(cmd1[2] != Demod.output[4] || cmd1[3] != Demod.output[5]) {
Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
- (cmd1[2]<<8)+cmd1[3], (Demod.output[4]<<8)+Demod.output[5]);
- // Do not return;, let's go on... (we should retry, maybe ?)
+ (cmd1[2]<<8)+cmd1[3], (Demod.output[4]<<8)+Demod.output[5]);
+ // Do not return;, let's go on... (we should retry, maybe ?)
}
// Now print out the memory location:
Dbprintf("Address=%02x, Contents=%08x, CRC=%04x", i,
- (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0],
- (Demod.output[4]<<8)+Demod.output[5]);
+ (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0],
+ (Demod.output[4]<<8)+Demod.output[5]);
if (i == 0xff) {
break;
}
* Memory usage for this function, (within BigBuf)
* Last Received command (reader->tag) - MAX_FRAME_SIZE
* Last Received command (tag->reader) - MAX_FRAME_SIZE
- * DMA Buffer - DMA_BUFFER_SIZE
+ * DMA Buffer - ISO14443B_DMA_BUFFER_SIZE
* Demodulated samples received - all the rest
*/
void RAMFUNC SnoopIso14443b(void)
set_tracing(TRUE);
// The DMA buffer, used to stream samples from the FPGA
- int8_t *dmaBuf = (int8_t*) BigBuf_malloc(DMA_BUFFER_SIZE);
+ int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE);
int lastRxCounter;
int8_t *upTo;
int ci, cq;
Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
Dbprintf(" Reader -> tag: %i bytes", MAX_FRAME_SIZE);
Dbprintf(" tag -> Reader: %i bytes", MAX_FRAME_SIZE);
- Dbprintf(" DMA: %i bytes", DMA_BUFFER_SIZE);
+ Dbprintf(" DMA: %i bytes", ISO14443B_DMA_BUFFER_SIZE);
// Signal field is off, no reader signal, no tag signal
LEDsoff();
// Setup for the DMA.
FpgaSetupSsc();
upTo = dmaBuf;
- lastRxCounter = DMA_BUFFER_SIZE;
- FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE);
+ lastRxCounter = ISO14443B_DMA_BUFFER_SIZE;
+ FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE);
uint8_t parity[MAX_PARITY_SIZE];
bool TagIsActive = FALSE;
bool ReaderIsActive = FALSE;
-
+
// And now we loop, receiving samples.
for(;;) {
int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
- (DMA_BUFFER_SIZE-1);
+ (ISO14443B_DMA_BUFFER_SIZE-1);
if(behindBy > maxBehindBy) {
maxBehindBy = behindBy;
}
cq = upTo[1];
upTo += 2;
lastRxCounter -= 2;
- if(upTo >= dmaBuf + DMA_BUFFER_SIZE) {
+ if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) {
upTo = dmaBuf;
- lastRxCounter += DMA_BUFFER_SIZE;
+ lastRxCounter += ISO14443B_DMA_BUFFER_SIZE;
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
- AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
+ AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE;
WDT_HIT();
- if(behindBy > (9*DMA_BUFFER_SIZE/10)) { // TODO: understand whether we can increase/decrease as we want or not?
+ if(behindBy > (9*ISO14443B_DMA_BUFFER_SIZE/10)) { // TODO: understand whether we can increase/decrease as we want or not?
Dbprintf("blew circular buffer! behindBy=%d", behindBy);
break;
}
if (!TagIsActive) { // no need to try decoding reader data if the tag is sending
if(Handle14443bUartBit(ci & 0x01)) {
- if(triggered && tracing) {
- //GetParity(Uart.output, Uart.byteCnt, parity);
+ if(triggered && tracing) {
LogTrace(Uart.output, Uart.byteCnt, samples, samples, parity, TRUE);
- }
- /* And ready to receive another command. */
- UartReset();
- /* And also reset the demod code, which might have been */
- /* false-triggered by the commands from the reader. */
- DemodReset();
}
+ /* And ready to receive another command. */
+ UartReset();
+ /* And also reset the demod code, which might have been */
+ /* false-triggered by the commands from the reader. */
+ DemodReset();
+ }
if(Handle14443bUartBit(cq & 0x01)) {
- if(triggered && tracing) {
- //GetParity(Uart.output, Uart.byteCnt, parity);
+ if(triggered && tracing) {
LogTrace(Uart.output, Uart.byteCnt, samples, samples, parity, TRUE);
- }
- /* And ready to receive another command. */
- UartReset();
- /* And also reset the demod code, which might have been */
- /* false-triggered by the commands from the reader. */
- DemodReset();
}
+ /* And ready to receive another command. */
+ UartReset();
+ /* And also reset the demod code, which might have been */
+ /* false-triggered by the commands from the reader. */
+ DemodReset();
+ }
ReaderIsActive = (Uart.state > STATE_GOT_FALLING_EDGE_OF_SOF);
}
if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
+ // is this | 0x01 the error? & 0xfe in https://github.com/Proxmark/proxmark3/issues/103
if(Handle14443bSamplesDemod(ci | 0x01, cq | 0x01)) {
- //Use samples as a time measurement
- if(tracing)
- {
- uint8_t parity[MAX_PARITY_SIZE];
- //GetParity(Demod.output, Demod.len, parity);
- LogTrace(Demod.output, Demod.len, samples, samples, parity, FALSE);
- }
- triggered = TRUE;
-
- // And ready to receive another response.
- DemodReset();
+ //Use samples as a time measurement
+ if(tracing)
+ {
+ //uint8_t parity[MAX_PARITY_SIZE];
+ LogTrace(Demod.output, Demod.len, samples, samples, parity, FALSE);
}
+ triggered = TRUE;
+
+ // And ready to receive another response.
+ DemodReset();
+ }
TagIsActive = (Demod.state > DEMOD_GOT_FALLING_EDGE_OF_SOF);
}
*/
void SendRawCommand14443B(uint32_t datalen, uint32_t recv, uint8_t powerfield, uint8_t data[])
{
- FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
- FpgaSetupSsc();
-
- set_tracing(TRUE);
+ iso14443b_setup();
-/* if(!powerfield) {
- // Make sure that we start from off, since the tags are stateful;
- // confusing things will happen if we don't reset them between reads.
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LED_D_OFF();
- SpinDelay(200);
+ if ( datalen == 0 && recv == 0 && powerfield == 0){
+
+ } else {
+ set_tracing(TRUE);
+ CodeAndTransmit14443bAsReader(data, datalen);
}
- */
-
- // if(!GETBIT(GPIO_LED_D)) { // if field is off
- // FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
- // // Signal field is on with the appropriate LED
- // LED_D_ON();
- // SpinDelay(200);
- // }
-
- CodeAndTransmit14443bAsReader(data, datalen);
if(recv) {
- GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
+ GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, FALSE);
uint16_t iLen = MIN(Demod.len, USB_CMD_DATA_SIZE);
cmd_send(CMD_ACK, iLen, 0, 0, Demod.output, iLen);
}
if(!powerfield) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ FpgaDisableSscDma();
LED_D_OFF();
}
}