#include <stdarg.h>
#include "usb_cdc.h"
-#include "cmd.h"
#include "proxmark3.h"
#include "apps.h"
#include "fpga.h"
#include "printf.h"
#include "string.h"
#include "legicrf.h"
+#include "legicrfsim.h"
#include "hitag2.h"
#include "hitagS.h"
+#include "iclass.h"
+#include "iso14443b.h"
+#include "iso15693.h"
#include "lfsampling.h"
#include "BigBuf.h"
+#include "mifarecmd.h"
#include "mifareutil.h"
+#include "mifaresim.h"
#include "pcf7931.h"
+#include "i2c.h"
+#include "hfsnoop.h"
+#include "fpgaloader.h"
#ifdef WITH_LCD
- #include "LCD.h"
+ #include "LCD.h"
#endif
+static uint32_t hw_capabilities;
+
// Craig Young - 14a stand-alone code
#ifdef WITH_ISO14443a
- #include "iso14443a.h"
+ #include "iso14443a.h"
#endif
//=============================================================================
// is the order in which they go out on the wire.
//=============================================================================
-#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
+#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
uint8_t ToSend[TOSEND_BUFFER_SIZE];
int ToSendMax;
static int ToSendBit;
struct common_area common_area __attribute__((section(".commonarea")));
-void ToSendReset(void)
-{
+void ToSendReset(void) {
ToSendMax = -1;
ToSendBit = 8;
}
-void ToSendStuffBit(int b)
-{
- if(ToSendBit >= 8) {
+void ToSendStuffBit(int b) {
+ if (ToSendBit >= 8) {
ToSendMax++;
ToSend[ToSendMax] = 0;
ToSendBit = 0;
}
- if(b) {
+ if (b) {
ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
}
ToSendBit++;
- if(ToSendMax >= sizeof(ToSend)) {
+ if (ToSendMax >= sizeof(ToSend)) {
ToSendBit = 0;
DbpString("ToSendStuffBit overflowed!");
}
// Debug print functions, to go out over USB, to the usual PC-side client.
//=============================================================================
-void DbpString(char *str)
-{
- byte_t len = strlen(str);
- cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
+void DbpString(char *str) {
+ uint8_t len = strlen(str);
+ cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(uint8_t*)str,len);
}
-#if 0
-void DbpIntegers(int x1, int x2, int x3)
-{
- cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
-}
-#endif
-
void Dbprintf(const char *fmt, ...) {
// should probably limit size here; oh well, let's just use a big buffer
char output_string[128];
void Dbhexdump(int len, uint8_t *d, bool bAsci) {
int l=0,i;
char ascii[9];
-
+
while (len>0) {
if (len>8) l=8;
else l=len;
-
+
memcpy(ascii,d,l);
ascii[l]=0;
-
+
// filter safe ascii
- for (i=0;i<l;i++)
- if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
-
+ for (i = 0; i < l; i++)
+ if (ascii[i]<32 || ascii[i]>126) ascii[i] = '.';
+
if (bAsci) {
- Dbprintf("%-8s %*D",ascii,l,d," ");
+ Dbprintf("%-8s %*D",ascii, l, d, " ");
} else {
- Dbprintf("%*D",l,d," ");
+ Dbprintf("%*D", l, d, " ");
}
-
- len-=8;
- d+=8;
+
+ len -= 8;
+ d += 8;
}
}
// in ADC units (0 to 1023). Also a routine to average 32 samples and
// return that.
//-----------------------------------------------------------------------------
-static int ReadAdc(int ch)
-{
- // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
- // AMPL_HI is are high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
- // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
- //
+static int ReadAdc(int ch) {
+ // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
+ // AMPL_HI is a high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
+ // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
+ //
// The maths are:
// If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
//
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
AT91C_BASE_ADC->ADC_MR =
- ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
- ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
- ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
+ ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
+ ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
+ ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) {};
-
- return AT91C_BASE_ADC->ADC_CDR[ch];
+
+ return AT91C_BASE_ADC->ADC_CDR[ch] & 0x3ff;
}
-int AvgAdc(int ch) // was static - merlok
-{
+int AvgAdc(int ch) { // was static - merlok{
int i;
int a = 0;
return (a + 15) >> 5;
}
-void MeasureAntennaTuningLfOnly(int *vLf125, int *vLf134, int *peakf, int *peakv, uint8_t LF_Results[])
-{
+static int AvgAdc_Voltage_HF(void) {
+ int AvgAdc_Voltage_Low, AvgAdc_Voltage_High;
+
+ AvgAdc_Voltage_Low= (MAX_ADC_HF_VOLTAGE_LOW * AvgAdc(ADC_CHAN_HF_LOW)) >> 10;
+ // if voltage range is about to be exceeded, use high voltage ADC channel if available (RDV40 only)
+ if (AvgAdc_Voltage_Low > MAX_ADC_HF_VOLTAGE_LOW - 300) {
+ AvgAdc_Voltage_High = (MAX_ADC_HF_VOLTAGE_HIGH * AvgAdc(ADC_CHAN_HF_HIGH)) >> 10;
+ if (AvgAdc_Voltage_High >= AvgAdc_Voltage_Low) {
+ return AvgAdc_Voltage_High;
+ }
+ }
+ return AvgAdc_Voltage_Low;
+}
+
+static int AvgAdc_Voltage_LF(void) {
+ return (MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10;
+}
+
+void MeasureAntennaTuningLfOnly(int *vLf125, int *vLf134, int *peakf, int *peakv, uint8_t LF_Results[]) {
int i, adcval = 0, peak = 0;
/*
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
SpinDelay(50);
-
- for (i=255; i>=19; i--) {
+
+ for (i = 255; i >= 19; i--) {
WDT_HIT();
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
SpinDelay(20);
- adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
- if (i==95) *vLf125 = adcval; // voltage at 125Khz
- if (i==89) *vLf134 = adcval; // voltage at 134Khz
+ adcval = AvgAdc_Voltage_LF();
+ if (i == 95) *vLf125 = adcval; // voltage at 125Khz
+ if (i == 89) *vLf134 = adcval; // voltage at 134Khz
LF_Results[i] = adcval >> 9; // scale int to fit in byte for graphing purposes
- if(LF_Results[i] > peak) {
+ if (LF_Results[i] > peak) {
*peakv = adcval;
peak = LF_Results[i];
*peakf = i;
}
}
- for (i=18; i >= 0; i--) LF_Results[i] = 0;
+ for (i = 18; i >= 0; i--) LF_Results[i] = 0;
return;
}
-void MeasureAntennaTuningHfOnly(int *vHf)
-{
+void MeasureAntennaTuningHfOnly(int *vHf) {
// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
LED_A_ON();
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
SpinDelay(20);
- *vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
+ *vHf = AvgAdc_Voltage_HF();
LED_A_OFF();
-
return;
}
-void MeasureAntennaTuning(int mode)
-{
+void MeasureAntennaTuning(int mode) {
uint8_t LF_Results[256] = {0};
int peakv = 0, peakf = 0;
int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
return;
}
-void MeasureAntennaTuningHf(void)
-{
- int vHf = 0; // in mV
+void MeasureAntennaTuningHf(void) {
+ int vHf = 0; // in mV
DbpString("Measuring HF antenna, press button to exit");
// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
for (;;) {
- SpinDelay(20);
- vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
+ SpinDelay(500);
+ vHf = AvgAdc_Voltage_HF();
Dbprintf("%d mV",vHf);
if (BUTTON_PRESS()) break;
}
-void ReadMem(int addr)
-{
+void ReadMem(int addr) {
const uint8_t *data = ((uint8_t *)addr);
Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
/* bootrom version information is pointed to from _bootphase1_version_pointer */
extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
-void SendVersion(void)
-{
+
+void set_hw_capabilities(void) {
+ if (I2C_is_available()) {
+ hw_capabilities |= HAS_SMARTCARD_SLOT;
+ }
+
+ if (false) { // TODO: implement a test
+ hw_capabilities |= HAS_EXTRA_FLASH_MEM;
+ }
+}
+
+
+void SendVersion(void) {
+ LED_A_ON();
+ set_hw_capabilities();
+
char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
* pointer, then use it.
*/
char *bootrom_version = *(char**)&_bootphase1_version_pointer;
- if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
+ if (bootrom_version < &_flash_start || bootrom_version >= &_flash_end) {
strcat(VersionString, "bootrom version information appears invalid\n");
} else {
FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
for (int i = 0; i < fpga_bitstream_num; i++) {
strncat(VersionString, fpga_version_information[i], sizeof(VersionString) - strlen(VersionString) - 1);
- if (i < fpga_bitstream_num - 1) {
- strncat(VersionString, "\n", sizeof(VersionString) - strlen(VersionString) - 1);
- }
+ strncat(VersionString, "\n", sizeof(VersionString) - strlen(VersionString) - 1);
+ }
+
+ // test availability of SmartCard slot
+ if (I2C_is_available()) {
+ strncat(VersionString, "SmartCard Slot: available\n", sizeof(VersionString) - strlen(VersionString) - 1);
+ } else {
+ strncat(VersionString, "SmartCard Slot: not available\n", sizeof(VersionString) - strlen(VersionString) - 1);
}
// Send Chip ID and used flash memory
uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
uint32_t compressed_data_section_size = common_area.arg1;
- cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
+ cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, hw_capabilities, VersionString, strlen(VersionString) + 1);
+ LED_A_OFF();
}
// measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
// Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
-void printUSBSpeed(void)
-{
+void printUSBSpeed(void) {
Dbprintf("USB Speed:");
Dbprintf(" Sending USB packets to client...");
- #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
+ #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
uint8_t *test_data = BigBuf_get_addr();
uint32_t end_time;
uint32_t start_time = end_time = GetTickCount();
uint32_t bytes_transferred = 0;
-
- LED_B_ON();
- while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
+
+ while (end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
end_time = GetTickCount();
bytes_transferred += USB_CMD_DATA_SIZE;
}
- LED_B_OFF();
Dbprintf(" Time elapsed: %dms", end_time - start_time);
Dbprintf(" Bytes transferred: %d", bytes_transferred);
- Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
+ Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
1000 * bytes_transferred / (end_time - start_time));
}
-
+
/**
* Prints runtime information about the PM3.
**/
-void SendStatus(void)
-{
+void SendStatus(void) {
+ LED_A_ON();
BigBuf_print_status();
Fpga_print_status();
+#ifdef WITH_SMARTCARD
+ I2C_print_status();
+#endif
printConfig(); //LF Sampling config
printUSBSpeed();
Dbprintf("Various");
- Dbprintf(" MF_DBGLEVEL......%d", MF_DBGLEVEL);
- Dbprintf(" ToSendMax........%d",ToSendMax);
- Dbprintf(" ToSendBit........%d",ToSendBit);
+ Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL);
+ Dbprintf(" ToSendMax..........%d", ToSendMax);
+ Dbprintf(" ToSendBit..........%d", ToSendBit);
- cmd_send(CMD_ACK,1,0,0,0,0);
+ cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
+ LED_A_OFF();
}
-#if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
+#if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF_StandAlone)
#define OPTS 2
-void StandAloneMode()
-{
+void StandAloneMode() {
DbpString("Stand-alone mode! No PC necessary.");
// Oooh pretty -- notify user we're in elite samy mode now
- LED(LED_RED, 200);
+ LED(LED_RED, 200);
LED(LED_ORANGE, 200);
- LED(LED_GREEN, 200);
+ LED(LED_GREEN, 200);
LED(LED_ORANGE, 200);
- LED(LED_RED, 200);
+ LED(LED_RED, 200);
LED(LED_ORANGE, 200);
- LED(LED_GREEN, 200);
+ LED(LED_GREEN, 200);
LED(LED_ORANGE, 200);
- LED(LED_RED, 200);
-
+ LED(LED_RED, 200);
}
#endif
#ifdef WITH_ISO14443a_StandAlone
-void StandAloneMode14a()
-{
+void StandAloneMode14a() {
StandAloneMode();
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
LED(selected + 1, 0);
- for (;;)
- {
+ for (;;) {
usb_poll();
WDT_HIT();
SpinDelay(300);
- if (GotoRecord || !cardRead[selected])
- {
+ if (GotoRecord || !cardRead[selected]) {
GotoRecord = false;
LEDsoff();
LED(selected + 1, 0);
uint32_t cuid;
iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
- for ( ; ; )
- {
+ for ( ; ; ) {
WDT_HIT();
if (BUTTON_PRESS()) {
if (cardRead[selected]) {
Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
break;
- }
- else if (cardRead[(selected+1)%OPTS]) {
+ } else if (cardRead[(selected+1)%OPTS]) {
Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
selected = (selected+1)%OPTS;
break;
- }
- else {
+ } else {
Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
SpinDelay(300);
}
}
if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid, true, 0, true))
continue;
- else
- {
+ else {
Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
memcpy(readUID,uid,10*sizeof(uint8_t));
uint8_t *dst = (uint8_t *)&uid_tmp1;
// Set UID byte order
- for (int i=0; i<4; i++)
+ for (int i = 0; i < 4; i++)
dst[i] = uid[3-i];
dst = (uint8_t *)&uid_tmp2;
- for (int i=0; i<4; i++)
+ for (int i = 0; i < 4; i++)
dst[i] = uid[7-i];
- if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
+ if (uid_1st[(selected+1) % OPTS] == uid_tmp1 && uid_2nd[(selected+1) % OPTS] == uid_tmp2) {
Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
- }
- else {
+ } else {
if (uid_tmp2) {
- Dbprintf("Bank[%d] received a 7-byte UID",selected);
+ Dbprintf("Bank[%d] received a 7-byte UID", selected);
uid_1st[selected] = (uid_tmp1)>>8;
uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
- }
- else {
- Dbprintf("Bank[%d] received a 4-byte UID",selected);
+ } else {
+ Dbprintf("Bank[%d] received a 4-byte UID", selected);
uid_1st[selected] = uid_tmp1;
uid_2nd[selected] = uid_tmp2;
}
}
}
}
- Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
- Dbprintf("SAK = %02X",hi14a_card[selected].sak);
+ Dbprintf("ATQA = %02X%02X", hi14a_card[selected].atqa[0], hi14a_card[selected].atqa[1]);
+ Dbprintf("SAK = %02X", hi14a_card[selected].sak);
LEDsoff();
LED(LED_GREEN, 200);
LED(LED_ORANGE, 200);
playing = true;
cardRead[selected] = true;
- }
- /* MF Classic UID clone */
- else if (GotoClone)
- {
+ } else if (GotoClone) { /* MF Classic UID clone */
GotoClone=false;
LEDsoff();
LED(selected + 1, 0);
Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
// wait for button to be released
- while(BUTTON_PRESS())
- {
+ while(BUTTON_PRESS()) {
// Delay cloning until card is in place
WDT_HIT();
}
if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
playing = true;
- }
- else {
- Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
- memcpy(newBlock0,oldBlock0,16);
+ } else {
+ Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0], oldBlock0[1], oldBlock0[2], oldBlock0[3]);
+ memcpy(newBlock0, oldBlock0, 16);
// Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
- newBlock0[0] = uid_1st[selected]>>24;
- newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
- newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
+ newBlock0[0] = uid_1st[selected] >> 24;
+ newBlock0[1] = 0xFF & (uid_1st[selected] >> 16);
+ newBlock0[2] = 0xFF & (uid_1st[selected] >> 8);
newBlock0[3] = 0xFF & (uid_1st[selected]);
- newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
+ newBlock0[4] = newBlock0[0] ^ newBlock0[1] ^ newBlock0[2] ^ newBlock0[3];
// arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
- MifareCSetBlock(0, 0xFF,0, newBlock0);
+ MifareCSetBlock(0, 0xFF, 0, newBlock0);
MifareCGetBlock(0x3F, 1, 0, testBlock0);
- if (memcmp(testBlock0,newBlock0,16)==0)
- {
+ if (memcmp(testBlock0, newBlock0, 16) == 0) {
DbpString("Cloned successfull!");
cardRead[selected] = false; // Only if the card was cloned successfully should we clear it
playing = false;
GotoRecord = true;
selected = (selected+1) % OPTS;
- }
- else {
+ } else {
Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
playing = true;
}
LEDsoff();
LED(selected + 1, 0);
- }
- // Change where to record (or begin playing)
- else if (playing) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
- {
+ } else if (playing) {
+ // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
+ // Change where to record (or begin playing)
LEDsoff();
LED(selected + 1, 0);
int button_action = BUTTON_HELD(1000);
if (button_action == 0) { // No button action, proceed with sim
uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
- Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
+ Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected], uid_2nd[selected], selected);
if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
DbpString("Mifare Classic");
- SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data); // Mifare Classic
- }
- else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
+ SimulateIso14443aTag(1, uid_1st[selected], uid_2nd[selected], data); // Mifare Classic
+ } else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
DbpString("Mifare Ultralight");
- SimulateIso14443aTag(2,uid_1st[selected],uid_2nd[selected],data); // Mifare Ultralight
- }
- else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
+ SimulateIso14443aTag(2, uid_1st[selected], uid_2nd[selected], data); // Mifare Ultralight
+ } else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
DbpString("Mifare DESFire");
- SimulateIso14443aTag(3,uid_1st[selected],uid_2nd[selected],data); // Mifare DESFire
- }
- else {
+ SimulateIso14443aTag(3, uid_1st[selected], uid_2nd[selected], data); // Mifare DESFire
+ } else {
Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
- SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data);
+ SimulateIso14443aTag(1, uid_1st[selected], uid_2nd[selected], data);
}
- }
- else if (button_action == BUTTON_SINGLE_CLICK) {
+ } else if (button_action == BUTTON_SINGLE_CLICK) {
selected = (selected + 1) % OPTS;
Dbprintf("Done playing. Switching to record mode on bank %d",selected);
GotoRecord = true;
break;
- }
- else if (button_action == BUTTON_HOLD) {
+ } else if (button_action == BUTTON_HOLD) {
Dbprintf("Playtime over. Begin cloning...");
GotoClone = true;
break;
}
}
}
-#elif WITH_LF
+
+#elif WITH_LF_StandAlone
+
// samy's sniff and repeat routine
-void SamyRun()
-{
+void SamyRun() {
StandAloneMode();
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- int high[OPTS], low[OPTS];
+ int tops[OPTS], high[OPTS], low[OPTS];
int selected = 0;
int playing = 0;
int cardRead = 0;
// Turn on selected LED
LED(selected + 1, 0);
- for (;;)
- {
+ for (;;) {
usb_poll();
WDT_HIT();
SpinDelay(300);
// Button was held for a second, begin recording
- if (button_pressed > 0 && cardRead == 0)
- {
+ if (button_pressed > 0 && cardRead == 0) {
LEDsoff();
LED(selected + 1, 0);
LED(LED_RED2, 0);
/* need this delay to prevent catching some weird data */
SpinDelay(500);
- CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
- Dbprintf("Recorded %x %x%08x", selected, high[selected], low[selected]);
+ CmdHIDdemodFSK(1, &tops[selected], &high[selected], &low[selected], 0);
+ if (tops[selected] > 0)
+ Dbprintf("Recorded %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
+ else
+ Dbprintf("Recorded %x %x%08x", selected, high[selected], low[selected]);
LEDsoff();
LED(selected + 1, 0);
// If we were previously playing, set playing off
// so next button push begins playing what we recorded
playing = 0;
-
+
cardRead = 1;
-
- }
- else if (button_pressed > 0 && cardRead == 1)
- {
- LEDsoff();
- LED(selected + 1, 0);
- LED(LED_ORANGE, 0);
+ } else if (button_pressed > 0 && cardRead == 1) {
+ LEDsoff();
+ LED(selected + 1, 0);
+ LED(LED_ORANGE, 0);
+
+ // record
+ if (tops[selected] > 0)
+ Dbprintf("Cloning %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
+ else
+ Dbprintf("Cloning %x %x%08x", selected, high[selected], low[selected]);
+
+ // wait for button to be released
+ while(BUTTON_PRESS())
+ WDT_HIT();
- // record
- Dbprintf("Cloning %x %x%08x", selected, high[selected], low[selected]);
+ /* need this delay to prevent catching some weird data */
+ SpinDelay(500);
- // wait for button to be released
- while(BUTTON_PRESS())
- WDT_HIT();
+ CopyHIDtoT55x7(tops[selected] & 0x000FFFFF, high[selected], low[selected], (tops[selected] != 0 && ((high[selected]& 0xFFFFFFC0) != 0)), 0x1D);
+ if (tops[selected] > 0)
+ Dbprintf("Cloned %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
+ else
+ Dbprintf("Cloned %x %x%08x", selected, high[selected], low[selected]);
- /* need this delay to prevent catching some weird data */
- SpinDelay(500);
+ LEDsoff();
+ LED(selected + 1, 0);
+ // Finished recording
- CopyHIDtoT55x7(0, high[selected], low[selected], 0);
- Dbprintf("Cloned %x %x%08x", selected, high[selected], low[selected]);
+ // If we were previously playing, set playing off
+ // so next button push begins playing what we recorded
+ playing = 0;
- LEDsoff();
- LED(selected + 1, 0);
- // Finished recording
-
- // If we were previously playing, set playing off
- // so next button push begins playing what we recorded
- playing = 0;
-
- cardRead = 0;
-
- }
+ cardRead = 0;
+
+ } else if (button_pressed) {
- // Change where to record (or begin playing)
- else if (button_pressed)
- {
+ // Change where to record (or begin playing)
// Next option if we were previously playing
if (playing)
selected = (selected + 1) % OPTS;
LED(selected + 1, 0);
// Begin transmitting
- if (playing)
- {
+ if (playing) {
LED(LED_GREEN, 0);
DbpString("Playing");
// wait for button to be released
while(BUTTON_PRESS())
WDT_HIT();
- Dbprintf("%x %x%08x", selected, high[selected], low[selected]);
- CmdHIDsimTAG(high[selected], low[selected], 0);
+ if (tops[selected] > 0)
+ Dbprintf("%x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
+ else
+ Dbprintf("%x %x%08x", selected, high[selected], low[selected]);
+
+ CmdHIDsimTAG(tops[selected], high[selected], low[selected], 0);
DbpString("Done playing");
- if (BUTTON_HELD(1000) > 0)
- {
+ if (BUTTON_HELD(1000) > 0) {
DbpString("Exiting");
LEDsoff();
return;
- }
+ }
/* We pressed a button so ignore it here with a delay */
SpinDelay(300);
playing = !playing;
LEDsoff();
LED(selected + 1, 0);
- }
- else
+ } else
while(BUTTON_PRESS())
WDT_HIT();
}
}
#endif
+
/*
OBJECTIVE
Listen and detect an external reader. Determine the best location
0xE, /* -XXX | 86% of maximum current detected */
0xF, /* XXXX | 100% of maximum current detected */
};
+
static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
-void ListenReaderField(int limit)
-{
- int lf_av, lf_av_new, lf_baseline= 0, lf_max;
- int hf_av, hf_av_new, hf_baseline= 0, hf_max;
+void ListenReaderField(int limit) {
+ int lf_av, lf_av_new=0, lf_baseline= 0, lf_max;
+ int hf_av, hf_av_new=0, hf_baseline= 0, hf_max;
int mode=1, display_val, display_max, i;
-#define LF_ONLY 1
-#define HF_ONLY 2
-#define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
+#define LF_ONLY 1
+#define HF_ONLY 2
+#define REPORT_CHANGE_PERCENT 5 // report new values only if they have changed at least by REPORT_CHANGE_PERCENT
+#define MIN_HF_FIELD 300 // in mode 1 signal HF field greater than MIN_HF_FIELD above baseline
+#define MIN_LF_FIELD 1200 // in mode 1 signal LF field greater than MIN_LF_FIELD above baseline
// switch off FPGA - we don't want to measure our own signal
LEDsoff();
- lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
+ lf_av = lf_max = AvgAdc_Voltage_LF();
- if(limit != HF_ONLY) {
- Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
+ if (limit != HF_ONLY) {
+ Dbprintf("LF 125/134kHz Baseline: %dmV", lf_av);
lf_baseline = lf_av;
}
- hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
+ hf_av = hf_max = AvgAdc_Voltage_HF();
if (limit != LF_ONLY) {
- Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
+ Dbprintf("HF 13.56MHz Baseline: %dmV", hf_av);
hf_baseline = hf_av;
}
for(;;) {
+ SpinDelay(500);
if (BUTTON_PRESS()) {
- SpinDelay(500);
switch (mode) {
case 1:
mode=2;
return;
break;
}
+ while (BUTTON_PRESS())
+ /* wait */;
}
WDT_HIT();
if (limit != HF_ONLY) {
if(mode == 1) {
- if (ABS(lf_av - lf_baseline) > REPORT_CHANGE)
+ if (lf_av - lf_baseline > MIN_LF_FIELD)
LED_D_ON();
else
LED_D_OFF();
}
- lf_av_new = AvgAdc(ADC_CHAN_LF);
+ lf_av_new = AvgAdc_Voltage_LF();
// see if there's a significant change
- if(ABS(lf_av - lf_av_new) > REPORT_CHANGE) {
- Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
+ if (ABS((lf_av - lf_av_new) * 100 / (lf_av?lf_av:1)) > REPORT_CHANGE_PERCENT) {
+ Dbprintf("LF 125/134kHz Field Change: %5dmV", lf_av_new);
lf_av = lf_av_new;
if (lf_av > lf_max)
lf_max = lf_av;
if (limit != LF_ONLY) {
if (mode == 1){
- if (ABS(hf_av - hf_baseline) > REPORT_CHANGE)
+ if (hf_av - hf_baseline > MIN_HF_FIELD)
LED_B_ON();
else
LED_B_OFF();
}
- hf_av_new = AvgAdc(ADC_CHAN_HF);
+ hf_av_new = AvgAdc_Voltage_HF();
+
// see if there's a significant change
- if(ABS(hf_av - hf_av_new) > REPORT_CHANGE) {
- Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
+ if (ABS((hf_av - hf_av_new) * 100 / (hf_av?hf_av:1)) > REPORT_CHANGE_PERCENT) {
+ Dbprintf("HF 13.56MHz Field Change: %5dmV", hf_av_new);
hf_av = hf_av_new;
if (hf_av > hf_max)
hf_max = hf_av;
}
}
- if(mode == 2) {
+ if (mode == 2) {
if (limit == LF_ONLY) {
display_val = lf_av;
display_max = lf_max;
display_max = lf_max;
}
}
- for (i=0; i<LIGHT_LEN; i++) {
- if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
+ for (i = 0; i < LIGHT_LEN; i++) {
+ if (display_val >= (display_max / LIGHT_LEN * i) && display_val <= (display_max / LIGHT_LEN * (i+1))) {
if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
}
}
-void UsbPacketReceived(uint8_t *packet, int len)
-{
- UsbCommand *c = (UsbCommand *)packet;
+
+void UsbPacketReceived(UsbCommand *c) {
// Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
-
+
switch(c->cmd) {
#ifdef WITH_LF
case CMD_SET_LF_SAMPLING_CONFIG:
- setSamplingConfig((sample_config *) c->d.asBytes);
+ setSamplingConfig(c->d.asBytes);
break;
case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
cmd_send(CMD_ACK,SampleLF(c->arg[0], c->arg[1]),0,0,0,0);
cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
break;
case CMD_HID_DEMOD_FSK:
- CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
+ CmdHIDdemodFSK(c->arg[0], 0, 0, 0, 1);
break;
case CMD_HID_SIM_TAG:
- CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
+ CmdHIDsimTAG(c->arg[0], c->arg[1], c->arg[2], 1);
break;
case CMD_FSK_SIM_TAG:
CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_HID_CLONE_TAG:
- CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
+ CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0], 0x1D);
+ break;
+ case CMD_PARADOX_CLONE_TAG:
+ // Paradox cards are the same as HID, with a different preamble, so we can reuse the same function
+ CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0], 0x0F);
break;
case CMD_IO_DEMOD_FSK:
CmdIOdemodFSK(c->arg[0], 0, 0, 1);
SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
break;
case CMD_INDALA_CLONE_TAG:
- CopyIndala64toT55x7(c->arg[0], c->arg[1]);
+ CopyIndala64toT55x7(c->arg[0], c->arg[1]);
break;
case CMD_INDALA_CLONE_TAG_L:
CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
case CMD_PCF7931_WRITE:
WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
break;
+ case CMD_PCF7931_BRUTEFORCE:
+ BruteForcePCF7931(c->arg[0], (c->arg[1] & 0xFF), c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128);
+ break;
case CMD_EM4X_READ_WORD:
EM4xReadWord(c->arg[0], c->arg[1],c->arg[2]);
break;
case CMD_EM4X_WRITE_WORD:
EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2]);
break;
+ case CMD_EM4X_PROTECT:
+ EM4xProtect(c->arg[0], c->arg[1], c->arg[2]);
+ break;
case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
break;
SnoopHitag(c->arg[0]);
break;
case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
- SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
+ SimulateHitagTag((bool)c->arg[0], (uint8_t*)c->d.asBytes);
break;
case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
break;
case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content
- SimulateHitagSTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
+ SimulateHitagSTag((bool)c->arg[0],(uint8_t*)c->d.asBytes);
break;
case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file
- check_challenges((bool)c->arg[0],(byte_t*)c->d.asBytes);
+ check_challenges_cmd((bool)c->arg[0], (uint8_t*)c->d.asBytes, (uint8_t)c->arg[1]);
break;
case CMD_READ_HITAG_S://Reader for only Hitag S tags, args = key or challenge
- ReadHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
+ ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], false);
+ break;
+ case CMD_READ_HITAG_S_BLK:
+ ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], true);
break;
case CMD_WR_HITAG_S://writer for Hitag tags args=data to write,page and key or challenge
if ((hitag_function)c->arg[0] < 10) {
case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
AcquireRawAdcSamplesIso15693();
break;
- case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
- RecordRawAdcSamplesIso15693();
+
+ case CMD_SNOOP_ISO_15693:
+ SnoopIso15693(0, NULL);
break;
-
+
case CMD_ISO_15693_COMMAND:
DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
break;
-
+
case CMD_ISO_15693_FIND_AFI:
BruteforceIso15693Afi(c->arg[0]);
- break;
-
+ break;
+
case CMD_ISO_15693_DEBUG:
SetDebugIso15693(c->arg[0]);
break;
case CMD_READER_ISO_15693:
ReaderIso15693(c->arg[0]);
break;
+
case CMD_SIMTAG_ISO_15693:
SimTagIso15693(c->arg[0], c->d.asBytes);
break;
+
+ case CMD_CSETUID_ISO_15693:
+ SetTag15693Uid(c->d.asBytes);
+ break;
#endif
#ifdef WITH_LEGICRF
case CMD_SIMULATE_TAG_LEGIC_RF:
- LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
+ LegicRfSimulate(c->arg[0]);
break;
case CMD_WRITER_LEGIC_RF:
case CMD_SIMULATE_TAG_ISO_14443a:
SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
break;
-
+
case CMD_EPA_PACE_COLLECT_NONCE:
EPA_PACE_Collect_Nonce(c);
break;
case CMD_EPA_PACE_REPLAY:
EPA_PACE_Replay(c);
break;
-
+
case CMD_READER_MIFARE:
ReaderMifare(c->arg[0]);
break;
case CMD_MIFAREU_READCARD:
MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
- case CMD_MIFAREUC_SETPWD:
+ case CMD_MIFAREUC_SETPWD:
MifareUSetPwd(c->arg[0], c->d.asBytes);
break;
case CMD_MIFARE_READSC:
case CMD_MIFARE_WRITEBL:
MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
+ case CMD_MIFARE_PERSONALIZE_UID:
+ MifarePersonalizeUID(c->arg[0], c->arg[1], c->d.asBytes);
+ break;
//case CMD_MIFAREU_WRITEBL_COMPAT:
//MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
//break;
MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_SIMULATE_MIFARE_CARD:
- Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ MifareSim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
-
+
// emulator
case CMD_MIFARE_SET_DBGMODE:
MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
case CMD_MIFARE_EML_CARDLOAD:
MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
-
+
// Work with "magic Chinese" card
case CMD_MIFARE_CWIPE:
MifareCWipe(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
case CMD_MIFARE_CIDENT:
MifareCIdent();
break;
-
+
// mifare sniffer
case CMD_MIFARE_SNIFFER:
SniffMifare(c->arg[0]);
#ifdef WITH_ICLASS
// Makes use of ISO14443a FPGA Firmware
case CMD_SNOOP_ICLASS:
- SnoopIClass();
+ SnoopIClass(c->arg[0], c->d.asBytes);
break;
case CMD_SIMULATE_TAG_ICLASS:
SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
case CMD_READER_ICLASS:
ReaderIClass(c->arg[0]);
break;
- case CMD_READER_ICLASS_REPLAY:
- ReaderIClass_Replay(c->arg[0], c->d.asBytes);
- break;
case CMD_ICLASS_EML_MEMSET:
emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
break;
case CMD_ICLASS_WRITEBLOCK:
iClass_WriteBlock(c->arg[0], c->d.asBytes);
break;
- case CMD_ICLASS_READCHECK: // auth step 1
- iClass_ReadCheck(c->arg[0], c->arg[1]);
- break;
case CMD_ICLASS_READBLOCK:
iClass_ReadBlk(c->arg[0]);
break;
- case CMD_ICLASS_AUTHENTICATION: //check
- iClass_Authentication(c->d.asBytes);
+ case CMD_ICLASS_CHECK:
+ iClass_Check(c->d.asBytes);
+ break;
+ case CMD_ICLASS_READCHECK:
+ iClass_Readcheck(c->arg[0], c->arg[1]);
break;
case CMD_ICLASS_DUMP:
iClass_Dump(c->arg[0], c->arg[1]);
iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
break;
#endif
+
#ifdef WITH_HFSNOOP
case CMD_HF_SNIFFER:
HfSnoop(c->arg[0], c->arg[1]);
break;
+ case CMD_HF_PLOT:
+ HfPlot();
+ break;
+#endif
+
+#ifdef WITH_SMARTCARD
+ case CMD_SMART_ATR: {
+ SmartCardAtr();
+ break;
+ }
+ case CMD_SMART_SETCLOCK:{
+ SmartCardSetClock(c->arg[0]);
+ break;
+ }
+ case CMD_SMART_RAW: {
+ SmartCardRaw(c->arg[0], c->arg[1], c->d.asBytes);
+ break;
+ }
+ case CMD_SMART_UPLOAD: {
+ // upload file from client
+ uint8_t *mem = BigBuf_get_addr();
+ memcpy( mem + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
+ cmd_send(CMD_ACK,1,0,0,0,0);
+ break;
+ }
+ case CMD_SMART_UPGRADE: {
+ SmartCardUpgrade(c->arg[0]);
+ break;
+ }
#endif
case CMD_BUFF_CLEAR:
ListenReaderField(c->arg[0]);
break;
- case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
+ case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
+ LED_A_ON();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(200);
LED_D_OFF(); // LED D indicates field ON or OFF
+ LED_A_OFF();
break;
case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
-
LED_B_ON();
uint8_t *BigBuf = BigBuf_get_addr();
for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
// iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
- // to be able to use this one for uploading data to device
- // arg1 = 0 upload for LF usage
+ // to be able to use this one for uploading data to device
+ // arg1 = 0 upload for LF usage
// 1 upload for HF usage
if (c->arg[1] == 0)
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
cmd_send(CMD_ACK,0,0,0,0,0);
break;
- }
+ }
case CMD_READ_MEM:
ReadMem(c->arg[0]);
break;
case CMD_DEVICE_INFO: {
uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
- cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
+ cmd_send_old(CMD_DEVICE_INFO,dev_info,0,0,0,0);
break;
}
default:
}
}
-void __attribute__((noreturn)) AppMain(void)
-{
+
+void __attribute__((noreturn)) AppMain(void) {
+
SpinDelay(100);
clear_trace();
if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
}
common_area.flags.osimage_present = 1;
- LED_D_OFF();
- LED_C_OFF();
- LED_B_OFF();
- LED_A_OFF();
+ LEDsoff();
// Init USB device
- usb_enable();
+ usb_enable();
// The FPGA gets its clock from us from PCK0 output, so set that up.
AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
StartTickCount();
-
+
#ifdef WITH_LCD
LCDInit();
#endif
- byte_t rx[sizeof(UsbCommand)];
- size_t rx_len;
+ UsbCommand rx;
for(;;) {
- if (usb_poll()) {
- rx_len = usb_read(rx,sizeof(UsbCommand));
- if (rx_len) {
- UsbPacketReceived(rx,rx_len);
- }
- }
WDT_HIT();
-
-#ifdef WITH_LF
-#ifndef WITH_ISO14443a_StandAlone
- if (BUTTON_HELD(1000) > 0)
- SamyRun();
-#endif
-#endif
-#ifdef WITH_ISO14443a
-#ifdef WITH_ISO14443a_StandAlone
- if (BUTTON_HELD(1000) > 0)
- StandAloneMode14a();
+ if (cmd_receive(&rx)) {
+ UsbPacketReceived(&rx);
+ } else {
+#if defined(WITH_LF_StandAlone) && !defined(WITH_ISO14443a_StandAlone)
+ if (BUTTON_HELD(1000) > 0)
+ SamyRun();
#endif
+#if defined(WITH_ISO14443a) && defined(WITH_ISO14443a_StandAlone)
+ if (BUTTON_HELD(1000) > 0)
+ StandAloneMode14a();
#endif
+ }
}
}