} else { // add new entry at end of existing list.
p2 = p2->next = malloc(sizeof(noncelistentry_t));
}
- } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
+ if (p2 == NULL) return 0; // memory allocation failed
+ }
+ else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
if (p2 == NULL) { // need to insert at start of list
p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
} else {
p2 = p2->next = malloc(sizeof(noncelistentry_t));
}
- } else { // we have seen this 2nd byte before. Nothing to add or insert.
- return (0);
+ if (p2 == NULL) return 0; // memory allocation failed
+ } else {
+ return 0; // we have seen this 2nd byte before. Nothing to add or insert.
}
// add or insert new data
nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04));
nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
- return (1); // new nonce added
+ return 1; // new nonce added
}
static void init_nonce_memory(void)
uint32_t next_fivehundred = 500;
uint32_t total_added_nonces = 0;
uint32_t idx = 1;
+ uint32_t timeout = 0;
FILE *fnonces = NULL;
field_off = false;
-
UsbCommand resp;
UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {0,0,0} };
memcpy(c.d.asBytes, key, 6);
c.arg[0] = blockNo + (keyType * 0x100);
c.arg[1] = trgBlockNo + (trgKeyType * 0x100);
-
+
printf("Acquiring nonces...\n");
do {
+
flags = 0;
- //flags |= initialize ? 0x0001 : 0;
- flags |= 0x0001;
+ flags |= initialize ? 0x0001 : 0;
flags |= slow ? 0x0002 : 0;
flags |= field_off ? 0x0004 : 0;
c.arg[2] = flags;
if (field_off) break;
- if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) {
- if (fnonces) fclose(fnonces);
- return 1;
- }
+ while(!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) {
+ timeout++;
+ printf(".");
+ if (timeout > 3) {
+ PrintAndLog("\nNo response from Proxmark. Aborting...");
+ if (fnonces) fclose(fnonces);
+ return 1;
+ }
+ }
if (resp.arg[0]) {
if (fnonces) fclose(fnonces);
total_added_nonces,
NONCES_THRESHOLD * idx,
CONFIDENCE_THRESHOLD * 100.0,
- num_good_first_bytes);
+ num_good_first_bytes
+ );
}
- if ( num_good_first_bytes > 0 ) {
- //printf("GOOD BYTES: %s \n", sprint_hex(best_first_bytes, num_good_first_bytes) );
- if ( total_added_nonces >= (NONCES_THRESHOLD * idx)) {
-
- CmdFPGAOff("");
-
- bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
- if (cracking || known_target_key != -1) {
- field_off = brute_force(); // switch off field with next SendCommand and then finish
- if (field_off) break;
+ if (total_added_nonces >= (NONCES_THRESHOLD * idx)) {
+ if (num_good_first_bytes > 0) {
+ if (generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess) || known_target_key != -1) {
+ field_off = brute_force(); // switch off field with next SendCommand and then finish
}
- idx++;
}
+ idx++;
}
}
} while (!finished);
uint32_t state_odd = pcs->odd & 0x00ffffff;
uint32_t state_even = pcs->even & 0x00ffffff;
//printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
- printf("Validating keysearch space\n");
+ printf("Validating key search space\n");
uint64_t count = 0;
for (statelist_t *p = candidates; p != NULL; p = p->next) {
bool found_odd = false;
p_odd++;
}
while (*p_even != END_OF_LIST_MARKER) {
- if ((*p_even & 0x00ffffff) == state_even) {
+ if ((*p_even & 0x00ffffff) == state_even)
found_even = true;
- }
+
p_even++;
}
count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]);
if (found_odd && found_even) {
if (known_target_key != -1) {
- PrintAndLog("Key Found after testing %llu (2^%1.1f) out of %lld (2^%1.1f) keys.",
- count,
- log(count)/log(2),
- maximum_states,
- log(maximum_states)/log(2)
- );
- if (write_stats) {
- fprintf(fstats, "1\n");
- }
+ PrintAndLog("Key Found after testing %llu (2^%1.1f) out of %lld (2^%1.1f) keys.",
+ count,
+ log(count)/log(2),
+ maximum_states,
+ log(maximum_states)/log(2)
+ );
+ if (write_stats)
+ fprintf(fstats, "1\n");
}
crypto1_destroy(pcs);
return true;
}
if (known_target_key != -1) {
- printf("Key NOT found!\n");
- if (write_stats) {
- fprintf(fstats, "0\n");
- }
+ printf("Key NOT found!\n");
+ if (write_stats)
+ fprintf(fstats, "0\n");
}
crypto1_destroy(pcs);
-
return false;
}
return false;
}
-static void free_candidates_memory(statelist_t *sl)
+static void free_candidates_memory(statelist_t *sl)
{
if (sl == NULL) {
return;
const uint64_t key = crack_states_bitsliced(bucket);
if (keys_found) break;
- else if(key != -1 && TestIfKeyExists(key)) {
+ else if(key != -1) {
+ if (TestIfKeyExists(key)) {
__sync_fetch_and_add(&keys_found, 1);
__sync_fetch_and_add(&foundkey, key);
+ printf("*");
+ fflush(stdout);
break;
+ }
+ printf("!");
+ fflush(stdout);
} else {
printf(".");
fflush(stdout);
}
}
-
current_bucket += thread_count;
}
-
return NULL;
}
return ret;
}
-int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests)
+int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests, uint64_t *found_key)
{
// initialize Random number generator
time_t t;
srand((unsigned) time(&t));
+ *found_key = 0;
+
if (trgkey != NULL) {
known_target_key = bytes_to_num(trgkey, 6);
} else {
} else { // acquire nonces.
uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
if (is_OK != 0) {
+ free_nonces_memory();
+ //free_statelist_cache();
+ free_candidates_memory(candidates);
+ candidates = NULL;
return is_OK;
}
}
free_candidates_memory(candidates);
candidates = NULL;
}
+ *found_key = foundkey;
return 0;
-}
+}
\ No newline at end of file