ADD: a TEA crypto algorithm implemention.
[proxmark3-svn] / armsrc / iso14443a.c
index cf55e6068c9b65d01d06efd583ae76bede2296f6..29d9728a0f8e95e777b7c6f6f8ef397054faf451 100644 (file)
@@ -1,4 +1,4 @@
-//-----------------------------------------------------------------------------
+ //-----------------------------------------------------------------------------
 // Merlok - June 2011, 2012
 // Gerhard de Koning Gans - May 2008
 // Hagen Fritsch - June 2010
 // Merlok - June 2011, 2012
 // Gerhard de Koning Gans - May 2008
 // Hagen Fritsch - June 2010
 #include "util.h"
 #include "string.h"
 #include "cmd.h"
 #include "util.h"
 #include "string.h"
 #include "cmd.h"
-
 #include "iso14443crc.h"
 #include "iso14443a.h"
 #include "crapto1.h"
 #include "mifareutil.h"
 #include "iso14443crc.h"
 #include "iso14443a.h"
 #include "crapto1.h"
 #include "mifareutil.h"
-
+#include "BigBuf.h"
 static uint32_t iso14a_timeout;
 static uint32_t iso14a_timeout;
-uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET;
 int rsamples = 0;
 int rsamples = 0;
-int traceLen = 0;
-int tracing = TRUE;
 uint8_t trigger = 0;
 // the block number for the ISO14443-4 PCB
 static uint8_t iso14_pcb_blocknum = 0;
 uint8_t trigger = 0;
 // the block number for the ISO14443-4 PCB
 static uint8_t iso14_pcb_blocknum = 0;
@@ -144,23 +140,40 @@ const uint8_t OddByteParity[256] = {
   1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
 };
 
   1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
 };
 
+
 void iso14a_set_trigger(bool enable) {
        trigger = enable;
 }
 
 void iso14a_set_trigger(bool enable) {
        trigger = enable;
 }
 
-void iso14a_clear_trace() {
-       memset(trace, 0x44, TRACE_SIZE);
-       traceLen = 0;
-}
-
-void iso14a_set_tracing(bool enable) {
-       tracing = enable;
-}
 
 void iso14a_set_timeout(uint32_t timeout) {
        iso14a_timeout = timeout;
 
 void iso14a_set_timeout(uint32_t timeout) {
        iso14a_timeout = timeout;
+       if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
+}
+
+
+void iso14a_set_ATS_timeout(uint8_t *ats) {
+
+       uint8_t tb1;
+       uint8_t fwi; 
+       uint32_t fwt;
+       
+       if (ats[0] > 1) {                                                       // there is a format byte T0
+               if ((ats[1] & 0x20) == 0x20) {                  // there is an interface byte TB(1)
+                       if ((ats[1] & 0x10) == 0x10) {          // there is an interface byte TA(1) preceding TB(1)
+                               tb1 = ats[3];
+                       } else {
+                               tb1 = ats[2];
+                       }
+                       fwi = (tb1 & 0xf0) >> 4;                        // frame waiting indicator (FWI)
+                       fwt = 256 * 16 * (1 << fwi);            // frame waiting time (FWT) in 1/fc
+                       
+                       iso14a_set_timeout(fwt/(8*16));
+               }
+       }
 }
 
 }
 
+
 //-----------------------------------------------------------------------------
 // Generate the parity value for a byte sequence
 //
 //-----------------------------------------------------------------------------
 // Generate the parity value for a byte sequence
 //
@@ -199,61 +212,12 @@ void AppendCrc14443a(uint8_t* data, int len)
        ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
 }
 
        ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
 }
 
-// The function LogTrace() is also used by the iClass implementation in iClass.c
-bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag)
+void AppendCrc14443b(uint8_t* data, int len)
 {
 {
-       if (!tracing) return FALSE;
-       
-       uint16_t num_paritybytes = (iLen-1)/8 + 1;      // number of valid paritybytes in *parity
-       uint16_t duration = timestamp_end - timestamp_start;
-
-       // Return when trace is full
-       if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= TRACE_SIZE) {
-               tracing = FALSE;        // don't trace any more
-               return FALSE;
-       }
-       
-       // Traceformat:
-       // 32 bits timestamp (little endian)
-       // 16 bits duration (little endian)
-       // 16 bits data length (little endian, Highest Bit used as readerToTag flag)
-       // y Bytes data
-       // x Bytes parity (one byte per 8 bytes data)
-       
-       // timestamp (start)
-       trace[traceLen++] = ((timestamp_start >> 0) & 0xff);
-       trace[traceLen++] = ((timestamp_start >> 8) & 0xff);
-       trace[traceLen++] = ((timestamp_start >> 16) & 0xff);
-       trace[traceLen++] = ((timestamp_start >> 24) & 0xff);
-       
-       // duration
-       trace[traceLen++] = ((duration >> 0) & 0xff);
-       trace[traceLen++] = ((duration >> 8) & 0xff);
-
-       // data length
-       trace[traceLen++] = ((iLen >> 0) & 0xff);
-       trace[traceLen++] = ((iLen >> 8) & 0xff);
-
-       // readerToTag flag
-       if (!readerToTag) {
-               trace[traceLen - 1] |= 0x80;
-       }
-
-       // data bytes
-       if (btBytes != NULL && iLen != 0) {
-               memcpy(trace + traceLen, btBytes, iLen);
-       }
-       traceLen += iLen;
-
-       // parity bytes
-       if (parity != NULL && iLen != 0) {
-               memcpy(trace + traceLen, parity, num_paritybytes);
-       }
-       traceLen += num_paritybytes;
-
-       return TRUE;
+       ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1);
 }
 
 }
 
+
 //=============================================================================
 // ISO 14443 Type A - Miller decoder
 //=============================================================================
 //=============================================================================
 // ISO 14443 Type A - Miller decoder
 //=============================================================================
@@ -273,13 +237,17 @@ bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_
 static tUart Uart;
 
 // Lookup-Table to decide if 4 raw bits are a modulation.
 static tUart Uart;
 
 // Lookup-Table to decide if 4 raw bits are a modulation.
-// We accept two or three consecutive "0" in any position with the rest "1"
+// We accept the following:
+// 0001  -   a 3 tick wide pause
+// 0011  -   a 2 tick wide pause, or a three tick wide pause shifted left
+// 0111  -   a 2 tick wide pause shifted left
+// 1001  -   a 2 tick wide pause shifted right
 const bool Mod_Miller_LUT[] = {
 const bool Mod_Miller_LUT[] = {
-       TRUE,  TRUE,  FALSE, TRUE,  FALSE, FALSE, FALSE, FALSE,
-       TRUE,  TRUE,  FALSE, FALSE, TRUE,  FALSE, FALSE, FALSE
+       FALSE,  TRUE, FALSE, TRUE,  FALSE, FALSE, FALSE, TRUE,
+       FALSE,  TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
 };
 };
-#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
-#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
+#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
+#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
 
 void UartReset()
 {
 
 void UartReset()
 {
@@ -289,16 +257,19 @@ void UartReset()
        Uart.parityLen = 0;                                     // number of decoded parity bytes
        Uart.shiftReg = 0;                                      // shiftreg to hold decoded data bits
        Uart.parityBits = 0;                            // holds 8 parity bits
        Uart.parityLen = 0;                                     // number of decoded parity bytes
        Uart.shiftReg = 0;                                      // shiftreg to hold decoded data bits
        Uart.parityBits = 0;                            // holds 8 parity bits
-       Uart.twoBits = 0x0000;                          // buffer for 2 Bits
-       Uart.highCnt = 0;
        Uart.startTime = 0;
        Uart.endTime = 0;
        Uart.startTime = 0;
        Uart.endTime = 0;
+       
+       Uart.byteCntMax = 0;
+       Uart.posCnt = 0;
+       Uart.syncBit = 9999;
 }
 
 void UartInit(uint8_t *data, uint8_t *parity)
 {
        Uart.output = data;
        Uart.parity = parity;
 }
 
 void UartInit(uint8_t *data, uint8_t *parity)
 {
        Uart.output = data;
        Uart.parity = parity;
+       Uart.fourBits = 0x00000000;                     // clear the buffer for 4 Bits
        UartReset();
 }
 
        UartReset();
 }
 
@@ -306,45 +277,48 @@ void UartInit(uint8_t *data, uint8_t *parity)
 static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
 {
 
 static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
 {
 
-       Uart.twoBits = (Uart.twoBits << 8) | bit;
+       Uart.fourBits = (Uart.fourBits << 8) | bit;
        
        
-       if (Uart.state == STATE_UNSYNCD) {                                                                                              // not yet synced
+       if (Uart.state == STATE_UNSYNCD) {                                                                                      // not yet synced
        
        
-               if (Uart.highCnt < 7) {                                                                                                 // wait for a stable unmodulated signal
-                       if (Uart.twoBits == 0xffff) {
-                               Uart.highCnt++;
-                       } else {
-                               Uart.highCnt = 0;
-                       }
-               } else {        
-                       Uart.syncBit = 0xFFFF; // not set
-                       // look for 00xx1111 (the start bit)
-                       if              ((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7; 
-                       else if ((Uart.twoBits & 0x33C0) == 0x03C0) Uart.syncBit = 6;
-                       else if ((Uart.twoBits & 0x19E0) == 0x01E0) Uart.syncBit = 5;
-                       else if ((Uart.twoBits & 0x0CF0) == 0x00F0) Uart.syncBit = 4;
-                       else if ((Uart.twoBits & 0x0678) == 0x0078) Uart.syncBit = 3;
-                       else if ((Uart.twoBits & 0x033C) == 0x003C) Uart.syncBit = 2;
-                       else if ((Uart.twoBits & 0x019E) == 0x001E) Uart.syncBit = 1;
-                       else if ((Uart.twoBits & 0x00CF) == 0x000F) Uart.syncBit = 0;
-                       if (Uart.syncBit != 0xFFFF) {
+               Uart.syncBit = 9999;                                                                                                    // not set
+               
+               // 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated           Sequence Z (a "0" or "start of communication")
+               // 11111111 8 ticks unmodulation                                                                        Sequence Y (a "0" or "end of communication" or "no information")
+               // 111100x1 4 ticks unmodulated followed by 2|3 ticks pause                     Sequence X (a "1")
+
+               // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
+               // Sequence X followed by Sequence Y followed by Sequence Z     (111100x1 11111111 00x11111)
+               // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern 
+               // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
+               //
+#define ISO14443A_STARTBIT_MASK                0x07FFEF80              // mask is    00001111 11111111 1110 1111 10000000
+#define ISO14443A_STARTBIT_PATTERN     0x07FF8F80              // pattern is 00001111 11111111 1000 1111 10000000
+
+               if              ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
+               else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
+               else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
+               else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
+               else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
+               else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
+               else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
+               else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
+
+               if (Uart.syncBit != 9999) {                                                                                             // found a sync bit
                                Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
                                Uart.startTime -= Uart.syncBit;
                                Uart.endTime = Uart.startTime;
                                Uart.state = STATE_START_OF_COMMUNICATION;
                        }
                                Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
                                Uart.startTime -= Uart.syncBit;
                                Uart.endTime = Uart.startTime;
                                Uart.state = STATE_START_OF_COMMUNICATION;
                        }
-               }
 
        } else {
 
 
        } else {
 
-               if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {                  
-                       if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) {          // Modulation in both halves - error
+               if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {                 
+                       if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) {         // Modulation in both halves - error
                                UartReset();
                                UartReset();
-                               Uart.highCnt = 6;
                        } else {                                                                                                                        // Modulation in first half = Sequence Z = logic "0"
                                if (Uart.state == STATE_MILLER_X) {                                                             // error - must not follow after X
                                        UartReset();
                        } else {                                                                                                                        // Modulation in first half = Sequence Z = logic "0"
                                if (Uart.state == STATE_MILLER_X) {                                                             // error - must not follow after X
                                        UartReset();
-                                       Uart.highCnt = 6;
                                } else {
                                        Uart.bitCount++;
                                        Uart.shiftReg = (Uart.shiftReg >> 1);                                           // add a 0 to the shiftreg
                                } else {
                                        Uart.bitCount++;
                                        Uart.shiftReg = (Uart.shiftReg >> 1);                                           // add a 0 to the shiftreg
@@ -364,7 +338,7 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
                                }
                        }
                } else {
                                }
                        }
                } else {
-                       if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) {          // Modulation second half = Sequence X = logic "1"
+                       if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) {         // Modulation second half = Sequence X = logic "1"
                                Uart.bitCount++;
                                Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100;                                   // add a 1 to the shiftreg
                                Uart.state = STATE_MILLER_X;
                                Uart.bitCount++;
                                Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100;                                   // add a 1 to the shiftreg
                                Uart.state = STATE_MILLER_X;
@@ -399,12 +373,11 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
                                        if (Uart.len) {
                                                return TRUE;                                                                                    // we are finished with decoding the raw data sequence
                                        } else {
                                        if (Uart.len) {
                                                return TRUE;                                                                                    // we are finished with decoding the raw data sequence
                                        } else {
-                                               UartReset();                                    // Nothing receiver - start over
+                                               UartReset();                                                                                    // Nothing received - start over
                                        }
                                }
                                if (Uart.state == STATE_START_OF_COMMUNICATION) {                               // error - must not follow directly after SOC
                                        UartReset();
                                        }
                                }
                                if (Uart.state == STATE_START_OF_COMMUNICATION) {                               // error - must not follow directly after SOC
                                        UartReset();
-                                       Uart.highCnt = 6;
                                } else {                                                                                                                // a logic "0"
                                        Uart.bitCount++;
                                        Uart.shiftReg = (Uart.shiftReg >> 1);                                           // add a 0 to the shiftreg
                                } else {                                                                                                                // a logic "0"
                                        Uart.bitCount++;
                                        Uart.shiftReg = (Uart.shiftReg >> 1);                                           // add a 0 to the shiftreg
@@ -471,6 +444,11 @@ void DemodReset()
        Demod.highCnt = 0;
        Demod.startTime = 0;
        Demod.endTime = 0;
        Demod.highCnt = 0;
        Demod.startTime = 0;
        Demod.endTime = 0;
+       
+       //
+       Demod.bitCount = 0;
+       Demod.syncBit = 0xFFFF;
+       Demod.samples = 0;
 }
 
 void DemodInit(uint8_t *data, uint8_t *parity)
 }
 
 void DemodInit(uint8_t *data, uint8_t *parity)
@@ -569,9 +547,7 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non
                                }
                        }
                }
                                }
                        }
                }
-                       
        } 
        } 
-
     return FALSE;      // not finished yet, need more data
 }
 
     return FALSE;      // not finished yet, need more data
 }
 
@@ -585,38 +561,33 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non
 // triggering so that we start recording at the point that the tag is moved
 // near the reader.
 //-----------------------------------------------------------------------------
 // triggering so that we start recording at the point that the tag is moved
 // near the reader.
 //-----------------------------------------------------------------------------
-void RAMFUNC SnoopIso14443a(uint8_t param) {
+void RAMFUNC SniffIso14443a(uint8_t param) {
        // param:
        // bit 0 - trigger from first card answer
        // bit 1 - trigger from first reader 7-bit request
        // param:
        // bit 0 - trigger from first card answer
        // bit 1 - trigger from first reader 7-bit request
-       
        LEDsoff();
        LEDsoff();
-       // init trace buffer
-       iso14a_clear_trace();
-       iso14a_set_tracing(TRUE);
 
 
-       // We won't start recording the frames that we acquire until we trigger;
-       // a good trigger condition to get started is probably when we see a
-       // response from the tag.
-       // triggered == FALSE -- to wait first for card
-       bool triggered = !(param & 0x03); 
+       iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
+       
+       // Allocate memory from BigBuf for some buffers
+       // free all previous allocations first
+       BigBuf_free();
+       
+       // init trace buffer
+       clear_trace();
+       set_tracing(TRUE);
        
        // The command (reader -> tag) that we're receiving.
        
        // The command (reader -> tag) that we're receiving.
-       // The length of a received command will in most cases be no more than 18 bytes.
-       // So 32 should be enough!
-       uint8_t *receivedCmd = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET;
-       uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
+       uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
+       uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
        
        // The response (tag -> reader) that we're receiving.
        
        // The response (tag -> reader) that we're receiving.
-       uint8_t *receivedResponse = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET;
-       uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
-       
-       // As we receive stuff, we copy it from receivedCmd or receivedResponse
-       // into trace, along with its length and other annotations.
-       //uint8_t *trace = (uint8_t *)BigBuf;
+       uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
+       uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
        
        // The DMA buffer, used to stream samples from the FPGA
        
        // The DMA buffer, used to stream samples from the FPGA
-       uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+       uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
+
        uint8_t *data = dmaBuf;
        uint8_t previous_data = 0;
        int maxDataLen = 0;
        uint8_t *data = dmaBuf;
        uint8_t previous_data = 0;
        int maxDataLen = 0;
@@ -624,8 +595,6 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
        bool TagIsActive = FALSE;
        bool ReaderIsActive = FALSE;
        
        bool TagIsActive = FALSE;
        bool ReaderIsActive = FALSE;
        
-       iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
-
        // Set up the demodulator for tag -> reader responses.
        DemodInit(receivedResponse, receivedResponsePar);
        
        // Set up the demodulator for tag -> reader responses.
        DemodInit(receivedResponse, receivedResponsePar);
        
@@ -635,6 +604,12 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
        // Setup and start DMA.
        FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
        
        // Setup and start DMA.
        FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
        
+       // We won't start recording the frames that we acquire until we trigger;
+       // a good trigger condition to get started is probably when we see a
+       // response from the tag.
+       // triggered == FALSE -- to wait first for card
+       bool triggered = !(param & 0x03); 
+       
        // And now we loop, receiving samples.
        for(uint32_t rsamples = 0; TRUE; ) {
 
        // And now we loop, receiving samples.
        for(uint32_t rsamples = 0; TRUE; ) {
 
@@ -656,7 +631,7 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
                // test for length of buffer
                if(dataLen > maxDataLen) {
                        maxDataLen = dataLen;
                // test for length of buffer
                if(dataLen > maxDataLen) {
                        maxDataLen = dataLen;
-                       if(dataLen > 400) {
+                       if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
                                Dbprintf("blew circular buffer! dataLen=%d", dataLen);
                                break;
                        }
                                Dbprintf("blew circular buffer! dataLen=%d", dataLen);
                                break;
                        }
@@ -721,6 +696,9 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 
                                        // And ready to receive another response.
                                        DemodReset();
 
                                        // And ready to receive another response.
                                        DemodReset();
+                                       // And reset the Miller decoder including itS (now outdated) input buffer
+                                       UartInit(receivedCmd, receivedCmdPar);
+
                                        LED_C_OFF();
                                } 
                                TagIsActive = (Demod.state != DEMOD_UNSYNCD);
                                        LED_C_OFF();
                                } 
                                TagIsActive = (Demod.state != DEMOD_UNSYNCD);
@@ -735,12 +713,13 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
                }
        } // main cycle
 
                }
        } // main cycle
 
-       DbpString("COMMAND FINISHED");
-
        FpgaDisableSscDma();
        FpgaDisableSscDma();
-       Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
-       Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen, (uint32_t)Uart.output[0]);
        LEDsoff();
        LEDsoff();
+
+       Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
+       Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
+       
+       set_tracing(FALSE);     
 }
 
 //-----------------------------------------------------------------------------
 }
 
 //-----------------------------------------------------------------------------
@@ -885,7 +864,7 @@ int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
                                 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
 
 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
                                 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
 
-static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
+static uint8_t* free_buffer_pointer;
 
 typedef struct {
   uint8_t* response;
 
 typedef struct {
   uint8_t* response;
@@ -895,10 +874,6 @@ typedef struct {
   uint32_t ProxToAirDuration;
 } tag_response_info_t;
 
   uint32_t ProxToAirDuration;
 } tag_response_info_t;
 
-void reset_free_buffer() {
-  free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
-}
-
 bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
        // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
        // This will need the following byte array for a modulation sequence
 bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
        // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
        // This will need the following byte array for a modulation sequence
@@ -910,7 +885,8 @@ bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffe
        // ----------- +
        //    166 bytes, since every bit that needs to be send costs us a byte
        //
        // ----------- +
        //    166 bytes, since every bit that needs to be send costs us a byte
        //
-  
   // Prepare the tag modulation bits from the message
   CodeIso14443aAsTag(response_info->response,response_info->response_n);
   
   // Prepare the tag modulation bits from the message
   CodeIso14443aAsTag(response_info->response,response_info->response_n);
   
@@ -931,15 +907,24 @@ bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffe
   return true;
 }
 
   return true;
 }
 
+
+// "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
+// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) 
+// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
+// -> need 273 bytes buffer
+// 44 * 8 data bits, 44 * 1 parity bits, 9 start bits, 9 stop bits, 9 correction bits --370
+// 47 * 8 data bits, 47 * 1 parity bits, 10 start bits, 10 stop bits, 10 correction bits 
+#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 453 
+
 bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
   // Retrieve and store the current buffer index
   response_info->modulation = free_buffer_pointer;
   
   // Determine the maximum size we can use from our buffer
 bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
   // Retrieve and store the current buffer index
   response_info->modulation = free_buffer_pointer;
   
   // Determine the maximum size we can use from our buffer
-  size_t max_buffer_size = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + FREE_BUFFER_SIZE) - free_buffer_pointer;
+  size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
   
   // Forward the prepare tag modulation function to the inner function
   
   // Forward the prepare tag modulation function to the inner function
-  if (prepare_tag_modulation(response_info,max_buffer_size)) {
+  if (prepare_tag_modulation(response_info, max_buffer_size)) {
     // Update the free buffer offset
     free_buffer_pointer += ToSendMax;
     return true;
     // Update the free buffer offset
     free_buffer_pointer += ToSendMax;
     return true;
@@ -952,16 +937,22 @@ bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
 // Main loop of simulated tag: receive commands from reader, decide what
 // response to send, and send it.
 //-----------------------------------------------------------------------------
 // Main loop of simulated tag: receive commands from reader, decide what
 // response to send, and send it.
 //-----------------------------------------------------------------------------
-void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
+void SimulateIso14443aTag(int tagType, int flags, byte_t* data)
 {
 {
-       // Enable and clear the trace
-       iso14a_clear_trace();
-       iso14a_set_tracing(TRUE);
-
+       uint32_t counters[] = {0,0,0};
+       //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
+       // This can be used in a reader-only attack.
+       // (it can also be retrieved via 'hf 14a list', but hey...
+       uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
+       uint8_t ar_nr_collected = 0;
+       
        uint8_t sak;
        uint8_t sak;
-
+                                       
+       // PACK response to PWD AUTH for EV1/NTAG
+       uint8_t response8[4] =  {0,0,0,0};
+       
        // The first response contains the ATQA (note: bytes are transmitted in reverse order).
        // The first response contains the ATQA (note: bytes are transmitted in reverse order).
-       uint8_t response1[2];
+       uint8_t response1[2] =  {0,0};
        
        switch (tagType) {
                case 1: { // MIFARE Classic
        
        switch (tagType) {
                case 1: { // MIFARE Classic
@@ -972,7 +963,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                } break;
                case 2: { // MIFARE Ultralight
                        // Says: I am a stupid memory tag, no crypto
                } break;
                case 2: { // MIFARE Ultralight
                        // Says: I am a stupid memory tag, no crypto
-                       response1[0] = 0x04;
+                       response1[0] = 0x44;
                        response1[1] = 0x00;
                        sak = 0x00;
                } break;
                        response1[1] = 0x00;
                        sak = 0x00;
                } break;
@@ -993,6 +984,22 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                        response1[0] = 0x01;
                        response1[1] = 0x0f;
                        sak = 0x01;
                        response1[0] = 0x01;
                        response1[1] = 0x0f;
                        sak = 0x01;
+               } break;
+               case 6: { // MIFARE Mini
+                       // Says: I am a Mifare Mini, 320b
+                       response1[0] = 0x44;
+                       response1[1] = 0x00;
+                       sak = 0x09;
+               } break;
+               case 7: { // NTAG?
+                       // Says: I am a NTAG, 
+                       response1[0] = 0x44;
+                       response1[1] = 0x00;
+                       sak = 0x00;
+                       // PACK
+                       response8[0] = 0x80;
+                       response8[1] = 0x80;
+                       ComputeCrc14443(CRC_14443_A, response8, 2, &response8[2], &response8[3]);
                } break;                
                default: {
                        Dbprintf("Error: unkown tagtype (%d)",tagType);
                } break;                
                default: {
                        Dbprintf("Error: unkown tagtype (%d)",tagType);
@@ -1001,21 +1008,29 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
        }
        
        // The second response contains the (mandatory) first 24 bits of the UID
        }
        
        // The second response contains the (mandatory) first 24 bits of the UID
-       uint8_t response2[5];
+       uint8_t response2[5] = {0x00};
 
        // Check if the uid uses the (optional) part
 
        // Check if the uid uses the (optional) part
-       uint8_t response2a[5];
-       if (uid_2nd) {
+       uint8_t response2a[5] = {0x00};
+       
+       if (flags & FLAG_7B_UID_IN_DATA) {
                response2[0] = 0x88;
                response2[0] = 0x88;
-               num_to_bytes(uid_1st,3,response2+1);
-               num_to_bytes(uid_2nd,4,response2a);
+               response2[1] = data[0];
+               response2[2] = data[1];
+               response2[3] = data[2];
+
+               response2a[0] = data[3];
+               response2a[1] = data[4];
+               response2a[2] = data[5];
+               response2a[3] = data[6]; //??
                response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
 
                // Configure the ATQA and SAK accordingly
                response1[0] |= 0x40;
                sak |= 0x04;
        } else {
                response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
 
                // Configure the ATQA and SAK accordingly
                response1[0] |= 0x40;
                sak |= 0x04;
        } else {
-               num_to_bytes(uid_1st,4,response2);
+               memcpy(response2, data, 4);
+               //num_to_bytes(uid_1st,4,response2);
                // Configure the ATQA and SAK accordingly
                response1[0] &= 0xBF;
                sak &= 0xFB;
                // Configure the ATQA and SAK accordingly
                response1[0] &= 0xBF;
                sak &= 0xFB;
@@ -1025,12 +1040,12 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
        response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
 
        // Prepare the mandatory SAK (for 4 and 7 byte UID)
        response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
 
        // Prepare the mandatory SAK (for 4 and 7 byte UID)
-       uint8_t response3[3];
+       uint8_t response3[3]  = {0x00};
        response3[0] = sak;
        ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
 
        // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
        response3[0] = sak;
        ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
 
        // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
-       uint8_t response3a[3];
+       uint8_t response3a[3]  = {0x00};
        response3a[0] = sak & 0xFB;
        ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
 
        response3a[0] = sak & 0xFB;
        ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
 
@@ -1042,7 +1057,14 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
        // TC(1) = 0x02: CID supported, NAD not supported
        ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
 
        // TC(1) = 0x02: CID supported, NAD not supported
        ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
 
-       #define TAG_RESPONSE_COUNT 7
+       // Prepare GET_VERSION (different for EV-1 / NTAG)
+       //uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7};  //EV1 48bytes VERSION.
+       uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
+       
+       // Prepare CHK_TEARING
+       uint8_t response9[] =  {0xBD,0x90,0x3f};
+       
+       #define TAG_RESPONSE_COUNT 10
        tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
                { .response = response1,  .response_n = sizeof(response1)  },  // Answer to request - respond with card type
                { .response = response2,  .response_n = sizeof(response2)  },  // Anticollision cascade1 - respond with uid
        tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
                { .response = response1,  .response_n = sizeof(response1)  },  // Answer to request - respond with card type
                { .response = response2,  .response_n = sizeof(response2)  },  // Anticollision cascade1 - respond with uid
@@ -1051,6 +1073,9 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                { .response = response3a, .response_n = sizeof(response3a) },  // Acknowledge select - cascade 2
                { .response = response5,  .response_n = sizeof(response5)  },  // Authentication answer (random nonce)
                { .response = response6,  .response_n = sizeof(response6)  },  // dummy ATS (pseudo-ATR), answer to RATS
                { .response = response3a, .response_n = sizeof(response3a) },  // Acknowledge select - cascade 2
                { .response = response5,  .response_n = sizeof(response5)  },  // Authentication answer (random nonce)
                { .response = response6,  .response_n = sizeof(response6)  },  // dummy ATS (pseudo-ATR), answer to RATS
+               { .response = response7_NTAG,  .response_n = sizeof(response7_NTAG)  },  // EV1/NTAG GET_VERSION response
+               { .response = response8,   .response_n = sizeof(response8) },  // EV1/NTAG PACK response
+               { .response = response9,   .response_n = sizeof(response9) }  // EV1/NTAG CHK_TEAR response
        };
 
        // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
        };
 
        // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
@@ -1066,9 +1091,20 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                .modulation_n = 0
        };
   
                .modulation_n = 0
        };
   
-       // Reset the offset pointer of the free buffer
-       reset_free_buffer();
-  
+       // We need to listen to the high-frequency, peak-detected path.
+       iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
+       BigBuf_free_keep_EM();
+
+       // allocate buffers:
+       uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
+       uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
+       free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
+
+       // clear trace
+       clear_trace();
+       set_tracing(TRUE);
+
        // Prepare the responses of the anticollision phase
        // there will be not enough time to do this at the moment the reader sends it REQA
        for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
        // Prepare the responses of the anticollision phase
        // there will be not enough time to do this at the moment the reader sends it REQA
        for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
@@ -1086,13 +1122,6 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
        int happened2 = 0;
        int cmdsRecvd = 0;
 
        int happened2 = 0;
        int cmdsRecvd = 0;
 
-       // We need to listen to the high-frequency, peak-detected path.
-       iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
-
-       // buffers used on software Uart:
-       uint8_t *receivedCmd = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET;
-       uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
-
        cmdsRecvd = 0;
        tag_response_info_t* p_response;
 
        cmdsRecvd = 0;
        tag_response_info_t* p_response;
 
@@ -1122,10 +1151,80 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) {   // Received a SELECT (cascade 2)
                        p_response = &responses[4]; order = 30;
                } else if(receivedCmd[0] == 0x30) {     // Received a (plain) READ
                } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) {   // Received a SELECT (cascade 2)
                        p_response = &responses[4]; order = 30;
                } else if(receivedCmd[0] == 0x30) {     // Received a (plain) READ
-                       EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
-                       // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
-                       // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
+                       uint8_t block = receivedCmd[1];
+                       if ( tagType == 7 ) {
+                               uint16_t start = 4 * block;
+                               
+                               /*if ( block < 4 ) {
+                                   //NTAG 215
+                                       uint8_t blockdata[50] = {
+                                       data[0],data[1],data[2], 0x88 ^ data[0] ^ data[1] ^ data[2],
+                                       data[3],data[4],data[5],data[6],
+                                       data[3] ^ data[4] ^ data[5] ^ data[6],0x48,0x0f,0xe0,
+                                       0xe1,0x10,0x12,0x00,
+                                       0x03,0x00,0xfe,0x00, 
+                                       0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+                                       0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+                                       0x00,0x00,0x00,0x00,
+                                       0x00,0x00};
+                                       AppendCrc14443a(blockdata+start, 16);
+                                       EmSendCmdEx( blockdata+start, MAX_MIFARE_FRAME_SIZE, false);
+                               } else {*/      
+                                       uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
+                                       emlGetMemBt( emdata, start, 16);
+                                       AppendCrc14443a(emdata, 16);
+                                       EmSendCmdEx(emdata, sizeof(emdata), false);                             
+                               //}
+                               p_response = NULL;
+                               
+                       } else {                        
+                               EmSendCmdEx(data+(4*block),16,false);
+                               // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
+                               // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
+                               p_response = NULL;
+                       }
+               } else if(receivedCmd[0] == 0x3A) {     // Received a FAST READ (ranged read)
+                               
+                               uint8_t emdata[MAX_FRAME_SIZE];
+                               int start =  receivedCmd[1] * 4;
+                               int len   = (receivedCmd[2] - receivedCmd[1] + 1) * 4;
+                               emlGetMemBt( emdata, start, len);
+                               AppendCrc14443a(emdata, len);
+                               EmSendCmdEx(emdata, len+2, false);                              
+                               p_response = NULL;
+                               
+               } else if(receivedCmd[0] == 0x3C && tagType == 7) {     // Received a READ SIGNATURE -- 
+                               // ECC data,  taken from a NTAG215 amiibo token. might work. LEN: 32, + 2 crc
+                               uint8_t data[] = {0x56,0x06,0xa6,0x4f,0x43,0x32,0x53,0x6f,
+                                                                 0x43,0xda,0x45,0xd6,0x61,0x38,0xaa,0x1e,
+                                                                 0xcf,0xd3,0x61,0x36,0xca,0x5f,0xbb,0x05,
+                                                                 0xce,0x21,0x24,0x5b,0xa6,0x7a,0x79,0x07,
+                                                                 0x00,0x00};
+                               AppendCrc14443a(data, sizeof(data)-2);
+                               EmSendCmdEx(data,sizeof(data),false);
+                               p_response = NULL;                                      
+               } else if (receivedCmd[0] == 0x39 && tagType == 7) {    // Received a READ COUNTER -- 
+                       uint8_t index = receivedCmd[1];
+                       uint8_t data[] =  {0x00,0x00,0x00,0x14,0xa5};
+                       if ( counters[index] > 0) {
+                               num_to_bytes(counters[index], 3, data);
+                               AppendCrc14443a(data, sizeof(data)-2);
+                       }
+                       EmSendCmdEx(data,sizeof(data),false);                           
+                       p_response = NULL;
+               } else if (receivedCmd[0] == 0xA5 && tagType == 7) {    // Received a INC COUNTER -- 
+                       // number of counter
+                       uint8_t counter = receivedCmd[1];
+                       uint32_t val = bytes_to_num(receivedCmd+2,4);
+                       counters[counter] = val;
+               
+                       // send ACK
+                       uint8_t ack[] = {0x0a};
+                       EmSendCmdEx(ack,sizeof(ack),false);
                        p_response = NULL;
                        p_response = NULL;
+                       
+               } else if(receivedCmd[0] == 0x3E && tagType == 7) {     // Received a CHECK_TEARING_EVENT -- 
+                               p_response = &responses[9];                             
                } else if(receivedCmd[0] == 0x50) {     // Received a HALT
 
                        if (tracing) {
                } else if(receivedCmd[0] == 0x50) {     // Received a HALT
 
                        if (tracing) {
@@ -1133,7 +1232,12 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                        }
                        p_response = NULL;
                } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) {   // Received an authentication request
                        }
                        p_response = NULL;
                } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) {   // Received an authentication request
-                       p_response = &responses[5]; order = 7;
+                                       
+                       if ( tagType == 7 ) {   // IF NTAG /EV1  0x60 == GET_VERSION, not a authentication request.
+                               p_response = &responses[7];
+                       } else {
+                               p_response = &responses[5]; order = 7;
+                       }
                } else if(receivedCmd[0] == 0xE0) {     // Received a RATS request
                        if (tagType == 1 || tagType == 2) {     // RATS not supported
                                EmSend4bit(CARD_NACK_NA);
                } else if(receivedCmd[0] == 0xE0) {     // Received a RATS request
                        if (tagType == 1 || tagType == 2) {     // RATS not supported
                                EmSend4bit(CARD_NACK_NA);
@@ -1145,15 +1249,80 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                        if (tracing) {
                                LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
                        }
                        if (tracing) {
                                LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
                        }
+                       uint32_t nonce = bytes_to_num(response5,4);
                        uint32_t nr = bytes_to_num(receivedCmd,4);
                        uint32_t ar = bytes_to_num(receivedCmd+4,4);
                        uint32_t nr = bytes_to_num(receivedCmd,4);
                        uint32_t ar = bytes_to_num(receivedCmd+4,4);
-                       Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
-               } else {
+                       //Dbprintf("Auth attempt {nonce}{nr}{ar}: %08x %08x %08x", nonce, nr, ar);
+
+                       if(flags & FLAG_NR_AR_ATTACK )
+                       {
+                               if(ar_nr_collected < 2){
+                                       // Avoid duplicates... probably not necessary, nr should vary. 
+                                       //if(ar_nr_responses[3] != nr){                                         
+                                               ar_nr_responses[ar_nr_collected*5]   = 0;
+                                               ar_nr_responses[ar_nr_collected*5+1] = 0;
+                                               ar_nr_responses[ar_nr_collected*5+2] = nonce;
+                                               ar_nr_responses[ar_nr_collected*5+3] = nr;
+                                               ar_nr_responses[ar_nr_collected*5+4] = ar;
+                                               ar_nr_collected++;
+                                       //}
+                               }                       
+
+                               if(ar_nr_collected > 1 ) {
+                               
+                                       if (MF_DBGLEVEL >= 2) {
+                                                       Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
+                                                       Dbprintf("../tools/mfkey/mfkey32 %07x%08x %08x %08x %08x %08x %08x",
+                                                               ar_nr_responses[0], // UID1
+                                                               ar_nr_responses[1], // UID2
+                                                               ar_nr_responses[2], // NT
+                                                               ar_nr_responses[3], // AR1
+                                                               ar_nr_responses[4], // NR1
+                                                               ar_nr_responses[8], // AR2
+                                                               ar_nr_responses[9]  // NR2
+                                                       );
+                                                       Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x",
+                                                               ar_nr_responses[0], // UID1
+                                                               ar_nr_responses[1], // UID2
+                                                               ar_nr_responses[2], // NT1
+                                                               ar_nr_responses[3], // AR1
+                                                               ar_nr_responses[4], // NR1
+                                                               ar_nr_responses[7], // NT2
+                                                               ar_nr_responses[8], // AR2
+                                                               ar_nr_responses[9]  // NR2
+                                                               );
+                                       }
+                                       uint8_t len = ar_nr_collected*5*4;
+                                       cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,len,0,&ar_nr_responses,len);
+                                       ar_nr_collected = 0;
+                                       memset(ar_nr_responses, 0x00, len);
+                               }
+                       }
+               } else if (receivedCmd[0] == 0x1a ) // ULC authentication
+               {
+                       
+               }
+               else if (receivedCmd[0] == 0x1b) // NTAG / EV-1 authentication
+               {
+                       if ( tagType == 7 ) {
+                               p_response =  &responses[8]; // PACK response
+                               uint32_t pwd = bytes_to_num(receivedCmd+1,4);
+                               
+                               if ( MF_DBGLEVEL >= 3)  Dbprintf("Auth attempt: %08x", pwd);    
+                       }
+               }
+               else {
                        // Check for ISO 14443A-4 compliant commands, look at left nibble
                        switch (receivedCmd[0]) {
                        // Check for ISO 14443A-4 compliant commands, look at left nibble
                        switch (receivedCmd[0]) {
-
+                               case 0x02:
+                               case 0x03: {  // IBlock (command no CID)
+                                       dynamic_response_info.response[0] = receivedCmd[0];
+                                       dynamic_response_info.response[1] = 0x90;
+                                       dynamic_response_info.response[2] = 0x00;
+                                       dynamic_response_info.response_n = 3;
+                               } break;
                                case 0x0B:
                                case 0x0B:
-                               case 0x0A: { // IBlock (command)
+                               case 0x0A: { // IBlock (command CID)
                                  dynamic_response_info.response[0] = receivedCmd[0];
                                  dynamic_response_info.response[1] = 0x00;
                                  dynamic_response_info.response[2] = 0x90;
                                  dynamic_response_info.response[0] = receivedCmd[0];
                                  dynamic_response_info.response[1] = 0x00;
                                  dynamic_response_info.response[2] = 0x90;
@@ -1173,15 +1342,17 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                                  dynamic_response_info.response_n = 2;
                                } break;
                                  
                                  dynamic_response_info.response_n = 2;
                                } break;
                                  
-                               case 0xBA: { //
-                                 memcpy(dynamic_response_info.response,"\xAB\x00",2);
-                                 dynamic_response_info.response_n = 2;
+                               case 0xBA: { // ping / pong
+                                       dynamic_response_info.response[0] = 0xAB;
+                                       dynamic_response_info.response[1] = 0x00;
+                                       dynamic_response_info.response_n = 2;
                                } break;
 
                                case 0xCA:
                                case 0xC2: { // Readers sends deselect command
                                } break;
 
                                case 0xCA:
                                case 0xC2: { // Readers sends deselect command
-                                 memcpy(dynamic_response_info.response,"\xCA\x00",2);
-                                 dynamic_response_info.response_n = 2;
+                                       dynamic_response_info.response[0] = 0xCA;
+                                       dynamic_response_info.response[1] = 0x00;
+                                       dynamic_response_info.response_n = 2;
                                } break;
 
                                default: {
                                } break;
 
                                default: {
@@ -1251,8 +1422,16 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                }
        }
 
                }
        }
 
-       Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       set_tracing(FALSE);
+       BigBuf_free_keep_EM();
        LED_A_OFF();
        LED_A_OFF();
+       
+       if (MF_DBGLEVEL >= 4){
+               Dbprintf("-[ Wake ups after halt [%d]", happened);
+               Dbprintf("-[ Messages after halt [%d]", happened2);
+               Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd);
+       }
 }
 
 
 }
 
 
@@ -1263,7 +1442,7 @@ void PrepareDelayedTransfer(uint16_t delay)
        uint8_t bitmask = 0;
        uint8_t bits_to_shift = 0;
        uint8_t bits_shifted = 0;
        uint8_t bitmask = 0;
        uint8_t bits_to_shift = 0;
        uint8_t bits_shifted = 0;
-       
+
        delay &= 0x07;
        if (delay) {
                for (uint16_t i = 0; i < delay; i++) {
        delay &= 0x07;
        if (delay) {
                for (uint16_t i = 0; i < delay; i++) {
@@ -1372,7 +1551,7 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8
                }
 
                // Only transmit parity bit if we transmitted a complete byte
                }
 
                // Only transmit parity bit if we transmitted a complete byte
-               if (j == 8) {
+               if (j == 8 && parity != NULL) {
                        // Get the parity bit
                        if (parity[i>>3] & (0x80 >> (i&0x0007))) {
                                // Sequence X
                        // Get the parity bit
                        if (parity[i>>3] & (0x80 >> (i&0x0007))) {
                                // Sequence X
@@ -1417,6 +1596,7 @@ void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *p
   CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
 }
 
   CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
 }
 
+
 //-----------------------------------------------------------------------------
 // Wait for commands from reader
 // Stop when button is pressed (return 1) or field was gone (return 2)
 //-----------------------------------------------------------------------------
 // Wait for commands from reader
 // Stop when button is pressed (return 1) or field was gone (return 2)
@@ -1439,9 +1619,9 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
        // Set ADC to read field strength
        AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
        AT91C_BASE_ADC->ADC_MR =
        // Set ADC to read field strength
        AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
        AT91C_BASE_ADC->ADC_MR =
-                               ADC_MODE_PRESCALE(32) |
-                               ADC_MODE_STARTUP_TIME(16) |
-                               ADC_MODE_SAMPLE_HOLD_TIME(8);
+                               ADC_MODE_PRESCALE(63) |
+                               ADC_MODE_STARTUP_TIME(1) |
+                               ADC_MODE_SAMPLE_HOLD_TIME(15);
        AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
        // start ADC
        AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
        AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
        // start ADC
        AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
@@ -1451,7 +1631,7 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
 
        // Clear RXRDY:
     uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
 
        // Clear RXRDY:
     uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-
+       
        for(;;) {
                WDT_HIT();
 
        for(;;) {
                WDT_HIT();
 
@@ -1463,7 +1643,7 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
                        analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
                        AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
                        if (analogCnt >= 32) {
                        analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
                        AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
                        if (analogCnt >= 32) {
-                               if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
+                               if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
                                        vtime = GetTickCount();
                                        if (!timer) timer = vtime;
                                        // 50ms no field --> card to idle state
                                        vtime = GetTickCount();
                                        if (!timer) timer = vtime;
                                        // 50ms no field --> card to idle state
@@ -1526,26 +1706,25 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNe
        AT91C_BASE_SSC->SSC_THR = SEC_F;
 
        // send cycle
        AT91C_BASE_SSC->SSC_THR = SEC_F;
 
        // send cycle
-       for(; i <= respLen; ) {
+       for(; i < respLen; ) {
                if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
                        AT91C_BASE_SSC->SSC_THR = resp[i++];
                        FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
                }
        
                if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
                        AT91C_BASE_SSC->SSC_THR = resp[i++];
                        FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
                }
        
-               if(BUTTON_PRESS()) {
-                       break;
-               }
+               if(BUTTON_PRESS()) break;
        }
 
        // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
        }
 
        // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
-       for (i = 0; i < 2 ; ) {
+       uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
+       for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
                if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
                        AT91C_BASE_SSC->SSC_THR = SEC_F;
                        FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
                        i++;
                }
        }
                if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
                        AT91C_BASE_SSC->SSC_THR = SEC_F;
                        FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
                        i++;
                }
        }
-       
+
        LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
 
        return 0;
        LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
 
        return 0;
@@ -1634,7 +1813,7 @@ bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_Start
 //-----------------------------------------------------------------------------
 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
 {
 //-----------------------------------------------------------------------------
 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
 {
-       uint32_t c;
+       uint32_t c = 0x00;
        
        // Set FPGA mode to "reader listen mode", no modulation (listen
        // only, since we are receiving, not transmitting).
        
        // Set FPGA mode to "reader listen mode", no modulation (listen
        // only, since we are receiving, not transmitting).
@@ -1647,8 +1826,7 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receive
 
        // clear RXRDY:
     uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
 
        // clear RXRDY:
     uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-       
-       c = 0;
+
        for(;;) {
                WDT_HIT();
 
        for(;;) {
                WDT_HIT();
 
@@ -1657,7 +1835,7 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receive
                        if(ManchesterDecoding(b, offset, 0)) {
                                NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
                                return TRUE;
                        if(ManchesterDecoding(b, offset, 0)) {
                                NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
                                return TRUE;
-                       } else if (c++ > iso14a_timeout) {
+                       } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
                                return FALSE; 
                        }
                }
                                return FALSE; 
                        }
                }
@@ -1718,16 +1896,18 @@ int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
        return Demod.len;
 }
 
        return Demod.len;
 }
 
-/* performs iso14443a anticollision procedure
- * fills the uid pointer unless NULL
- * fills resp_data unless NULL */
-int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
+// performs iso14443a anticollision (optional) and card select procedure
+// fills the uid and cuid pointer unless NULL
+// fills the card info record unless NULL
+// if anticollision is false, then the UID must be provided in uid_ptr[] 
+// and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
+int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades) {
        uint8_t wupa[]       = { 0x52 };  // 0x26 - REQA  0x52 - WAKE-UP
        uint8_t sel_all[]    = { 0x93,0x20 };
        uint8_t sel_uid[]    = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
        uint8_t rats[]       = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
        uint8_t wupa[]       = { 0x52 };  // 0x26 - REQA  0x52 - WAKE-UP
        uint8_t sel_all[]    = { 0x93,0x20 };
        uint8_t sel_uid[]    = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
        uint8_t rats[]       = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
-       uint8_t *resp = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET;
-       uint8_t *resp_par = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
+       uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
+       uint8_t resp_par[MAX_PARITY_SIZE];
        byte_t uid_resp[4];
        size_t uid_resp_len;
 
        byte_t uid_resp[4];
        size_t uid_resp_len;
 
@@ -1736,7 +1916,7 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
        int len;
 
        // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
        int len;
 
        // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
-    ReaderTransmitBitsPar(wupa,7,0, NULL);
+    ReaderTransmitBitsPar(wupa, 7, NULL, NULL);
        
        // Receive the ATQA
        if(!ReaderReceive(resp, resp_par)) return 0;
        
        // Receive the ATQA
        if(!ReaderReceive(resp, resp_par)) return 0;
@@ -1747,11 +1927,18 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
                memset(p_hi14a_card->uid,0,10);
        }
 
                memset(p_hi14a_card->uid,0,10);
        }
 
+       if (anticollision) {
        // clear uid
        if (uid_ptr) {
                memset(uid_ptr,0,10);
        }
        // clear uid
        if (uid_ptr) {
                memset(uid_ptr,0,10);
        }
+       }
 
 
+       // check for proprietary anticollision:
+       if ((resp[0] & 0x1F) == 0) {
+               return 3;
+       }
+       
        // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
        // which case we need to make a cascade 2 request and select - this is a long UID
        // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
        // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
        // which case we need to make a cascade 2 request and select - this is a long UID
        // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
@@ -1759,6 +1946,7 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
                // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
                sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
 
                // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
                sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
 
+               if (anticollision) {
                // SELECT_ALL
                ReaderTransmit(sel_all, sizeof(sel_all), NULL);
                if (!ReaderReceive(resp, resp_par)) return 0;
                // SELECT_ALL
                ReaderTransmit(sel_all, sizeof(sel_all), NULL);
                if (!ReaderReceive(resp, resp_par)) return 0;
@@ -1772,7 +1960,7 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
                                Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
                                for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) {      // add valid UID bits before collision point
                                        uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
                                Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
                                for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) {      // add valid UID bits before collision point
                                        uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
-                                       uid_resp[uid_resp_bits & 0xf8] |= UIDbit << (uid_resp_bits % 8);
+                                       uid_resp[uid_resp_bits 8] |= UIDbit << (uid_resp_bits % 8);
                                }
                                uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8);                                  // next time select the card(s) with a 1 in the collision position
                                uid_resp_bits++;
                                }
                                uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8);                                  // next time select the card(s) with a 1 in the collision position
                                uid_resp_bits++;
@@ -1794,6 +1982,14 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
                } else {                // no collision, use the response to SELECT_ALL as current uid
                        memcpy(uid_resp, resp, 4);
                }
                } else {                // no collision, use the response to SELECT_ALL as current uid
                        memcpy(uid_resp, resp, 4);
                }
+               } else {
+                       if (cascade_level < num_cascades - 1) {
+                               uid_resp[0] = 0x88;
+                               memcpy(uid_resp+1, uid_ptr+cascade_level*3, 3);
+                       } else {
+                               memcpy(uid_resp, uid_ptr+cascade_level*3, 4);
+                       }
+               }
                uid_resp_len = 4;
 
                // calculate crypto UID. Always use last 4 Bytes.
                uid_resp_len = 4;
 
                // calculate crypto UID. Always use last 4 Bytes.
@@ -1803,7 +1999,7 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
 
                // Construct SELECT UID command
                sel_uid[1] = 0x70;                                                                                                      // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
 
                // Construct SELECT UID command
                sel_uid[1] = 0x70;                                                                                                      // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
-               memcpy(sel_uid+2, uid_resp, 4);                                                                         // the UID
+               memcpy(sel_uid+2, uid_resp, 4);                                                                         // the UID received during anticollision, or the provided UID
                sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5];         // calculate and add BCC
                AppendCrc14443a(sel_uid, 7);                                                                            // calculate and add CRC
                ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
                sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5];         // calculate and add BCC
                AppendCrc14443a(sel_uid, 7);                                                                            // calculate and add CRC
                ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
@@ -1819,11 +2015,10 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
                        uid_resp[0] = uid_resp[1];
                        uid_resp[1] = uid_resp[2];
                        uid_resp[2] = uid_resp[3]; 
                        uid_resp[0] = uid_resp[1];
                        uid_resp[1] = uid_resp[2];
                        uid_resp[2] = uid_resp[3]; 
-
                        uid_resp_len = 3;
                }
 
                        uid_resp_len = 3;
                }
 
-               if(uid_ptr) {
+               if(uid_ptr && anticollision) {
                        memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
                }
 
                        memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
                }
 
@@ -1855,6 +2050,10 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
 
        // reset the PCB block number
        iso14_pcb_blocknum = 0;
 
        // reset the PCB block number
        iso14_pcb_blocknum = 0;
+
+       // set default timeout based on ATS
+       iso14a_set_ATS_timeout(resp);
+
        return 1;       
 }
 
        return 1;       
 }
 
@@ -1880,7 +2079,7 @@ void iso14443a_setup(uint8_t fpga_minor_mode) {
        DemodReset();
        UartReset();
        NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
        DemodReset();
        UartReset();
        NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
-       iso14a_set_timeout(1050); // 10ms default
+       iso14a_set_timeout(10*106); // 10ms default
 }
 
 int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
 }
 
 int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
@@ -1919,17 +2118,18 @@ void ReaderIso14443a(UsbCommand *c)
 {
        iso14a_command_t param = c->arg[0];
        uint8_t *cmd = c->d.asBytes;
 {
        iso14a_command_t param = c->arg[0];
        uint8_t *cmd = c->d.asBytes;
-       size_t len = c->arg[1];
-       size_t lenbits = c->arg[2];
+       size_t len = c->arg[1] & 0xffff;
+       size_t lenbits = c->arg[1] >> 16;
+       uint32_t timeout = c->arg[2];
        uint32_t arg0 = 0;
        byte_t buf[USB_CMD_DATA_SIZE];
        uint8_t par[MAX_PARITY_SIZE];
   
        if(param & ISO14A_CONNECT) {
        uint32_t arg0 = 0;
        byte_t buf[USB_CMD_DATA_SIZE];
        uint8_t par[MAX_PARITY_SIZE];
   
        if(param & ISO14A_CONNECT) {
-               iso14a_clear_trace();
+               clear_trace();
        }
 
        }
 
-       iso14a_set_tracing(TRUE);
+       set_tracing(TRUE);
 
        if(param & ISO14A_REQUEST_TRIGGER) {
                iso14a_set_trigger(TRUE);
 
        if(param & ISO14A_REQUEST_TRIGGER) {
                iso14a_set_trigger(TRUE);
@@ -1939,13 +2139,13 @@ void ReaderIso14443a(UsbCommand *c)
                iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
                if(!(param & ISO14A_NO_SELECT)) {
                        iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
                iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
                if(!(param & ISO14A_NO_SELECT)) {
                        iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
-                       arg0 = iso14443a_select_card(NULL,card,NULL);
+                       arg0 = iso14443a_select_card(NULL,card,NULL, true, 0);
                        cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
                }
        }
 
        if(param & ISO14A_SET_TIMEOUT) {
                        cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
                }
        }
 
        if(param & ISO14A_SET_TIMEOUT) {
-               iso14a_set_timeout(c->arg[2]);
+               iso14a_set_timeout(timeout);
        }
 
        if(param & ISO14A_APDU) {
        }
 
        if(param & ISO14A_APDU) {
@@ -1955,15 +2155,38 @@ void ReaderIso14443a(UsbCommand *c)
 
        if(param & ISO14A_RAW) {
                if(param & ISO14A_APPEND_CRC) {
 
        if(param & ISO14A_RAW) {
                if(param & ISO14A_APPEND_CRC) {
-                       AppendCrc14443a(cmd,len);
+                       if(param & ISO14A_TOPAZMODE) {
+                               AppendCrc14443b(cmd,len);
+                       } else {
+                               AppendCrc14443a(cmd,len);
+                       }
                        len += 2;
                        if (lenbits) lenbits += 16;
                }
                        len += 2;
                        if (lenbits) lenbits += 16;
                }
-               if(lenbits>0) {
+               if(lenbits>0) {                         // want to send a specific number of bits (e.g. short commands)
+                       if(param & ISO14A_TOPAZMODE) {
+                               int bits_to_send = lenbits;
+                               uint16_t i = 0;
+                               ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL);             // first byte is always short (7bits) and no parity
+                               bits_to_send -= 7;
+                               while (bits_to_send > 0) {
+                                       ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL);     // following bytes are 8 bit and no parity
+                                       bits_to_send -= 8;
+                               }
+                       } else {
                        GetParity(cmd, lenbits/8, par);
                        GetParity(cmd, lenbits/8, par);
-                       ReaderTransmitBitsPar(cmd, lenbits, par, NULL);
+                               ReaderTransmitBitsPar(cmd, lenbits, par, NULL);                                                 // bytes are 8 bit with odd parity
+                       }
+               } else {                                        // want to send complete bytes only
+                       if(param & ISO14A_TOPAZMODE) {
+                               uint16_t i = 0;
+                               ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL);                                                // first byte: 7 bits, no paritiy
+                               while (i < len) {
+                                       ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL);                                        // following bytes: 8 bits, no paritiy
+                               }
                } else {
                } else {
-                       ReaderTransmit(cmd,len, NULL);
+                               ReaderTransmit(cmd,len, NULL);                                                                                  // 8 bits, odd parity
+                       }
                }
                arg0 = ReaderReceive(buf, par);
                cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
                }
                arg0 = ReaderReceive(buf, par);
                cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
@@ -1978,6 +2201,7 @@ void ReaderIso14443a(UsbCommand *c)
        }
 
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        }
 
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       set_tracing(FALSE);
        LEDsoff();
 }
 
        LEDsoff();
 }
 
@@ -1995,7 +2219,7 @@ int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
        nttmp1 = nt1;
        nttmp2 = nt2;
        
        nttmp1 = nt1;
        nttmp2 = nt2;
        
-       for (i = 1; i < 32768; i++) {
+       for (i = 1; i < 0xFFFF; i++) {
                nttmp1 = prng_successor(nttmp1, 1);
                if (nttmp1 == nt2) return i;
                nttmp2 = prng_successor(nttmp2, 1);
                nttmp1 = prng_successor(nttmp1, 1);
                if (nttmp1 == nt2) return i;
                nttmp2 = prng_successor(nttmp2, 1);
@@ -2019,11 +2243,18 @@ void ReaderMifare(bool first_try)
        uint8_t mf_nr_ar[]   = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
        static uint8_t mf_nr_ar3;
 
        uint8_t mf_nr_ar[]   = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
        static uint8_t mf_nr_ar3;
 
-       uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
-       uint8_t* receivedAnswerPar = (((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET);
+       uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
+       uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
 
 
-       iso14a_clear_trace();
-       iso14a_set_tracing(TRUE);
+       if (first_try) { 
+               iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+       }
+       
+       // free eventually allocated BigBuf memory. We want all for tracing.
+       BigBuf_free();
+       
+       clear_trace();
+       set_tracing(TRUE);
 
        byte_t nt_diff = 0;
        uint8_t par[1] = {0};   // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
 
        byte_t nt_diff = 0;
        uint8_t par[1] = {0};   // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
@@ -2038,20 +2269,20 @@ void ReaderMifare(bool first_try)
        byte_t par_list[8] = {0x00};
        byte_t ks_list[8] = {0x00};
 
        byte_t par_list[8] = {0x00};
        byte_t ks_list[8] = {0x00};
 
-       static uint32_t sync_time;
-       static uint32_t sync_cycles;
+   #define PRNG_SEQUENCE_LENGTH  (1 << 16);
+       static uint32_t sync_time = 0;
+       static int32_t sync_cycles = 0;
        int catch_up_cycles = 0;
        int last_catch_up = 0;
        int catch_up_cycles = 0;
        int last_catch_up = 0;
+       uint16_t elapsed_prng_sequences;
        uint16_t consecutive_resyncs = 0;
        int isOK = 0;
 
        if (first_try) { 
                mf_nr_ar3 = 0;
        uint16_t consecutive_resyncs = 0;
        int isOK = 0;
 
        if (first_try) { 
                mf_nr_ar3 = 0;
-               iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
                sync_time = GetCountSspClk() & 0xfffffff8;
                sync_time = GetCountSspClk() & 0xfffffff8;
-               sync_cycles = 65536;                                                                    // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
+               sync_cycles = PRNG_SEQUENCE_LENGTH; //65536;    //0x10000                       // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
                nt_attacked = 0;
                nt_attacked = 0;
-               nt = 0;
                par[0] = 0;
        }
        else {
                par[0] = 0;
        }
        else {
@@ -2065,33 +2296,84 @@ void ReaderMifare(bool first_try)
        LED_B_OFF();
        LED_C_OFF();
        
        LED_B_OFF();
        LED_C_OFF();
        
+
+       #define MAX_UNEXPECTED_RANDOM   4               // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
+       #define MAX_SYNC_TRIES                  32
+       #define NUM_DEBUG_INFOS                 8               // per strategy
+       #define MAX_STRATEGY                    3
+       uint16_t unexpected_random = 0;
+       uint16_t sync_tries = 0;
+       int16_t debug_info_nr = -1;
+       uint16_t strategy = 0;
+       int32_t debug_info[MAX_STRATEGY][NUM_DEBUG_INFOS];
+       uint32_t select_time;
+       uint32_t halt_time;
   
        for(uint16_t i = 0; TRUE; i++) {
                
   
        for(uint16_t i = 0; TRUE; i++) {
                
+               LED_C_ON();
                WDT_HIT();
 
                // Test if the action was cancelled
                if(BUTTON_PRESS()) {
                WDT_HIT();
 
                // Test if the action was cancelled
                if(BUTTON_PRESS()) {
+                       isOK = -1;
                        break;
                }
                
                        break;
                }
                
-               LED_C_ON();
+               if (strategy == 2) {
+                       // test with additional hlt command
+                       halt_time = 0;
+                       int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time);
+                       if (len && MF_DBGLEVEL >= 3) {
+                               Dbprintf("Unexpected response of %d bytes to hlt command (additional debugging).", len);
+                       }
+               }
 
 
-               if(!iso14443a_select_card(uid, NULL, &cuid)) {
+               if (strategy == 3) {
+                       // test with FPGA power off/on
+                       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+                       SpinDelay(200);
+                       iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+                       SpinDelay(100);
+               }
+               
+               if(!iso14443a_select_card(uid, NULL, &cuid, true, 0)) {
                        if (MF_DBGLEVEL >= 1)   Dbprintf("Mifare: Can't select card");
                        continue;
                }
                        if (MF_DBGLEVEL >= 1)   Dbprintf("Mifare: Can't select card");
                        continue;
                }
+               select_time = GetCountSspClk();
 
 
-               sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
-               catch_up_cycles = 0;
+               elapsed_prng_sequences = 1;
+               if (debug_info_nr == -1) {
+                       sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
+                       catch_up_cycles = 0;
 
 
-               // if we missed the sync time already, advance to the next nonce repeat
-               while(GetCountSspClk() > sync_time) {
-                       sync_time = (sync_time & 0xfffffff8) + sync_cycles;
-               }
+                       // if we missed the sync time already, advance to the next nonce repeat
+                       while(GetCountSspClk() > sync_time) {
+                               elapsed_prng_sequences++;
+                               sync_time = (sync_time & 0xfffffff8) + sync_cycles;
+                       }
 
 
-               // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked) 
-               ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+                       // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked) 
+                       ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+               } else {
+                       // collect some information on tag nonces for debugging:
+                       #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH
+                       if (strategy == 0) {
+                               // nonce distances at fixed time after card select:
+                               sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES;
+                       } else if (strategy == 1) {
+                               // nonce distances at fixed time between authentications:
+                               sync_time = sync_time + DEBUG_FIXED_SYNC_CYCLES;
+                       } else if (strategy == 2) {
+                               // nonce distances at fixed time after halt:
+                               sync_time = halt_time + DEBUG_FIXED_SYNC_CYCLES;
+                       } else {
+                               // nonce_distances at fixed time after power on
+                               sync_time = DEBUG_FIXED_SYNC_CYCLES;
+                       }
+                       ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+               }                       
 
                // Receive the (4 Byte) "random" nonce
                if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
 
                // Receive the (4 Byte) "random" nonce
                if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
@@ -2109,13 +2391,37 @@ void ReaderMifare(bool first_try)
                        int nt_distance = dist_nt(previous_nt, nt);
                        if (nt_distance == 0) {
                                nt_attacked = nt;
                        int nt_distance = dist_nt(previous_nt, nt);
                        if (nt_distance == 0) {
                                nt_attacked = nt;
-                       }
-                       else {
-                               if (nt_distance == -99999) { // invalid nonce received, try again
-                                       continue;
+                       } else {
+                               if (nt_distance == -99999) { // invalid nonce received
+                                       unexpected_random++;
+                                       if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
+                                               isOK = -3;              // Card has an unpredictable PRNG. Give up      
+                                               break;
+                                       } else {
+                                               continue;               // continue trying...
+                                       }
+                               }
+                               if (++sync_tries > MAX_SYNC_TRIES) {
+                                       if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) {
+                                               isOK = -4;                      // Card's PRNG runs at an unexpected frequency or resets unexpectedly
+                                               break;
+                                       } else {                                // continue for a while, just to collect some debug info
+                                               debug_info[strategy][debug_info_nr] = nt_distance;
+                                               debug_info_nr++;
+                                               if (debug_info_nr == NUM_DEBUG_INFOS) {
+                                                       strategy++;
+                                                       debug_info_nr = 0;
+                                               }
+                                               continue;
+                                       }
+                               }
+                               sync_cycles = (sync_cycles - nt_distance/elapsed_prng_sequences);
+                               if (sync_cycles <= 0) {
+                                       sync_cycles += PRNG_SEQUENCE_LENGTH;
+                               }
+                               if (MF_DBGLEVEL >= 3) {
+                                       Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
                                }
                                }
-                               sync_cycles = (sync_cycles - nt_distance);
-                               if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
                                continue;
                        }
                }
                                continue;
                        }
                }
@@ -2126,6 +2432,7 @@ void ReaderMifare(bool first_try)
                                catch_up_cycles = 0;
                                continue;
                        }
                                catch_up_cycles = 0;
                                continue;
                        }
+                       catch_up_cycles /= elapsed_prng_sequences;
                        if (catch_up_cycles == last_catch_up) {
                                consecutive_resyncs++;
                        }
                        if (catch_up_cycles == last_catch_up) {
                                consecutive_resyncs++;
                        }
@@ -2139,6 +2446,9 @@ void ReaderMifare(bool first_try)
                        else {  
                                sync_cycles = sync_cycles + catch_up_cycles;
                                if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
                        else {  
                                sync_cycles = sync_cycles + catch_up_cycles;
                                if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
+                               last_catch_up = 0;
+                               catch_up_cycles = 0;
+                               consecutive_resyncs = 0;
                        }
                        continue;
                }
                        }
                        continue;
                }
@@ -2146,12 +2456,10 @@ void ReaderMifare(bool first_try)
                consecutive_resyncs = 0;
                
                // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
                consecutive_resyncs = 0;
                
                // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
-               if (ReaderReceive(receivedAnswer, receivedAnswerPar))
-               {
+               if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
                        catch_up_cycles = 8;    // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
        
                        catch_up_cycles = 8;    // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
        
-                       if (nt_diff == 0)
-                       {
+                       if (nt_diff == 0) {
                                par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
                        }
 
                                par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
                        }
 
@@ -2174,6 +2482,10 @@ void ReaderMifare(bool first_try)
                        if (nt_diff == 0 && first_try)
                        {
                                par[0]++;
                        if (nt_diff == 0 && first_try)
                        {
                                par[0]++;
+                               if (par[0] == 0x00) {           // tried all 256 possible parities without success. Card doesn't send NACK.
+                                       isOK = -2;
+                                       break;
+                               }
                        } else {
                                par[0] = ((par[0] & 0x1F) + 1) | par_low;
                        }
                        } else {
                                par[0] = ((par[0] & 0x1F) + 1) | par_low;
                        }
@@ -2183,6 +2495,16 @@ void ReaderMifare(bool first_try)
 
        mf_nr_ar[3] &= 0x1F;
        
 
        mf_nr_ar[3] &= 0x1F;
        
+       if (isOK == -4) {
+               if (MF_DBGLEVEL >= 3) {
+                       for (uint16_t i = 0; i <= MAX_STRATEGY; i++) {
+                               for(uint16_t j = 0; j < NUM_DEBUG_INFOS; j++) {
+                                       Dbprintf("collected debug info[%d][%d] = %d", i, j, debug_info[i][j]);
+                               }
+                       }
+               }
+       }
+       
        byte_t buf[28];
        memcpy(buf + 0,  uid, 4);
        num_to_bytes(nt, 4, buf + 4);
        byte_t buf[28];
        memcpy(buf + 0,  uid, 4);
        num_to_bytes(nt, 4, buf + 4);
@@ -2196,7 +2518,7 @@ void ReaderMifare(bool first_try)
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        LEDsoff();
 
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        LEDsoff();
 
-       iso14a_set_tracing(FALSE);
+       set_tracing(FALSE);
 }
 
 /**
 }
 
 /**
@@ -2221,7 +2543,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
        uint8_t cardWRBL = 0;
        uint8_t cardAUTHSC = 0;
        uint8_t cardAUTHKEY = 0xff;  // no authentication
        uint8_t cardWRBL = 0;
        uint8_t cardAUTHSC = 0;
        uint8_t cardAUTHKEY = 0xff;  // no authentication
-       uint32_t cardRr = 0;
+//     uint32_t cardRr = 0;
        uint32_t cuid = 0;
        //uint32_t rn_enc = 0;
        uint32_t ans = 0;
        uint32_t cuid = 0;
        //uint32_t rn_enc = 0;
        uint32_t ans = 0;
@@ -2231,30 +2553,27 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
        struct Crypto1State *pcs;
        pcs = &mpcs;
        uint32_t numReads = 0;//Counts numer of times reader read a block
        struct Crypto1State *pcs;
        pcs = &mpcs;
        uint32_t numReads = 0;//Counts numer of times reader read a block
-       uint8_t* receivedCmd = get_bigbufptr_recvcmdbuf();
-       uint8_t* receivedCmd_par = receivedCmd + MAX_FRAME_SIZE;
-       uint8_t* response = get_bigbufptr_recvrespbuf();
-       uint8_t* response_par = response + MAX_FRAME_SIZE;
+       uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
+       uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
+       uint8_t response[MAX_MIFARE_FRAME_SIZE];
+       uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
        
        uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
        uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
        uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
        
        uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
        uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
        uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
-       uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
+       uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; // Mifare Classic
+       //uint8_t rSAK[] = {0x09, 0x3f, 0xcc };  // Mifare Mini 
        uint8_t rSAK1[] = {0x04, 0xda, 0x17};
 
        uint8_t rSAK1[] = {0x04, 0xda, 0x17};
 
-       uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
+       uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01};
        uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
                
        //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
        // This can be used in a reader-only attack.
        // (it can also be retrieved via 'hf 14a list', but hey...
        uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
                
        //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
        // This can be used in a reader-only attack.
        // (it can also be retrieved via 'hf 14a list', but hey...
-       uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
+       uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
        uint8_t ar_nr_collected = 0;
 
        uint8_t ar_nr_collected = 0;
 
-       // clear trace
-    iso14a_clear_trace();
-       iso14a_set_tracing(TRUE);
-
        // Authenticate response - nonce
        uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
        
        // Authenticate response - nonce
        uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
        
@@ -2284,6 +2603,11 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                }
        }
 
                }
        }
 
+       // save uid.
+       ar_nr_responses[0*5]   = bytes_to_num(rUIDBCC1+1, 3);
+       if ( _7BUID )
+               ar_nr_responses[0*5+1] = bytes_to_num(rUIDBCC2, 4);
+
        /*
         * Regardless of what method was used to set the UID, set fifth byte and modify
         * the ATQA for 4 or 7-byte UID
        /*
         * Regardless of what method was used to set the UID, set fifth byte and modify
         * the ATQA for 4 or 7-byte UID
@@ -2292,13 +2616,10 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
        if (_7BUID) {
                rATQA[0] = 0x44;
                rUIDBCC1[0] = 0x88;
        if (_7BUID) {
                rATQA[0] = 0x44;
                rUIDBCC1[0] = 0x88;
+               rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
                rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
        }
 
                rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
        }
 
-       // We need to listen to the high-frequency, peak-detected path.
-       iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
-
-
        if (MF_DBGLEVEL >= 1)   {
                if (!_7BUID) {
                        Dbprintf("4B UID: %02x%02x%02x%02x", 
        if (MF_DBGLEVEL >= 1)   {
                if (!_7BUID) {
                        Dbprintf("4B UID: %02x%02x%02x%02x", 
@@ -2310,15 +2631,24 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                }
        }
 
                }
        }
 
+       // We need to listen to the high-frequency, peak-detected path.
+       iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
+       // free eventually allocated BigBuf memory but keep Emulator Memory
+       BigBuf_free_keep_EM();
+
+       // clear trace
+       clear_trace();
+       set_tracing(TRUE);
+
+
        bool finished = FALSE;
        while (!BUTTON_PRESS() && !finished) {
                WDT_HIT();
 
                // find reader field
        bool finished = FALSE;
        while (!BUTTON_PRESS() && !finished) {
                WDT_HIT();
 
                // find reader field
-               // Vref = 3300mV, and an 10:1 voltage divider on the input
-               // can measure voltages up to 33000 mV
                if (cardSTATE == MFEMUL_NOFIELD) {
                if (cardSTATE == MFEMUL_NOFIELD) {
-                       vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
+                       vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
                        if (vHf > MF_MINFIELDV) {
                                cardSTATE_TO_IDLE();
                                LED_A_ON();
                        if (vHf > MF_MINFIELDV) {
                                cardSTATE_TO_IDLE();
                                LED_A_ON();
@@ -2327,7 +2657,6 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                if(cardSTATE == MFEMUL_NOFIELD) continue;
 
                //Now, get data
                if(cardSTATE == MFEMUL_NOFIELD) continue;
 
                //Now, get data
-
                res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
                if (res == 2) { //Field is off!
                        cardSTATE = MFEMUL_NOFIELD;
                res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
                if (res == 2) { //Field is off!
                        cardSTATE = MFEMUL_NOFIELD;
@@ -2393,38 +2722,47 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                                        LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
                                        break;
                                }
                                        LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
                                        break;
                                }
+
                                uint32_t ar = bytes_to_num(receivedCmd, 4);
                                uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
 
                                //Collect AR/NR
                                uint32_t ar = bytes_to_num(receivedCmd, 4);
                                uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
 
                                //Collect AR/NR
+                               //if(ar_nr_collected < 2 && cardAUTHSC == 2){
                                if(ar_nr_collected < 2){
                                        if(ar_nr_responses[2] != ar)
                                        {// Avoid duplicates... probably not necessary, ar should vary. 
                                if(ar_nr_collected < 2){
                                        if(ar_nr_responses[2] != ar)
                                        {// Avoid duplicates... probably not necessary, ar should vary. 
-                                               ar_nr_responses[ar_nr_collected*4] = cuid;
-                                               ar_nr_responses[ar_nr_collected*4+1] = nonce;
-                                               ar_nr_responses[ar_nr_collected*4+2] = ar;
-                                               ar_nr_responses[ar_nr_collected*4+3] = nr;
+                                               //ar_nr_responses[ar_nr_collected*5]   = 0;
+                                               //ar_nr_responses[ar_nr_collected*5+1] = 0;
+                                               ar_nr_responses[ar_nr_collected*5+2] = nonce;
+                                               ar_nr_responses[ar_nr_collected*5+3] = nr;
+                                               ar_nr_responses[ar_nr_collected*5+4] = ar;
                                                ar_nr_collected++;
                                                ar_nr_collected++;
+                                       }                                               
+                                       // Interactive mode flag, means we need to send ACK
+                                       if(flags & FLAG_INTERACTIVE && ar_nr_collected == 2)
+                                       {
+                                               finished = true;
                                        }
                                }
 
                                // --- crypto
                                        }
                                }
 
                                // --- crypto
-                               crypto1_word(pcs, ar , 1);
-                               cardRr = nr ^ crypto1_word(pcs, 0, 0);
-
-                               // test if auth OK
-                               if (cardRr != prng_successor(nonce, 64)){
-                                       if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
-                                                       cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
-                                                       cardRr, prng_successor(nonce, 64));
+                               //crypto1_word(pcs, ar , 1);
+                               //cardRr = nr ^ crypto1_word(pcs, 0, 0);
+
+                               //test if auth OK
+                               //if (cardRr != prng_successor(nonce, 64)){
+                                       
+                                       //if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
+                                       //      cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
+                                       //              cardRr, prng_successor(nonce, 64));
                                        // Shouldn't we respond anything here?
                                        // Right now, we don't nack or anything, which causes the
                                        // reader to do a WUPA after a while. /Martin
                                        // -- which is the correct response. /piwi
                                        // Shouldn't we respond anything here?
                                        // Right now, we don't nack or anything, which causes the
                                        // reader to do a WUPA after a while. /Martin
                                        // -- which is the correct response. /piwi
-                                       cardSTATE_TO_IDLE();
-                                       LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
-                                       break;
-                               }
+                                       //cardSTATE_TO_IDLE();
+                                       //LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
+                                       //break;
+                               //}
 
                                ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
 
 
                                ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
 
@@ -2499,6 +2837,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                                                ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); 
                                                num_to_bytes(ans, 4, rAUTH_AT);
                                        }
                                                ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); 
                                                num_to_bytes(ans, 4, rAUTH_AT);
                                        }
+
                                        EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
                                        //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
                                        cardSTATE = MFEMUL_AUTH1;
                                        EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
                                        //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
                                        cardSTATE = MFEMUL_AUTH1;
@@ -2531,13 +2870,13 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                                                || receivedCmd[0] == 0xB0) { // transfer
                                        if (receivedCmd[1] >= 16 * 4) {
                                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
                                                || receivedCmd[0] == 0xB0) { // transfer
                                        if (receivedCmd[1] >= 16 * 4) {
                                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-                                               if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
+                                               if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
                                                break;
                                        }
 
                                        if (receivedCmd[1] / 4 != cardAUTHSC) {
                                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
                                                break;
                                        }
 
                                        if (receivedCmd[1] / 4 != cardAUTHSC) {
                                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-                                               if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
+                                               if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
                                                break;
                                        }
                                }
                                                break;
                                        }
                                }
@@ -2551,7 +2890,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                                        mf_crypto1_encrypt(pcs, response, 18, response_par);
                                        EmSendCmdPar(response, 18, response_par);
                                        numReads++;
                                        mf_crypto1_encrypt(pcs, response, 18, response_par);
                                        EmSendCmdPar(response, 18, response_par);
                                        numReads++;
-                                       if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
+                                       if(exitAfterNReads > 0 && numReads >= exitAfterNReads) {
                                                Dbprintf("%d reads done, exiting", numReads);
                                                finished = true;
                                        }
                                                Dbprintf("%d reads done, exiting", numReads);
                                                finished = true;
                                        }
@@ -2569,7 +2908,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                                if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
                                        if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
                                        if (emlCheckValBl(receivedCmd[1])) {
                                if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
                                        if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
                                        if (emlCheckValBl(receivedCmd[1])) {
-                                               if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
+                                               if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
                                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
                                                break;
                                        }
                                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
                                                break;
                                        }
@@ -2671,38 +3010,52 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
        if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
        {
                //May just aswell send the collected ar_nr in the response aswell
        if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
        {
                //May just aswell send the collected ar_nr in the response aswell
-               cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4);
+               uint8_t len = ar_nr_collected*5*4;
+               cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len);
        }
 
        }
 
-       if(flags & FLAG_NR_AR_ATTACK)
+       if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 )
        {
        {
-               if(ar_nr_collected > 1) {
+               if(ar_nr_collected > 1 ) {
                        Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
                        Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
-                       Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
-                                        ar_nr_responses[0], // UID
-                                       ar_nr_responses[1], //NT
-                                       ar_nr_responses[2], //AR1
-                                       ar_nr_responses[3], //NR1
-                                       ar_nr_responses[6], //AR2
-                                       ar_nr_responses[7] //NR2
+                       Dbprintf("../tools/mfkey/mfkey32 %06x%08x %08x %08x %08x %08x %08x",
+                                       ar_nr_responses[0], // UID1
+                                       ar_nr_responses[1], // UID2
+                                       ar_nr_responses[2], // NT
+                                       ar_nr_responses[3], // AR1
+                                       ar_nr_responses[4], // NR1
+                                       ar_nr_responses[8], // AR2
+                                       ar_nr_responses[9]  // NR2
+                                       );
+                       Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x",
+                                       ar_nr_responses[0], // UID1
+                                       ar_nr_responses[1], // UID2
+                                       ar_nr_responses[2], // NT1
+                                       ar_nr_responses[3], // AR1
+                                       ar_nr_responses[4], // NR1
+                                       ar_nr_responses[7], // NT2
+                                       ar_nr_responses[8], // AR2
+                                       ar_nr_responses[9]  // NR2
                                        );
                } else {
                        Dbprintf("Failed to obtain two AR/NR pairs!");
                                        );
                } else {
                        Dbprintf("Failed to obtain two AR/NR pairs!");
-                       if(ar_nr_collected >0) {
-                               Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
-                                               ar_nr_responses[0], // UID
-                                               ar_nr_responses[1], //NT
-                                               ar_nr_responses[2], //AR1
-                                               ar_nr_responses[3] //NR1
+                       if(ar_nr_collected > 0 ) {
+                               Dbprintf("Only got these: UID=%07x%08x, nonce=%08x, AR1=%08x, NR1=%08x",
+                                               ar_nr_responses[0], // UID1
+                                               ar_nr_responses[1], // UID2
+                                               ar_nr_responses[2], // NT
+                                               ar_nr_responses[3], // AR1
+                                               ar_nr_responses[4]  // NR1
                                                );
                        }
                }
        }
                                                );
                        }
                }
        }
-       if (MF_DBGLEVEL >= 1)   Dbprintf("Emulator stopped. Tracing: %d  trace length: %d ",    tracing, traceLen);
+       if (MF_DBGLEVEL >= 1)   Dbprintf("Emulator stopped. Tracing: %d  trace length: %d ", tracing, BigBuf_get_traceLen());
+       
+       set_tracing(FALSE);
 }
 
 
 }
 
 
-
 //-----------------------------------------------------------------------------
 // MIFARE sniffer. 
 // 
 //-----------------------------------------------------------------------------
 // MIFARE sniffer. 
 // 
@@ -2715,24 +3068,24 @@ void RAMFUNC SniffMifare(uint8_t param) {
        // C(red) A(yellow) B(green)
        LEDsoff();
        // init trace buffer
        // C(red) A(yellow) B(green)
        LEDsoff();
        // init trace buffer
-       iso14a_clear_trace();
-       iso14a_set_tracing(TRUE);
+       clear_trace();
+       set_tracing(TRUE);
 
        // The command (reader -> tag) that we're receiving.
        // The length of a received command will in most cases be no more than 18 bytes.
        // So 32 should be enough!
 
        // The command (reader -> tag) that we're receiving.
        // The length of a received command will in most cases be no more than 18 bytes.
        // So 32 should be enough!
-       uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
-       uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
+       uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
+       uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
        // The response (tag -> reader) that we're receiving.
        // The response (tag -> reader) that we're receiving.
-       uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
-       uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
+       uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
+       uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
 
 
-       // As we receive stuff, we copy it from receivedCmd or receivedResponse
-       // into trace, along with its length and other annotations.
-       //uint8_t *trace = (uint8_t *)BigBuf;
-       
-       // The DMA buffer, used to stream samples from the FPGA
-       uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+       iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
+
+       // free eventually allocated BigBuf memory
+       BigBuf_free();
+       // allocate the DMA buffer, used to stream samples from the FPGA
+       uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
        uint8_t *data = dmaBuf;
        uint8_t previous_data = 0;
        int maxDataLen = 0;
        uint8_t *data = dmaBuf;
        uint8_t previous_data = 0;
        int maxDataLen = 0;
@@ -2740,8 +3093,6 @@ void RAMFUNC SniffMifare(uint8_t param) {
        bool ReaderIsActive = FALSE;
        bool TagIsActive = FALSE;
 
        bool ReaderIsActive = FALSE;
        bool TagIsActive = FALSE;
 
-       iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
-
        // Set up the demodulator for tag -> reader responses.
        DemodInit(receivedResponse, receivedResponsePar);
 
        // Set up the demodulator for tag -> reader responses.
        DemodInit(receivedResponse, receivedResponsePar);
 
@@ -2791,7 +3142,7 @@ void RAMFUNC SniffMifare(uint8_t param) {
                // test for length of buffer
                if(dataLen > maxDataLen) {                                      // we are more behind than ever...
                        maxDataLen = dataLen;                                   
                // test for length of buffer
                if(dataLen > maxDataLen) {                                      // we are more behind than ever...
                        maxDataLen = dataLen;                                   
-                       if(dataLen > 400) {
+                       if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
                                Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
                                break;
                        }
                                Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
                                break;
                        }
@@ -2838,6 +3189,10 @@ void RAMFUNC SniffMifare(uint8_t param) {
 
                                        // And ready to receive another response.
                                        DemodReset();
 
                                        // And ready to receive another response.
                                        DemodReset();
+
+                                       // And reset the Miller decoder including its (now outdated) input buffer
+                                       UartInit(receivedCmd, receivedCmdPar);
+                                       // why not UartReset?
                                }
                                TagIsActive = (Demod.state != DEMOD_UNSYNCD);
                        }
                                }
                                TagIsActive = (Demod.state != DEMOD_UNSYNCD);
                        }
@@ -2852,11 +3207,9 @@ void RAMFUNC SniffMifare(uint8_t param) {
 
        } // main cycle
 
 
        } // main cycle
 
-       DbpString("COMMAND FINISHED");
-
        FpgaDisableSscDma();
        MfSniffEnd();
        FpgaDisableSscDma();
        MfSniffEnd();
-       
-       Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
        LEDsoff();
        LEDsoff();
+       Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
+       set_tracing(FALSE);
 }
 }
Impressum, Datenschutz