#include "crapto1/crapto1.h"
#include "parity.h"
#include "hardnested/hardnested_bruteforce.h"
+#include "hardnested/hardnested_bf_core.h"
#include "hardnested/hardnested_bitarray_core.h"
+#include "zlib.h"
#define NUM_CHECK_BITFLIPS_THREADS (num_CPUs())
#define NUM_REDUCTION_WORKING_THREADS (num_CPUs())
#define IGNORE_BITFLIP_THRESHOLD 0.99 // ignore bitflip arrays which have nearly only valid states
#define STATE_FILES_DIRECTORY "hardnested/tables/"
-#define STATE_FILE_TEMPLATE "bitflip_%d_%03" PRIx16 "_states.bin"
+#define STATE_FILE_TEMPLATE "bitflip_%d_%03" PRIx16 "_states.bin.z"
#define DEBUG_KEY_ELIMINATION
// #define DEBUG_REDUCTION
static void get_SIMD_instruction_set(char* instruction_set) {
-#if defined (__i386__) || defined (__x86_64__)
- #if !defined(__APPLE__) || (defined(__APPLE__) && (__clang_major__ > 8))
- #if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
- if (__builtin_cpu_supports("avx512f")) strcpy(instruction_set, "AVX512F");
- else if (__builtin_cpu_supports("avx2")) strcpy(instruction_set, "AVX2");
- #else
- if (__builtin_cpu_supports("avx2")) strcpy(instruction_set, "AVX2");
- #endif
- else if (__builtin_cpu_supports("avx")) strcpy(instruction_set, "AVX");
- else if (__builtin_cpu_supports("sse2")) strcpy(instruction_set, "SSE2");
- else if (__builtin_cpu_supports("mmx")) strcpy(instruction_set, "MMX");
- else
- #endif
-#endif
- strcpy(instruction_set, "no");
+ switch(GetSIMDInstrAuto()) {
+ case SIMD_AVX512:
+ strcpy(instruction_set, "AVX512F");
+ break;
+ case SIMD_AVX2:
+ strcpy(instruction_set, "AVX2");
+ break;
+ case SIMD_AVX:
+ strcpy(instruction_set, "AVX");
+ break;
+ case SIMD_SSE2:
+ strcpy(instruction_set, "SSE2");
+ break;
+ case SIMD_MMX:
+ strcpy(instruction_set, "MMX");
+ break;
+ default:
+ strcpy(instruction_set, "no");
+ break;
+ }
}
static void print_progress_header(void) {
char progress_text[80];
- char instr_set[12] = "";
+ char instr_set[12] = {0};
get_SIMD_instruction_set(instr_set);
sprintf(progress_text, "Start using %d threads and %s SIMD core", num_CPUs(), instr_set);
PrintAndLog("\n\n");
}
-static inline void clear_bit24(uint32_t *bitarray, uint32_t index)
-{
- bitarray[index>>5] &= ~(0x80000000>>(index&0x0000001f));
-}
-
-
static inline uint32_t test_bit24(uint32_t *bitarray, uint32_t index)
{
return bitarray[index>>5] & (0x80000000>>(index&0x0000001f));
}
-static inline uint32_t next_not_state(uint32_t *bitarray, uint32_t state)
-{
- if (++state == 1<<24) return 1<<24;
- uint32_t index = state >> 5;
- uint_fast8_t bit = state & 0x1f;
- uint32_t line = bitarray[index] << bit;
- while (bit <= 0x1f) {
- if ((line & 0x80000000) == 0) return state;
- state++;
- bit++;
- line <<= 1;
- }
- index++;
- while (bitarray[index] == 0xffffffff && state < 1<<24) {
- index++;
- state += 0x20;
- }
- if (state >= 1<<24) return 1<<24;
-#if defined __GNUC__
- return state + __builtin_clz(~bitarray[index]);
-#else
- bit = 0x00;
- line = bitarray[index];
- while (bit <= 0x1f) {
- if ((line & 0x80000000) == 0) return state;
- state++;
- bit++;
- line <<= 1;
- }
- return 1<<24;
-#endif
-}
-
-
#define BITFLIP_2ND_BYTE 0x0200
}
+static voidpf inflate_malloc(voidpf opaque, uInt items, uInt size)
+{
+ return malloc(items*size);
+}
+
+
+static void inflate_free(voidpf opaque, voidpf address)
+{
+ free(address);
+}
+
+#define OUTPUT_BUFFER_LEN 80
+#define INPUT_BUFFER_LEN 80
+
+//----------------------------------------------------------------------------
+// Initialize decompression of the respective (HF or LF) FPGA stream
+//----------------------------------------------------------------------------
+static void init_inflate(z_streamp compressed_stream, uint8_t *input_buffer, uint32_t insize, uint8_t *output_buffer, uint32_t outsize)
+{
+
+ // initialize z_stream structure for inflate:
+ compressed_stream->next_in = input_buffer;
+ compressed_stream->avail_in = insize;
+ compressed_stream->next_out = output_buffer;
+ compressed_stream->avail_out = outsize;
+ compressed_stream->zalloc = &inflate_malloc;
+ compressed_stream->zfree = &inflate_free;
+
+ inflateInit2(compressed_stream, 0);
+
+}
+
+
static void init_bitflip_bitarrays(void)
{
#if defined (DEBUG_REDUCTION)
uint8_t line = 0;
#endif
+
+ z_stream compressed_stream;
+
char state_files_path[strlen(get_my_executable_directory()) + strlen(STATE_FILES_DIRECTORY) + strlen(STATE_FILE_TEMPLATE) + 1];
char state_file_name[strlen(STATE_FILE_TEMPLATE)+1];
if (statesfile == NULL) {
continue;
} else {
- uint32_t *bitset = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
- if (bitset == NULL) {
- printf("Out of memory error in init_bitflip_statelists(). Aborting...\n");
- fclose(statesfile);
- exit(4);
- }
- size_t bytesread = fread(bitset, 1, sizeof(uint32_t) * (1<<19), statesfile);
- if (bytesread != sizeof(uint32_t) * (1<<19)) {
- printf("File read error with %s. Aborting...", state_file_name);
+ fseek(statesfile, 0, SEEK_END);
+ uint32_t filesize = (uint32_t)ftell(statesfile);
+ rewind(statesfile);
+ uint8_t input_buffer[filesize];
+ size_t bytesread = fread(input_buffer, 1, filesize, statesfile);
+ if (bytesread != filesize) {
+ printf("File read error with %s. Aborting...\n", state_file_name);
fclose(statesfile);
- free_bitarray(bitset);
+ inflateEnd(&compressed_stream);
exit(5);
}
fclose(statesfile);
- uint32_t count = count_states(bitset);
+ uint32_t count = 0;
+ init_inflate(&compressed_stream, input_buffer, filesize, (uint8_t *)&count, sizeof(count));
+ inflate(&compressed_stream, Z_SYNC_FLUSH);
if ((float)count/(1<<24) < IGNORE_BITFLIP_THRESHOLD) {
+ uint32_t *bitset = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
+ if (bitset == NULL) {
+ printf("Out of memory error in init_bitflip_statelists(). Aborting...\n");
+ inflateEnd(&compressed_stream);
+ exit(4);
+ }
+ compressed_stream.next_out = (uint8_t *)bitset;
+ compressed_stream.avail_out = sizeof(uint32_t) * (1<<19);
+ inflate(&compressed_stream, Z_SYNC_FLUSH);
effective_bitflip[odd_even][num_effective_bitflips[odd_even]++] = bitflip;
bitflip_bitarrays[odd_even][bitflip] = bitset;
count_bitflip_bitarrays[odd_even][bitflip] = count;
line = 0;
}
#endif
- } else {
- free_bitarray(bitset);
}
+ inflateEnd(&compressed_stream);
}
}
effective_bitflip[odd_even][num_effective_bitflips[odd_even]] = 0x400; // EndOfList marker
int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests)
{
char progress_text[80];
+
+ char instr_set[12] = {0};
+ get_SIMD_instruction_set(instr_set);
+ PrintAndLog("Using %s SIMD core.", instr_set);
srand((unsigned) time(NULL));
brute_force_per_second = brute_force_benchmark();
best_first_bytes[0] = best_first_byte_smallest_bitarray;
pre_XOR_nonces();
prepare_bf_test_nonces(nonces, best_first_bytes[0]);
+ hardnested_print_progress(num_acquired_nonces, "Starting brute force...", expected_brute_force1, 0);
key_found = brute_force();
free(candidates->states[ODD_STATE]);
free(candidates->states[EVEN_STATE]);
// printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0));
generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx);
// printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0);
+ hardnested_print_progress(num_acquired_nonces, "Starting brute force...", expected_brute_force, 0);
key_found = brute_force();
free_statelist_cache();
free_candidates_memory(candidates);
if (nonce_file_read) { // use pre-acquired data from file nonces.bin
if (read_nonce_file() != 0) {
+ free_bitflip_bitarrays();
+ free_nonces_memory();
+ free_bitarray(all_bitflips_bitarray[ODD_STATE]);
+ free_bitarray(all_bitflips_bitarray[EVEN_STATE]);
+ free_sum_bitarrays();
+ free_part_sum_bitarrays();
return 3;
}
hardnested_stage = CHECK_1ST_BYTES | CHECK_2ND_BYTES;
} else { // acquire nonces.
uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
if (is_OK != 0) {
+ free_bitflip_bitarrays();
+ free_nonces_memory();
+ free_bitarray(all_bitflips_bitarray[ODD_STATE]);
+ free_bitarray(all_bitflips_bitarray[EVEN_STATE]);
+ free_sum_bitarrays();
+ free_part_sum_bitarrays();
return is_OK;
}
}
for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) {
maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
}
- printf("Number of remaining possible keys: %" PRIu64 " (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0));
+ // printf("Number of remaining possible keys: %" PRIu64 " (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0));
best_first_bytes[0] = best_first_byte_smallest_bitarray;
pre_XOR_nonces();
prepare_bf_test_nonces(nonces, best_first_bytes[0]);
+ hardnested_print_progress(num_acquired_nonces, "Starting brute force...", expected_brute_force1, 0);
key_found = brute_force();
free(candidates->states[ODD_STATE]);
free(candidates->states[EVEN_STATE]);
// printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0));
generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx);
// printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0);
+ hardnested_print_progress(num_acquired_nonces, "Starting brute force...", expected_brute_force, 0);
key_found = brute_force();
free_statelist_cache();
free_candidates_memory(candidates);