-//-----------------------------------------------------------------------------
+ //-----------------------------------------------------------------------------
// Merlok - June 2011, 2012
// Gerhard de Koning Gans - May 2008
// Hagen Fritsch - June 2010
#include "util.h"
#include "string.h"
#include "cmd.h"
-
#include "iso14443crc.h"
#include "iso14443a.h"
#include "crapto1.h"
#include "mifareutil.h"
#include "BigBuf.h"
+#include "parity.h"
+
static uint32_t iso14a_timeout;
int rsamples = 0;
uint8_t trigger = 0;
static uint32_t LastTimeProxToAirStart;
static uint32_t LastProxToAirDuration;
-
-
// CARD TO READER - manchester
// Sequence D: 11110000 modulation with subcarrier during first half
// Sequence E: 00001111 modulation with subcarrier during second half
#define SEC_Y 0x00
#define SEC_Z 0xc0
-const uint8_t OddByteParity[256] = {
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
-};
-
-
void iso14a_set_trigger(bool enable) {
trigger = enable;
}
-
void iso14a_set_timeout(uint32_t timeout) {
iso14a_timeout = timeout;
if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
}
-
void iso14a_set_ATS_timeout(uint8_t *ats) {
uint8_t tb1;
if (ats[0] > 1) { // there is a format byte T0
if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
- if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
+
+ if ((ats[1] & 0x10) == 0x10) // there is an interface byte TA(1) preceding TB(1)
tb1 = ats[3];
- } else {
+ else
tb1 = ats[2];
- }
+
fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI)
- fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
+ //fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
+ fwt = 4096 * (1 << fwi);
- iso14a_set_timeout(fwt/(8*16));
+ //iso14a_set_timeout(fwt/(8*16));
+ iso14a_set_timeout(fwt/128);
}
}
}
-
//-----------------------------------------------------------------------------
// Generate the parity value for a byte sequence
//
//-----------------------------------------------------------------------------
-byte_t oddparity (const byte_t bt)
-{
- return OddByteParity[bt];
-}
-
void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
{
uint16_t paritybit_cnt = 0;
for (uint16_t i = 0; i < iLen; i++) {
// Generate the parity bits
- parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
+ parityBits |= ((oddparity8(pbtCmd[i])) << (7-paritybit_cnt));
if (paritybit_cnt == 7) {
par[paritybyte_cnt] = parityBits; // save 8 Bits parity
parityBits = 0; // and advance to next Parity Byte
ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
}
+void AppendCrc14443b(uint8_t* data, int len)
+{
+ ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1);
+}
+
+
//=============================================================================
// ISO 14443 Type A - Miller decoder
//=============================================================================
static tUart Uart;
// Lookup-Table to decide if 4 raw bits are a modulation.
-// We accept two or three consecutive "0" in any position with the rest "1"
+// We accept the following:
+// 0001 - a 3 tick wide pause
+// 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
+// 0111 - a 2 tick wide pause shifted left
+// 1001 - a 2 tick wide pause shifted right
const bool Mod_Miller_LUT[] = {
- TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE,
- TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE
+ FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE,
+ FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
};
-#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
-#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
+#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
+#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
void UartReset()
{
Uart.parityLen = 0; // number of decoded parity bytes
Uart.shiftReg = 0; // shiftreg to hold decoded data bits
Uart.parityBits = 0; // holds 8 parity bits
- Uart.twoBits = 0x0000; // buffer for 2 Bits
- Uart.highCnt = 0;
Uart.startTime = 0;
Uart.endTime = 0;
+
+ Uart.byteCntMax = 0;
+ Uart.posCnt = 0;
+ Uart.syncBit = 9999;
}
void UartInit(uint8_t *data, uint8_t *parity)
{
Uart.output = data;
Uart.parity = parity;
+ Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits
UartReset();
}
static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
{
- Uart.twoBits = (Uart.twoBits << 8) | bit;
+ Uart.fourBits = (Uart.fourBits << 8) | bit;
if (Uart.state == STATE_UNSYNCD) { // not yet synced
- if (Uart.highCnt < 2) { // wait for a stable unmodulated signal
- if (Uart.twoBits == 0xffff) {
- Uart.highCnt++;
- } else {
- Uart.highCnt = 0;
- }
- } else {
- Uart.syncBit = 0xFFFF; // not set
- // we look for a ...1111111100x11111xxxxxx pattern (the start bit)
- if ((Uart.twoBits & 0xDF00) == 0x1F00) Uart.syncBit = 8; // mask is 11x11111 xxxxxxxx,
- // check for 00x11111 xxxxxxxx
- else if ((Uart.twoBits & 0xEF80) == 0x8F80) Uart.syncBit = 7; // both masks shifted right one bit, left padded with '1'
- else if ((Uart.twoBits & 0xF7C0) == 0xC7C0) Uart.syncBit = 6; // ...
- else if ((Uart.twoBits & 0xFBE0) == 0xE3E0) Uart.syncBit = 5;
- else if ((Uart.twoBits & 0xFDF0) == 0xF1F0) Uart.syncBit = 4;
- else if ((Uart.twoBits & 0xFEF8) == 0xF8F8) Uart.syncBit = 3;
- else if ((Uart.twoBits & 0xFF7C) == 0xFC7C) Uart.syncBit = 2;
- else if ((Uart.twoBits & 0xFFBE) == 0xFE3E) Uart.syncBit = 1;
- if (Uart.syncBit != 0xFFFF) { // found a sync bit
+ Uart.syncBit = 9999; // not set
+
+ // 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated Sequence Z (a "0" or "start of communication")
+ // 11111111 8 ticks unmodulation Sequence Y (a "0" or "end of communication" or "no information")
+ // 111100x1 4 ticks unmodulated followed by 2|3 ticks pause Sequence X (a "1")
+
+ // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
+ // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
+ // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern
+ // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
+ //
+#define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00001111 11111111 1110 1111 10000000
+#define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00001111 11111111 1000 1111 10000000
+
+ if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
+
+ if (Uart.syncBit != 9999) { // found a sync bit
Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
Uart.startTime -= Uart.syncBit;
Uart.endTime = Uart.startTime;
Uart.state = STATE_START_OF_COMMUNICATION;
}
- }
} else {
- if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {
- if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error
+ if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {
+ if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error
UartReset();
} else { // Modulation in first half = Sequence Z = logic "0"
if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
}
}
} else {
- if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
+ if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
Uart.bitCount++;
Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
Uart.state = STATE_MILLER_X;
return TRUE; // we are finished with decoding the raw data sequence
} else {
UartReset(); // Nothing received - start over
- Uart.highCnt = 1;
}
}
if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
UartReset();
- Uart.highCnt = 1;
} else { // a logic "0"
Uart.bitCount++;
Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
Demod.highCnt = 0;
Demod.startTime = 0;
Demod.endTime = 0;
+
+ //
+ Demod.bitCount = 0;
+ Demod.syncBit = 0xFFFF;
+ Demod.samples = 0;
}
void DemodInit(uint8_t *data, uint8_t *parity)
}
}
}
-
}
-
return FALSE; // not finished yet, need more data
}
// triggering so that we start recording at the point that the tag is moved
// near the reader.
//-----------------------------------------------------------------------------
-void RAMFUNC SnoopIso14443a(uint8_t param) {
+void RAMFUNC SniffIso14443a(uint8_t param) {
// param:
// bit 0 - trigger from first card answer
// bit 1 - trigger from first reader 7-bit request
-
LEDsoff();
- // We won't start recording the frames that we acquire until we trigger;
- // a good trigger condition to get started is probably when we see a
- // response from the tag.
- // triggered == FALSE -- to wait first for card
- bool triggered = !(param & 0x03);
+ iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
// Allocate memory from BigBuf for some buffers
// free all previous allocations first
BigBuf_free();
-
+
+ // init trace buffer
+ clear_trace();
+ set_tracing(TRUE);
+
// The command (reader -> tag) that we're receiving.
uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
// The DMA buffer, used to stream samples from the FPGA
uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
- // init trace buffer
- clear_trace();
- set_tracing(TRUE);
-
uint8_t *data = dmaBuf;
uint8_t previous_data = 0;
int maxDataLen = 0;
bool TagIsActive = FALSE;
bool ReaderIsActive = FALSE;
- iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
-
// Set up the demodulator for tag -> reader responses.
DemodInit(receivedResponse, receivedResponsePar);
// Setup and start DMA.
FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
+ // We won't start recording the frames that we acquire until we trigger;
+ // a good trigger condition to get started is probably when we see a
+ // response from the tag.
+ // triggered == FALSE -- to wait first for card
+ bool triggered = !(param & 0x03);
+
// And now we loop, receiving samples.
for(uint32_t rsamples = 0; TRUE; ) {
// And ready to receive another response.
DemodReset();
+ // And reset the Miller decoder including itS (now outdated) input buffer
+ UartInit(receivedCmd, receivedCmdPar);
+
LED_C_OFF();
}
TagIsActive = (Demod.state != DEMOD_UNSYNCD);
}
} // main cycle
- DbpString("COMMAND FINISHED");
-
FpgaDisableSscDma();
+ LEDsoff();
+
Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
- LEDsoff();
+
+ set_tracing(FALSE);
}
//-----------------------------------------------------------------------------
// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
// -> need 273 bytes buffer
-#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
+// 44 * 8 data bits, 44 * 1 parity bits, 9 start bits, 9 stop bits, 9 correction bits --370
+// 47 * 8 data bits, 47 * 1 parity bits, 10 start bits, 10 stop bits, 10 correction bits
+#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 453
bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
// Retrieve and store the current buffer index
// Main loop of simulated tag: receive commands from reader, decide what
// response to send, and send it.
//-----------------------------------------------------------------------------
-void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
+void SimulateIso14443aTag(int tagType, int flags, byte_t* data)
{
+ uint32_t counters[] = {0,0,0};
+ //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
+ // This can be used in a reader-only attack.
+ // (it can also be retrieved via 'hf 14a list', but hey...
+ uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
+ uint8_t ar_nr_collected = 0;
+
uint8_t sak;
-
+
+ // PACK response to PWD AUTH for EV1/NTAG
+ uint8_t response8[4] = {0,0,0,0};
+
// The first response contains the ATQA (note: bytes are transmitted in reverse order).
- uint8_t response1[2];
+ uint8_t response1[2] = {0,0};
switch (tagType) {
case 1: { // MIFARE Classic
} break;
case 2: { // MIFARE Ultralight
// Says: I am a stupid memory tag, no crypto
- response1[0] = 0x04;
+ response1[0] = 0x44;
response1[1] = 0x00;
sak = 0x00;
} break;
response1[0] = 0x01;
response1[1] = 0x0f;
sak = 0x01;
+ } break;
+ case 6: { // MIFARE Mini
+ // Says: I am a Mifare Mini, 320b
+ response1[0] = 0x44;
+ response1[1] = 0x00;
+ sak = 0x09;
+ } break;
+ case 7: { // NTAG?
+ // Says: I am a NTAG,
+ response1[0] = 0x44;
+ response1[1] = 0x00;
+ sak = 0x00;
+ // PACK
+ response8[0] = 0x80;
+ response8[1] = 0x80;
+ ComputeCrc14443(CRC_14443_A, response8, 2, &response8[2], &response8[3]);
+ // uid not supplied then get from emulator memory
+ if (data[0]==0) {
+ uint16_t start = 4 * (0+12);
+ uint8_t emdata[8];
+ emlGetMemBt( emdata, start, sizeof(emdata));
+ memcpy(data, emdata, 3); //uid bytes 0-2
+ memcpy(data+3, emdata+4, 4); //uid bytes 3-7
+ flags |= FLAG_7B_UID_IN_DATA;
+ }
} break;
default: {
Dbprintf("Error: unkown tagtype (%d)",tagType);
// Check if the uid uses the (optional) part
uint8_t response2a[5] = {0x00};
- if (uid_2nd) {
+ if (flags & FLAG_7B_UID_IN_DATA) {
response2[0] = 0x88;
- num_to_bytes(uid_1st,3,response2+1);
- num_to_bytes(uid_2nd,4,response2a);
+ response2[1] = data[0];
+ response2[2] = data[1];
+ response2[3] = data[2];
+
+ response2a[0] = data[3];
+ response2a[1] = data[4];
+ response2a[2] = data[5];
+ response2a[3] = data[6]; //??
response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
// Configure the ATQA and SAK accordingly
response1[0] |= 0x40;
sak |= 0x04;
} else {
- num_to_bytes(uid_1st,4,response2);
+ memcpy(response2, data, 4);
+ //num_to_bytes(uid_1st,4,response2);
// Configure the ATQA and SAK accordingly
response1[0] &= 0xBF;
sak &= 0xFB;
// TC(1) = 0x02: CID supported, NAD not supported
ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
- #define TAG_RESPONSE_COUNT 7
+ // Prepare GET_VERSION (different for UL EV-1 / NTAG)
+ //uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION.
+ //uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
+
+ // Prepare CHK_TEARING
+ //uint8_t response9[] = {0xBD,0x90,0x3f};
+
+ #define TAG_RESPONSE_COUNT 10
tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
{ .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
{ .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
{ .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
{ .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
{ .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
- };
+
+ { .response = response8, .response_n = sizeof(response8) } // EV1/NTAG PACK response
+ };
+ //{ .response = response7_NTAG, .response_n = sizeof(response7_NTAG)}, // EV1/NTAG GET_VERSION response
+ //{ .response = response9, .response_n = sizeof(response9) } // EV1/NTAG CHK_TEAR response
+
// Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
// Such a response is less time critical, so we can prepare them on the fly
.modulation_n = 0
};
+ // We need to listen to the high-frequency, peak-detected path.
+ iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
BigBuf_free_keep_EM();
// allocate buffers:
// Prepare the responses of the anticollision phase
// there will be not enough time to do this at the moment the reader sends it REQA
- for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
+ for (size_t i=0; i<TAG_RESPONSE_COUNT; i++)
prepare_allocated_tag_modulation(&responses[i]);
- }
int len = 0;
int happened2 = 0;
int cmdsRecvd = 0;
- // We need to listen to the high-frequency, peak-detected path.
- iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
-
cmdsRecvd = 0;
tag_response_info_t* p_response;
LED_A_ON();
for(;;) {
- // Clean receive command buffer
+ WDT_HIT();
+
+ // Clean receive command buffer
if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
DbpString("Button press");
break;
} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
p_response = &responses[4]; order = 30;
} else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
- EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
- // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
- // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
+ uint8_t block = receivedCmd[1];
+ // if Ultralight or NTAG (4 byte blocks)
+ if ( tagType == 7 || tagType == 2 ) {
+ //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+ uint16_t start = 4 * (block+12);
+ uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
+ emlGetMemBt( emdata, start, 16);
+ AppendCrc14443a(emdata, 16);
+ EmSendCmdEx(emdata, sizeof(emdata), false);
+ // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
+ p_response = NULL;
+ } else { // all other tags (16 byte block tags)
+ EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
+ // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
+ // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
+ p_response = NULL;
+ }
+ } else if(receivedCmd[0] == 0x3A) { // Received a FAST READ (ranged read)
+
+ uint8_t emdata[MAX_FRAME_SIZE];
+ //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+ int start = (receivedCmd[1]+12) * 4;
+ int len = (receivedCmd[2] - receivedCmd[1] + 1) * 4;
+ emlGetMemBt( emdata, start, len);
+ AppendCrc14443a(emdata, len);
+ EmSendCmdEx(emdata, len+2, false);
+ p_response = NULL;
+
+ } else if(receivedCmd[0] == 0x3C && tagType == 7) { // Received a READ SIGNATURE --
+ // ECC data, taken from a NTAG215 amiibo token. might work. LEN: 32, + 2 crc
+ //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+ uint16_t start = 4 * 4;
+ uint8_t emdata[34];
+ emlGetMemBt( emdata, start, 32);
+ AppendCrc14443a(emdata, 32);
+ EmSendCmdEx(emdata, sizeof(emdata), false);
+ //uint8_t data[] = {0x56,0x06,0xa6,0x4f,0x43,0x32,0x53,0x6f,
+ // 0x43,0xda,0x45,0xd6,0x61,0x38,0xaa,0x1e,
+ // 0xcf,0xd3,0x61,0x36,0xca,0x5f,0xbb,0x05,
+ // 0xce,0x21,0x24,0x5b,0xa6,0x7a,0x79,0x07,
+ // 0x00,0x00};
+ //AppendCrc14443a(data, sizeof(data)-2);
+ //EmSendCmdEx(data,sizeof(data),false);
+ p_response = NULL;
+ } else if (receivedCmd[0] == 0x39 && tagType == 7) { // Received a READ COUNTER --
+ uint8_t index = receivedCmd[1];
+ uint8_t data[] = {0x00,0x00,0x00,0x14,0xa5};
+ if ( counters[index] > 0) {
+ num_to_bytes(counters[index], 3, data);
+ AppendCrc14443a(data, sizeof(data)-2);
+ }
+ EmSendCmdEx(data,sizeof(data),false);
+ p_response = NULL;
+ } else if (receivedCmd[0] == 0xA5 && tagType == 7) { // Received a INC COUNTER --
+ // number of counter
+ uint8_t counter = receivedCmd[1];
+ uint32_t val = bytes_to_num(receivedCmd+2,4);
+ counters[counter] = val;
+
+ // send ACK
+ uint8_t ack[] = {0x0a};
+ EmSendCmdEx(ack,sizeof(ack),false);
+ p_response = NULL;
+
+ } else if(receivedCmd[0] == 0x3E && tagType == 7) { // Received a CHECK_TEARING_EVENT --
+ //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+ uint8_t emdata[3];
+ uint8_t counter=0;
+ if (receivedCmd[1]<3) counter = receivedCmd[1];
+ emlGetMemBt( emdata, 10+counter, 1);
+ AppendCrc14443a(emdata, sizeof(emdata)-2);
+ EmSendCmdEx(emdata, sizeof(emdata), false);
p_response = NULL;
+ //p_response = &responses[9];
+
} else if(receivedCmd[0] == 0x50) { // Received a HALT
-
- if (tracing) {
- LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- }
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
p_response = NULL;
} else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
- p_response = &responses[5]; order = 7;
+
+ if ( tagType == 7 ) { // IF NTAG /EV1 0x60 == GET_VERSION, not a authentication request.
+ uint8_t emdata[10];
+ emlGetMemBt( emdata, 0, 8 );
+ AppendCrc14443a(emdata, sizeof(emdata)-2);
+ EmSendCmdEx(emdata, sizeof(emdata), false);
+ p_response = NULL;
+ //p_response = &responses[7];
+ } else {
+ p_response = &responses[5]; order = 7;
+ }
} else if(receivedCmd[0] == 0xE0) { // Received a RATS request
if (tagType == 1 || tagType == 2) { // RATS not supported
EmSend4bit(CARD_NACK_NA);
p_response = &responses[6]; order = 70;
}
} else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
- if (tracing) {
- LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- }
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
+ uint32_t nonce = bytes_to_num(response5,4);
uint32_t nr = bytes_to_num(receivedCmd,4);
uint32_t ar = bytes_to_num(receivedCmd+4,4);
- Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
+ //Dbprintf("Auth attempt {nonce}{nr}{ar}: %08x %08x %08x", nonce, nr, ar);
+
+ if(flags & FLAG_NR_AR_ATTACK )
+ {
+ if(ar_nr_collected < 2){
+ // Avoid duplicates... probably not necessary, nr should vary.
+ //if(ar_nr_responses[3] != nr){
+ ar_nr_responses[ar_nr_collected*5] = 0;
+ ar_nr_responses[ar_nr_collected*5+1] = 0;
+ ar_nr_responses[ar_nr_collected*5+2] = nonce;
+ ar_nr_responses[ar_nr_collected*5+3] = nr;
+ ar_nr_responses[ar_nr_collected*5+4] = ar;
+ ar_nr_collected++;
+ //}
+ }
+
+ if(ar_nr_collected > 1 ) {
+
+ if (MF_DBGLEVEL >= 2) {
+ Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
+ Dbprintf("../tools/mfkey/mfkey32 %07x%08x %08x %08x %08x %08x %08x",
+ ar_nr_responses[0], // UID1
+ ar_nr_responses[1], // UID2
+ ar_nr_responses[2], // NT
+ ar_nr_responses[3], // AR1
+ ar_nr_responses[4], // NR1
+ ar_nr_responses[8], // AR2
+ ar_nr_responses[9] // NR2
+ );
+ Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x",
+ ar_nr_responses[0], // UID1
+ ar_nr_responses[1], // UID2
+ ar_nr_responses[2], // NT1
+ ar_nr_responses[3], // AR1
+ ar_nr_responses[4], // NR1
+ ar_nr_responses[7], // NT2
+ ar_nr_responses[8], // AR2
+ ar_nr_responses[9] // NR2
+ );
+ }
+ uint8_t len = ar_nr_collected*5*4;
+ cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,len,0,&ar_nr_responses,len);
+ ar_nr_collected = 0;
+ memset(ar_nr_responses, 0x00, len);
+ }
+ }
+ } else if (receivedCmd[0] == 0x1a ) // ULC authentication
+ {
+
+ }
+ else if (receivedCmd[0] == 0x1b) // NTAG / EV-1 authentication
+ {
+ if ( tagType == 7 ) {
+ uint16_t start = 13; //first 4 blocks of emu are [getversion answer - check tearing - pack - 0x00]
+ uint8_t emdata[4];
+ emlGetMemBt( emdata, start, 2);
+ AppendCrc14443a(emdata, 2);
+ EmSendCmdEx(emdata, sizeof(emdata), false);
+ p_response = NULL;
+ //p_response = &responses[8]; // PACK response
+ uint32_t pwd = bytes_to_num(receivedCmd+1,4);
+
+ if ( MF_DBGLEVEL >= 3) Dbprintf("Auth attempt: %08x", pwd);
+ }
} else {
// Check for ISO 14443A-4 compliant commands, look at left nibble
switch (receivedCmd[0]) {
-
+ case 0x02:
+ case 0x03: { // IBlock (command no CID)
+ dynamic_response_info.response[0] = receivedCmd[0];
+ dynamic_response_info.response[1] = 0x90;
+ dynamic_response_info.response[2] = 0x00;
+ dynamic_response_info.response_n = 3;
+ } break;
case 0x0B:
- case 0x0A: { // IBlock (command)
+ case 0x0A: { // IBlock (command CID)
dynamic_response_info.response[0] = receivedCmd[0];
dynamic_response_info.response[1] = 0x00;
dynamic_response_info.response[2] = 0x90;
dynamic_response_info.response_n = 2;
} break;
- case 0xBA: { //
- memcpy(dynamic_response_info.response,"\xAB\x00",2);
- dynamic_response_info.response_n = 2;
+ case 0xBA: { // ping / pong
+ dynamic_response_info.response[0] = 0xAB;
+ dynamic_response_info.response[1] = 0x00;
+ dynamic_response_info.response_n = 2;
} break;
case 0xCA:
case 0xC2: { // Readers sends deselect command
- memcpy(dynamic_response_info.response,"\xCA\x00",2);
- dynamic_response_info.response_n = 2;
+ dynamic_response_info.response[0] = 0xCA;
+ dynamic_response_info.response[1] = 0x00;
+ dynamic_response_info.response_n = 2;
} break;
default: {
// Never seen this command before
- if (tracing) {
- LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- }
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
Dbprintf("Received unknown command (len=%d):",len);
Dbhexdump(len,receivedCmd,false);
// Do not respond
if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
Dbprintf("Error preparing tag response");
- if (tracing) {
- LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- }
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
break;
}
p_response = &dynamic_response_info;
if (p_response != NULL) {
EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
// do the tracing for the previous reader request and this tag answer:
- uint8_t par[MAX_PARITY_SIZE];
+ uint8_t par[MAX_PARITY_SIZE] = {0x00};
GetParity(p_response->response, p_response->response_n, par);
EmLogTrace(Uart.output,
}
}
- Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
- LED_A_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ set_tracing(FALSE);
BigBuf_free_keep_EM();
+ LED_A_OFF();
+
+ if (MF_DBGLEVEL >= 4){
+ Dbprintf("-[ Wake ups after halt [%d]", happened);
+ Dbprintf("-[ Messages after halt [%d]", happened2);
+ Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd);
+ }
}
uint8_t bitmask = 0;
uint8_t bits_to_shift = 0;
uint8_t bits_shifted = 0;
-
+
delay &= 0x07;
if (delay) {
for (uint16_t i = 0; i < delay; i++) {
bitmask |= (0x01 << i);
}
- ToSend[ToSendMax++] = 0x00;
+ ToSend[++ToSendMax] = 0x00;
for (uint16_t i = 0; i < ToSendMax; i++) {
bits_to_shift = ToSend[i] & bitmask;
ToSend[i] = ToSend[i] >> delay;
//-------------------------------------------------------------------------------------
static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
{
-
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
uint32_t ThisTransferTime = 0;
PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
}
if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
+
while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
LastTimeProxToAirStart = *timing;
} else {
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = cmd[c];
- c++;
- if(c >= len) {
+ ++c;
+ if(c >= len)
break;
- }
}
}
void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
{
int i, j;
- int last;
+ int last = 0;
uint8_t b;
ToSendReset();
// Start of Communication (Seq. Z)
ToSend[++ToSendMax] = SEC_Z;
LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
- last = 0;
size_t bytecount = nbytes(bits);
// Generate send structure for the data bits
}
// Only transmit parity bit if we transmitted a complete byte
- if (j == 8) {
+ if (j == 8 && parity != NULL) {
// Get the parity bit
if (parity[i>>3] & (0x80 >> (i&0x0007))) {
// Sequence X
FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
}
- if(BUTTON_PRESS()) {
- break;
- }
+ if(BUTTON_PRESS()) break;
}
// Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
Code4bitAnswerAsTag(resp);
int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
// do the tracing for the previous reader request and this tag answer:
- uint8_t par[1];
+ uint8_t par[1] = {0x00};
GetParity(&resp, 1, par);
EmLogTrace(Uart.output,
Uart.len,
}
int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
- uint8_t par[MAX_PARITY_SIZE];
+ uint8_t par[MAX_PARITY_SIZE] = {0x00};
GetParity(resp, respLen, par);
return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
}
int EmSendCmd(uint8_t *resp, uint16_t respLen){
- uint8_t par[MAX_PARITY_SIZE];
+ uint8_t par[MAX_PARITY_SIZE] = {0x00};
GetParity(resp, respLen, par);
return EmSendCmdExPar(resp, respLen, false, par);
}
bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
{
- if (tracing) {
- // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
- // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
- // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
- uint16_t reader_modlen = reader_EndTime - reader_StartTime;
- uint16_t approx_fdt = tag_StartTime - reader_EndTime;
- uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
- reader_EndTime = tag_StartTime - exact_fdt;
- reader_StartTime = reader_EndTime - reader_modlen;
- if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
- return FALSE;
- } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
- } else {
- return TRUE;
- }
+ // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
+ // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
+ // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
+ uint16_t reader_modlen = reader_EndTime - reader_StartTime;
+ uint16_t approx_fdt = tag_StartTime - reader_EndTime;
+ uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
+ reader_EndTime = tag_StartTime - exact_fdt;
+ reader_StartTime = reader_EndTime - reader_modlen;
+
+ if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE))
+ return FALSE;
+ else
+ return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
+
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
{
- uint32_t c;
+ uint32_t c = 0x00;
// Set FPGA mode to "reader listen mode", no modulation (listen
// only, since we are receiving, not transmitting).
// clear RXRDY:
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- c = 0;
for(;;) {
WDT_HIT();
LED_A_ON();
// Log reader command in trace buffer
- if (tracing) {
- LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
- }
+ LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
}
void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
{
// Generate parity and redirect
- uint8_t par[MAX_PARITY_SIZE];
+ uint8_t par[MAX_PARITY_SIZE] = {0x00};
GetParity(frame, len/8, par);
ReaderTransmitBitsPar(frame, len, par, timing);
}
void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
{
// Generate parity and redirect
- uint8_t par[MAX_PARITY_SIZE];
+ uint8_t par[MAX_PARITY_SIZE] = {0x00};
GetParity(frame, len, par);
ReaderTransmitBitsPar(frame, len*8, par, timing);
}
int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
{
- if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE;
- if (tracing) {
- LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
- }
+ if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset))
+ return FALSE;
+
+ LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
return Demod.len;
}
int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
{
- if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
- if (tracing) {
- LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
- }
+ if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0))
+ return FALSE;
+
+ LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
return Demod.len;
}
-/* performs iso14443a anticollision procedure
- * fills the uid pointer unless NULL
- * fills resp_data unless NULL */
-int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
+// performs iso14443a anticollision (optional) and card select procedure
+// fills the uid and cuid pointer unless NULL
+// fills the card info record unless NULL
+// if anticollision is false, then the UID must be provided in uid_ptr[]
+// and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
+int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades) {
uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
uint8_t sel_all[] = { 0x93,0x20 };
uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
- uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
- uint8_t resp_par[MAX_PARITY_SIZE];
- byte_t uid_resp[4];
- size_t uid_resp_len;
+ uint8_t resp[MAX_FRAME_SIZE] = {0}; // theoretically. A usual RATS will be much smaller
+ uint8_t resp_par[MAX_PARITY_SIZE] = {0};
+ byte_t uid_resp[4] = {0};
+ size_t uid_resp_len = 0;
uint8_t sak = 0x04; // cascade uid
int cascade_level = 0;
int len;
// Broadcast for a card, WUPA (0x52) will force response from all cards in the field
- ReaderTransmitBitsPar(wupa,7,0, NULL);
+ ReaderTransmitBitsPar(wupa, 7, NULL, NULL);
// Receive the ATQA
if(!ReaderReceive(resp, resp_par)) return 0;
memset(p_hi14a_card->uid,0,10);
}
- // clear uid
- if (uid_ptr) {
- memset(uid_ptr,0,10);
+ if (anticollision) {
+ // clear uid
+ if (uid_ptr)
+ memset(uid_ptr,0,10);
}
+ // check for proprietary anticollision:
+ if ((resp[0] & 0x1F) == 0) return 3;
+
// OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
// which case we need to make a cascade 2 request and select - this is a long UID
// While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
// SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
+ if (anticollision) {
// SELECT_ALL
- ReaderTransmit(sel_all, sizeof(sel_all), NULL);
- if (!ReaderReceive(resp, resp_par)) return 0;
-
- if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
- memset(uid_resp, 0, 4);
- uint16_t uid_resp_bits = 0;
- uint16_t collision_answer_offset = 0;
- // anti-collision-loop:
- while (Demod.collisionPos) {
- Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
- for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
- uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
- uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
+ ReaderTransmit(sel_all, sizeof(sel_all), NULL);
+ if (!ReaderReceive(resp, resp_par)) return 0;
+
+ if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
+ memset(uid_resp, 0, 4);
+ uint16_t uid_resp_bits = 0;
+ uint16_t collision_answer_offset = 0;
+ // anti-collision-loop:
+ while (Demod.collisionPos) {
+ Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
+ for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
+ uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
+ uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
+ }
+ uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
+ uid_resp_bits++;
+ // construct anticollosion command:
+ sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
+ for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
+ sel_uid[2+i] = uid_resp[i];
+ }
+ collision_answer_offset = uid_resp_bits%8;
+ ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
+ if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
}
- uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
- uid_resp_bits++;
- // construct anticollosion command:
- sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
- for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
- sel_uid[2+i] = uid_resp[i];
+ // finally, add the last bits and BCC of the UID
+ for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
+ uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
+ uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
}
- collision_answer_offset = uid_resp_bits%8;
- ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
- if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
+
+ } else { // no collision, use the response to SELECT_ALL as current uid
+ memcpy(uid_resp, resp, 4);
}
- // finally, add the last bits and BCC of the UID
- for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
- uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
- uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
+
+ } else {
+ if (cascade_level < num_cascades - 1) {
+ uid_resp[0] = 0x88;
+ memcpy(uid_resp+1, uid_ptr+cascade_level*3, 3);
+ } else {
+ memcpy(uid_resp, uid_ptr+cascade_level*3, 4);
}
-
- } else { // no collision, use the response to SELECT_ALL as current uid
- memcpy(uid_resp, resp, 4);
}
uid_resp_len = 4;
// calculate crypto UID. Always use last 4 Bytes.
- if(cuid_ptr) {
+ if(cuid_ptr)
*cuid_ptr = bytes_to_num(uid_resp, 4);
- }
// Construct SELECT UID command
sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
- memcpy(sel_uid+2, uid_resp, 4); // the UID
+ memcpy(sel_uid+2, uid_resp, 4); // the UID received during anticollision, or the provided UID
sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
AppendCrc14443a(sel_uid, 7); // calculate and add CRC
ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
// Receive the SAK
if (!ReaderReceive(resp, resp_par)) return 0;
+
sak = resp[0];
- // Test if more parts of the uid are coming
+ // Test if more parts of the uid are coming
if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
// Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
// http://www.nxp.com/documents/application_note/AN10927.pdf
uid_resp[0] = uid_resp[1];
uid_resp[1] = uid_resp[2];
uid_resp[2] = uid_resp[3];
-
uid_resp_len = 3;
}
- if(uid_ptr) {
+ if(uid_ptr && anticollision)
memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
- }
if(p_hi14a_card) {
memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
ReaderTransmit(rats, sizeof(rats), NULL);
if (!(len = ReaderReceive(resp, resp_par))) return 0;
-
if(p_hi14a_card) {
memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
DemodReset();
UartReset();
NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
- iso14a_set_timeout(1050); // 10ms default
+ iso14a_set_timeout(10*106); // 10ms default
}
int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
- uint8_t parity[MAX_PARITY_SIZE];
+ uint8_t parity[MAX_PARITY_SIZE] = {0x00};
uint8_t real_cmd[cmd_len+4];
real_cmd[0] = 0x0a; //I-Block
// put block number into the PCB
size_t lenbits = c->arg[1] >> 16;
uint32_t timeout = c->arg[2];
uint32_t arg0 = 0;
- byte_t buf[USB_CMD_DATA_SIZE];
- uint8_t par[MAX_PARITY_SIZE];
+ byte_t buf[USB_CMD_DATA_SIZE] = {0x00};
+ uint8_t par[MAX_PARITY_SIZE] = {0x00};
- if(param & ISO14A_CONNECT) {
+ if (param & ISO14A_CONNECT)
clear_trace();
- }
set_tracing(TRUE);
- if(param & ISO14A_REQUEST_TRIGGER) {
+ if (param & ISO14A_REQUEST_TRIGGER)
iso14a_set_trigger(TRUE);
- }
- if(param & ISO14A_CONNECT) {
+
+ if (param & ISO14A_CONNECT) {
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
if(!(param & ISO14A_NO_SELECT)) {
iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
- arg0 = iso14443a_select_card(NULL,card,NULL);
+ arg0 = iso14443a_select_card(NULL,card,NULL, true, 0);
cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
}
}
- if(param & ISO14A_SET_TIMEOUT) {
+ if (param & ISO14A_SET_TIMEOUT)
iso14a_set_timeout(timeout);
- }
- if(param & ISO14A_APDU) {
+ if (param & ISO14A_APDU) {
arg0 = iso14_apdu(cmd, len, buf);
cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
}
- if(param & ISO14A_RAW) {
+ if (param & ISO14A_RAW) {
if(param & ISO14A_APPEND_CRC) {
- AppendCrc14443a(cmd,len);
+ if(param & ISO14A_TOPAZMODE) {
+ AppendCrc14443b(cmd,len);
+ } else {
+ AppendCrc14443a(cmd,len);
+ }
len += 2;
if (lenbits) lenbits += 16;
}
- if(lenbits>0) {
+ if(lenbits>0) { // want to send a specific number of bits (e.g. short commands)
+ if(param & ISO14A_TOPAZMODE) {
+ int bits_to_send = lenbits;
+ uint16_t i = 0;
+ ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity
+ bits_to_send -= 7;
+ while (bits_to_send > 0) {
+ ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity
+ bits_to_send -= 8;
+ }
+ } else {
GetParity(cmd, lenbits/8, par);
- ReaderTransmitBitsPar(cmd, lenbits, par, NULL);
+ ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity
+ }
+ } else { // want to send complete bytes only
+ if(param & ISO14A_TOPAZMODE) {
+ uint16_t i = 0;
+ ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy
+ while (i < len) {
+ ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy
+ }
} else {
- ReaderTransmit(cmd,len, NULL);
+ ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity
+ }
}
arg0 = ReaderReceive(buf, par);
cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
}
- if(param & ISO14A_REQUEST_TRIGGER) {
+ if (param & ISO14A_REQUEST_TRIGGER)
iso14a_set_trigger(FALSE);
- }
- if(param & ISO14A_NO_DISCONNECT) {
+
+ if (param & ISO14A_NO_DISCONNECT)
return;
- }
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ set_tracing(FALSE);
LEDsoff();
}
// Therefore try in alternating directions.
int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
- uint16_t i;
- uint32_t nttmp1, nttmp2;
-
if (nt1 == nt2) return 0;
-
- nttmp1 = nt1;
- nttmp2 = nt2;
- for (i = 1; i < 32768; i++) {
+ uint16_t i;
+ uint32_t nttmp1 = nt1;
+ uint32_t nttmp2 = nt2;
+
+ for (i = 1; i < 0xFFFF; ++i) {
nttmp1 = prng_successor(nttmp1, 1);
if (nttmp1 == nt2) return i;
+
nttmp2 = prng_successor(nttmp2, 1);
- if (nttmp2 == nt1) return -i;
- }
+ if (nttmp2 == nt1) return -i;
+ }
return(-99999); // either nt1 or nt2 are invalid nonces
}
// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
// (article by Nicolas T. Courtois, 2009)
//-----------------------------------------------------------------------------
-void ReaderMifare(bool first_try)
+void ReaderMifare(bool first_try, uint8_t block )
{
// Mifare AUTH
- uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
+ //uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
+ //uint8_t mf_auth[] = { 0x60,0x05, 0x58, 0x2c };
+ uint8_t mf_auth[] = { 0x60,0x00, 0x00, 0x00 };
uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
- static uint8_t mf_nr_ar3;
+ static uint8_t mf_nr_ar3 = 0;
- uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
- uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
-
- // free eventually allocated BigBuf memory. We want all for tracing.
- BigBuf_free();
+ mf_auth[1] = block;
+ AppendCrc14443a(mf_auth, 2);
- clear_trace();
- set_tracing(TRUE);
+ uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
+ uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
byte_t nt_diff = 0;
uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
static byte_t par_low = 0;
bool led_on = TRUE;
- uint8_t uid[10] ={0};
- uint32_t cuid;
+ uint8_t uid[10] = {0};
+ uint32_t cuid = 0;
uint32_t nt = 0;
uint32_t previous_nt = 0;
byte_t par_list[8] = {0x00};
byte_t ks_list[8] = {0x00};
- static uint32_t sync_time;
- static uint32_t sync_cycles;
+ static uint32_t sync_time = 0;
+ static int32_t sync_cycles = 0;
int catch_up_cycles = 0;
int last_catch_up = 0;
+ uint16_t elapsed_prng_sequences = 1;
uint16_t consecutive_resyncs = 0;
int isOK = 0;
- if (first_try) {
- mf_nr_ar3 = 0;
+ #define PRNG_SEQUENCE_LENGTH (1 << 16);
+ #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
+ #define MAX_SYNC_TRIES 32
+ #define NUM_DEBUG_INFOS 8 // per strategy
+ #define MAX_STRATEGY 3
+
+ uint16_t unexpected_random = 0;
+ uint16_t sync_tries = 0;
+ int16_t debug_info_nr = -1;
+ uint16_t strategy = 0;
+ int32_t debug_info[MAX_STRATEGY+1][NUM_DEBUG_INFOS];
+ uint32_t select_time = 0;
+ uint32_t halt_time = 0;
+ //uint8_t caller[7] = {0};
+
+ // init to zero.
+ for (uint16_t i = 0; i < MAX_STRATEGY+1; ++i)
+ for(uint16_t j = 0; j < NUM_DEBUG_INFOS; ++j)
+ debug_info[i][j] = 0;
+
+ LED_A_ON();
+ LED_B_OFF();
+ LED_C_OFF();
+
+ if (first_try)
iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+
+ // free eventually allocated BigBuf memory. We want all for tracing.
+ BigBuf_free();
+ clear_trace();
+ set_tracing(TRUE);
+
+ if (first_try) {
sync_time = GetCountSspClk() & 0xfffffff8;
- sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
+ sync_cycles = PRNG_SEQUENCE_LENGTH; //65536; //0x10000 // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
+ mf_nr_ar3 = 0;
nt_attacked = 0;
- nt = 0;
par[0] = 0;
- }
- else {
+ } else {
// we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
mf_nr_ar3++;
mf_nr_ar[3] = mf_nr_ar3;
par[0] = par_low;
}
-
- LED_A_ON();
- LED_B_OFF();
- LED_C_OFF();
-
-
- for(uint16_t i = 0; TRUE; i++) {
+ LED_C_ON();
+ for(uint16_t i = 0; TRUE; ++i) {
+
WDT_HIT();
// Test if the action was cancelled
if(BUTTON_PRESS()) {
+ isOK = -1;
break;
}
- LED_C_ON();
+ if (strategy == 2) {
+ // test with additional halt command
+ halt_time = 0;
+ int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time);
- if(!iso14443a_select_card(uid, NULL, &cuid)) {
- if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
- continue;
+ if (len && MF_DBGLEVEL >= 3)
+ Dbprintf("Unexpected response of %d bytes to halt command (additional debugging).\n", len);
}
- sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
- catch_up_cycles = 0;
-
- // if we missed the sync time already, advance to the next nonce repeat
- while(GetCountSspClk() > sync_time) {
- sync_time = (sync_time & 0xfffffff8) + sync_cycles;
+ if (strategy == 3) {
+ // test with FPGA power off/on
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(200);
+ iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+ SpinDelay(100);
+ sync_time = GetCountSspClk() & 0xfffffff8;
+ WDT_HIT();
+ }
+
+ if (!iso14443a_select_card(uid, NULL, &cuid, true, 0)) {
+ if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card\n");
+ continue;
}
- // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
- ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+ select_time = GetCountSspClk() & 0xfffffff8;
+ elapsed_prng_sequences = 1;
+
+ if (debug_info_nr == -1) {
+
+ sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
+ catch_up_cycles = 0;
+
+ // if we missed the sync time already, advance to the next nonce repeat
+ WDT_HIT();
+ while(GetCountSspClk() > sync_time) {
+ ++elapsed_prng_sequences;
+ sync_time = (sync_time & 0xfffffff8) + sync_cycles;
+ //sync_time += sync_cycles;
+ //sync_time &= 0xfffffff8;
+ }
+ WDT_HIT();
+ // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
+ ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+ if (MF_DBGLEVEL == 2) Dbprintf("sync_time %d \n", sync_time);
+
+ } else {
+ // collect some information on tag nonces for debugging:
+ #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH
+ if (strategy == 0) {
+ // nonce distances at fixed time after card select:
+ sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES;
+ } else if (strategy == 1) {
+ // nonce distances at fixed time between authentications:
+ sync_time = sync_time + DEBUG_FIXED_SYNC_CYCLES;
+ } else if (strategy == 2) {
+ // nonce distances at fixed time after halt:
+ sync_time = halt_time + DEBUG_FIXED_SYNC_CYCLES;
+ } else {
+ // nonce_distances at fixed time after power on
+ sync_time = DEBUG_FIXED_SYNC_CYCLES;
+ }
+ ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+ }
// Receive the (4 Byte) "random" nonce
- if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
- if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
+ if (!ReaderReceive(receivedAnswer, receivedAnswerPar))
continue;
- }
previous_nt = nt;
nt = bytes_to_num(receivedAnswer, 4);
int nt_distance = dist_nt(previous_nt, nt);
if (nt_distance == 0) {
nt_attacked = nt;
- }
- else {
- if (nt_distance == -99999) { // invalid nonce received, try again
- continue;
+ } else {
+ if (nt_distance == -99999) { // invalid nonce received
+ unexpected_random++;
+ if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
+ isOK = -3; // Card has an unpredictable PRNG. Give up
+ break;
+ } else {
+ continue; // continue trying...
+ }
}
- sync_cycles = (sync_cycles - nt_distance);
- if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
+
+ if (++sync_tries > MAX_SYNC_TRIES) {
+ if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) {
+ isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
+ break;
+ } else { // continue for a while, just to collect some debug info
+ ++debug_info_nr;
+ debug_info[strategy][debug_info_nr] = nt_distance;
+ if (debug_info_nr == NUM_DEBUG_INFOS-1) {
+ ++strategy;
+ debug_info_nr = 0;
+ }
+ continue;
+ }
+ }
+
+ sync_cycles = (sync_cycles - nt_distance/elapsed_prng_sequences);
+ if (sync_cycles <= 0)
+ sync_cycles += PRNG_SEQUENCE_LENGTH;
+
+ if (MF_DBGLEVEL >= 2)
+ Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
+
continue;
}
}
if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
+
catch_up_cycles = -dist_nt(nt_attacked, nt);
if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
catch_up_cycles = 0;
continue;
}
+
+ // average?
+ catch_up_cycles /= elapsed_prng_sequences;
+
if (catch_up_cycles == last_catch_up) {
- consecutive_resyncs++;
- }
- else {
+ ++consecutive_resyncs;
+ } else {
last_catch_up = catch_up_cycles;
consecutive_resyncs = 0;
}
+ sync_cycles += catch_up_cycles;
+
if (consecutive_resyncs < 3) {
- if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
- }
- else {
- sync_cycles = sync_cycles + catch_up_cycles;
- if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
+ if (MF_DBGLEVEL >= 3)
+ Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
+ } else {
+ sync_cycles += catch_up_cycles;
+
+ if (MF_DBGLEVEL >= 3)
+ Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
+
+ last_catch_up = 0;
+ catch_up_cycles = 0;
+ consecutive_resyncs = 0;
}
continue;
}
consecutive_resyncs = 0;
// Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
- if (ReaderReceive(receivedAnswer, receivedAnswerPar))
- {
+ if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
if (nt_diff == 0)
- {
par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
- }
led_on = !led_on;
if(led_on) LED_B_ON(); else LED_B_OFF();
mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
par[0] = par_low;
} else {
- if (nt_diff == 0 && first_try)
- {
+ if (nt_diff == 0 && first_try) {
par[0]++;
+ if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
+ isOK = -2;
+ break;
+ }
} else {
par[0] = ((par[0] & 0x1F) + 1) | par_low;
}
}
}
-
mf_nr_ar[3] &= 0x1F;
+
+ WDT_HIT();
+
+ if (isOK == -4) {
+ for (uint16_t i = 0; i < MAX_STRATEGY+1; ++i)
+ for(uint16_t j = 0; j < NUM_DEBUG_INFOS; ++j)
+ Dbprintf("info[%d][%d] = %d", i, j, debug_info[i][j]);
+ }
+
+ // reset sync_time.
+ if ( isOK == 1) {
+ sync_time = 0;
+ sync_cycles = 0;
+ mf_nr_ar3 = 0;
+ nt_attacked = 0;
+ par[0] = 0;
+ }
- byte_t buf[28];
+ byte_t buf[28] = {0x00};
memcpy(buf + 0, uid, 4);
num_to_bytes(nt, 4, buf + 4);
memcpy(buf + 8, par_list, 8);
cmd_send(CMD_ACK,isOK,0,0,buf,28);
- // Thats it...
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
-
set_tracing(FALSE);
}
uint8_t cardWRBL = 0;
uint8_t cardAUTHSC = 0;
uint8_t cardAUTHKEY = 0xff; // no authentication
- uint32_t cardRr = 0;
+// uint32_t cardRr = 0;
uint32_t cuid = 0;
//uint32_t rn_enc = 0;
uint32_t ans = 0;
struct Crypto1State *pcs;
pcs = &mpcs;
uint32_t numReads = 0;//Counts numer of times reader read a block
- uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
- uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
- uint8_t response[MAX_MIFARE_FRAME_SIZE];
- uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
+ uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};
+ uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
+ uint8_t response[MAX_MIFARE_FRAME_SIZE] = {0x00};
+ uint8_t response_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
- uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
+ uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; // Mifare Classic
+ //uint8_t rSAK[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
uint8_t rSAK1[] = {0x04, 0xda, 0x17};
- uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
+ //uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01};
+ uint8_t rAUTH_NT[] = {0x55, 0x41, 0x49, 0x92};
uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
- //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
+ //Here, we collect UID1,UID2,NT,AR,NR,0,0,NT2,AR2,NR2
// This can be used in a reader-only attack.
// (it can also be retrieved via 'hf 14a list', but hey...
- uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
+ uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
uint8_t ar_nr_collected = 0;
- // free eventually allocated BigBuf memory but keep Emulator Memory
- BigBuf_free_keep_EM();
-
- // clear trace
- clear_trace();
- set_tracing(TRUE);
-
// Authenticate response - nonce
uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
}
}
+ // save uid.
+ ar_nr_responses[0*5] = bytes_to_num(rUIDBCC1+1, 3);
+ if ( _7BUID )
+ ar_nr_responses[0*5+1] = bytes_to_num(rUIDBCC2, 4);
+
/*
* Regardless of what method was used to set the UID, set fifth byte and modify
* the ATQA for 4 or 7-byte UID
if (_7BUID) {
rATQA[0] = 0x44;
rUIDBCC1[0] = 0x88;
+ rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
}
- // We need to listen to the high-frequency, peak-detected path.
- iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
-
-
if (MF_DBGLEVEL >= 1) {
if (!_7BUID) {
Dbprintf("4B UID: %02x%02x%02x%02x",
}
}
+ // We need to listen to the high-frequency, peak-detected path.
+ iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
+ // free eventually allocated BigBuf memory but keep Emulator Memory
+ BigBuf_free_keep_EM();
+
+ // clear trace
+ clear_trace();
+ set_tracing(TRUE);
+
+
bool finished = FALSE;
- while (!BUTTON_PRESS() && !finished) {
+ while (!BUTTON_PRESS() && !finished && !usb_poll_validate_length()) {
WDT_HIT();
// find reader field
if(cardSTATE == MFEMUL_NOFIELD) continue;
//Now, get data
-
res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
if (res == 2) { //Field is off!
cardSTATE = MFEMUL_NOFIELD;
break;
}
case MFEMUL_AUTH1:{
- if( len != 8)
- {
+ if( len != 8) {
cardSTATE_TO_IDLE();
LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
break;
uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
//Collect AR/NR
- if(ar_nr_collected < 2){
- if(ar_nr_responses[2] != ar)
- {// Avoid duplicates... probably not necessary, ar should vary.
- ar_nr_responses[ar_nr_collected*4] = cuid;
- ar_nr_responses[ar_nr_collected*4+1] = nonce;
- ar_nr_responses[ar_nr_collected*4+2] = ar;
- ar_nr_responses[ar_nr_collected*4+3] = nr;
+ //if(ar_nr_collected < 2 && cardAUTHSC == 2){
+ if(ar_nr_collected < 2) {
+ if(ar_nr_responses[2] != ar) {
+ // Avoid duplicates... probably not necessary, ar should vary.
+ //ar_nr_responses[ar_nr_collected*5] = 0;
+ //ar_nr_responses[ar_nr_collected*5+1] = 0;
+ ar_nr_responses[ar_nr_collected*5+2] = nonce;
+ ar_nr_responses[ar_nr_collected*5+3] = nr;
+ ar_nr_responses[ar_nr_collected*5+4] = ar;
ar_nr_collected++;
- }
+ }
+ // Interactive mode flag, means we need to send ACK
+ if(flags & FLAG_INTERACTIVE && ar_nr_collected == 2)
+ finished = true;
}
// --- crypto
- crypto1_word(pcs, ar , 1);
- cardRr = nr ^ crypto1_word(pcs, 0, 0);
-
- // test if auth OK
- if (cardRr != prng_successor(nonce, 64)){
- if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
- cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
- cardRr, prng_successor(nonce, 64));
+ //crypto1_word(pcs, ar , 1);
+ //cardRr = nr ^ crypto1_word(pcs, 0, 0);
+
+ //test if auth OK
+ //if (cardRr != prng_successor(nonce, 64)){
+
+ //if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
+ // cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
+ // cardRr, prng_successor(nonce, 64));
// Shouldn't we respond anything here?
// Right now, we don't nack or anything, which causes the
// reader to do a WUPA after a while. /Martin
// -- which is the correct response. /piwi
- cardSTATE_TO_IDLE();
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- break;
- }
+ //cardSTATE_TO_IDLE();
+ //LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
+ //break;
+ //}
ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
LED_C_ON();
cardSTATE = MFEMUL_WORK;
- if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
- cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
- GetTickCount() - authTimer);
+ if (MF_DBGLEVEL >= 4) {
+ Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
+ cardAUTHSC,
+ cardAUTHKEY == 0 ? 'A' : 'B',
+ GetTickCount() - authTimer
+ );
+ }
break;
}
case MFEMUL_SELECT2:{
// select 2 card
if (len == 9 &&
- (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
+ (receivedCmd[0] == 0x95 &&
+ receivedCmd[1] == 0x70 &&
+ memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0) ) {
EmSendCmd(rSAK, sizeof(rSAK));
cuid = bytes_to_num(rUIDBCC2, 4);
cardSTATE = MFEMUL_WORK;
bool encrypted_data = (cardAUTHKEY != 0xFF) ;
- if(encrypted_data) {
- // decrypt seqence
+ // decrypt seqence
+ if(encrypted_data)
mf_crypto1_decrypt(pcs, receivedCmd, len);
- }
if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
authTimer = GetTickCount();
|| receivedCmd[0] == 0xB0) { // transfer
if (receivedCmd[1] >= 16 * 4) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
- if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
+ if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
break;
}
if (receivedCmd[1] / 4 != cardAUTHSC) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
- if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
+ if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
break;
}
}
// read block
if (receivedCmd[0] == 0x30) {
- if (MF_DBGLEVEL >= 4) {
- Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
- }
+ if (MF_DBGLEVEL >= 4) Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
+
emlGetMem(response, receivedCmd[1], 1);
AppendCrc14443a(response, 16);
mf_crypto1_encrypt(pcs, response, 18, response_par);
EmSendCmdPar(response, 18, response_par);
numReads++;
- if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
+ if(exitAfterNReads > 0 && numReads >= exitAfterNReads) {
Dbprintf("%d reads done, exiting", numReads);
finished = true;
}
if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
if (emlCheckValBl(receivedCmd[1])) {
- if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
+ if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
break;
}
break;
}
case MFEMUL_WRITEBL2:{
- if (len == 18){
+ if (len == 18) {
mf_crypto1_decrypt(pcs, receivedCmd, len);
emlSetMem(receivedCmd, cardWRBL, 1);
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
- if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
- {
+ // Interactive mode flag, means we need to send ACK
+ if(flags & FLAG_INTERACTIVE) {
//May just aswell send the collected ar_nr in the response aswell
- cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4);
+ uint8_t len = ar_nr_collected*5*4;
+ cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len);
}
- if(flags & FLAG_NR_AR_ATTACK)
- {
- if(ar_nr_collected > 1) {
+ if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 ) {
+ if(ar_nr_collected > 1 ) {
Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
- Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
- ar_nr_responses[0], // UID
- ar_nr_responses[1], //NT
- ar_nr_responses[2], //AR1
- ar_nr_responses[3], //NR1
- ar_nr_responses[6], //AR2
- ar_nr_responses[7] //NR2
+ Dbprintf("../tools/mfkey/mfkey32 %06x%08x %08x %08x %08x %08x %08x",
+ ar_nr_responses[0], // UID1
+ ar_nr_responses[1], // UID2
+ ar_nr_responses[2], // NT
+ ar_nr_responses[3], // AR1
+ ar_nr_responses[4], // NR1
+ ar_nr_responses[8], // AR2
+ ar_nr_responses[9] // NR2
+ );
+ Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x",
+ ar_nr_responses[0], // UID1
+ ar_nr_responses[1], // UID2
+ ar_nr_responses[2], // NT1
+ ar_nr_responses[3], // AR1
+ ar_nr_responses[4], // NR1
+ ar_nr_responses[7], // NT2
+ ar_nr_responses[8], // AR2
+ ar_nr_responses[9] // NR2
);
} else {
Dbprintf("Failed to obtain two AR/NR pairs!");
- if(ar_nr_collected >0) {
- Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
- ar_nr_responses[0], // UID
- ar_nr_responses[1], //NT
- ar_nr_responses[2], //AR1
- ar_nr_responses[3] //NR1
+ if(ar_nr_collected > 0 ) {
+ Dbprintf("Only got these: UID=%06x%08x, nonce=%08x, AR1=%08x, NR1=%08x",
+ ar_nr_responses[0], // UID1
+ ar_nr_responses[1], // UID2
+ ar_nr_responses[2], // NT
+ ar_nr_responses[3], // AR1
+ ar_nr_responses[4] // NR1
);
}
}
}
- if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
+ if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
+ set_tracing(FALSE);
}
-
//-----------------------------------------------------------------------------
// MIFARE sniffer.
//
// param:
// bit 0 - trigger from first card answer
// bit 1 - trigger from first reader 7-bit request
-
- // C(red) A(yellow) B(green)
LEDsoff();
+
// init trace buffer
clear_trace();
set_tracing(TRUE);
// The command (reader -> tag) that we're receiving.
// The length of a received command will in most cases be no more than 18 bytes.
// So 32 should be enough!
- uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
- uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
+ uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};
+ uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
+
// The response (tag -> reader) that we're receiving.
- uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
- uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
+ uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE] = {0x00};
+ uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE] = {0x00};
+
+ iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
- // As we receive stuff, we copy it from receivedCmd or receivedResponse
- // into trace, along with its length and other annotations.
- //uint8_t *trace = (uint8_t *)BigBuf;
-
// free eventually allocated BigBuf memory
BigBuf_free();
+
// allocate the DMA buffer, used to stream samples from the FPGA
uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
uint8_t *data = dmaBuf;
bool ReaderIsActive = FALSE;
bool TagIsActive = FALSE;
- iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
-
// Set up the demodulator for tag -> reader responses.
DemodInit(receivedResponse, receivedResponsePar);
int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
- if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
+
+ if (readBufDataP <= dmaBufDataP) // we are processing the same block of data which is currently being transferred
dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
- } else {
+ else
dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
- }
+
// test for length of buffer
if(dataLen > maxDataLen) { // we are more behind than ever...
maxDataLen = dataLen;
if (sniffCounter & 0x01) {
- if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
+ // no need to try decoding tag data if the reader is sending
+ if(!TagIsActive) {
uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
LED_C_INV();
+
if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
/* And ready to receive another command. */
- UartReset();
+ UartInit(receivedCmd, receivedCmdPar);
/* And also reset the demod code */
DemodReset();
ReaderIsActive = (Uart.state != STATE_UNSYNCD);
}
- if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
+ // no need to try decoding tag data if the reader is sending
+ if(!ReaderIsActive) {
uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
LED_C_INV();
// And ready to receive another response.
DemodReset();
+
+ // And reset the Miller decoder including its (now outdated) input buffer
+ UartInit(receivedCmd, receivedCmdPar);
}
TagIsActive = (Demod.state != DEMOD_UNSYNCD);
}
previous_data = *data;
sniffCounter++;
data++;
- if(data == dmaBuf + DMA_BUFFER_SIZE) {
+
+ if(data == dmaBuf + DMA_BUFFER_SIZE)
data = dmaBuf;
- }
} // main cycle
- DbpString("COMMAND FINISHED");
-
FpgaDisableSscDma();
MfSniffEnd();
-
- Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
LEDsoff();
+ Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
+ set_tracing(FALSE);
}