]> cvs.zerfleddert.de Git - proxmark3-svn/blobdiff - client/cmdhfmfhard.c
chg: moved to header file
[proxmark3-svn] / client / cmdhfmfhard.c
index 95a6f8d7f04a6a8bf8f0d9b6708ff15d1721efdc..3fed7c95b05e546c6a16de830ebb4775ddeee685 100644 (file)
@@ -1,6 +1,7 @@
 //-----------------------------------------------------------------------------
 // Copyright (C) 2015 piwi
-//
+// fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
+// fiddled with 2016 Matrix ( sub testing of nonces while collecting )
 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
 // at your option, any later version. See the LICENSE.txt file for the text of
 // the license.
 //   Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on 
 //   Computer and Communications Security, 2015
 //-----------------------------------------------------------------------------
-
-#include <stdio.h>
-#include <stdlib.h> 
-#include <string.h>
-#include <pthread.h>
-#include <locale.h>
-#include <math.h>
-#include "proxmark3.h"
-#include "cmdmain.h"
-#include "ui.h"
-#include "util.h"
-#include "nonce2key/crapto1.h"
-#include "parity.h"
-
-// uint32_t test_state_odd = 0;
-// uint32_t test_state_even = 0;
+#include "cmdhfmfhard.h"
+#include "cmdhw.h"
 
 #define CONFIDENCE_THRESHOLD   0.95            // Collect nonces until we are certain enough that the following brute force is successfull
-#define GOOD_BYTES_REQUIRED            30
+#define GOOD_BYTES_REQUIRED    13              // default 28, could be smaller == faster
+#define NONCES_THRESHOLD       5000            // every N nonces check if we can crack the key
+#define CRACKING_THRESHOLD     36.0f //38.50f          // as 2^38.5
+#define MAX_BUCKETS            128
 
+#define END_OF_LIST_MARKER             0xFFFFFFFF
 
 static const float p_K[257] = {                // the probability that a random nonce has a Sum Property == K 
        0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 
@@ -68,7 +59,6 @@ static const float p_K[257] = {               // the probability that a random nonce has a Su
        0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
        0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
        0.0290 };
-
                
 typedef struct noncelistentry {
        uint32_t nonce_enc;
@@ -84,11 +74,13 @@ typedef struct noncelist {
        float Sum8_prob;
        bool updated;
        noncelistentry_t *first;
-       float score1, score2;
+       float score1;
+       uint_fast8_t score2;
 } noncelist_t;
 
-
-static uint32_t cuid;
+static size_t nonces_to_bruteforce = 0;
+static noncelistentry_t *brute_force_nonces[256];
+static uint32_t cuid = 0;
 static noncelist_t nonces[256];
 static uint8_t best_first_bytes[256];
 static uint16_t first_byte_Sum = 0;
@@ -123,9 +115,28 @@ typedef struct {
 
 static partial_indexed_statelist_t partial_statelist[17];
 static partial_indexed_statelist_t statelist_bitflip;
-
 static statelist_t *candidates = NULL;
 
+bool field_off = false;
+
+uint64_t foundkey = 0;
+size_t keys_found = 0;
+size_t bucket_count = 0;
+statelist_t* buckets[MAX_BUCKETS];
+static uint64_t total_states_tested = 0;
+size_t thread_count = 4;
+
+// these bitsliced states will hold identical states in all slices
+bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
+
+// arrays of bitsliced states with identical values in all slices
+bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
+bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
+
+#define EXACT_COUNT
+
+static bool generate_candidates(uint16_t, uint16_t);
+static bool brute_force(void);
 
 static int add_nonce(uint32_t nonce_enc, uint8_t par_enc) 
 {
@@ -154,14 +165,17 @@ static int add_nonce(uint32_t nonce_enc, uint8_t par_enc)
                } else {                                        // add new entry at end of existing list.
                        p2 = p2->next = malloc(sizeof(noncelistentry_t));
                }
-       } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) {                          // found distinct 2nd byte. Need to insert.
+               if (p2 == NULL) return 0;                                                       // memory allocation failed
+       }
+       else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) {                    // found distinct 2nd byte. Need to insert.
                if (p2 == NULL) {                       // need to insert at start of list
                        p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
                } else {
                        p2 = p2->next = malloc(sizeof(noncelistentry_t));
                }
-       } else {                                                                                        // we have seen this 2nd byte before. Nothing to add or insert. 
-               return (0);
+               if (p2 == NULL) return 0;                                                       // memory allocation failed
+       } else {
+               return 0;                                                                       // we have seen this 2nd byte before. Nothing to add or insert.
        }
 
        // add or insert new data
@@ -169,14 +183,18 @@ static int add_nonce(uint32_t nonce_enc, uint8_t par_enc)
        p2->nonce_enc = nonce_enc;
        p2->par_enc = par_enc;
 
+    if(nonces_to_bruteforce < 256){
+        brute_force_nonces[nonces_to_bruteforce] = p2;
+        nonces_to_bruteforce++;
+    }
+
        nonces[first_byte].num++;
        nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04));
        nonces[first_byte].updated = true;   // indicates that we need to recalculate the Sum(a8) probability for this first byte
 
-       return (1);                             // new nonce added
+       return 1;                               // new nonce added
 }
 
-
 static void init_nonce_memory(void)
 {
        for (uint16_t i = 0; i < 256; i++) {
@@ -192,7 +210,6 @@ static void init_nonce_memory(void)
        num_good_first_bytes = 0;
 }
 
-
 static void free_nonce_list(noncelistentry_t *p)
 {
        if (p == NULL) {
@@ -203,7 +220,6 @@ static void free_nonce_list(noncelistentry_t *p)
        }
 }
 
-
 static void free_nonces_memory(void)
 {
        for (uint16_t i = 0; i < 256; i++) {
@@ -211,7 +227,6 @@ static void free_nonces_memory(void)
        }
 }
 
-
 static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even)
 { 
        uint16_t sum = 0;
@@ -235,7 +250,6 @@ static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even)
        return sum;
 }
 
-
 // static uint16_t SumProperty(struct Crypto1State *s)
 // {
        // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
@@ -243,7 +257,6 @@ static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even)
        // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
 // }
 
-
 static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k) 
 {
        // for efficient computation we are using the recursive definition
@@ -281,8 +294,7 @@ static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k)
                }
        }
 }
-       
-       
+
 static float sum_probability(uint16_t K, uint16_t n, uint16_t k)
 {
        const uint16_t N = 256;
@@ -290,19 +302,19 @@ static float sum_probability(uint16_t K, uint16_t n, uint16_t k)
        if (k > K || p_K[K] == 0.0) return 0.0;
 
        double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k);
+       if (p_T_is_k_when_S_is_K == 0.0) return 0.0;
+
        double p_S_is_K = p_K[K];
-       double p_T_is_k = 0;
+       double p_T_is_k = 0.0;
        for (uint16_t i = 0; i <= 256; i++) {
                if (p_K[i] != 0.0) {
                        p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
                }
        }
+       if (p_T_is_k == 0.0) return 0.0;
        return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
 }
 
-               
-
-       
 static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff) 
 {
        static const uint_fast8_t common_bits_LUT[256] = {
@@ -327,7 +339,6 @@ static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff)
        return common_bits_LUT[bytes_diff];
 }
 
-
 static void Tests()
 {
        // printf("Tests: Partial Statelist sizes\n");
@@ -445,32 +456,31 @@ static void Tests()
        // crypto1_destroy(pcs);
 
        
-       
        // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
 
-       printf("\nTests: Actual BitFlipProperties odd/even:\n");
-       for (uint16_t i = 0; i < 256; i++) {
-               printf("[%02x]:%c  ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
-               if (i % 8 == 7) {
-                       printf("\n");
-               }
-       }
+       // printf("\nTests: Actual BitFlipProperties odd/even:\n");
+       // for (uint16_t i = 0; i < 256; i++) {
+               // printf("[%02x]:%c  ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
+               // if (i % 8 == 7) {
+                       // printf("\n");
+               // }
+       // }
        
-       printf("\nTests: Sorted First Bytes:\n");
-       for (uint16_t i = 0; i < 256; i++) {
-               uint8_t best_byte = best_first_bytes[i];
-               printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n", 
-               //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n", 
-                       i, best_byte, 
-                       nonces[best_byte].num,
-                       nonces[best_byte].Sum,
-                       nonces[best_byte].Sum8_guess,
-                       nonces[best_byte].Sum8_prob * 100,
-                       nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
-                       //nonces[best_byte].score1,
-                       //nonces[best_byte].score2
-                       );
-       }
+       // printf("\nTests: Sorted First Bytes:\n");
+       // for (uint16_t i = 0; i < 256; i++) {
+               // uint8_t best_byte = best_first_bytes[i];
+               // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n", 
+               // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n", 
+                       // i, best_byte, 
+                       // nonces[best_byte].num,
+                       // nonces[best_byte].Sum,
+                       // nonces[best_byte].Sum8_guess,
+                       // nonces[best_byte].Sum8_prob * 100,
+                       // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
+                       // //nonces[best_byte].score1,
+                       // //nonces[best_byte].score2
+                       // );
+       // }
        
        // printf("\nTests: parity performance\n");
        // time_t time1p = clock();
@@ -490,8 +500,7 @@ static void Tests()
 
 }
 
-
-static void sort_best_first_bytes(void)
+static uint16_t sort_best_first_bytes(void)
 {
        // sort based on probability for correct guess  
        for (uint16_t i = 0; i < 256; i++ ) {
@@ -506,8 +515,8 @@ static void sort_best_first_bytes(void)
                                best_first_bytes[k] = best_first_bytes[k-1];
                        }
                }
-                       best_first_bytes[j] = i;
-               }
+               best_first_bytes[j] = i;
+       }
 
        // determine how many are above the CONFIDENCE_THRESHOLD
        uint16_t num_good_nonces = 0;
@@ -517,6 +526,8 @@ static void sort_best_first_bytes(void)
                }
        }
        
+       if (num_good_nonces == 0) return 0;
+
        uint16_t best_first_byte = 0;
 
        // select the best possible first byte based on number of common bits with all {b'}
@@ -539,25 +550,28 @@ static void sort_best_first_bytes(void)
        for (uint16_t i = 0; i < num_good_nonces; i++ ) {
                uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess;
                float bitflip_prob = 1.0;
-               if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
+               
+               if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE])
                        bitflip_prob = 0.09375;
-               }
+               
                nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob;
-               if (p_K[sum8] * bitflip_prob <= min_p_K) {
+               
+               if (p_K[sum8] * bitflip_prob <= min_p_K)
                        min_p_K = p_K[sum8] * bitflip_prob;
-               }
+               
        }
 
 
        // use number of commmon bits as a tie breaker
-       uint16_t max_common_bits = 0;
+       uint_fast8_t max_common_bits = 0;
        for (uint16_t i = 0; i < num_good_nonces; i++) {
+
                float bitflip_prob = 1.0;
-               if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
+               if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE])
                        bitflip_prob = 0.09375;
-               }
+               
                if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) {
-                       uint16_t sum_common_bits = 0;
+                       uint_fast8_t sum_common_bits = 0;
                        for (uint16_t j = 0; j < num_good_nonces; j++) {
                                sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]);
                        }
@@ -570,16 +584,17 @@ static void sort_best_first_bytes(void)
        }       
 
        // swap best possible first byte to the pole position
-       uint16_t temp = best_first_bytes[0];
-       best_first_bytes[0] = best_first_bytes[best_first_byte];
-       best_first_bytes[best_first_byte] = temp;
+       if (best_first_byte != 0) {
+               uint16_t temp = best_first_bytes[0];
+               best_first_bytes[0] = best_first_bytes[best_first_byte];
+               best_first_bytes[best_first_byte] = temp;
+       }
        
+       return num_good_nonces;
 }
 
-
 static uint16_t estimate_second_byte_sum(void) 
-{
-       
+{      
        for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
                float Sum8_prob = 0.0;
                uint16_t Sum8 = 0;
@@ -596,28 +611,17 @@ static uint16_t estimate_second_byte_sum(void)
                        nonces[first_byte].updated = false;
                }
        }
-       
-       sort_best_first_bytes();
-
-       uint16_t num_good_nonces = 0;
-       for (uint16_t i = 0; i < 256; i++) {
-               if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
-                       ++num_good_nonces;
-               }
-       }
-       
-       return num_good_nonces;
+       return sort_best_first_bytes();
 }      
 
-
 static int read_nonce_file(void)
 {
        FILE *fnonces = NULL;
-       uint8_t trgBlockNo;
-       uint8_t trgKeyType;
+       uint8_t trgBlockNo = 0;
+       uint8_t trgKeyType = 0;
        uint8_t read_buf[9];
-       uint32_t nt_enc1, nt_enc2;
-       uint8_t par_enc;
+       uint32_t nt_enc1 = 0, nt_enc2 = 0;
+       uint8_t par_enc = 0;
        int total_num_nonces = 0;
        
        if ((fnonces = fopen("nonces.bin","rb")) == NULL) { 
@@ -626,6 +630,7 @@ static int read_nonce_file(void)
        }
 
        PrintAndLog("Reading nonces from file nonces.bin...");
+       memset (read_buf, 0, sizeof (read_buf));
        size_t bytes_read = fread(read_buf, 1, 6, fnonces);
        if ( bytes_read == 0) {
                PrintAndLog("File reading error.");
@@ -635,8 +640,10 @@ static int read_nonce_file(void)
        cuid = bytes_to_num(read_buf, 4);
        trgBlockNo = bytes_to_num(read_buf+4, 1);
        trgKeyType = bytes_to_num(read_buf+5, 1);
-
-       while (fread(read_buf, 1, 9, fnonces) == 9) {
+       size_t ret = 0;
+       do {
+               memset (read_buf, 0, sizeof (read_buf));
+               if ((ret = fread(read_buf, 1, 9, fnonces)) == 9) {
                nt_enc1 = bytes_to_num(read_buf, 4);
                nt_enc2 = bytes_to_num(read_buf+4, 4);
                par_enc = bytes_to_num(read_buf+8, 1);
@@ -646,17 +653,16 @@ static int read_nonce_file(void)
                add_nonce(nt_enc2, par_enc & 0x0f);
                total_num_nonces += 2;
        }
+       } while (ret == 9);
+
        fclose(fnonces);
        PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B');
-
        return 0;
 }
 
-
 static void Check_for_FilterFlipProperties(void)
 {
        printf("Checking for Filter Flip Properties...\n");
-
        uint16_t num_bitflips = 0;
        
        for (uint16_t i = 0; i < 256; i++) {
@@ -665,6 +671,8 @@ static void Check_for_FilterFlipProperties(void)
        }
        
        for (uint16_t i = 0; i < 256; i++) {
+               if (!nonces[i].first || !nonces[i^0x80].first || !nonces[i^0x40].first) continue;
+
                uint8_t parity1 = (nonces[i].first->par_enc) >> 3;                              // parity of first byte
                uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3;     // XOR 0x80 = last bit flipped
                uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3;    // XOR 0x40 = second last bit flipped
@@ -678,16 +686,13 @@ static void Check_for_FilterFlipProperties(void)
                }
        }
        
-       if (write_stats) {
+       if (write_stats)
                fprintf(fstats, "%d;", num_bitflips);
-       }
 }
 
-
 static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc)
 {
-       struct Crypto1State sim_cs;
-
+       struct Crypto1State sim_cs = {0, 0};
        // init cryptostate with key:
        for(int8_t i = 47; i > 0; i -= 2) {
                sim_cs.odd  = sim_cs.odd  << 1 | BIT(test_key, (i - 1) ^ 7);
@@ -707,7 +712,6 @@ static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t
        
 }
 
-
 static void simulate_acquire_nonces()
 {
        clock_t time1 = clock();
@@ -740,8 +744,8 @@ static void simulate_acquire_nonces()
                        num_good_first_bytes = estimate_second_byte_sum();
                        if (total_num_nonces > next_fivehundred) {
                                next_fivehundred = (total_num_nonces/500+1) * 500;
-                               printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
-                                       total_num_nonces, 
+                               printf("Acquired %5d nonces (%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
+                                       total_num_nonces,
                                        total_added_nonces,
                                        CONFIDENCE_THRESHOLD * 100.0,
                                        num_good_first_bytes);
@@ -761,12 +765,10 @@ static void simulate_acquire_nonces()
                
 }
 
-
 static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow)
 {
        clock_t time1 = clock();
        bool initialize = true;
-       bool field_off = false;
        bool finished = false;
        bool filter_flip_checked = false;
        uint32_t flags = 0;
@@ -774,126 +776,134 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_
        uint32_t total_num_nonces = 0;
        uint32_t next_fivehundred = 500;
        uint32_t total_added_nonces = 0;
+       uint32_t idx = 1;
+       uint32_t timeout  = 0;
        FILE *fnonces = NULL;
+       field_off = false;
        UsbCommand resp;
-
+       UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {0,0,0} };
+       memcpy(c.d.asBytes, key, 6);    
+       c.arg[0] = blockNo + (keyType * 0x100);
+       c.arg[1] = trgBlockNo + (trgKeyType * 0x100);
+               
        printf("Acquiring nonces...\n");
-       
-       clearCommandBuffer();
-
        do {
+       
                flags = 0;
                flags |= initialize ? 0x0001 : 0;
                flags |= slow ? 0x0002 : 0;
                flags |= field_off ? 0x0004 : 0;
-               UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags}};
-               memcpy(c.d.asBytes, key, 6);
+               c.arg[2] = flags;
 
+               clearCommandBuffer();
                SendCommand(&c);
                
-               if (field_off) finished = true;
-               
-               if (initialize) {
-                       if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1;
-                       if (resp.arg[0]) return resp.arg[0];  // error during nested_hard
+               if (field_off) break;
+
+               while(!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) {
+                       timeout++;
+                       printf(".");
+                       if (timeout > 3) {
+                               PrintAndLog("\nNo response from Proxmark. Aborting...");
+                               if (fnonces) fclose(fnonces);
+                               return 1;
+                       }
+               }               
 
+               if (resp.arg[0]) {
+                       if (fnonces) fclose(fnonces);
+                       return resp.arg[0];  // error during nested_hard
+               }
+                       
+               if (initialize) {
+                       // global var CUID
                        cuid = resp.arg[1];
-                       // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid); 
                        if (nonce_file_write && fnonces == NULL) {
                                if ((fnonces = fopen("nonces.bin","wb")) == NULL) { 
                                        PrintAndLog("Could not create file nonces.bin");
                                        return 3;
                                }
                                PrintAndLog("Writing acquired nonces to binary file nonces.bin");
+                               memset (write_buf, 0, sizeof (write_buf));
                                num_to_bytes(cuid, 4, write_buf);
                                fwrite(write_buf, 1, 4, fnonces);
                                fwrite(&trgBlockNo, 1, 1, fnonces);
                                fwrite(&trgKeyType, 1, 1, fnonces);
+                               fflush(fnonces);
                        }
+                       initialize = false;                     
                }
-
-               if (!initialize) {
-                       uint32_t nt_enc1, nt_enc2;
-                       uint8_t par_enc;
-                       uint16_t num_acquired_nonces = resp.arg[2];
-                       uint8_t *bufp = resp.d.asBytes;
-                       for (uint16_t i = 0; i < num_acquired_nonces; i+=2) {
-                               nt_enc1 = bytes_to_num(bufp, 4);
-                               nt_enc2 = bytes_to_num(bufp+4, 4);
-                               par_enc = bytes_to_num(bufp+8, 1);
-                               
-                               //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
-                               total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
-                               //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
-                               total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
-                               
-
-                               if (nonce_file_write) {
-                                       fwrite(bufp, 1, 9, fnonces);
-                               }
-                               
-                               bufp += 9;
+               
+               uint32_t nt_enc1, nt_enc2;
+               uint8_t par_enc;
+               uint16_t num_acquired_nonces = resp.arg[2];
+               uint8_t *bufp = resp.d.asBytes;
+               for (uint16_t i = 0; i < num_acquired_nonces; i += 2) {
+                       nt_enc1 = bytes_to_num(bufp, 4);
+                       nt_enc2 = bytes_to_num(bufp+4, 4);
+                       par_enc = bytes_to_num(bufp+8, 1);
+                       
+                       total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
+                       total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
+                       
+                       if (nonce_file_write && fnonces) {
+                               fwrite(bufp, 1, 9, fnonces);
+                               fflush(fnonces);
                        }
-
-                       total_num_nonces += num_acquired_nonces;
+                       bufp += 9;
                }
-               
-               if (first_byte_num == 256 ) {
-                       // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
+               total_num_nonces += num_acquired_nonces;
+
+               if (first_byte_num == 256) {
+
                        if (!filter_flip_checked) {
                                Check_for_FilterFlipProperties();
                                filter_flip_checked = true;
                        }
+
                        num_good_first_bytes = estimate_second_byte_sum();
+
                        if (total_num_nonces > next_fivehundred) {
                                next_fivehundred = (total_num_nonces/500+1) * 500;
-                               printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
-                                       total_num_nonces, 
+                               printf("Acquired %5d nonces (%5d/%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
+                                       total_num_nonces,
                                        total_added_nonces,
+                                       NONCES_THRESHOLD * idx,
                                        CONFIDENCE_THRESHOLD * 100.0,
-                                       num_good_first_bytes);
+                                       num_good_first_bytes
+                                       );                              
                        }
-                       if (num_good_first_bytes >= GOOD_BYTES_REQUIRED) {
-                               field_off = true;       // switch off field with next SendCommand and then finish
-                       }
-               }
-
-               if (!initialize) {
-                       if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) {
-                               fclose(fnonces);
-                               return 1;
-                       }
-                       if (resp.arg[0]) {
-                               fclose(fnonces);
-                               return resp.arg[0];  // error during nested_hard
+                       
+                       if (total_added_nonces >= (NONCES_THRESHOLD * idx)) {
+                               if (num_good_first_bytes > 0) {
+                                       if (generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess) || known_target_key != -1) {
+                                               field_off = brute_force(); // switch off field with next SendCommand and then finish
+                                       }
+                               }
+                               idx++;
                        }
                }
-
-               initialize = false;
-
        } while (!finished);
 
-       
-       if (nonce_file_write) {
+       if (nonce_file_write && fnonces)
                fclose(fnonces);
-       }
        
        time1 = clock() - time1;
        if ( time1 > 0 ) {
-       PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)", 
-               total_num_nonces, 
-               ((float)time1)/CLOCKS_PER_SEC, 
-               total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1
+               PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)", 
+                       total_num_nonces, 
+                       ((float)time1)/CLOCKS_PER_SEC, 
+                       total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1
                );
        }
        return 0;
 }
 
-
 static int init_partial_statelists(void)
 {
        const uint32_t sizes_odd[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
-       const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
+//     const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
+       const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73357, 0, 18127, 0, 126635 };
        
        printf("Allocating memory for partial statelists...\n");
        for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
@@ -933,13 +943,12 @@ static int init_partial_statelists(void)
                for (uint16_t i = 0; i <= 16; i += 2) {
                        uint32_t *p = partial_statelist[i].states[odd_even];
                        p += partial_statelist[i].len[odd_even];
-                       *p = 0xffffffff;
+                       *p = END_OF_LIST_MARKER;
                }
        }
        
        return 0;
 }      
-               
 
 static void init_BitFlip_statelist(void)
 {
@@ -960,10 +969,9 @@ static void init_BitFlip_statelist(void)
        }
        // set len and add End Of List marker
        statelist_bitflip.len[0] = p - statelist_bitflip.states[0];
-       *p = 0xffffffff;
-       statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
+       *p = END_OF_LIST_MARKER;
+       //statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
 }
-
                
 static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even)
 {
@@ -971,12 +979,11 @@ static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_
 
        if (p == NULL) return NULL;
        while (*p < (state & mask)) p++;
-       if (*p == 0xffffffff) return NULL;                                      // reached end of list, no match
+       if (*p == END_OF_LIST_MARKER) return NULL;                                      // reached end of list, no match
        if ((*p & mask) == (state & mask)) return p;            // found a match.
        return NULL;                                                                            // no match
 } 
 
-
 static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
 {
        uint_fast8_t j_1_bit_mask = 0x01 << (bit-1);
@@ -988,7 +995,6 @@ static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8
        return !all_diff;
 }
 
-
 static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
 {
        uint_fast8_t j_bit_mask = 0x01 << bit;
@@ -999,7 +1005,6 @@ static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t
        return all_diff;
 }
 
-
 static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, odd_even_t odd_even)
 {
        if (odd_even) {
@@ -1030,7 +1035,6 @@ static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8
        return true;                                    // valid state
 }
 
-
 static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even) 
 {
        for (uint16_t i = 1; i < num_good_first_bytes; i++) {
@@ -1053,7 +1057,7 @@ static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even)
                                        uint16_t part_sum_a8 = (odd_even == ODD_STATE) ? r : s;
                                        uint32_t *p = find_first_state(state, mask, &partial_statelist[part_sum_a8], odd_even);
                                        if (p != NULL) {
-                                               while ((state & mask) == (*p & mask) && (*p != 0xffffffff)) {
+                                               while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
                                                        if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
                                                                found_match = true;
                                                                // if ((odd_even == ODD_STATE && state == test_state_odd)
@@ -1094,7 +1098,6 @@ static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even)
        return true;
 }
 
-
 static bool all_bit_flips_match(uint32_t state, odd_even_t odd_even) 
 {
        for (uint16_t i = 0; i < 256; i++) {
@@ -1112,7 +1115,7 @@ static bool all_bit_flips_match(uint32_t state, odd_even_t odd_even)
                        bool found_match = false;
                        uint32_t *p = find_first_state(state, mask, &statelist_bitflip, 0);
                        if (p != NULL) {
-                               while ((state & mask) == (*p & mask) && (*p != 0xffffffff)) {
+                               while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
                                        if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
                                                found_match = true;
                                                // if ((odd_even == ODD_STATE && state == test_state_odd)
@@ -1151,13 +1154,11 @@ static bool all_bit_flips_match(uint32_t state, odd_even_t odd_even)
        return true;
 }
 
-
 static struct sl_cache_entry {
        uint32_t *sl;
        uint32_t len;
        } sl_cache[17][17][2];
 
-
 static void init_statelist_cache(void)
 {
        for (uint16_t i = 0; i < 17; i+=2) {
@@ -1170,7 +1171,6 @@ static void init_statelist_cache(void)
        }               
 }
 
-
 static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even)
 {
        uint32_t worstcase_size = 1<<20;
@@ -1188,11 +1188,11 @@ static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, ui
                return 4;
        }
        uint32_t *add_p = candidates->states[odd_even]; 
-       for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != 0xffffffff; p1++) {
+       for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != END_OF_LIST_MARKER; p1++) {
                uint32_t search_mask = 0x000ffff0;
                uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even);
-               if (p2 != NULL) {
-                       while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != 0xffffffff) {
+               if (p1 != NULL && p2 != NULL) {
+                       while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != END_OF_LIST_MARKER) {
                                if ((nonces[best_first_bytes[0]].BitFlip[odd_even] && find_first_state((*p1 << 4) | *p2, 0x000fffff, &statelist_bitflip, 0))
                                        || !nonces[best_first_bytes[0]].BitFlip[odd_even]) {
                                if (all_other_first_bytes_match((*p1 << 4) | *p2, odd_even)) {
@@ -1207,7 +1207,7 @@ static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, ui
        }
 
        // set end of list marker and len
-       *add_p = 0xffffffff
+       *add_p = END_OF_LIST_MARKER
        candidates->len[odd_even] = add_p - candidates->states[odd_even];
 
        candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1));
@@ -1218,7 +1218,6 @@ static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, ui
        return 0;
 }
 
-
 static statelist_t *add_more_candidates(statelist_t *current_candidates)
 {
        statelist_t *new_candidates = NULL;
@@ -1230,6 +1229,8 @@ static statelist_t *add_more_candidates(statelist_t *current_candidates)
        } else {
                new_candidates = current_candidates->next = (statelist_t *)malloc(sizeof(statelist_t));
        }
+       if (!new_candidates) return NULL;
+
        new_candidates->next = NULL;
        new_candidates->len[ODD_STATE] = 0;
        new_candidates->len[EVEN_STATE] = 0;
@@ -1238,8 +1239,7 @@ static statelist_t *add_more_candidates(statelist_t *current_candidates)
        return new_candidates;
 }
 
-
-static void TestIfKeyExists(uint64_t key)
+static bool TestIfKeyExists(uint64_t key)
 {
        struct Crypto1State *pcs;
        pcs = crypto1_create(key);
@@ -1248,49 +1248,53 @@ static void TestIfKeyExists(uint64_t key)
        uint32_t state_odd = pcs->odd & 0x00ffffff;
        uint32_t state_even = pcs->even & 0x00ffffff;
        //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
-       
+       printf("Validating key search space\n");
        uint64_t count = 0;
        for (statelist_t *p = candidates; p != NULL; p = p->next) {
                bool found_odd = false;
                bool found_even = false;
                uint32_t *p_odd = p->states[ODD_STATE];
                uint32_t *p_even = p->states[EVEN_STATE];
-               while (*p_odd != 0xffffffff) {
+               while (*p_odd != END_OF_LIST_MARKER) {
                        if ((*p_odd & 0x00ffffff) == state_odd) {
                                found_odd = true;
                                break;
                        }
                        p_odd++;
                }
-               while (*p_even != 0xffffffff) {
-                       if ((*p_even & 0x00ffffff) == state_even) {
+               while (*p_even != END_OF_LIST_MARKER) {
+                       if ((*p_even & 0x00ffffff) == state_even)
                                found_even = true;
-                       }
+
                        p_even++;
                }
                count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]);
                if (found_odd && found_even) {
-                       PrintAndLog("Key Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. A brute force would have taken approx %lld minutes.", 
-                               count, log(count)/log(2), 
-                               maximum_states, log(maximum_states)/log(2),
-                               (count>>23)/60);
-                       if (write_stats) {
-                               fprintf(fstats, "1\n");
+                       if (known_target_key != -1) {
+                               PrintAndLog("Key Found after testing %llu (2^%1.1f) out of %lld (2^%1.1f) keys.", 
+                                       count,
+                                       log(count)/log(2), 
+                                       maximum_states,
+                                       log(maximum_states)/log(2)
+                                       );
+                               if (write_stats)
+                                       fprintf(fstats, "1\n");                 
                        }
                        crypto1_destroy(pcs);
-                       return;
+                       return true;
                }
        }
 
-       printf("Key NOT found!\n");
-       if (write_stats) {
-               fprintf(fstats, "0\n");
+       if (known_target_key != -1) {
+               printf("Key NOT found!\n");
+               if (write_stats)
+                       fprintf(fstats, "0\n");
        }
        crypto1_destroy(pcs);
+       return false;
 }
 
-       
-static void generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
+static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
 {
        printf("Generating crypto1 state candidates... \n");
        
@@ -1304,30 +1308,34 @@ static void generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
                        }
                }
        }
-       printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0));
+
+       if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
+
+       printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2));
        
        init_statelist_cache();
        
        for (uint16_t p = 0; p <= 16; p += 2) {
                for (uint16_t q = 0; q <= 16; q += 2) {
                        if (p*(16-q) + (16-p)*q == sum_a0) {
-                               printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n", 
-                                               p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
+                               // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n", 
+                                               // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
                                for (uint16_t r = 0; r <= 16; r += 2) {
                                        for (uint16_t s = 0; s <= 16; s += 2) {
                                                if (r*(16-s) + (16-r)*s == sum_a8) {
                                                        current_candidates = add_more_candidates(current_candidates);
+                                                       if (current_candidates != NULL) {
                                                        // check for the smallest partial statelist. Try this first - it might give 0 candidates 
                                                        // and eliminate the need to calculate the other part
                                                        if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE]) 
                                                                        < MIN(partial_statelist[q].len[EVEN_STATE], partial_statelist[s].len[EVEN_STATE])) { 
-                                                       add_matching_states(current_candidates, p, r, ODD_STATE);
+                                                               add_matching_states(current_candidates, p, r, ODD_STATE);
                                                                if(current_candidates->len[ODD_STATE]) {
-                                                       add_matching_states(current_candidates, q, s, EVEN_STATE);
+                                                                       add_matching_states(current_candidates, q, s, EVEN_STATE);
                                                                } else {
                                                                        current_candidates->len[EVEN_STATE] = 0;
                                                                        uint32_t *p = current_candidates->states[EVEN_STATE] = malloc(sizeof(uint32_t));
-                                                                       *p = 0xffffffff;
+                                                                       *p = END_OF_LIST_MARKER;
                                                                }
                                                        } else {
                                                                add_matching_states(current_candidates, q, s, EVEN_STATE);
@@ -1336,35 +1344,38 @@ static void generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
                                                                } else {
                                                                        current_candidates->len[ODD_STATE] = 0;
                                                                        uint32_t *p = current_candidates->states[ODD_STATE] = malloc(sizeof(uint32_t));
-                                                                       *p = 0xffffffff;
+                                                                       *p = END_OF_LIST_MARKER;
                                                                }
                                                        }
-                                                       printf("Odd  state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2)); 
-                                                       printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2)); 
+                                                       //printf("Odd  state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2)); 
+                                                       //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2)); 
                                                }
                                        }
                                }
                        }
                }
        }                                       
+       }                                       
 
-       
        maximum_states = 0;
-       for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) {
+       unsigned int n = 0;
+       for (statelist_t *sl = candidates; sl != NULL && n < MAX_BUCKETS; sl = sl->next, n++) {
                maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
        }
-       printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0));
+
+       if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
+
+       float kcalc = log(maximum_states)/log(2);
+       printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc);
        if (write_stats) {
-               if (maximum_states != 0) {
-                       fprintf(fstats, "%1.1f;", log(maximum_states)/log(2.0));
-               } else {
-                       fprintf(fstats, "%1.1f;", 0.0);
-               }
+               fprintf(fstats, "%1.1f;", (kcalc != 0) ? kcalc : 0.0);
        }
-}
+       if (kcalc < CRACKING_THRESHOLD) return true;
 
+       return false;
+}
 
-static void    free_candidates_memory(statelist_t *sl)
+static void free_candidates_memory(statelist_t *sl)
 {
        if (sl == NULL) {
                return;
@@ -1374,7 +1385,6 @@ static void       free_candidates_memory(statelist_t *sl)
        }
 }
 
-
 static void free_statelist_cache(void)
 {
        for (uint16_t i = 0; i < 17; i+=2) {
@@ -1386,25 +1396,347 @@ static void free_statelist_cache(void)
        }               
 }
 
+static const uint64_t crack_states_bitsliced(statelist_t *p){
+    // the idea to roll back the half-states before combining them was suggested/explained to me by bla
+    // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
+    uint64_t key = -1;
+       uint8_t bSize = sizeof(bitslice_t);
+
+#ifdef EXACT_COUNT
+    size_t bucket_states_tested = 0;
+    size_t bucket_size[p->len[EVEN_STATE]/MAX_BITSLICES];
+#else
+    const size_t bucket_states_tested = (p->len[EVEN_STATE])*(p->len[ODD_STATE]);
+#endif
+
+    bitslice_t *bitsliced_even_states[p->len[EVEN_STATE]/MAX_BITSLICES];
+    size_t bitsliced_blocks = 0;
+    uint32_t const * restrict even_end = p->states[EVEN_STATE]+p->len[EVEN_STATE];
+       
+    // bitslice all the even states
+    for(uint32_t * restrict p_even = p->states[EVEN_STATE]; p_even < even_end; p_even += MAX_BITSLICES){
+
+#ifdef __WIN32
+       #ifdef __MINGW32__
+               bitslice_t * restrict lstate_p = __mingw_aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
+       #else           
+               bitslice_t * restrict lstate_p = _aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
+       #endif
+#else
+       #ifdef __APPLE__
+               bitslice_t * restrict lstate_p = malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize);
+       #else
+               bitslice_t * restrict lstate_p = memalign(bSize, (STATE_SIZE+ROLLBACK_SIZE) * bSize);
+       #endif
+#endif
+
+               if ( !lstate_p )        {
+                       __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
+                       return key;
+               }
+                               
+               memset(lstate_p+1, 0x0, (STATE_SIZE-1)*sizeof(bitslice_t)); // zero even bits
+               
+               // bitslice even half-states
+        const size_t max_slices = (even_end-p_even) < MAX_BITSLICES ? even_end-p_even : MAX_BITSLICES;
+#ifdef EXACT_COUNT
+        bucket_size[bitsliced_blocks] = max_slices;
+#endif
+        for(size_t slice_idx = 0; slice_idx < max_slices; ++slice_idx){
+            uint32_t e = *(p_even+slice_idx);
+            for(size_t bit_idx = 1; bit_idx < STATE_SIZE; bit_idx+=2, e >>= 1){
+                // set even bits
+                if(e&1){
+                    lstate_p[bit_idx].bytes64[slice_idx>>6] |= 1ull << (slice_idx&63);
+                }
+            }
+        }
+        // compute the rollback bits
+        for(size_t rollback = 0; rollback < ROLLBACK_SIZE; ++rollback){
+            // inlined crypto1_bs_lfsr_rollback
+            const bitslice_value_t feedout = lstate_p[0].value;
+            ++lstate_p;
+            const bitslice_value_t ks_bits = crypto1_bs_f20(lstate_p);
+            const bitslice_value_t feedback = (feedout ^ ks_bits     ^ lstate_p[47- 5].value ^ lstate_p[47- 9].value ^
+                                               lstate_p[47-10].value ^ lstate_p[47-12].value ^ lstate_p[47-14].value ^
+                                               lstate_p[47-15].value ^ lstate_p[47-17].value ^ lstate_p[47-19].value ^
+                                               lstate_p[47-24].value ^ lstate_p[47-25].value ^ lstate_p[47-27].value ^
+                                               lstate_p[47-29].value ^ lstate_p[47-35].value ^ lstate_p[47-39].value ^
+                                               lstate_p[47-41].value ^ lstate_p[47-42].value ^ lstate_p[47-43].value);
+            lstate_p[47].value = feedback ^ bitsliced_rollback_byte[rollback].value;
+        }
+        bitsliced_even_states[bitsliced_blocks++] = lstate_p;
+    }
+
+    // bitslice every odd state to every block of even half-states with half-finished rollback
+    for(uint32_t const * restrict p_odd = p->states[ODD_STATE]; p_odd < p->states[ODD_STATE]+p->len[ODD_STATE]; ++p_odd){
+        // early abort
+        if(keys_found){
+            goto out;
+        }
+
+        // set the odd bits and compute rollback
+        uint64_t o = (uint64_t) *p_odd;
+        lfsr_rollback_byte((struct Crypto1State*) &o, 0, 1);
+        // pre-compute part of the odd feedback bits (minus rollback)
+        bool odd_feedback_bit = parity(o&0x9ce5c);
+
+        crypto1_bs_rewind_a0();
+        // set odd bits
+        for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){
+            state_p[state_idx] = (o & 1) ? bs_ones : bs_zeroes;
+        }
+        const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
+
+        for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
+            const bitslice_t * const restrict bitsliced_even_state = bitsliced_even_states[block_idx];
+            size_t state_idx;
+            // set even bits
+            for(state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; state_idx+=2){
+                state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
+            }
+            // set rollback bits
+            uint64_t lo = o;
+            for(; state_idx < STATE_SIZE; lo >>= 1, state_idx+=2){
+                // set the odd bits and take in the odd rollback bits from the even states
+                if(lo & 1){
+                    state_p[state_idx].value = ~bitsliced_even_state[state_idx].value;
+                } else {
+                    state_p[state_idx] = bitsliced_even_state[state_idx];
+                }
+
+                // set the even bits and take in the even rollback bits from the odd states
+                if((lo >> 32) & 1){
+                    state_p[1+state_idx].value = ~bitsliced_even_state[1+state_idx].value;
+                } else {
+                    state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
+                }
+            }
+
+#ifdef EXACT_COUNT
+            bucket_states_tested += (bucket_size[block_idx] > MAX_BITSLICES) ? MAX_BITSLICES : bucket_size[block_idx];
+#endif
+            // pre-compute first keystream and feedback bit vectors
+            const bitslice_value_t ksb = crypto1_bs_f20(state_p);
+            const bitslice_value_t fbb = (odd_feedback         ^ state_p[47- 0].value ^ state_p[47- 5].value ^ // take in the even and rollback bits
+                                          state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
+                                          state_p[47-24].value ^ state_p[47-42].value);
+
+            // vector to contain test results (1 = passed, 0 = failed)
+            bitslice_t results = bs_ones;
+
+            for(size_t tests = 0; tests < NONCE_TESTS; ++tests){
+                size_t parity_bit_idx = 0;
+                bitslice_value_t fb_bits = fbb;
+                bitslice_value_t ks_bits = ksb;
+                state_p = &states[KEYSTREAM_SIZE-1];
+                bitslice_value_t parity_bit_vector = bs_zeroes.value;
+
+                // highest bit is transmitted/received first
+                for(int32_t ks_idx = KEYSTREAM_SIZE-1; ks_idx >= 0; --ks_idx, --state_p){
+                    // decrypt nonce bits
+                    const bitslice_value_t encrypted_nonce_bit_vector = bitsliced_encrypted_nonces[tests][ks_idx].value;
+                    const bitslice_value_t decrypted_nonce_bit_vector = (encrypted_nonce_bit_vector ^ ks_bits);
+
+                    // compute real parity bits on the fly
+                    parity_bit_vector ^= decrypted_nonce_bit_vector;
+
+                    // update state
+                    state_p[0].value = (fb_bits ^ decrypted_nonce_bit_vector);
+
+                    // compute next keystream bit
+                    ks_bits = crypto1_bs_f20(state_p);
+
+                    // for each byte:
+                    if((ks_idx&7) == 0){
+                        // get encrypted parity bits
+                        const bitslice_value_t encrypted_parity_bit_vector = bitsliced_encrypted_parity_bits[tests][parity_bit_idx++].value;
+
+                        // decrypt parity bits
+                        const bitslice_value_t decrypted_parity_bit_vector = (encrypted_parity_bit_vector ^ ks_bits);
+
+                        // compare actual parity bits with decrypted parity bits and take count in results vector
+                        results.value &= (parity_bit_vector ^ decrypted_parity_bit_vector);
+
+                        // make sure we still have a match in our set
+                        // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
+
+                        // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
+                        // the short-circuiting also helps
+                        if(results.bytes64[0] == 0
+#if MAX_BITSLICES > 64
+                           && results.bytes64[1] == 0
+#endif
+#if MAX_BITSLICES > 128
+                           && results.bytes64[2] == 0
+                           && results.bytes64[3] == 0
+#endif
+                          ){
+                            goto stop_tests;
+                        }
+                        // this is about as fast but less portable (requires -std=gnu99)
+                        // asm goto ("ptest %1, %0\n\t"
+                        //           "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
+                        parity_bit_vector = bs_zeroes.value;
+                    }
+                    // compute next feedback bit vector
+                    fb_bits = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^
+                               state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
+                               state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^
+                               state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^
+                               state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^
+                               state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value);
+                }
+            }
+            // all nonce tests were successful: we've found the key in this block!
+            state_t keys[MAX_BITSLICES];
+            crypto1_bs_convert_states(&states[KEYSTREAM_SIZE], keys);
+            for(size_t results_idx = 0; results_idx < MAX_BITSLICES; ++results_idx){
+                if(get_vector_bit(results_idx, results)){
+                    key = keys[results_idx].value;
+                    goto out;
+                }
+            }
+stop_tests:
+            // prepare to set new states
+            crypto1_bs_rewind_a0();
+            continue;
+        }
+    }
+
+out:
+    for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
+               
+#ifdef __WIN32
+       #ifdef __MINGW32__
+               __mingw_aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
+       #else
+               _aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);          
+       #endif
+#else
+               free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
+#endif         
+               
+    }
+    __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
+    return key;
+}
 
-static void brute_force(void)
-{
+static void* crack_states_thread(void* x){
+    const size_t thread_id = (size_t)x;
+    size_t current_bucket = thread_id;
+       statelist_t *bucket = NULL;
+
+    while(current_bucket < bucket_count){
+               if (keys_found) break;
+
+               if ((bucket = buckets[current_bucket])) {
+            const uint64_t key = crack_states_bitsliced(bucket);
+
+                       if (keys_found) break;
+                       else if(key != -1) {
+                               if (TestIfKeyExists(key)) {
+                __sync_fetch_and_add(&keys_found, 1);
+                               __sync_fetch_and_add(&foundkey, key);
+                                       printf("*");
+                                       fflush(stdout);
+                break;
+                               }
+                               printf("!");
+                               fflush(stdout);
+            } else {                           
+                printf(".");
+                               fflush(stdout);
+            }
+        }
+        current_bucket += thread_count;
+    }
+    return NULL;
+}
+
+static bool brute_force(void) {
+       bool ret = false;
        if (known_target_key != -1) {
                PrintAndLog("Looking for known target key in remaining key space...");
-               TestIfKeyExists(known_target_key);
+               ret = TestIfKeyExists(known_target_key);
        } else {
-               PrintAndLog("Brute Force phase is not implemented.");
-       }
+               if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
+
+               PrintAndLog("Brute force phase starting.");
+
+               clock_t time1 = clock();                
+               keys_found = 0;
+               foundkey = 0;
+
+               crypto1_bs_init();
+               memset (bitsliced_rollback_byte, 0, sizeof (bitsliced_rollback_byte));
+               memset (bitsliced_encrypted_nonces, 0, sizeof (bitsliced_encrypted_nonces));
+               memset (bitsliced_encrypted_parity_bits, 0, sizeof (bitsliced_encrypted_parity_bits));
+
+               PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
+               PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes[0]^(cuid>>24));
+               // convert to 32 bit little-endian
+               crypto1_bs_bitslice_value32((best_first_bytes[0]<<24)^cuid, bitsliced_rollback_byte, 8);
+
+               PrintAndLog("Bitslicing nonces...");
+               for(size_t tests = 0; tests < NONCE_TESTS; tests++){
+                       uint32_t test_nonce = brute_force_nonces[tests]->nonce_enc;
+                       uint8_t test_parity = brute_force_nonces[tests]->par_enc;
+                       // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
+                       crypto1_bs_bitslice_value32(cuid^test_nonce, bitsliced_encrypted_nonces[tests], 32);
+                       // convert to 32 bit little-endian
+                       crypto1_bs_bitslice_value32(rev32( ~(test_parity ^ ~(parity(cuid>>24 & 0xff)<<3 | parity(cuid>>16 & 0xff)<<2 | parity(cuid>>8 & 0xff)<<1 | parity(cuid&0xff)))), bitsliced_encrypted_parity_bits[tests], 4);
+               }
+               total_states_tested = 0;
+
+               // count number of states to go
+               bucket_count = 0;
+               buckets[MAX_BUCKETS-1] = NULL;
+               for (statelist_t *p = candidates; p != NULL && bucket_count < MAX_BUCKETS; p = p->next) {
+                       buckets[bucket_count] = p;
+                       bucket_count++;
+               }
+               if (bucket_count < MAX_BUCKETS) buckets[bucket_count] = NULL;
 
-}
+#ifndef __WIN32
+               thread_count = sysconf(_SC_NPROCESSORS_CONF);
+               if ( thread_count < 1)
+                       thread_count = 1;
+#endif  /* _WIN32 */
+
+               pthread_t threads[thread_count];
+
+               // enumerate states using all hardware threads, each thread handles one bucket
+               PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64" states...", thread_count, bucket_count, maximum_states);
+
+               for(size_t i = 0; i < thread_count; i++){
+                       pthread_create(&threads[i], NULL, crack_states_thread, (void*) i);
+               }
+               for(size_t i = 0; i < thread_count; i++){
+                       pthread_join(threads[i], 0);
+               }
 
+               time1 = clock() - time1;
+               PrintAndLog("\nTime for bruteforce %0.1f seconds.",((float)time1)/CLOCKS_PER_SEC);              
+               
+               if (keys_found) {
+                       PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey);
+                       ret = true;
+               } 
+               // reset this counter for the next call
+               nonces_to_bruteforce = 0;
+       }
+       return ret;
+}
 
-int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests) 
+int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests, uint64_t *found_key
 {
        // initialize Random number generator
        time_t t;
        srand((unsigned) time(&t));
        
+       *found_key = 0;
+       
        if (trgkey != NULL) {
                known_target_key = bytes_to_num(trgkey, 6);
        } else {
@@ -1437,51 +1769,39 @@ int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBloc
                        candidates = NULL;
                }
                fclose(fstats);
+               fstats = NULL;
        } else {
                init_nonce_memory();
-               if (nonce_file_read) {          // use pre-acquired data from file nonces.bin
+               if (nonce_file_read) { // use pre-acquired data from file nonces.bin
                        if (read_nonce_file() != 0) {
                                return 3;
                        }
                        Check_for_FilterFlipProperties();
                        num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
-               } else {                                        // acquire nonces.
+                       PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
+
+                       bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
+                       if (cracking || known_target_key != -1) {
+                               brute_force();
+                       }
+
+               } else { // acquire nonces.
                        uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
                        if (is_OK != 0) {
+                               free_nonces_memory();
+                               //free_statelist_cache();
+                               free_candidates_memory(candidates);
+                               candidates = NULL;
                                return is_OK;
                        }
                }
 
-               Tests();
-
-               PrintAndLog("");
-               PrintAndLog("Sum(a0) = %d", first_byte_Sum);
-               // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
-                       // best_first_bytes[0],
-                       // best_first_bytes[1],
-                       // best_first_bytes[2],
-                       // best_first_bytes[3],
-                       // best_first_bytes[4],
-                       // best_first_bytes[5],
-                       // best_first_bytes[6],
-                       // best_first_bytes[7],
-                       // best_first_bytes[8],
-                       // best_first_bytes[9]  );
-               PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
-
-               clock_t time1 = clock();
-               generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
-               time1 = clock() - time1;
-               if ( time1 > 0 )
-                       PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
-       
-               brute_force();
+               //Tests();
                free_nonces_memory();
                free_statelist_cache();
                free_candidates_memory(candidates);
                candidates = NULL;
-       }       
+       }
+       *found_key = foundkey;
        return 0;
-}
-
-
+}
\ No newline at end of file
Impressum, Datenschutz