]> cvs.zerfleddert.de Git - proxmark3-svn/blobdiff - armsrc/iso14443a.c
- improved reader sensitivity for 14443a cards (FPGA change!)
[proxmark3-svn] / armsrc / iso14443a.c
index 1571be0a760848fbb50ccfd102571034d20045e7..00dc622fdf0e1fd1d164b3e0e51378635334e007 100644 (file)
-//-----------------------------------------------------------------------------\r
-// Routines to support ISO 14443 type A.\r
-//\r
-// Gerhard de Koning Gans - May 2008\r
-//-----------------------------------------------------------------------------\r
-#include <proxmark3.h>\r
-#include "apps.h"\r
-#include "../common/iso14443_crc.c"\r
-\r
-typedef enum {\r
-       SEC_D = 1,\r
-       SEC_E = 2,\r
-       SEC_F = 3,\r
-       SEC_X = 4,\r
-       SEC_Y = 5,\r
-       SEC_Z = 6\r
-} SecType;\r
-\r
-//-----------------------------------------------------------------------------\r
-// The software UART that receives commands from the reader, and its state\r
-// variables.\r
-//-----------------------------------------------------------------------------\r
-static struct {\r
-    enum {\r
-        STATE_UNSYNCD,\r
-        STATE_START_OF_COMMUNICATION,\r
-               STATE_MILLER_X,\r
-               STATE_MILLER_Y,\r
-               STATE_MILLER_Z,\r
-        STATE_ERROR_WAIT\r
-    }       state;\r
-    WORD    shiftReg;\r
-    int     bitCnt;\r
-    int     byteCnt;\r
-    int     byteCntMax;\r
-    int     posCnt;\r
-    int     syncBit;\r
-       int     parityBits;\r
-       int     samples;\r
-    int     highCnt;\r
-    int     bitBuffer;\r
-       enum {\r
-               DROP_NONE,\r
-               DROP_FIRST_HALF,\r
-               DROP_SECOND_HALF\r
-       }               drop;\r
-    BYTE   *output;\r
-} Uart;\r
-\r
-static BOOL MillerDecoding(int bit)\r
-{\r
-       int error = 0;\r
-       int bitright;\r
-\r
-       if(!Uart.bitBuffer) {\r
-               Uart.bitBuffer = bit ^ 0xFF0;\r
-               return FALSE;\r
-       }\r
-       else {\r
-               Uart.bitBuffer <<= 4;\r
-               Uart.bitBuffer ^= bit;\r
-       }\r
-\r
-       BOOL EOC = FALSE;\r
-\r
-       if(Uart.state != STATE_UNSYNCD) {\r
-               Uart.posCnt++;\r
-\r
-               if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {\r
-                       bit = 0x00;\r
-               }\r
-               else {\r
-                       bit = 0x01;\r
-               }\r
-               if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {\r
-                       bitright = 0x00;\r
-               }\r
-               else {\r
-                       bitright = 0x01;\r
-               }\r
-               if(bit != bitright) { bit = bitright; }\r
-\r
-               if(Uart.posCnt == 1) {\r
-                       // measurement first half bitperiod\r
-                       if(!bit) {\r
-                               Uart.drop = DROP_FIRST_HALF;\r
-                       }\r
-               }\r
-               else {\r
-                       // measurement second half bitperiod\r
-                       if(!bit & (Uart.drop == DROP_NONE)) {\r
-                               Uart.drop = DROP_SECOND_HALF;\r
-                       }\r
-                       else if(!bit) {\r
-                               // measured a drop in first and second half\r
-                               // which should not be possible\r
-                               Uart.state = STATE_ERROR_WAIT;\r
-                               error = 0x01;\r
-                       }\r
-\r
-                       Uart.posCnt = 0;\r
-\r
-                       switch(Uart.state) {\r
-                               case STATE_START_OF_COMMUNICATION:\r
-                                       Uart.shiftReg = 0;\r
-                                       if(Uart.drop == DROP_SECOND_HALF) {\r
-                                               // error, should not happen in SOC\r
-                                               Uart.state = STATE_ERROR_WAIT;\r
-                                               error = 0x02;\r
-                                       }\r
-                                       else {\r
-                                               // correct SOC\r
-                                               Uart.state = STATE_MILLER_Z;\r
-                                       }\r
-                                       break;\r
-\r
-                               case STATE_MILLER_Z:\r
-                                       Uart.bitCnt++;\r
-                                       Uart.shiftReg >>= 1;\r
-                                       if(Uart.drop == DROP_NONE) {\r
-                                               // logic '0' followed by sequence Y\r
-                                               // end of communication\r
-                                               Uart.state = STATE_UNSYNCD;\r
-                                               EOC = TRUE;\r
-                                       }\r
-                                       // if(Uart.drop == DROP_FIRST_HALF) {\r
-                                       //      Uart.state = STATE_MILLER_Z; stay the same\r
-                                       //      we see a logic '0' }\r
-                                       if(Uart.drop == DROP_SECOND_HALF) {\r
-                                               // we see a logic '1'\r
-                                               Uart.shiftReg |= 0x100;\r
-                                               Uart.state = STATE_MILLER_X;\r
-                                       }\r
-                                       break;\r
-\r
-                               case STATE_MILLER_X:\r
-                                       Uart.shiftReg >>= 1;\r
-                                       if(Uart.drop == DROP_NONE) {\r
-                                               // sequence Y, we see a '0'\r
-                                               Uart.state = STATE_MILLER_Y;\r
-                                               Uart.bitCnt++;\r
-                                       }\r
-                                       if(Uart.drop == DROP_FIRST_HALF) {\r
-                                               // Would be STATE_MILLER_Z\r
-                                               // but Z does not follow X, so error\r
-                                               Uart.state = STATE_ERROR_WAIT;\r
-                                               error = 0x03;\r
-                                       }\r
-                                       if(Uart.drop == DROP_SECOND_HALF) {\r
-                                               // We see a '1' and stay in state X\r
-                                               Uart.shiftReg |= 0x100;\r
-                                               Uart.bitCnt++;\r
-                                       }\r
-                                       break;\r
-\r
-                               case STATE_MILLER_Y:\r
-                                       Uart.bitCnt++;\r
-                                       Uart.shiftReg >>= 1;\r
-                                       if(Uart.drop == DROP_NONE) {\r
-                                               // logic '0' followed by sequence Y\r
-                                               // end of communication\r
-                                               Uart.state = STATE_UNSYNCD;\r
-                                               EOC = TRUE;\r
-                                       }\r
-                                       if(Uart.drop == DROP_FIRST_HALF) {\r
-                                               // we see a '0'\r
-                                               Uart.state = STATE_MILLER_Z;\r
-                                       }\r
-                                       if(Uart.drop == DROP_SECOND_HALF) {\r
-                                               // We see a '1' and go to state X\r
-                                               Uart.shiftReg |= 0x100;\r
-                                               Uart.state = STATE_MILLER_X;\r
-                                       }\r
-                                       break;\r
-\r
-                               case STATE_ERROR_WAIT:\r
-                                       // That went wrong. Now wait for at least two bit periods\r
-                                       // and try to sync again\r
-                                       if(Uart.drop == DROP_NONE) {\r
-                                               Uart.highCnt = 6;\r
-                                               Uart.state = STATE_UNSYNCD;\r
-                                       }\r
-                                       break;\r
-\r
-                               default:\r
-                                       Uart.state = STATE_UNSYNCD;\r
-                                       Uart.highCnt = 0;\r
-                                       break;\r
-                       }\r
-\r
-                       Uart.drop = DROP_NONE;\r
-\r
-                       // should have received at least one whole byte...\r
-                       if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) {\r
-                               return TRUE;\r
-                       }\r
-\r
-                       if(Uart.bitCnt == 9) {\r
-                               Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);\r
-                               Uart.byteCnt++;\r
-\r
-                               Uart.parityBits <<= 1;\r
-                               Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01);\r
-\r
-                               if(EOC) {\r
-                                       // when End of Communication received and\r
-                                       // all data bits processed..\r
-                                       return TRUE;\r
-                               }\r
-                               Uart.bitCnt = 0;\r
-                       }\r
-\r
-                       /*if(error) {\r
-                               Uart.output[Uart.byteCnt] = 0xAA;\r
-                               Uart.byteCnt++;\r
-                               Uart.output[Uart.byteCnt] = error & 0xFF;\r
-                               Uart.byteCnt++;\r
-                               Uart.output[Uart.byteCnt] = 0xAA;\r
-                               Uart.byteCnt++;\r
-                               Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;\r
-                               Uart.byteCnt++;\r
-                               Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;\r
-                               Uart.byteCnt++;\r
-                               Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;\r
-                               Uart.byteCnt++;\r
-                               Uart.output[Uart.byteCnt] = 0xAA;\r
-                               Uart.byteCnt++;\r
-                               return TRUE;\r
-                       }*/\r
-               }\r
-\r
-       }\r
-       else {\r
-               bit = Uart.bitBuffer & 0xf0;\r
-               bit >>= 4;\r
-               bit ^= 0x0F;\r
-               if(bit) {\r
-                       // should have been high or at least (4 * 128) / fc\r
-                       // according to ISO this should be at least (9 * 128 + 20) / fc\r
-                       if(Uart.highCnt == 8) {\r
-                               // we went low, so this could be start of communication\r
-                               // it turns out to be safer to choose a less significant\r
-                               // syncbit... so we check whether the neighbour also represents the drop\r
-                               Uart.posCnt = 1;   // apparently we are busy with our first half bit period\r
-                               Uart.syncBit = bit & 8;\r
-                               Uart.samples = 3;\r
-                               if(!Uart.syncBit)       { Uart.syncBit = bit & 4; Uart.samples = 2; }\r
-                               else if(bit & 4)        { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }\r
-                               if(!Uart.syncBit)       { Uart.syncBit = bit & 2; Uart.samples = 1; }\r
-                               else if(bit & 2)        { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }\r
-                               if(!Uart.syncBit)       { Uart.syncBit = bit & 1; Uart.samples = 0;\r
-                                       if(Uart.syncBit & (Uart.bitBuffer & 8)) {\r
-                                               Uart.syncBit = 8;\r
-\r
-                                               // the first half bit period is expected in next sample\r
-                                               Uart.posCnt = 0;\r
-                                               Uart.samples = 3;\r
-                                       }\r
-                               }\r
-                               else if(bit & 1)        { Uart.syncBit = bit & 1; Uart.samples = 0; }\r
-\r
-                               Uart.syncBit <<= 4;\r
-                               Uart.state = STATE_START_OF_COMMUNICATION;\r
-                               Uart.drop = DROP_FIRST_HALF;\r
-                               Uart.bitCnt = 0;\r
-                               Uart.byteCnt = 0;\r
-                               Uart.parityBits = 0;\r
-                               error = 0;\r
-                       }\r
-                       else {\r
-                               Uart.highCnt = 0;\r
-                       }\r
-               }\r
-               else {\r
-                       if(Uart.highCnt < 8) {\r
-                               Uart.highCnt++;\r
-                       }\r
-               }\r
-       }\r
-\r
-    return FALSE;\r
-}\r
-\r
-//=============================================================================\r
-// ISO 14443 Type A - Manchester\r
-//=============================================================================\r
-\r
-static struct {\r
-    enum {\r
-        DEMOD_UNSYNCD,\r
-               DEMOD_START_OF_COMMUNICATION,\r
-               DEMOD_MANCHESTER_D,\r
-               DEMOD_MANCHESTER_E,\r
-               DEMOD_MANCHESTER_F,\r
-        DEMOD_ERROR_WAIT\r
-    }       state;\r
-    int     bitCount;\r
-    int     posCount;\r
-       int     syncBit;\r
-       int     parityBits;\r
-    WORD    shiftReg;\r
-       int     buffer;\r
-       int     buff;\r
-       int     samples;\r
-    int     len;\r
-       enum {\r
-               SUB_NONE,\r
-               SUB_FIRST_HALF,\r
-               SUB_SECOND_HALF\r
-       }               sub;\r
-    BYTE   *output;\r
-} Demod;\r
-\r
-static BOOL ManchesterDecoding(int v)\r
-{\r
-       int bit;\r
-       int modulation;\r
-       int error = 0;\r
-\r
-       if(!Demod.buff) {\r
-               Demod.buff = 1;\r
-               Demod.buffer = v;\r
-               return FALSE;\r
-       }\r
-       else {\r
-               bit = Demod.buffer;\r
-               Demod.buffer = v;\r
-       }\r
-\r
-       if(Demod.state==DEMOD_UNSYNCD) {\r
-               Demod.output[Demod.len] = 0xfa;\r
-               Demod.syncBit = 0;\r
-               //Demod.samples = 0;\r
-               Demod.posCount = 1;             // This is the first half bit period, so after syncing handle the second part\r
-               if(bit & 0x08) { Demod.syncBit = 0x08; }\r
-               if(!Demod.syncBit)      {\r
-                       if(bit & 0x04) { Demod.syncBit = 0x04; }\r
-               }\r
-               else if(bit & 0x04) { Demod.syncBit = 0x04; bit <<= 4; }\r
-               if(!Demod.syncBit)      {\r
-                       if(bit & 0x02) { Demod.syncBit = 0x02; }\r
-               }\r
-               else if(bit & 0x02) { Demod.syncBit = 0x02; bit <<= 4; }\r
-               if(!Demod.syncBit)      {\r
-                       if(bit & 0x01) { Demod.syncBit = 0x01; }\r
-\r
-                       if(Demod.syncBit & (Demod.buffer & 0x08)) {\r
-                               Demod.syncBit = 0x08;\r
-\r
-                               // The first half bitperiod is expected in next sample\r
-                               Demod.posCount = 0;\r
-                               Demod.output[Demod.len] = 0xfb;\r
-                       }\r
-               }\r
-               else if(bit & 0x01) { Demod.syncBit = 0x01; }\r
-\r
-               if(Demod.syncBit) {\r
-                       Demod.len = 0;\r
-                       Demod.state = DEMOD_START_OF_COMMUNICATION;\r
-                       Demod.sub = SUB_FIRST_HALF;\r
-                       Demod.bitCount = 0;\r
-                       Demod.shiftReg = 0;\r
-                       Demod.parityBits = 0;\r
-                       Demod.samples = 0;\r
-                       if(Demod.posCount) {\r
-                               switch(Demod.syncBit) {\r
-                                       case 0x08: Demod.samples = 3; break;\r
-                                       case 0x04: Demod.samples = 2; break;\r
-                                       case 0x02: Demod.samples = 1; break;\r
-                                       case 0x01: Demod.samples = 0; break;\r
-                               }\r
-                       }\r
-                       error = 0;\r
-               }\r
-       }\r
-       else {\r
-               //modulation = bit & Demod.syncBit;\r
-               modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;\r
-\r
-               Demod.samples += 4;\r
-\r
-               if(Demod.posCount==0) {\r
-                       Demod.posCount = 1;\r
-                       if(modulation) {\r
-                               Demod.sub = SUB_FIRST_HALF;\r
-                       }\r
-                       else {\r
-                               Demod.sub = SUB_NONE;\r
-                       }\r
-               }\r
-               else {\r
-                       Demod.posCount = 0;\r
-                       if(modulation && (Demod.sub == SUB_FIRST_HALF)) {\r
-                               if(Demod.state!=DEMOD_ERROR_WAIT) {\r
-                                       Demod.state = DEMOD_ERROR_WAIT;\r
-                                       Demod.output[Demod.len] = 0xaa;\r
-                                       error = 0x01;\r
-                               }\r
-                       }\r
-                       else if(modulation) {\r
-                               Demod.sub = SUB_SECOND_HALF;\r
-                       }\r
-\r
-                       switch(Demod.state) {\r
-                               case DEMOD_START_OF_COMMUNICATION:\r
-                                       if(Demod.sub == SUB_FIRST_HALF) {\r
-                                               Demod.state = DEMOD_MANCHESTER_D;\r
-                                       }\r
-                                       else {\r
-                                               Demod.output[Demod.len] = 0xab;\r
-                                               Demod.state = DEMOD_ERROR_WAIT;\r
-                                               error = 0x02;\r
-                                       }\r
-                                       break;\r
-\r
-                               case DEMOD_MANCHESTER_D:\r
-                               case DEMOD_MANCHESTER_E:\r
-                                       if(Demod.sub == SUB_FIRST_HALF) {\r
-                                               Demod.bitCount++;\r
-                                               Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;\r
-                                               Demod.state = DEMOD_MANCHESTER_D;\r
-                                       }\r
-                                       else if(Demod.sub == SUB_SECOND_HALF) {\r
-                                               Demod.bitCount++;\r
-                                               Demod.shiftReg >>= 1;\r
-                                               Demod.state = DEMOD_MANCHESTER_E;\r
-                                       }\r
-                                       else {\r
-                                               Demod.state = DEMOD_MANCHESTER_F;\r
-                                       }\r
-                                       break;\r
-\r
-                               case DEMOD_MANCHESTER_F:\r
-                                       // Tag response does not need to be a complete byte!\r
-                                       if(Demod.len > 0 || Demod.bitCount > 0) {\r
-                                               if(Demod.bitCount > 0) {\r
-                                                       Demod.shiftReg >>= (9 - Demod.bitCount);\r
-                                                       Demod.output[Demod.len] = Demod.shiftReg & 0xff;\r
-                                                       Demod.len++;\r
-                                                       // No parity bit, so just shift a 0\r
-                                                       Demod.parityBits <<= 1;\r
-                                               }\r
-\r
-                                               Demod.state = DEMOD_UNSYNCD;\r
-                                               return TRUE;\r
-                                       }\r
-                                       else {\r
-                                               Demod.output[Demod.len] = 0xad;\r
-                                               Demod.state = DEMOD_ERROR_WAIT;\r
-                                               error = 0x03;\r
-                                       }\r
-                                       break;\r
-\r
-                               case DEMOD_ERROR_WAIT:\r
-                                       Demod.state = DEMOD_UNSYNCD;\r
-                                       break;\r
-\r
-                               default:\r
-                                       Demod.output[Demod.len] = 0xdd;\r
-                                       Demod.state = DEMOD_UNSYNCD;\r
-                                       break;\r
-                       }\r
-\r
-                       if(Demod.bitCount>=9) {\r
-                               Demod.output[Demod.len] = Demod.shiftReg & 0xff;\r
-                               Demod.len++;\r
-\r
-                               Demod.parityBits <<= 1;\r
-                               Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);\r
-\r
-                               Demod.bitCount = 0;\r
-                               Demod.shiftReg = 0;\r
-                       }\r
-\r
-                       /*if(error) {\r
-                               Demod.output[Demod.len] = 0xBB;\r
-                               Demod.len++;\r
-                               Demod.output[Demod.len] = error & 0xFF;\r
-                               Demod.len++;\r
-                               Demod.output[Demod.len] = 0xBB;\r
-                               Demod.len++;\r
-                               Demod.output[Demod.len] = bit & 0xFF;\r
-                               Demod.len++;\r
-                               Demod.output[Demod.len] = Demod.buffer & 0xFF;\r
-                               Demod.len++;\r
-                               Demod.output[Demod.len] = Demod.syncBit & 0xFF;\r
-                               Demod.len++;\r
-                               Demod.output[Demod.len] = 0xBB;\r
-                               Demod.len++;\r
-                               return TRUE;\r
-                       }*/\r
-\r
-               }\r
-\r
-       } // end (state != UNSYNCED)\r
-\r
-    return FALSE;\r
-}\r
-\r
-//=============================================================================\r
-// Finally, a `sniffer' for ISO 14443 Type A\r
-// Both sides of communication!\r
-//=============================================================================\r
-\r
-//-----------------------------------------------------------------------------\r
-// Record the sequence of commands sent by the reader to the tag, with\r
-// triggering so that we start recording at the point that the tag is moved\r
-// near the reader.\r
-//-----------------------------------------------------------------------------\r
-void SnoopIso14443a(void)\r
-{\r
-\r
-       // BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT\r
-\r
-       #define RECV_CMD_OFFSET         3032\r
-       #define RECV_RES_OFFSET         3096\r
-       #define DMA_BUFFER_OFFSET       3160\r
-       #define DMA_BUFFER_SIZE         4096\r
-       #define TRACE_LENGTH            3000\r
-\r
-//     #define RECV_CMD_OFFSET         2032    // original (working as of 21/2/09) values\r
-//     #define RECV_RES_OFFSET         2096    // original (working as of 21/2/09) values\r
-//     #define DMA_BUFFER_OFFSET       2160    // original (working as of 21/2/09) values\r
-//     #define DMA_BUFFER_SIZE         4096    // original (working as of 21/2/09) values\r
-//     #define TRACE_LENGTH            2000    // original (working as of 21/2/09) values\r
-\r
-    // We won't start recording the frames that we acquire until we trigger;\r
-    // a good trigger condition to get started is probably when we see a\r
-    // response from the tag.\r
-    BOOL triggered = TRUE; // FALSE to wait first for card\r
-\r
-    // The command (reader -> tag) that we're receiving.\r
-       // The length of a received command will in most cases be no more than 18 bytes.\r
-       // So 32 should be enough!\r
-    BYTE *receivedCmd = (((BYTE *)BigBuf) + RECV_CMD_OFFSET);\r
-    // The response (tag -> reader) that we're receiving.\r
-    BYTE *receivedResponse = (((BYTE *)BigBuf) + RECV_RES_OFFSET);\r
-\r
-    // As we receive stuff, we copy it from receivedCmd or receivedResponse\r
-    // into trace, along with its length and other annotations.\r
-    BYTE *trace = (BYTE *)BigBuf;\r
-    int traceLen = 0;\r
-\r
-    // The DMA buffer, used to stream samples from the FPGA\r
-    SBYTE *dmaBuf = ((SBYTE *)BigBuf) + DMA_BUFFER_OFFSET;\r
-    int lastRxCounter;\r
-    SBYTE *upTo;\r
-    int smpl;\r
-    int maxBehindBy = 0;\r
-\r
-    // Count of samples received so far, so that we can include timing\r
-    // information in the trace buffer.\r
-    int samples = 0;\r
-       int rsamples = 0;\r
-\r
-    memset(trace, 0x44, RECV_CMD_OFFSET);\r
-\r
-    // Set up the demodulator for tag -> reader responses.\r
-    Demod.output = receivedResponse;\r
-    Demod.len = 0;\r
-    Demod.state = DEMOD_UNSYNCD;\r
-\r
-    // And the reader -> tag commands\r
-    memset(&Uart, 0, sizeof(Uart));\r
-    Uart.output = receivedCmd;\r
-    Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////\r
-    Uart.state = STATE_UNSYNCD;\r
-\r
-    // And put the FPGA in the appropriate mode\r
-    // Signal field is off with the appropriate LED\r
-    LED_D_OFF();\r
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);\r
-    SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
-\r
-       // Setup for the DMA.\r
-    FpgaSetupSsc();\r
-    upTo = dmaBuf;\r
-    lastRxCounter = DMA_BUFFER_SIZE;\r
-    FpgaSetupSscDma((BYTE *)dmaBuf, DMA_BUFFER_SIZE);\r
-\r
-    LED_A_ON();\r
-\r
-    // And now we loop, receiving samples.\r
-    for(;;) {\r
-               WDT_HIT();\r
-        int behindBy = (lastRxCounter - PDC_RX_COUNTER(SSC_BASE)) &\r
-                                (DMA_BUFFER_SIZE-1);\r
-        if(behindBy > maxBehindBy) {\r
-            maxBehindBy = behindBy;\r
-            if(behindBy > 400) {\r
-                DbpString("blew circular buffer!");\r
-                goto done;\r
-            }\r
-        }\r
-        if(behindBy < 1) continue;\r
-\r
-        smpl = upTo[0];\r
-        upTo++;\r
-        lastRxCounter -= 1;\r
-        if(upTo - dmaBuf > DMA_BUFFER_SIZE) {\r
-            upTo -= DMA_BUFFER_SIZE;\r
-            lastRxCounter += DMA_BUFFER_SIZE;\r
-            PDC_RX_NEXT_POINTER(SSC_BASE) = (DWORD)upTo;\r
-            PDC_RX_NEXT_COUNTER(SSC_BASE) = DMA_BUFFER_SIZE;\r
-        }\r
-\r
-        samples += 4;\r
-#define HANDLE_BIT_IF_BODY \\r
-            LED_C_ON(); \\r
-                       if(triggered) { \\r
-                               trace[traceLen++] = ((rsamples >>  0) & 0xff); \\r
-                trace[traceLen++] = ((rsamples >>  8) & 0xff); \\r
-                trace[traceLen++] = ((rsamples >> 16) & 0xff); \\r
-                trace[traceLen++] = ((rsamples >> 24) & 0xff); \\r
-                               trace[traceLen++] = ((Uart.parityBits >>  0) & 0xff); \\r
-                               trace[traceLen++] = ((Uart.parityBits >>  8) & 0xff); \\r
-                               trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); \\r
-                               trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); \\r
-                trace[traceLen++] = Uart.byteCnt; \\r
-                memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); \\r
-                traceLen += Uart.byteCnt; \\r
-                if(traceLen > TRACE_LENGTH) break; \\r
-            } \\r
-            /* And ready to receive another command. */ \\r
-            Uart.state = STATE_UNSYNCD; \\r
-            /* And also reset the demod code, which might have been */ \\r
-            /* false-triggered by the commands from the reader. */ \\r
-            Demod.state = DEMOD_UNSYNCD; \\r
-                       LED_B_OFF(); \\r
-\r
-               if(MillerDecoding((smpl & 0xF0) >> 4)) {\r
-            rsamples = samples - Uart.samples;\r
-                       HANDLE_BIT_IF_BODY\r
-        }\r
-               if(ManchesterDecoding(smpl & 0x0F)) {\r
-                       rsamples = samples - Demod.samples;\r
-                       LED_B_ON();\r
-\r
-                       // timestamp, as a count of samples\r
-                       trace[traceLen++] = ((rsamples >>  0) & 0xff);\r
-                       trace[traceLen++] = ((rsamples >>  8) & 0xff);\r
-                       trace[traceLen++] = ((rsamples >> 16) & 0xff);\r
-                       trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r
-                       trace[traceLen++] = ((Demod.parityBits >>  0) & 0xff);\r
-                       trace[traceLen++] = ((Demod.parityBits >>  8) & 0xff);\r
-                       trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r
-                       trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r
-                       // length\r
-                       trace[traceLen++] = Demod.len;\r
-                       memcpy(trace+traceLen, receivedResponse, Demod.len);\r
-                       traceLen += Demod.len;\r
-                       if(traceLen > TRACE_LENGTH) break;\r
-\r
-               triggered = TRUE;\r
-\r
-            // And ready to receive another response.\r
-            memset(&Demod, 0, sizeof(Demod));\r
-            Demod.output = receivedResponse;\r
-            Demod.state = DEMOD_UNSYNCD;\r
-                       LED_C_OFF();\r
-               }\r
-\r
-        if(BUTTON_PRESS()) {\r
-            DbpString("cancelled_a");\r
-            goto done;\r
-        }\r
-    }\r
-\r
-    DbpString("COMMAND FINISHED");\r
-\r
-    DbpIntegers(maxBehindBy, Uart.state, Uart.byteCnt);\r
-    DbpIntegers(Uart.byteCntMax, traceLen, (int)Uart.output[0]);\r
-\r
-done:\r
-    PDC_CONTROL(SSC_BASE) = PDC_RX_DISABLE;\r
-    DbpIntegers(maxBehindBy, Uart.state, Uart.byteCnt);\r
-    DbpIntegers(Uart.byteCntMax, traceLen, (int)Uart.output[0]);\r
-    LED_A_OFF();\r
-    LED_B_OFF();\r
-       LED_C_OFF();\r
-       LED_D_OFF();\r
-}\r
-\r
-// Prepare communication bits to send to FPGA\r
-void Sequence(SecType seq)\r
-{\r
-       ToSendMax++;\r
-       switch(seq) {\r
-       // CARD TO READER\r
-       case SEC_D:\r
-               // Sequence D: 11110000\r
-               // modulation with subcarrier during first half\r
-        ToSend[ToSendMax] = 0xf0;\r
-               break;\r
-       case SEC_E:\r
-               // Sequence E: 00001111\r
-               // modulation with subcarrier during second half\r
-        ToSend[ToSendMax] = 0x0f;\r
-               break;\r
-       case SEC_F:\r
-               // Sequence F: 00000000\r
-               // no modulation with subcarrier\r
-        ToSend[ToSendMax] = 0x00;\r
-               break;\r
-       // READER TO CARD\r
-       case SEC_X:\r
-               // Sequence X: 00001100\r
-               // drop after half a period\r
-        ToSend[ToSendMax] = 0x0c;\r
-               break;\r
-       case SEC_Y:\r
-       default:\r
-               // Sequence Y: 00000000\r
-               // no drop\r
-        ToSend[ToSendMax] = 0x00;\r
-               break;\r
-       case SEC_Z:\r
-               // Sequence Z: 11000000\r
-               // drop at start\r
-        ToSend[ToSendMax] = 0xc0;\r
-               break;\r
-       }\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Prepare tag messages\r
-//-----------------------------------------------------------------------------\r
-static void CodeIso14443aAsTag(const BYTE *cmd, int len)\r
-{\r
-    int i;\r
-       int oddparity;\r
-\r
-    ToSendReset();\r
-\r
-       // Correction bit, might be removed when not needed\r
-       ToSendStuffBit(0);\r
-       ToSendStuffBit(0);\r
-       ToSendStuffBit(0);\r
-       ToSendStuffBit(0);\r
-       ToSendStuffBit(1);  // 1\r
-       ToSendStuffBit(0);\r
-       ToSendStuffBit(0);\r
-       ToSendStuffBit(0);\r
-\r
-       // Send startbit\r
-       Sequence(SEC_D);\r
-\r
-    for(i = 0; i < len; i++) {\r
-        int j;\r
-        BYTE b = cmd[i];\r
-\r
-               // Data bits\r
-        oddparity = 0x01;\r
-               for(j = 0; j < 8; j++) {\r
-            oddparity ^= (b & 1);\r
-                       if(b & 1) {\r
-                               Sequence(SEC_D);\r
-                       } else {\r
-                               Sequence(SEC_E);\r
-            }\r
-            b >>= 1;\r
-        }\r
-\r
-        // Parity bit\r
-        if(oddparity) {\r
-                       Sequence(SEC_D);\r
-               } else {\r
-                       Sequence(SEC_E);\r
-               }\r
-    }\r
-\r
-    // Send stopbit\r
-       Sequence(SEC_F);\r
-\r
-       // Flush the buffer in FPGA!!\r
-       for(i = 0; i < 5; i++) {\r
-               Sequence(SEC_F);\r
-       }\r
-\r
-    // Convert from last byte pos to length\r
-    ToSendMax++;\r
-\r
-    // Add a few more for slop\r
-    ToSend[ToSendMax++] = 0x00;\r
-       ToSend[ToSendMax++] = 0x00;\r
-    //ToSendMax += 2;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// This is to send a NACK kind of answer, its only 3 bits, I know it should be 4\r
-//-----------------------------------------------------------------------------\r
-static void CodeStrangeAnswer()\r
-{\r
-       int i;\r
-\r
-    ToSendReset();\r
-\r
-       // Correction bit, might be removed when not needed\r
-       ToSendStuffBit(0);\r
-       ToSendStuffBit(0);\r
-       ToSendStuffBit(0);\r
-       ToSendStuffBit(0);\r
-       ToSendStuffBit(1);  // 1\r
-       ToSendStuffBit(0);\r
-       ToSendStuffBit(0);\r
-       ToSendStuffBit(0);\r
-\r
-       // Send startbit\r
-       Sequence(SEC_D);\r
-\r
-       // 0\r
-       Sequence(SEC_E);\r
-\r
-       // 0\r
-       Sequence(SEC_E);\r
-\r
-       // 1\r
-       Sequence(SEC_D);\r
-\r
-    // Send stopbit\r
-       Sequence(SEC_F);\r
-\r
-       // Flush the buffer in FPGA!!\r
-       for(i = 0; i < 5; i++) {\r
-               Sequence(SEC_F);\r
-       }\r
-\r
-    // Convert from last byte pos to length\r
-    ToSendMax++;\r
-\r
-    // Add a few more for slop\r
-    ToSend[ToSendMax++] = 0x00;\r
-       ToSend[ToSendMax++] = 0x00;\r
-    //ToSendMax += 2;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Wait for commands from reader\r
-// Stop when button is pressed\r
-// Or return TRUE when command is captured\r
-//-----------------------------------------------------------------------------\r
-static BOOL GetIso14443aCommandFromReader(BYTE *received, int *len, int maxLen)\r
-{\r
-    // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen\r
-    // only, since we are receiving, not transmitting).\r
-    // Signal field is off with the appropriate LED\r
-    LED_D_OFF();\r
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);\r
-\r
-    // Now run a `software UART' on the stream of incoming samples.\r
-    Uart.output = received;\r
-    Uart.byteCntMax = maxLen;\r
-    Uart.state = STATE_UNSYNCD;\r
-\r
-    for(;;) {\r
-        WDT_HIT();\r
-\r
-        if(BUTTON_PRESS()) return FALSE;\r
-\r
-        if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
-            SSC_TRANSMIT_HOLDING = 0x00;\r
-        }\r
-        if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
-            BYTE b = (BYTE)SSC_RECEIVE_HOLDING;\r
-                       if(MillerDecoding((b & 0xf0) >> 4)) {\r
-                               *len = Uart.byteCnt;\r
-                               return TRUE;\r
-                       }\r
-                       if(MillerDecoding(b & 0x0f)) {\r
-                               *len = Uart.byteCnt;\r
-                               return TRUE;\r
-                       }\r
-        }\r
-    }\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Main loop of simulated tag: receive commands from reader, decide what\r
-// response to send, and send it.\r
-//-----------------------------------------------------------------------------\r
-void SimulateIso14443aTag(int tagType, int TagUid)\r
-{\r
-       // This function contains the tag emulation\r
-\r
-       // Prepare protocol messages\r
-    // static const BYTE cmd1[] = { 0x26 };\r
-//     static const BYTE response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg\r
-//\r
-       static const BYTE response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me\r
-//     static const BYTE response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me\r
-\r
-       // UID response\r
-    // static const BYTE cmd2[] = { 0x93, 0x20 };\r
-    //static const BYTE response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg\r
-\r
-\r
-\r
-// my desfire\r
-    static const BYTE response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips\r
-\r
-\r
-// When reader selects us during cascade1 it will send cmd3\r
-//BYTE response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE)\r
-BYTE response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire)\r
-ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);\r
-\r
-// send cascade2 2nd half of UID\r
-static const BYTE response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; //  uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck\r
-// NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID\r
-\r
-\r
-// When reader selects us during cascade2 it will send cmd3a\r
-//BYTE response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE)\r
-BYTE response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire)\r
-ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);\r
-\r
-    static const BYTE response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce\r
-\r
-    BYTE *resp;\r
-    int respLen;\r
-\r
-    // Longest possible response will be 16 bytes + 2 CRC = 18 bytes\r
-       // This will need\r
-       //    144        data bits (18 * 8)\r
-       //     18        parity bits\r
-       //      2        Start and stop\r
-       //      1        Correction bit (Answer in 1172 or 1236 periods, see FPGA)\r
-       //      1        just for the case\r
-       // ----------- +\r
-       //    166\r
-       //\r
-       // 166 bytes, since every bit that needs to be send costs us a byte\r
-       //\r
-\r
-\r
-    // Respond with card type\r
-    BYTE *resp1 = (((BYTE *)BigBuf) + 800);\r
-    int resp1Len;\r
-\r
-    // Anticollision cascade1 - respond with uid\r
-    BYTE *resp2 = (((BYTE *)BigBuf) + 970);\r
-    int resp2Len;\r
-\r
-    // Anticollision cascade2 - respond with 2nd half of uid if asked\r
-    // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88\r
-    BYTE *resp2a = (((BYTE *)BigBuf) + 1140);\r
-    int resp2aLen;\r
-\r
-    // Acknowledge select - cascade 1\r
-    BYTE *resp3 = (((BYTE *)BigBuf) + 1310);\r
-    int resp3Len;\r
-\r
-    // Acknowledge select - cascade 2\r
-    BYTE *resp3a = (((BYTE *)BigBuf) + 1480);\r
-    int resp3aLen;\r
-\r
-    // Response to a read request - not implemented atm\r
-    BYTE *resp4 = (((BYTE *)BigBuf) + 1550);\r
-    int resp4Len;\r
-\r
-    // Authenticate response - nonce\r
-    BYTE *resp5 = (((BYTE *)BigBuf) + 1720);\r
-    int resp5Len;\r
-\r
-    BYTE *receivedCmd = (BYTE *)BigBuf;\r
-    int len;\r
-\r
-    int i;\r
-       int u;\r
-       BYTE b;\r
-\r
-       // To control where we are in the protocol\r
-       int order = 0;\r
-       int lastorder;\r
-\r
-       // Just to allow some checks\r
-       int happened = 0;\r
-       int happened2 = 0;\r
-\r
-    int cmdsRecvd = 0;\r
-\r
-       BOOL fdt_indicator;\r
-\r
-    memset(receivedCmd, 0x44, 400);\r
-\r
-       // Prepare the responses of the anticollision phase\r
-       // there will be not enough time to do this at the moment the reader sends it REQA\r
-\r
-       // Answer to request\r
-       CodeIso14443aAsTag(response1, sizeof(response1));\r
-    memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;\r
-\r
-       // Send our UID (cascade 1)\r
-       CodeIso14443aAsTag(response2, sizeof(response2));\r
-    memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;\r
-\r
-       // Answer to select (cascade1)\r
-       CodeIso14443aAsTag(response3, sizeof(response3));\r
-    memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;\r
-\r
-       // Send the cascade 2 2nd part of the uid\r
-       CodeIso14443aAsTag(response2a, sizeof(response2a));\r
-    memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax;\r
-\r
-       // Answer to select (cascade 2)\r
-       CodeIso14443aAsTag(response3a, sizeof(response3a));\r
-    memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax;\r
-\r
-       // Strange answer is an example of rare message size (3 bits)\r
-       CodeStrangeAnswer();\r
-       memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;\r
-\r
-       // Authentication answer (random nonce)\r
-       CodeIso14443aAsTag(response5, sizeof(response5));\r
-    memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax;\r
-\r
-    // We need to listen to the high-frequency, peak-detected path.\r
-    SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
-    FpgaSetupSsc();\r
-\r
-    cmdsRecvd = 0;\r
-\r
-    LED_A_ON();\r
-       for(;;) {\r
-\r
-               if(!GetIso14443aCommandFromReader(receivedCmd, &len, 100)) {\r
-            DbpString("button press");\r
-            break;\r
-        }\r
-       // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated\r
-        // Okay, look at the command now.\r
-        lastorder = order;\r
-               i = 1; // first byte transmitted\r
-        if(receivedCmd[0] == 0x26) {\r
-                       // Received a REQUEST\r
-                       resp = resp1; respLen = resp1Len; order = 1;\r
-                       //DbpString("Hello request from reader:");\r
-               } else if(receivedCmd[0] == 0x52) {\r
-                       // Received a WAKEUP\r
-                       resp = resp1; respLen = resp1Len; order = 6;\r
-//                     //DbpString("Wakeup request from reader:");\r
-\r
-               } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) {   // greg - cascade 1 anti-collision\r
-                       // Received request for UID (cascade 1)\r
-                       resp = resp2; respLen = resp2Len; order = 2;\r
-//                     DbpString("UID (cascade 1) request from reader:");\r
-//                     DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
-\r
-\r
-               } else if(receivedCmd[1] == 0x20 && receivedCmd[0] ==0x95) {    // greg - cascade 2 anti-collision\r
-                       // Received request for UID (cascade 2)\r
-                       resp = resp2a; respLen = resp2aLen; order = 20;\r
-//                     DbpString("UID (cascade 2) request from reader:");\r
-//                     DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
-\r
-\r
-               } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x93) {    // greg - cascade 1 select\r
-                       // Received a SELECT\r
-                       resp = resp3; respLen = resp3Len; order = 3;\r
-//                     DbpString("Select (cascade 1) request from reader:");\r
-//                     DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
-\r
-\r
-               } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x95) {    // greg - cascade 2 select\r
-                       // Received a SELECT\r
-                       resp = resp3a; respLen = resp3aLen; order = 30;\r
-//                     DbpString("Select (cascade 2) request from reader:");\r
-//                     DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
-\r
-\r
-               } else if(receivedCmd[0] == 0x30) {\r
-                       // Received a READ\r
-                       resp = resp4; respLen = resp4Len; order = 4; // Do nothing\r
-                       DbpString("Read request from reader:");\r
-                       DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
-\r
-\r
-               } else if(receivedCmd[0] == 0x50) {\r
-                       // Received a HALT\r
-                       resp = resp1; respLen = 0; order = 5; // Do nothing\r
-                       DbpString("Reader requested we HALT!:");\r
-\r
-               } else if(receivedCmd[0] == 0x60) {\r
-                       // Received an authentication request\r
-                       resp = resp5; respLen = resp5Len; order = 7;\r
-                       DbpString("Authenticate request from reader:");\r
-                       DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
-\r
-               } else if(receivedCmd[0] == 0xE0) {\r
-                       // Received a RATS request\r
-                       resp = resp1; respLen = 0;order = 70;\r
-                       DbpString("RATS request from reader:");\r
-                       DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
-        } else {\r
-            // Never seen this command before\r
-                       DbpString("Unknown command received from reader:");\r
-                       DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
-                       DbpIntegers(receivedCmd[3], receivedCmd[4], receivedCmd[5]);\r
-                       DbpIntegers(receivedCmd[6], receivedCmd[7], receivedCmd[8]);\r
-\r
-                       // Do not respond\r
-                       resp = resp1; respLen = 0; order = 0;\r
-        }\r
-\r
-               // Count number of wakeups received after a halt\r
-               if(order == 6 && lastorder == 5) { happened++; }\r
-\r
-               // Count number of other messages after a halt\r
-               if(order != 6 && lastorder == 5) { happened2++; }\r
-\r
-               // Look at last parity bit to determine timing of answer\r
-               if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) {\r
-                       // 1236, so correction bit needed\r
-                       i = 0;\r
-               }\r
-\r
-        memset(receivedCmd, 0x44, 32);\r
-\r
-               if(cmdsRecvd > 999) {\r
-                       DbpString("1000 commands later...");\r
-            break;\r
-        }\r
-               else {\r
-                       cmdsRecvd++;\r
-               }\r
-\r
-        if(respLen <= 0) continue;\r
-\r
-        // Modulate Manchester\r
-               FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);\r
-        SSC_TRANSMIT_HOLDING = 0x00;\r
-        FpgaSetupSsc();\r
-\r
-               // ### Transmit the response ###\r
-               u = 0;\r
-               b = 0x00;\r
-               fdt_indicator = FALSE;\r
-        for(;;) {\r
-            if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
-                               volatile BYTE b = (BYTE)SSC_RECEIVE_HOLDING;\r
-                (void)b;\r
-            }\r
-            if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
-                               if(i > respLen) {\r
-                                       b = 0x00;\r
-                                       u++;\r
-                               } else {\r
-                                       b = resp[i];\r
-                                       i++;\r
-                               }\r
-                               SSC_TRANSMIT_HOLDING = b;\r
-\r
-                if(u > 4) {\r
-                    break;\r
-                }\r
-            }\r
-                       if(BUTTON_PRESS()) {\r
-                           break;\r
-                       }\r
-        }\r
-\r
-    }\r
-\r
-       DbpIntegers(happened, happened2, cmdsRecvd);\r
-       LED_A_OFF();\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Transmit the command (to the tag) that was placed in ToSend[].\r
-//-----------------------------------------------------------------------------\r
-static void TransmitFor14443a(const BYTE *cmd, int len, int *samples, int *wait)\r
-{\r
-    int c;\r
-\r
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);\r
-\r
-       if(*wait < 10) { *wait = 10; }\r
-\r
-    for(c = 0; c < *wait;) {\r
-        if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
-            SSC_TRANSMIT_HOLDING = 0x00;               // For exact timing!\r
-            c++;\r
-        }\r
-        if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
-            volatile DWORD r = SSC_RECEIVE_HOLDING;\r
-            (void)r;\r
-        }\r
-        WDT_HIT();\r
-    }\r
-\r
-    c = 0;\r
-    for(;;) {\r
-        if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
-            SSC_TRANSMIT_HOLDING = cmd[c];\r
-            c++;\r
-            if(c >= len) {\r
-                break;\r
-            }\r
-        }\r
-        if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
-            volatile DWORD r = SSC_RECEIVE_HOLDING;\r
-            (void)r;\r
-        }\r
-        WDT_HIT();\r
-    }\r
-       *samples = (c + *wait) << 3;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// To generate an arbitrary stream from reader\r
-//\r
-//-----------------------------------------------------------------------------\r
-void ArbitraryFromReader(const BYTE *cmd, int parity, int len)\r
-{\r
-       int i;\r
-       int j;\r
-       int last;\r
-    BYTE b;\r
-\r
-       ToSendReset();\r
-\r
-       // Start of Communication (Seq. Z)\r
-       Sequence(SEC_Z);\r
-       last = 0;\r
-\r
-       for(i = 0; i < len; i++) {\r
-        // Data bits\r
-        b = cmd[i];\r
-               for(j = 0; j < 8; j++) {\r
-                       if(b & 1) {\r
-                               // Sequence X\r
-                               Sequence(SEC_X);\r
-                               last = 1;\r
-                       } else {\r
-                               if(last == 0) {\r
-                                       // Sequence Z\r
-                                       Sequence(SEC_Z);\r
-                               }\r
-                               else {\r
-                                       // Sequence Y\r
-                                       Sequence(SEC_Y);\r
-                                       last = 0;\r
-                               }\r
-                       }\r
-                       b >>= 1;\r
-\r
-               }\r
-\r
-               // Predefined parity bit, the flipper flips when needed, because of flips in byte sent\r
-               if(((parity >> (len - i - 1)) & 1)) {\r
-                       // Sequence X\r
-                       Sequence(SEC_X);\r
-                       last = 1;\r
-               } else {\r
-                       if(last == 0) {\r
-                               // Sequence Z\r
-                               Sequence(SEC_Z);\r
-                       }\r
-                       else {\r
-                               // Sequence Y\r
-                               Sequence(SEC_Y);\r
-                               last = 0;\r
-                       }\r
-               }\r
-       }\r
-\r
-       // End of Communication\r
-       if(last == 0) {\r
-               // Sequence Z\r
-               Sequence(SEC_Z);\r
-       }\r
-       else {\r
-               // Sequence Y\r
-               Sequence(SEC_Y);\r
-               last = 0;\r
-       }\r
-       // Sequence Y\r
-       Sequence(SEC_Y);\r
-\r
-       // Just to be sure!\r
-       Sequence(SEC_Y);\r
-       Sequence(SEC_Y);\r
-       Sequence(SEC_Y);\r
-\r
-    // Convert from last character reference to length\r
-    ToSendMax++;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Code a 7-bit command without parity bit\r
-// This is especially for 0x26 and 0x52 (REQA and WUPA)\r
-//-----------------------------------------------------------------------------\r
-void ShortFrameFromReader(const BYTE *cmd)\r
-{\r
-       int j;\r
-       int last;\r
-    BYTE b;\r
-\r
-       ToSendReset();\r
-\r
-       // Start of Communication (Seq. Z)\r
-       Sequence(SEC_Z);\r
-       last = 0;\r
-\r
-       b = cmd[0];\r
-       for(j = 0; j < 7; j++) {\r
-               if(b & 1) {\r
-                       // Sequence X\r
-                       Sequence(SEC_X);\r
-                       last = 1;\r
-               } else {\r
-                       if(last == 0) {\r
-                               // Sequence Z\r
-                               Sequence(SEC_Z);\r
-                       }\r
-                       else {\r
-                               // Sequence Y\r
-                               Sequence(SEC_Y);\r
-                               last = 0;\r
-                       }\r
-               }\r
-               b >>= 1;\r
-       }\r
-\r
-       // End of Communication\r
-       if(last == 0) {\r
-               // Sequence Z\r
-               Sequence(SEC_Z);\r
-       }\r
-       else {\r
-               // Sequence Y\r
-               Sequence(SEC_Y);\r
-               last = 0;\r
-       }\r
-       // Sequence Y\r
-       Sequence(SEC_Y);\r
-\r
-       // Just to be sure!\r
-       Sequence(SEC_Y);\r
-       Sequence(SEC_Y);\r
-       Sequence(SEC_Y);\r
-\r
-    // Convert from last character reference to length\r
-    ToSendMax++;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Prepare reader command to send to FPGA\r
-//\r
-//-----------------------------------------------------------------------------\r
-void CodeIso14443aAsReader(const BYTE *cmd, int len)\r
-{\r
-    int i, j;\r
-       int last;\r
-       int oddparity;\r
-    BYTE b;\r
-\r
-    ToSendReset();\r
-\r
-       // Start of Communication (Seq. Z)\r
-       Sequence(SEC_Z);\r
-       last = 0;\r
-\r
-       for(i = 0; i < len; i++) {\r
-        // Data bits\r
-        b = cmd[i];\r
-        oddparity = 0x01;\r
-        for(j = 0; j < 8; j++) {\r
-            oddparity ^= (b & 1);\r
-            if(b & 1) {\r
-                               // Sequence X\r
-                               Sequence(SEC_X);\r
-                               last = 1;\r
-            } else {\r
-                if(last == 0) {\r
-                                       // Sequence Z\r
-                                       Sequence(SEC_Z);\r
-                               }\r
-                               else {\r
-                                       // Sequence Y\r
-                                       Sequence(SEC_Y);\r
-                                       last = 0;\r
-                               }\r
-            }\r
-            b >>= 1;\r
-        }\r
-\r
-               // Parity bit\r
-               if(oddparity) {\r
-                       // Sequence X\r
-                       Sequence(SEC_X);\r
-                       last = 1;\r
-               } else {\r
-                       if(last == 0) {\r
-                               // Sequence Z\r
-                               Sequence(SEC_Z);\r
-                       }\r
-                       else {\r
-                               // Sequence Y\r
-                               Sequence(SEC_Y);\r
-                               last = 0;\r
-                       }\r
-               }\r
-    }\r
-\r
-       // End of Communication\r
-       if(last == 0) {\r
-               // Sequence Z\r
-               Sequence(SEC_Z);\r
-       }\r
-       else {\r
-               // Sequence Y\r
-               Sequence(SEC_Y);\r
-               last = 0;\r
-       }\r
-       // Sequence Y\r
-       Sequence(SEC_Y);\r
-\r
-       // Just to be sure!\r
-       Sequence(SEC_Y);\r
-       Sequence(SEC_Y);\r
-       Sequence(SEC_Y);\r
-\r
-    // Convert from last character reference to length\r
-    ToSendMax++;\r
-}\r
-\r
-\r
-//-----------------------------------------------------------------------------\r
-// Wait a certain time for tag response\r
-//  If a response is captured return TRUE\r
-//  If it takes to long return FALSE\r
-//-----------------------------------------------------------------------------\r
-static BOOL GetIso14443aAnswerFromTag(BYTE *receivedResponse, int maxLen, int *samples, int *elapsed) //BYTE *buffer\r
-{\r
-       // buffer needs to be 512 bytes\r
-       int c;\r
-\r
-       // Set FPGA mode to "reader listen mode", no modulation (listen\r
-    // only, since we are receiving, not transmitting).\r
-    // Signal field is on with the appropriate LED\r
-    LED_D_ON();\r
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);\r
-\r
-    // Now get the answer from the card\r
-    Demod.output = receivedResponse;\r
-    Demod.len = 0;\r
-    Demod.state = DEMOD_UNSYNCD;\r
-\r
-       BYTE b;\r
-       *elapsed = 0;\r
-\r
-       c = 0;\r
-       for(;;) {\r
-        WDT_HIT();\r
-\r
-        if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
-            SSC_TRANSMIT_HOLDING = 0x00;  // To make use of exact timing of next command from reader!!\r
-                       (*elapsed)++;\r
-        }\r
-        if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
-                       if(c < 512) { c++; } else { return FALSE; }\r
-            b = (BYTE)SSC_RECEIVE_HOLDING;\r
-                       if(ManchesterDecoding((b & 0xf0) >> 4)) {\r
-                               *samples = ((c - 1) << 3) + 4;\r
-                               return TRUE;\r
-                       }\r
-                       if(ManchesterDecoding(b & 0x0f)) {\r
-                               *samples = c << 3;\r
-                               return TRUE;\r
-                       }\r
-        }\r
-    }\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Read an ISO 14443a tag. Send out commands and store answers.\r
-//\r
-//-----------------------------------------------------------------------------\r
-void ReaderIso14443a(DWORD parameter)\r
-{\r
-       // Anticollision\r
-       static const BYTE cmd1[]       = { 0x52 }; // or 0x26\r
-       static const BYTE cmd2[]       = { 0x93,0x20 };\r
-       // UID = 0x2a,0x69,0x8d,0x43,0x8d, last two bytes are CRC bytes\r
-       BYTE cmd3[] = { 0x93,0x70,0x2a,0x69,0x8d,0x43,0x8d,0x52,0x55 };\r
-\r
-       // For Ultralight add an extra anticollission layer -> 95 20 and then 95 70\r
-\r
-       // greg - here we will add our cascade level 2 anticolission and select functions to deal with ultralight               // and 7-byte UIDs in generall...\r
-       BYTE cmd4[] = {0x95,0x20};      // ask for cascade 2 select\r
-       // 95 20\r
-       //BYTE cmd3a[] = { 0x95,0x70,0x2a,0x69,0x8d,0x43,0x8d,0x52,0x55 };\r
-       // 95 70\r
-\r
-       // cascade 2 select\r
-       BYTE cmd5[] = { 0x95,0x70,0x2a,0x69,0x8d,0x43,0x8d,0x52,0x55 };\r
-\r
-\r
-       // RATS (request for answer to select)\r
-       //BYTE cmd6[] = { 0xe0,0x50,0xbc,0xa5 };  // original RATS\r
-       BYTE cmd6[] = { 0xe0,0x21,0xb2,0xc7 };  // Desfire RATS\r
-\r
-       // Mifare AUTH\r
-       BYTE cmd7[] = { 0x60, 0x00, 0x00, 0x00 };\r
-\r
-       int reqaddr = 2024;                                     // was 2024 - tied to other size changes\r
-       int reqsize = 60;\r
-\r
-       BYTE *req1 = (((BYTE *)BigBuf) + reqaddr);\r
-    int req1Len;\r
-\r
-    BYTE *req2 = (((BYTE *)BigBuf) + reqaddr + reqsize);\r
-    int req2Len;\r
-\r
-    BYTE *req3 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 2));\r
-    int req3Len;\r
-\r
-// greg added req 4 & 5 to deal with cascade 2 section\r
-    BYTE *req4 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 3));\r
-    int req4Len;\r
-\r
-    BYTE *req5 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 4));\r
-    int req5Len;\r
-\r
-    BYTE *req6 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 5));\r
-    int req6Len;\r
-\r
-    BYTE *req7 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 6));\r
-    int req7Len;\r
-\r
-       BYTE *receivedAnswer = (((BYTE *)BigBuf) + 3560);       // was 3560 - tied to other size changes\r
-\r
-       BYTE *trace = (BYTE *)BigBuf;\r
-       int traceLen = 0;\r
-       int rsamples = 0;\r
-\r
-       memset(trace, 0x44, 2000);                              // was 2000 - tied to oter size chnages\r
-       // setting it to 3000 causes no tag responses to be detected (2900 is ok)\r
-       // setting it to 1000 causes no tag responses to be detected\r
-\r
-       // Prepare some commands!\r
-    ShortFrameFromReader(cmd1);\r
-    memcpy(req1, ToSend, ToSendMax); req1Len = ToSendMax;\r
-\r
-       CodeIso14443aAsReader(cmd2, sizeof(cmd2));\r
-    memcpy(req2, ToSend, ToSendMax); req2Len = ToSendMax;\r
-\r
-       CodeIso14443aAsReader(cmd3, sizeof(cmd3));\r
-    memcpy(req3, ToSend, ToSendMax); req3Len = ToSendMax;\r
-\r
-\r
-       CodeIso14443aAsReader(cmd4, sizeof(cmd4));              // 4 is cascade 2 request\r
-    memcpy(req4, ToSend, ToSendMax); req4Len = ToSendMax;\r
-\r
-\r
-       CodeIso14443aAsReader(cmd5, sizeof(cmd5));      // 5 is cascade 2 select\r
-    memcpy(req5, ToSend, ToSendMax); req5Len = ToSendMax;\r
-\r
-\r
-       CodeIso14443aAsReader(cmd6, sizeof(cmd6));\r
-    memcpy(req6, ToSend, ToSendMax); req6Len = ToSendMax;\r
-\r
-       // Setup SSC\r
-       FpgaSetupSsc();\r
-\r
-       // Start from off (no field generated)\r
-    // Signal field is off with the appropriate LED\r
-    LED_D_OFF();\r
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
-    SpinDelay(200);\r
-\r
-    SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
-    FpgaSetupSsc();\r
-\r
-       // Now give it time to spin up.\r
-    // Signal field is on with the appropriate LED\r
-    LED_D_ON();\r
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);\r
-       SpinDelay(200);\r
-\r
-       LED_A_ON();\r
-       LED_B_OFF();\r
-       LED_C_OFF();\r
-\r
-       int samples = 0;\r
-       int tsamples = 0;\r
-       int wait = 0;\r
-       int elapsed = 0;\r
-\r
-       for(;;) {\r
-               // Send WUPA (or REQA)\r
-               TransmitFor14443a(req1, req1Len, &tsamples, &wait);\r
-               // Store answer in buffer\r
-               trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
-               trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
-               trace[traceLen++] = 1;\r
-               memcpy(trace+traceLen, cmd1, 1);\r
-               traceLen += 1;\r
-               if(traceLen > TRACE_LENGTH) goto done;\r
-\r
-               while(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {\r
-                       if(BUTTON_PRESS()) goto done;\r
-\r
-                       // No answer, just continue polling\r
-                       TransmitFor14443a(req1, req1Len, &tsamples, &wait);\r
-                       // Store answer in buffer\r
-                       trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
-                       trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
-                       trace[traceLen++] = 1;\r
-                       memcpy(trace+traceLen, cmd1, 1);\r
-                       traceLen += 1;\r
-                       if(traceLen > TRACE_LENGTH) goto done;\r
-               }\r
-\r
-               // Store answer in buffer\r
-               rsamples = rsamples + (samples - Demod.samples);\r
-               trace[traceLen++] = ((rsamples >>  0) & 0xff);\r
-               trace[traceLen++] = ((rsamples >>  8) & 0xff);\r
-               trace[traceLen++] = ((rsamples >> 16) & 0xff);\r
-               trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r
-               trace[traceLen++] = ((Demod.parityBits >>  0) & 0xff);\r
-               trace[traceLen++] = ((Demod.parityBits >>  8) & 0xff);\r
-               trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r
-               trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r
-               trace[traceLen++] = Demod.len;\r
-               memcpy(trace+traceLen, receivedAnswer, Demod.len);\r
-               traceLen += Demod.len;\r
-               if(traceLen > TRACE_LENGTH) goto done;\r
-\r
-               // Ask for card UID\r
-               TransmitFor14443a(req2, req2Len, &tsamples, &wait);\r
-               // Store answer in buffer\r
-               trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
-               trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
-               trace[traceLen++] = 2;\r
-               memcpy(trace+traceLen, cmd2, 2);\r
-               traceLen += 2;\r
-               if(traceLen > TRACE_LENGTH) goto done;\r
-\r
-               if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {\r
-                       continue;\r
-               }\r
-\r
-               // Store answer in buffer\r
-               rsamples = rsamples + (samples - Demod.samples);\r
-               trace[traceLen++] = ((rsamples >>  0) & 0xff);\r
-               trace[traceLen++] = ((rsamples >>  8) & 0xff);\r
-               trace[traceLen++] = ((rsamples >> 16) & 0xff);\r
-               trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r
-               trace[traceLen++] = ((Demod.parityBits >>  0) & 0xff);\r
-               trace[traceLen++] = ((Demod.parityBits >>  8) & 0xff);\r
-               trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r
-               trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r
-               trace[traceLen++] = Demod.len;\r
-               memcpy(trace+traceLen, receivedAnswer, Demod.len);\r
-               traceLen += Demod.len;\r
-               if(traceLen > TRACE_LENGTH) goto done;\r
-\r
-               // Construct SELECT UID command\r
-               // First copy the 5 bytes (Mifare Classic) after the 93 70\r
-               memcpy(cmd3+2,receivedAnswer,5);\r
-               // Secondly compute the two CRC bytes at the end\r
-               ComputeCrc14443(CRC_14443_A, cmd3, 7, &cmd3[7], &cmd3[8]);\r
-               // Prepare the bit sequence to modulate the subcarrier\r
-               // Store answer in buffer\r
-               trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
-               trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
-               trace[traceLen++] = 9;\r
-               memcpy(trace+traceLen, cmd3, 9);\r
-               traceLen += 9;\r
-               if(traceLen > TRACE_LENGTH) goto done;\r
-               CodeIso14443aAsReader(cmd3, sizeof(cmd3));\r
-               memcpy(req3, ToSend, ToSendMax); req3Len = ToSendMax;\r
-\r
-               // Select the card\r
-               TransmitFor14443a(req3, req3Len, &samples, &wait);\r
-               if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {\r
-                       continue;\r
-               }\r
-\r
-               // Store answer in buffer\r
-               rsamples = rsamples + (samples - Demod.samples);\r
-               trace[traceLen++] = ((rsamples >>  0) & 0xff);\r
-               trace[traceLen++] = ((rsamples >>  8) & 0xff);\r
-               trace[traceLen++] = ((rsamples >> 16) & 0xff);\r
-               trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r
-               trace[traceLen++] = ((Demod.parityBits >>  0) & 0xff);\r
-               trace[traceLen++] = ((Demod.parityBits >>  8) & 0xff);\r
-               trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r
-               trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r
-               trace[traceLen++] = Demod.len;\r
-               memcpy(trace+traceLen, receivedAnswer, Demod.len);\r
-               traceLen += Demod.len;\r
-               if(traceLen > TRACE_LENGTH) goto done;\r
-\r
-// OK we have selected at least at cascade 1, lets see if first byte of UID was 0x88 in\r
-// which case we need to make a cascade 2 request and select - this is a long UID\r
-               if (receivedAnswer[0] == 0x88)\r
-               {\r
-               // Do cascade level 2 stuff\r
-               ///////////////////////////////////////////////////////////////////\r
-               // First issue a '95 20' identify request\r
-               // Ask for card UID (part 2)\r
-               TransmitFor14443a(req4, req4Len, &tsamples, &wait);\r
-               // Store answer in buffer\r
-               trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
-               trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
-               trace[traceLen++] = 2;\r
-               memcpy(trace+traceLen, cmd4, 2);\r
-               traceLen += 2;\r
-               if(traceLen > TRACE_LENGTH) {\r
-               DbpString("Bugging out, just popped tracelength");\r
-               goto done;}\r
-\r
-               if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {\r
-                       continue;\r
-               }\r
-               // Store answer in buffer\r
-               rsamples = rsamples + (samples - Demod.samples);\r
-               trace[traceLen++] = ((rsamples >>  0) & 0xff);\r
-               trace[traceLen++] = ((rsamples >>  8) & 0xff);\r
-               trace[traceLen++] = ((rsamples >> 16) & 0xff);\r
-               trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r
-               trace[traceLen++] = ((Demod.parityBits >>  0) & 0xff);\r
-               trace[traceLen++] = ((Demod.parityBits >>  8) & 0xff);\r
-               trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r
-               trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r
-               trace[traceLen++] = Demod.len;\r
-               memcpy(trace+traceLen, receivedAnswer, Demod.len);\r
-               traceLen += Demod.len;\r
-               if(traceLen > TRACE_LENGTH) goto done;\r
-               //////////////////////////////////////////////////////////////////\r
-               // Then Construct SELECT UID (cascasde 2) command\r
-               DbpString("Just about to copy the UID out of the cascade 2 id req");\r
-               // First copy the 5 bytes (Mifare Classic) after the 95 70\r
-               memcpy(cmd5+2,receivedAnswer,5);\r
-               // Secondly compute the two CRC bytes at the end\r
-               ComputeCrc14443(CRC_14443_A, cmd4, 7, &cmd5[7], &cmd5[8]);\r
-               // Prepare the bit sequence to modulate the subcarrier\r
-               // Store answer in buffer\r
-               trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
-               trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
-               trace[traceLen++] = 9;\r
-               memcpy(trace+traceLen, cmd5, 9);\r
-               traceLen += 9;\r
-               if(traceLen > TRACE_LENGTH) goto done;\r
-               CodeIso14443aAsReader(cmd5, sizeof(cmd5));\r
-               memcpy(req5, ToSend, ToSendMax); req5Len = ToSendMax;\r
-\r
-               // Select the card\r
-               TransmitFor14443a(req4, req4Len, &samples, &wait);\r
-               if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {\r
-                       continue;\r
-               }\r
-\r
-               // Store answer in buffer\r
-               rsamples = rsamples + (samples - Demod.samples);\r
-               trace[traceLen++] = ((rsamples >>  0) & 0xff);\r
-               trace[traceLen++] = ((rsamples >>  8) & 0xff);\r
-               trace[traceLen++] = ((rsamples >> 16) & 0xff);\r
-               trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r
-               trace[traceLen++] = ((Demod.parityBits >>  0) & 0xff);\r
-               trace[traceLen++] = ((Demod.parityBits >>  8) & 0xff);\r
-               trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r
-               trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r
-               trace[traceLen++] = Demod.len;\r
-               memcpy(trace+traceLen, receivedAnswer, Demod.len);\r
-               traceLen += Demod.len;\r
-               if(traceLen > TRACE_LENGTH) goto done;\r
-\r
-               }\r
-\r
-               // Secondly compute the two CRC bytes at the end\r
-               ComputeCrc14443(CRC_14443_A, cmd7, 2, &cmd7[2], &cmd7[3]);\r
-               CodeIso14443aAsReader(cmd7, sizeof(cmd7));\r
-               memcpy(req7, ToSend, ToSendMax); req7Len = ToSendMax;\r
-               // Send authentication request (Mifare Classic)\r
-               TransmitFor14443a(req7, req7Len, &samples, &wait);\r
-               trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
-               trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
-               trace[traceLen++] = 4;\r
-               memcpy(trace+traceLen, cmd7, 4);\r
-               traceLen += 4;\r
-               if(traceLen > TRACE_LENGTH) goto done;\r
-               if(GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {\r
-                       rsamples++;\r
-                       // We received probably a random, continue and trace!\r
-               }\r
-               else {\r
-                       // Received nothing\r
-                       continue;\r
-               }\r
-\r
-               // Trace the random, i'm curious\r
-               rsamples = rsamples + (samples - Demod.samples);\r
-               trace[traceLen++] = ((rsamples >>  0) & 0xff);\r
-               trace[traceLen++] = ((rsamples >>  8) & 0xff);\r
-               trace[traceLen++] = ((rsamples >> 16) & 0xff);\r
-               trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r
-               trace[traceLen++] = ((Demod.parityBits >>  0) & 0xff);\r
-               trace[traceLen++] = ((Demod.parityBits >>  8) & 0xff);\r
-               trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r
-               trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r
-               trace[traceLen++] = Demod.len;\r
-               memcpy(trace+traceLen, receivedAnswer, Demod.len);\r
-               traceLen += Demod.len;\r
-               if(traceLen > TRACE_LENGTH) goto done;\r
-\r
-               // Thats it...\r
-       }\r
-\r
-done:\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
-       LEDsoff();\r
-       DbpIntegers(rsamples, 0xCC, 0xCC);\r
-       DbpString("ready..");\r
-}\r
+//-----------------------------------------------------------------------------
+// Merlok - June 2011, 2012
+// Gerhard de Koning Gans - May 2008
+// Hagen Fritsch - June 2010
+//
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// Routines to support ISO 14443 type A.
+//-----------------------------------------------------------------------------
+
+#include "proxmark3.h"
+#include "apps.h"
+#include "util.h"
+#include "string.h"
+#include "cmd.h"
+
+#include "iso14443crc.h"
+#include "iso14443a.h"
+#include "crapto1.h"
+#include "mifareutil.h"
+
+static uint32_t iso14a_timeout;
+uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET;
+int traceLen = 0;
+int rsamples = 0;
+int tracing = TRUE;
+uint8_t trigger = 0;
+// the block number for the ISO14443-4 PCB
+static uint8_t iso14_pcb_blocknum = 0;
+
+// CARD TO READER - manchester
+// Sequence D: 11110000 modulation with subcarrier during first half
+// Sequence E: 00001111 modulation with subcarrier during second half
+// Sequence F: 00000000 no modulation with subcarrier
+// READER TO CARD - miller
+// Sequence X: 00001100 drop after half a period
+// Sequence Y: 00000000 no drop
+// Sequence Z: 11000000 drop at start
+#define        SEC_D 0xf0
+#define        SEC_E 0x0f
+#define        SEC_F 0x00
+#define        SEC_X 0x0c
+#define        SEC_Y 0x00
+#define        SEC_Z 0xc0
+
+const uint8_t OddByteParity[256] = {
+  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
+};
+
+
+void iso14a_set_trigger(bool enable) {
+       trigger = enable;
+}
+
+void iso14a_clear_trace() {
+  memset(trace, 0x44, TRACE_SIZE);
+       traceLen = 0;
+}
+
+void iso14a_set_tracing(bool enable) {
+       tracing = enable;
+}
+
+void iso14a_set_timeout(uint32_t timeout) {
+       iso14a_timeout = timeout;
+}
+
+//-----------------------------------------------------------------------------
+// Generate the parity value for a byte sequence
+//
+//-----------------------------------------------------------------------------
+byte_t oddparity (const byte_t bt)
+{
+       return OddByteParity[bt];
+}
+
+uint32_t GetParity(const uint8_t * pbtCmd, int iLen)
+{
+       int i;
+       uint32_t dwPar = 0;
+
+       // Generate the parity bits
+       for (i = 0; i < iLen; i++) {
+               // and save them to a 32Bit word
+               dwPar |= ((OddByteParity[pbtCmd[i]]) << i);
+       }
+       return dwPar;
+}
+
+void AppendCrc14443a(uint8_t* data, int len)
+{
+       ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
+}
+
+// The function LogTrace() is also used by the iClass implementation in iClass.c
+int RAMFUNC LogTrace(const uint8_t * btBytes, int iLen, int iSamples, uint32_t dwParity, int bReader)
+{
+  // Return when trace is full
+  if (traceLen >= TRACE_SIZE) return FALSE;
+
+  // Trace the random, i'm curious
+  rsamples += iSamples;
+  trace[traceLen++] = ((rsamples >> 0) & 0xff);
+  trace[traceLen++] = ((rsamples >> 8) & 0xff);
+  trace[traceLen++] = ((rsamples >> 16) & 0xff);
+  trace[traceLen++] = ((rsamples >> 24) & 0xff);
+  if (!bReader) {
+    trace[traceLen - 1] |= 0x80;
+  }
+  trace[traceLen++] = ((dwParity >> 0) & 0xff);
+  trace[traceLen++] = ((dwParity >> 8) & 0xff);
+  trace[traceLen++] = ((dwParity >> 16) & 0xff);
+  trace[traceLen++] = ((dwParity >> 24) & 0xff);
+  trace[traceLen++] = iLen;
+  memcpy(trace + traceLen, btBytes, iLen);
+  traceLen += iLen;
+  return TRUE;
+}
+
+//-----------------------------------------------------------------------------
+// The software UART that receives commands from the reader, and its state
+// variables.
+//-----------------------------------------------------------------------------
+static tUart Uart;
+
+static RAMFUNC int MillerDecoding(int bit)
+{
+       //int error = 0;
+       int bitright;
+
+       if(!Uart.bitBuffer) {
+               Uart.bitBuffer = bit ^ 0xFF0;
+               return FALSE;
+       }
+       else {
+               Uart.bitBuffer <<= 4;
+               Uart.bitBuffer ^= bit;
+       }
+
+       int EOC = FALSE;
+
+       if(Uart.state != STATE_UNSYNCD) {
+               Uart.posCnt++;
+
+               if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
+                       bit = 0x00;
+               }
+               else {
+                       bit = 0x01;
+               }
+               if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
+                       bitright = 0x00;
+               }
+               else {
+                       bitright = 0x01;
+               }
+               if(bit != bitright) { bit = bitright; }
+
+               if(Uart.posCnt == 1) {
+                       // measurement first half bitperiod
+                       if(!bit) {
+                               Uart.drop = DROP_FIRST_HALF;
+                       }
+               }
+               else {
+                       // measurement second half bitperiod
+                       if(!bit & (Uart.drop == DROP_NONE)) {
+                               Uart.drop = DROP_SECOND_HALF;
+                       }
+                       else if(!bit) {
+                               // measured a drop in first and second half
+                               // which should not be possible
+                               Uart.state = STATE_ERROR_WAIT;
+                               //error = 0x01;
+                       }
+
+                       Uart.posCnt = 0;
+
+                       switch(Uart.state) {
+                               case STATE_START_OF_COMMUNICATION:
+                                       Uart.shiftReg = 0;
+                                       if(Uart.drop == DROP_SECOND_HALF) {
+                                               // error, should not happen in SOC
+                                               Uart.state = STATE_ERROR_WAIT;
+                                               //error = 0x02;
+                                       }
+                                       else {
+                                               // correct SOC
+                                               Uart.state = STATE_MILLER_Z;
+                                       }
+                                       break;
+
+                               case STATE_MILLER_Z:
+                                       Uart.bitCnt++;
+                                       Uart.shiftReg >>= 1;
+                                       if(Uart.drop == DROP_NONE) {
+                                               // logic '0' followed by sequence Y
+                                               // end of communication
+                                               Uart.state = STATE_UNSYNCD;
+                                               EOC = TRUE;
+                                       }
+                                       // if(Uart.drop == DROP_FIRST_HALF) {
+                                       //      Uart.state = STATE_MILLER_Z; stay the same
+                                       //      we see a logic '0' }
+                                       if(Uart.drop == DROP_SECOND_HALF) {
+                                               // we see a logic '1'
+                                               Uart.shiftReg |= 0x100;
+                                               Uart.state = STATE_MILLER_X;
+                                       }
+                                       break;
+
+                               case STATE_MILLER_X:
+                                       Uart.shiftReg >>= 1;
+                                       if(Uart.drop == DROP_NONE) {
+                                               // sequence Y, we see a '0'
+                                               Uart.state = STATE_MILLER_Y;
+                                               Uart.bitCnt++;
+                                       }
+                                       if(Uart.drop == DROP_FIRST_HALF) {
+                                               // Would be STATE_MILLER_Z
+                                               // but Z does not follow X, so error
+                                               Uart.state = STATE_ERROR_WAIT;
+                                               //error = 0x03;
+                                       }
+                                       if(Uart.drop == DROP_SECOND_HALF) {
+                                               // We see a '1' and stay in state X
+                                               Uart.shiftReg |= 0x100;
+                                               Uart.bitCnt++;
+                                       }
+                                       break;
+
+                               case STATE_MILLER_Y:
+                                       Uart.bitCnt++;
+                                       Uart.shiftReg >>= 1;
+                                       if(Uart.drop == DROP_NONE) {
+                                               // logic '0' followed by sequence Y
+                                               // end of communication
+                                               Uart.state = STATE_UNSYNCD;
+                                               EOC = TRUE;
+                                       }
+                                       if(Uart.drop == DROP_FIRST_HALF) {
+                                               // we see a '0'
+                                               Uart.state = STATE_MILLER_Z;
+                                       }
+                                       if(Uart.drop == DROP_SECOND_HALF) {
+                                               // We see a '1' and go to state X
+                                               Uart.shiftReg |= 0x100;
+                                               Uart.state = STATE_MILLER_X;
+                                       }
+                                       break;
+
+                               case STATE_ERROR_WAIT:
+                                       // That went wrong. Now wait for at least two bit periods
+                                       // and try to sync again
+                                       if(Uart.drop == DROP_NONE) {
+                                               Uart.highCnt = 6;
+                                               Uart.state = STATE_UNSYNCD;
+                                       }
+                                       break;
+
+                               default:
+                                       Uart.state = STATE_UNSYNCD;
+                                       Uart.highCnt = 0;
+                                       break;
+                       }
+
+                       Uart.drop = DROP_NONE;
+
+                       // should have received at least one whole byte...
+                       if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) {
+                               return TRUE;
+                       }
+
+                       if(Uart.bitCnt == 9) {
+                               Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
+                               Uart.byteCnt++;
+
+                               Uart.parityBits <<= 1;
+                               Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01);
+
+                               if(EOC) {
+                                       // when End of Communication received and
+                                       // all data bits processed..
+                                       return TRUE;
+                               }
+                               Uart.bitCnt = 0;
+                       }
+
+                       /*if(error) {
+                               Uart.output[Uart.byteCnt] = 0xAA;
+                               Uart.byteCnt++;
+                               Uart.output[Uart.byteCnt] = error & 0xFF;
+                               Uart.byteCnt++;
+                               Uart.output[Uart.byteCnt] = 0xAA;
+                               Uart.byteCnt++;
+                               Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
+                               Uart.byteCnt++;
+                               Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
+                               Uart.byteCnt++;
+                               Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
+                               Uart.byteCnt++;
+                               Uart.output[Uart.byteCnt] = 0xAA;
+                               Uart.byteCnt++;
+                               return TRUE;
+                       }*/
+               }
+
+       }
+       else {
+               bit = Uart.bitBuffer & 0xf0;
+               bit >>= 4;
+               bit ^= 0x0F;
+               if(bit) {
+                       // should have been high or at least (4 * 128) / fc
+                       // according to ISO this should be at least (9 * 128 + 20) / fc
+                       if(Uart.highCnt == 8) {
+                               // we went low, so this could be start of communication
+                               // it turns out to be safer to choose a less significant
+                               // syncbit... so we check whether the neighbour also represents the drop
+                               Uart.posCnt = 1;   // apparently we are busy with our first half bit period
+                               Uart.syncBit = bit & 8;
+                               Uart.samples = 3;
+                               if(!Uart.syncBit)       { Uart.syncBit = bit & 4; Uart.samples = 2; }
+                               else if(bit & 4)        { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
+                               if(!Uart.syncBit)       { Uart.syncBit = bit & 2; Uart.samples = 1; }
+                               else if(bit & 2)        { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
+                               if(!Uart.syncBit)       { Uart.syncBit = bit & 1; Uart.samples = 0;
+                                       if(Uart.syncBit && (Uart.bitBuffer & 8)) {
+                                               Uart.syncBit = 8;
+
+                                               // the first half bit period is expected in next sample
+                                               Uart.posCnt = 0;
+                                               Uart.samples = 3;
+                                       }
+                               }
+                               else if(bit & 1)        { Uart.syncBit = bit & 1; Uart.samples = 0; }
+
+                               Uart.syncBit <<= 4;
+                               Uart.state = STATE_START_OF_COMMUNICATION;
+                               Uart.drop = DROP_FIRST_HALF;
+                               Uart.bitCnt = 0;
+                               Uart.byteCnt = 0;
+                               Uart.parityBits = 0;
+                               //error = 0;
+                       }
+                       else {
+                               Uart.highCnt = 0;
+                       }
+               }
+               else {
+                       if(Uart.highCnt < 8) {
+                               Uart.highCnt++;
+                       }
+               }
+       }
+
+    return FALSE;
+}
+
+//=============================================================================
+// ISO 14443 Type A - Manchester decoder
+//=============================================================================
+// Basics:
+// The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
+// at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
+// ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
+// The Manchester decoder needs to identify the following sequences:
+// 4 ticks modulated followed by 4 ticks unmodulated:  Sequence D = 1 (also used as "start of communication")
+// 4 ticks unmodulated followed by 4 ticks modulated:  Sequence E = 0
+// 8 ticks unmodulated:                                                                        Sequence F = end of communication
+// 8 ticks modulated:                                                                  A collision. Save the collision position and treat as Sequence D
+// Note 1: the bitstream may start at any time (either in first or second nibble within the parameter bit). We therefore need to sync.
+// Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
+static tDemod Demod;
+
+inline RAMFUNC bool IsModulation(byte_t b)
+{
+       if (b >= 5 || b == 3)           // majority decision: 2 or more bits are set
+               return true;
+       else
+               return false;
+       
+}
+
+inline RAMFUNC bool IsModulationNibble1(byte_t b)
+{
+       return IsModulation((b & 0xE0) >> 5);
+}
+
+inline RAMFUNC bool IsModulationNibble2(byte_t b)
+{
+       return IsModulation((b & 0x0E) >> 1);
+}
+
+static RAMFUNC int ManchesterDecoding(int bit, uint16_t offset)
+{
+       
+       switch (Demod.state) {
+
+               case DEMOD_UNSYNCD:                                             // not yet synced
+                       Demod.len = 0;                                          // initialize number of decoded data bytes
+                       Demod.bitCount = offset;                        // initialize number of decoded data bits
+                       Demod.shiftReg = 0;                                     // initialize shiftreg to hold decoded data bits
+                       Demod.parityBits = 0;                           // initialize parity bits
+                       Demod.collisionPos = 0;                         // Position of collision bit
+                       
+                       if (IsModulationNibble1(bit) 
+                               && !IsModulationNibble2(bit)) {                                                         // this is the start bit
+                               Demod.samples = 8;
+                               if(trigger) LED_A_OFF();
+                               Demod.state = DEMOD_MANCHESTER_DATA;
+                       } else if (!IsModulationNibble1(bit) && IsModulationNibble2(bit)) { // this may be the first half of the start bit
+                                       Demod.samples = 4;
+                                       Demod.state = DEMOD_HALF_SYNCD;
+                       }
+                       break;
+
+
+               case DEMOD_HALF_SYNCD:
+                       Demod.samples += 8;
+                       if (IsModulationNibble1(bit)) {                                                         // error: this was not a start bit.
+                               Demod.state = DEMOD_UNSYNCD;
+                       } else {
+                               if (IsModulationNibble2(bit)) {                                                 // modulation in first half
+                                       Demod.state = DEMOD_MOD_FIRST_HALF;
+                               } else {                                                                                                // no modulation in first half
+                                       Demod.state = DEMOD_NOMOD_FIRST_HALF;
+                               }
+                       }
+                       break;
+                       
+                       
+               case DEMOD_MOD_FIRST_HALF:
+                       Demod.samples += 8;
+                       Demod.bitCount++;
+                       if (IsModulationNibble1(bit)) {                                                         // modulation in both halfs - collision
+                               if (!Demod.collisionPos) {
+                                       Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
+                               }
+                       }                                                                                                                       // modulation in first half only - Sequence D = 1
+                       Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100;                         // add a 1 to the shiftreg
+                       if(Demod.bitCount >= 9) {                                                                       // if we decoded a full byte (including parity)
+                               Demod.parityBits <<= 1;                                                                 // make room for the parity bit
+                               Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
+                               Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01);     // store parity bit
+                               Demod.bitCount = 0;
+                               Demod.shiftReg = 0;
+                       }
+                       if (IsModulationNibble2(bit)) {                                                         // modulation in first half
+                               Demod.state = DEMOD_MOD_FIRST_HALF;
+                       } else {                                                                                                        // no modulation in first half
+                               Demod.state = DEMOD_NOMOD_FIRST_HALF;
+                       }
+                       break;
+
+
+               case DEMOD_NOMOD_FIRST_HALF:
+                       if (IsModulationNibble1(bit)) {                                                         // modulation in second half only - Sequence E = 0
+                               Demod.bitCount++;
+                               Demod.samples += 8;
+                               Demod.shiftReg = (Demod.shiftReg >> 1);                                 // add a 0 to the shiftreg
+                               if(Demod.bitCount >= 9) {                                                               // if we decoded a full byte (including parity)
+                                       Demod.parityBits <<= 1;                                                         // make room for the new parity bit
+                                       Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
+                                       Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
+                                       Demod.bitCount = 0;
+                                       Demod.shiftReg = 0;
+                               }
+                       } else {                                                                                                        // no modulation in both halves - End of communication
+                               Demod.samples += 4;
+                               if(Demod.bitCount > 0) {                                                                // if we decoded bits
+                                       Demod.shiftReg >>= (9 - Demod.bitCount);                        // add the remaining decoded bits to the output
+                                       Demod.output[Demod.len++] = Demod.shiftReg & 0xff;
+                                       // No parity bit, so just shift a 0
+                                       Demod.parityBits <<= 1;
+                               }
+                               Demod.state = DEMOD_UNSYNCD;                                                    // start from the beginning
+                               return TRUE;                                                                                    // we are finished with decoding the raw data sequence
+                       }
+                       if (IsModulationNibble2(bit)) {                                                         // modulation in first half
+                               Demod.state = DEMOD_MOD_FIRST_HALF;
+                       } else {                                                                                                        // no modulation in first half
+                               Demod.state = DEMOD_NOMOD_FIRST_HALF;
+                       }
+                       break;
+                       
+
+               case DEMOD_MANCHESTER_DATA:
+                       Demod.samples += 8;
+                       if (IsModulationNibble1(bit)) {                                                                 // modulation in first half
+                               if (IsModulationNibble2(bit) & 0x0f) {                                          // ... and in second half = collision
+                                       if (!Demod.collisionPos) {
+                                               Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
+                                       }
+                               }                                                                                                               // modulation in first half only - Sequence D = 1
+                               Demod.bitCount++;
+                               Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100;                 // in both cases, add a 1 to the shiftreg
+                               if(Demod.bitCount >= 9) {                                                               // if we decoded a full byte (including parity)
+                                       Demod.parityBits <<= 1;                                                         // make room for the parity bit
+                                       Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
+                                       Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
+                                       Demod.bitCount = 0;
+                                       Demod.shiftReg = 0;
+                               }
+                       } else {                                                                                                        // no modulation in first half
+                               if (IsModulationNibble2(bit)) {                                                 // and modulation in second half = Sequence E = 0
+                                       Demod.bitCount++;
+                                       Demod.shiftReg = (Demod.shiftReg >> 1);                         // add a 0 to the shiftreg
+                                       if(Demod.bitCount >= 9) {                                                       // if we decoded a full byte (including parity)
+                                               Demod.parityBits <<= 1;                                                 // make room for the new parity bit
+                                               Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
+                                               Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
+                                               Demod.bitCount = 0;
+                                               Demod.shiftReg = 0;
+                                       }
+                               } else {                                                                                                // no modulation in both halves - End of communication
+                                       if(Demod.bitCount > 0) {                                                        // if we decoded bits
+                                               Demod.shiftReg >>= (9 - Demod.bitCount);                // add the remaining decoded bits to the output
+                                               Demod.output[Demod.len++] = Demod.shiftReg & 0xff;
+                                               // No parity bit, so just shift a 0
+                                               Demod.parityBits <<= 1;
+                                       }
+                                       Demod.state = DEMOD_UNSYNCD;                                            // start from the beginning
+                                       return TRUE;                                                                            // we are finished with decoding the raw data sequence
+                               }
+                       }
+                       
+       } 
+
+    return FALSE;      // not finished yet, need more data
+}
+
+//=============================================================================
+// Finally, a `sniffer' for ISO 14443 Type A
+// Both sides of communication!
+//=============================================================================
+
+//-----------------------------------------------------------------------------
+// Record the sequence of commands sent by the reader to the tag, with
+// triggering so that we start recording at the point that the tag is moved
+// near the reader.
+//-----------------------------------------------------------------------------
+void RAMFUNC SnoopIso14443a(uint8_t param) {
+       // param:
+       // bit 0 - trigger from first card answer
+       // bit 1 - trigger from first reader 7-bit request
+       
+       LEDsoff();
+       // init trace buffer
+       iso14a_clear_trace();
+
+       // We won't start recording the frames that we acquire until we trigger;
+       // a good trigger condition to get started is probably when we see a
+       // response from the tag.
+       // triggered == FALSE -- to wait first for card
+       int triggered = !(param & 0x03); 
+
+       // The command (reader -> tag) that we're receiving.
+       // The length of a received command will in most cases be no more than 18 bytes.
+       // So 32 should be enough!
+       uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
+       // The response (tag -> reader) that we're receiving.
+       uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
+
+       // As we receive stuff, we copy it from receivedCmd or receivedResponse
+       // into trace, along with its length and other annotations.
+       //uint8_t *trace = (uint8_t *)BigBuf;
+       
+       // The DMA buffer, used to stream samples from the FPGA
+       int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+       int8_t *data = dmaBuf;
+       int maxDataLen = 0;
+       int dataLen = 0;
+
+       // Set up the demodulator for tag -> reader responses.
+       Demod.output = receivedResponse;
+       Demod.len = 0;
+       Demod.state = DEMOD_UNSYNCD;
+
+       // Set up the demodulator for the reader -> tag commands
+       memset(&Uart, 0, sizeof(Uart));
+       Uart.output = receivedCmd;
+       Uart.byteCntMax = 32;                        // was 100 (greg)//////////////////
+       Uart.state = STATE_UNSYNCD;
+
+       // Setup for the DMA.
+       FpgaSetupSsc();
+       FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
+
+       // And put the FPGA in the appropriate mode
+       // Signal field is off with the appropriate LED
+       LED_D_OFF();
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
+       SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+       // Count of samples received so far, so that we can include timing
+       // information in the trace buffer.
+       rsamples = 0;
+       // And now we loop, receiving samples.
+       while(true) {
+               if(BUTTON_PRESS()) {
+                       DbpString("cancelled by button");
+                       goto done;
+               }
+
+               LED_A_ON();
+               WDT_HIT();
+
+               int register readBufDataP = data - dmaBuf;
+               int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
+               if (readBufDataP <= dmaBufDataP){
+                       dataLen = dmaBufDataP - readBufDataP;
+               } else {
+                       dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP + 1;
+               }
+               // test for length of buffer
+               if(dataLen > maxDataLen) {
+                       maxDataLen = dataLen;
+                       if(dataLen > 400) {
+                               Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
+                               goto done;
+                       }
+               }
+               if(dataLen < 1) continue;
+
+               // primary buffer was stopped( <-- we lost data!
+               if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
+                       AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
+                       AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
+               }
+               // secondary buffer sets as primary, secondary buffer was stopped
+               if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
+                       AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
+                       AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
+               }
+
+               LED_A_OFF();
+               
+               rsamples += 4;
+               if(MillerDecoding((data[0] & 0xF0) >> 4)) {
+                       LED_C_ON();
+
+                       // check - if there is a short 7bit request from reader
+                       if ((!triggered) && (param & 0x02) && (Uart.byteCnt == 1) && (Uart.bitCnt = 9)) triggered = TRUE;
+
+                       if(triggered) {
+                               if (!LogTrace(receivedCmd, Uart.byteCnt, 0 - Uart.samples, Uart.parityBits, TRUE)) break;
+                       }
+                       /* And ready to receive another command. */
+                       Uart.state = STATE_UNSYNCD;
+                       /* And also reset the demod code, which might have been */
+                       /* false-triggered by the commands from the reader. */
+                       Demod.state = DEMOD_UNSYNCD;
+                       LED_B_OFF();
+               }
+
+               if(ManchesterDecoding(data[0], 0)) {
+                       LED_B_ON();
+
+                       if (!LogTrace(receivedResponse, Demod.len, 0 - Demod.samples, Demod.parityBits, FALSE)) break;
+
+                       if ((!triggered) && (param & 0x01)) triggered = TRUE;
+
+                       // And ready to receive another response.
+                       memset(&Demod, 0, sizeof(Demod));
+                       Demod.output = receivedResponse;
+                       Demod.state = DEMOD_UNSYNCD;
+                       LED_C_OFF();
+               }
+
+               data++;
+               if(data > dmaBuf + DMA_BUFFER_SIZE) {
+                       data = dmaBuf;
+               }
+       } // main cycle
+
+       DbpString("COMMAND FINISHED");
+
+done:
+       AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
+       Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.byteCnt=%x", maxDataLen, Uart.state, Uart.byteCnt);
+       Dbprintf("Uart.byteCntMax=%x, traceLen=%x, Uart.output[0]=%08x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
+       LEDsoff();
+}
+
+//-----------------------------------------------------------------------------
+// Prepare tag messages
+//-----------------------------------------------------------------------------
+static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity)
+{
+       int i;
+
+       ToSendReset();
+
+       // Correction bit, might be removed when not needed
+       ToSendStuffBit(0);
+       ToSendStuffBit(0);
+       ToSendStuffBit(0);
+       ToSendStuffBit(0);
+       ToSendStuffBit(1);  // 1
+       ToSendStuffBit(0);
+       ToSendStuffBit(0);
+       ToSendStuffBit(0);
+       
+       // Send startbit
+       ToSend[++ToSendMax] = SEC_D;
+
+       for(i = 0; i < len; i++) {
+               int j;
+               uint8_t b = cmd[i];
+
+               // Data bits
+               for(j = 0; j < 8; j++) {
+                       if(b & 1) {
+                               ToSend[++ToSendMax] = SEC_D;
+                       } else {
+                               ToSend[++ToSendMax] = SEC_E;
+                       }
+                       b >>= 1;
+               }
+
+               // Get the parity bit
+               if ((dwParity >> i) & 0x01) {
+                       ToSend[++ToSendMax] = SEC_D;
+               } else {
+                       ToSend[++ToSendMax] = SEC_E;
+               }
+       }
+
+       // Send stopbit
+       ToSend[++ToSendMax] = SEC_F;
+
+       // Convert from last byte pos to length
+       ToSendMax++;
+}
+
+static void CodeIso14443aAsTag(const uint8_t *cmd, int len){
+       CodeIso14443aAsTagPar(cmd, len, GetParity(cmd, len));
+}
+
+////-----------------------------------------------------------------------------
+//// This is to send a NACK kind of answer, its only 3 bits, I know it should be 4
+////-----------------------------------------------------------------------------
+//static void CodeStrangeAnswerAsTag()
+//{
+//     int i;
+//
+//     ToSendReset();
+//
+//     // Correction bit, might be removed when not needed
+//     ToSendStuffBit(0);
+//     ToSendStuffBit(0);
+//     ToSendStuffBit(0);
+//     ToSendStuffBit(0);
+//     ToSendStuffBit(1);  // 1
+//     ToSendStuffBit(0);
+//     ToSendStuffBit(0);
+//     ToSendStuffBit(0);
+//
+//     // Send startbit
+//     ToSend[++ToSendMax] = SEC_D;
+//
+//     // 0
+//     ToSend[++ToSendMax] = SEC_E;
+//
+//     // 0
+//     ToSend[++ToSendMax] = SEC_E;
+//
+//     // 1
+//     ToSend[++ToSendMax] = SEC_D;
+//
+//     // Send stopbit
+//     ToSend[++ToSendMax] = SEC_F;
+//
+//     // Flush the buffer in FPGA!!
+//     for(i = 0; i < 5; i++) {
+//             ToSend[++ToSendMax] = SEC_F;
+//     }
+//
+//     // Convert from last byte pos to length
+//     ToSendMax++;
+//}
+
+static void Code4bitAnswerAsTag(uint8_t cmd)
+{
+       int i;
+
+       ToSendReset();
+
+       // Correction bit, might be removed when not needed
+       ToSendStuffBit(0);
+       ToSendStuffBit(0);
+       ToSendStuffBit(0);
+       ToSendStuffBit(0);
+       ToSendStuffBit(1);  // 1
+       ToSendStuffBit(0);
+       ToSendStuffBit(0);
+       ToSendStuffBit(0);
+
+       // Send startbit
+       ToSend[++ToSendMax] = SEC_D;
+
+       uint8_t b = cmd;
+       for(i = 0; i < 4; i++) {
+               if(b & 1) {
+                       ToSend[++ToSendMax] = SEC_D;
+               } else {
+                       ToSend[++ToSendMax] = SEC_E;
+               }
+               b >>= 1;
+       }
+
+       // Send stopbit
+       ToSend[++ToSendMax] = SEC_F;
+
+       // Flush the buffer in FPGA!!
+       for(i = 0; i < 5; i++) {
+               ToSend[++ToSendMax] = SEC_F;
+       }
+
+       // Convert from last byte pos to length
+       ToSendMax++;
+}
+
+//-----------------------------------------------------------------------------
+// Wait for commands from reader
+// Stop when button is pressed
+// Or return TRUE when command is captured
+//-----------------------------------------------------------------------------
+static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen)
+{
+    // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
+    // only, since we are receiving, not transmitting).
+    // Signal field is off with the appropriate LED
+    LED_D_OFF();
+    FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
+    // Now run a `software UART' on the stream of incoming samples.
+    Uart.output = received;
+    Uart.byteCntMax = maxLen;
+    Uart.state = STATE_UNSYNCD;
+
+    for(;;) {
+        WDT_HIT();
+
+        if(BUTTON_PRESS()) return FALSE;
+
+        if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+            AT91C_BASE_SSC->SSC_THR = 0x00;
+        }
+        if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+            uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+                       if(MillerDecoding((b & 0xf0) >> 4)) {
+                               *len = Uart.byteCnt;
+                               return TRUE;
+                       }
+                       if(MillerDecoding(b & 0x0f)) {
+                               *len = Uart.byteCnt;
+                               return TRUE;
+                       }
+        }
+    }
+}
+
+static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded);
+int EmSend4bitEx(uint8_t resp, int correctionNeeded);
+int EmSend4bit(uint8_t resp);
+int EmSendCmdExPar(uint8_t *resp, int respLen, int correctionNeeded, uint32_t par);
+int EmSendCmdExPar(uint8_t *resp, int respLen, int correctionNeeded, uint32_t par);
+int EmSendCmdEx(uint8_t *resp, int respLen, int correctionNeeded);
+int EmSendCmd(uint8_t *resp, int respLen);
+int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par);
+
+static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
+
+typedef struct {
+  uint8_t* response;
+  size_t   response_n;
+  uint8_t* modulation;
+  size_t   modulation_n;
+} tag_response_info_t;
+
+void reset_free_buffer() {
+  free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
+}
+
+bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
+       // Exmaple response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
+       // This will need the following byte array for a modulation sequence
+       //    144        data bits (18 * 8)
+       //     18        parity bits
+       //      2        Start and stop
+       //      1        Correction bit (Answer in 1172 or 1236 periods, see FPGA)
+       //      1        just for the case
+       // ----------- +
+       //    166 bytes, since every bit that needs to be send costs us a byte
+       //
+  
+  // Prepare the tag modulation bits from the message
+  CodeIso14443aAsTag(response_info->response,response_info->response_n);
+  
+  // Make sure we do not exceed the free buffer space
+  if (ToSendMax > max_buffer_size) {
+    Dbprintf("Out of memory, when modulating bits for tag answer:");
+    Dbhexdump(response_info->response_n,response_info->response,false);
+    return false;
+  }
+  
+  // Copy the byte array, used for this modulation to the buffer position
+  memcpy(response_info->modulation,ToSend,ToSendMax);
+  
+  // Store the number of bytes that were used for encoding/modulation
+  response_info->modulation_n = ToSendMax;
+  
+  return true;
+}
+
+bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
+  // Retrieve and store the current buffer index
+  response_info->modulation = free_buffer_pointer;
+  
+  // Determine the maximum size we can use from our buffer
+  size_t max_buffer_size = (((uint8_t *)BigBuf)+FREE_BUFFER_OFFSET+FREE_BUFFER_SIZE)-free_buffer_pointer;
+  
+  // Forward the prepare tag modulation function to the inner function
+  if (prepare_tag_modulation(response_info,max_buffer_size)) {
+    // Update the free buffer offset
+    free_buffer_pointer += ToSendMax;
+    return true;
+  } else {
+    return false;
+  }
+}
+
+//-----------------------------------------------------------------------------
+// Main loop of simulated tag: receive commands from reader, decide what
+// response to send, and send it.
+//-----------------------------------------------------------------------------
+void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
+{
+       // Enable and clear the trace
+       tracing = TRUE;
+       iso14a_clear_trace();
+
+       // This function contains the tag emulation
+       uint8_t sak;
+
+       // The first response contains the ATQA (note: bytes are transmitted in reverse order).
+       uint8_t response1[2];
+       
+       switch (tagType) {
+               case 1: { // MIFARE Classic
+                       // Says: I am Mifare 1k - original line
+                       response1[0] = 0x04;
+                       response1[1] = 0x00;
+                       sak = 0x08;
+               } break;
+               case 2: { // MIFARE Ultralight
+                       // Says: I am a stupid memory tag, no crypto
+                       response1[0] = 0x04;
+                       response1[1] = 0x00;
+                       sak = 0x00;
+               } break;
+               case 3: { // MIFARE DESFire
+                       // Says: I am a DESFire tag, ph33r me
+                       response1[0] = 0x04;
+                       response1[1] = 0x03;
+                       sak = 0x20;
+               } break;
+               case 4: { // ISO/IEC 14443-4
+                       // Says: I am a javacard (JCOP)
+                       response1[0] = 0x04;
+                       response1[1] = 0x00;
+                       sak = 0x28;
+               } break;
+               default: {
+                       Dbprintf("Error: unkown tagtype (%d)",tagType);
+                       return;
+               } break;
+       }
+       
+       // The second response contains the (mandatory) first 24 bits of the UID
+       uint8_t response2[5];
+
+       // Check if the uid uses the (optional) part
+       uint8_t response2a[5];
+       if (uid_2nd) {
+               response2[0] = 0x88;
+               num_to_bytes(uid_1st,3,response2+1);
+               num_to_bytes(uid_2nd,4,response2a);
+               response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
+
+               // Configure the ATQA and SAK accordingly
+               response1[0] |= 0x40;
+               sak |= 0x04;
+       } else {
+               num_to_bytes(uid_1st,4,response2);
+               // Configure the ATQA and SAK accordingly
+               response1[0] &= 0xBF;
+               sak &= 0xFB;
+       }
+
+       // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
+       response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
+
+       // Prepare the mandatory SAK (for 4 and 7 byte UID)
+       uint8_t response3[3];
+       response3[0] = sak;
+       ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
+
+       // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
+       uint8_t response3a[3];
+       response3a[0] = sak & 0xFB;
+       ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
+
+       uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
+       uint8_t response6[] = { 0x04, 0x58, 0x00, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS
+       ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
+
+  #define TAG_RESPONSE_COUNT 7
+  tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
+    { .response = response1,  .response_n = sizeof(response1)  },  // Answer to request - respond with card type
+    { .response = response2,  .response_n = sizeof(response2)  },  // Anticollision cascade1 - respond with uid
+    { .response = response2a, .response_n = sizeof(response2a) },  // Anticollision cascade2 - respond with 2nd half of uid if asked
+    { .response = response3,  .response_n = sizeof(response3)  },  // Acknowledge select - cascade 1
+    { .response = response3a, .response_n = sizeof(response3a) },  // Acknowledge select - cascade 2
+    { .response = response5,  .response_n = sizeof(response5)  },  // Authentication answer (random nonce)
+    { .response = response6,  .response_n = sizeof(response6)  },  // dummy ATS (pseudo-ATR), answer to RATS
+  };
+
+  // Allocate 512 bytes for the dynamic modulation, created when the reader querries for it
+  // Such a response is less time critical, so we can prepare them on the fly
+  #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
+  #define DYNAMIC_MODULATION_BUFFER_SIZE 512
+  uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
+  uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
+  tag_response_info_t dynamic_response_info = {
+    .response = dynamic_response_buffer,
+    .response_n = 0,
+    .modulation = dynamic_modulation_buffer,
+    .modulation_n = 0
+  };
+  
+  // Reset the offset pointer of the free buffer
+  reset_free_buffer();
+  
+  // Prepare the responses of the anticollision phase
+       // there will be not enough time to do this at the moment the reader sends it REQA
+  for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
+    prepare_allocated_tag_modulation(&responses[i]);
+  }
+
+       uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
+       int len;
+
+       // To control where we are in the protocol
+       int order = 0;
+       int lastorder;
+
+       // Just to allow some checks
+       int happened = 0;
+       int happened2 = 0;
+       int cmdsRecvd = 0;
+
+       // We need to listen to the high-frequency, peak-detected path.
+       SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+       FpgaSetupSsc();
+
+       cmdsRecvd = 0;
+  tag_response_info_t* p_response;
+
+       LED_A_ON();
+       for(;;) {
+    // Clean receive command buffer
+    memset(receivedCmd, 0x44, RECV_CMD_SIZE);
+       
+               if(!GetIso14443aCommandFromReader(receivedCmd, &len, RECV_CMD_SIZE)) {
+                       DbpString("Button press");
+                       break;
+               }
+    
+               if (tracing) {
+                       LogTrace(receivedCmd,len, 0, Uart.parityBits, TRUE);
+               }
+    
+    p_response = NULL;
+    
+               // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
+               // Okay, look at the command now.
+               lastorder = order;
+               if(receivedCmd[0] == 0x26) { // Received a REQUEST
+                       p_response = &responses[0]; order = 1;
+               } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
+                       p_response = &responses[0]; order = 6;
+               } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) {   // Received request for UID (cascade 1)
+                       p_response = &responses[1]; order = 2;
+               } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
+                       p_response = &responses[2]; order = 20;
+               } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) {   // Received a SELECT (cascade 1)
+                       p_response = &responses[3]; order = 3;
+               } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) {   // Received a SELECT (cascade 2)
+                       p_response = &responses[4]; order = 30;
+               } else if(receivedCmd[0] == 0x30) {     // Received a (plain) READ
+                       EmSendCmdEx(data+(4*receivedCmd[0]),16,false);
+                       Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
+                       // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
+      p_response = NULL;
+               } else if(receivedCmd[0] == 0x50) {     // Received a HALT
+//                     DbpString("Reader requested we HALT!:");
+      p_response = NULL;
+               } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) {   // Received an authentication request
+                       p_response = &responses[5]; order = 7;
+               } else if(receivedCmd[0] == 0xE0) {     // Received a RATS request
+                       p_response = &responses[6]; order = 70;
+               } else if (order == 7 && len ==8) { // Received authentication request
+      uint32_t nr = bytes_to_num(receivedCmd,4);
+      uint32_t ar = bytes_to_num(receivedCmd+4,4);
+      Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
+    } else {
+      // Check for ISO 14443A-4 compliant commands, look at left nibble
+      switch (receivedCmd[0]) {
+
+        case 0x0B:
+        case 0x0A: { // IBlock (command)
+          dynamic_response_info.response[0] = receivedCmd[0];
+          dynamic_response_info.response[1] = 0x00;
+          dynamic_response_info.response[2] = 0x90;
+          dynamic_response_info.response[3] = 0x00;
+          dynamic_response_info.response_n = 4;
+        } break;
+
+        case 0x1A:
+        case 0x1B: { // Chaining command
+          dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
+          dynamic_response_info.response_n = 2;
+        } break;
+
+        case 0xaa:
+        case 0xbb: {
+          dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
+          dynamic_response_info.response_n = 2;
+        } break;
+          
+        case 0xBA: { //
+          memcpy(dynamic_response_info.response,"\xAB\x00",2);
+          dynamic_response_info.response_n = 2;
+        } break;
+
+        case 0xCA:
+        case 0xC2: { // Readers sends deselect command
+          memcpy(dynamic_response_info.response,"\xCA\x00",2);
+          dynamic_response_info.response_n = 2;
+        } break;
+
+        default: {
+          // Never seen this command before
+          Dbprintf("Received unknown command (len=%d):",len);
+          Dbhexdump(len,receivedCmd,false);
+          // Do not respond
+          dynamic_response_info.response_n = 0;
+        } break;
+      }
+      
+      if (dynamic_response_info.response_n > 0) {
+        // Copy the CID from the reader query
+        dynamic_response_info.response[1] = receivedCmd[1];
+
+        // Add CRC bytes, always used in ISO 14443A-4 compliant cards
+        AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
+        dynamic_response_info.response_n += 2;
+        
+        if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
+          Dbprintf("Error preparing tag response");
+          break;
+        }
+        p_response = &dynamic_response_info;
+      }
+               }
+
+               // Count number of wakeups received after a halt
+               if(order == 6 && lastorder == 5) { happened++; }
+
+               // Count number of other messages after a halt
+               if(order != 6 && lastorder == 5) { happened2++; }
+
+               // Look at last parity bit to determine timing of answer
+               if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) {
+                       // 1236, so correction bit needed
+                       //i = 0;
+               }
+
+               if(cmdsRecvd > 999) {
+                       DbpString("1000 commands later...");
+                       break;
+               }
+               cmdsRecvd++;
+
+               if (p_response != NULL) {
+      EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
+      if (tracing) {
+        LogTrace(p_response->response,p_response->response_n,0,SwapBits(GetParity(p_response->response,p_response->response_n),p_response->response_n),FALSE);
+        if(traceLen > TRACE_SIZE) {
+          DbpString("Trace full");
+//          break;
+        }
+      }
+    }
+  }
+
+       Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
+       LED_A_OFF();
+}
+
+
+// prepare a delayed transfer. This simply shifts ToSend[] by a number
+// of bits specified in the delay parameter.
+void PrepareDelayedTransfer(uint16_t delay)
+{
+       uint8_t bitmask = 0;
+       uint8_t bits_to_shift = 0;
+       uint8_t bits_shifted = 0;
+       
+       delay &= 0x07;
+       if (delay) {
+               for (uint16_t i = 0; i < delay; i++) {
+                       bitmask |= (0x01 << i);
+               }
+               ToSend[++ToSendMax] = 0x00;
+               for (uint16_t i = 0; i < ToSendMax; i++) {
+                       bits_to_shift = ToSend[i] & bitmask;
+                       ToSend[i] = ToSend[i] >> delay;
+                       ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
+                       bits_shifted = bits_to_shift;
+               }
+       }
+}
+
+//-----------------------------------------------------------------------------
+// Transmit the command (to the tag) that was placed in ToSend[].
+// Parameter timing:
+// if NULL: ignored
+// if == 0:    return time of transfer
+// if != 0: delay transfer until time specified
+//-----------------------------------------------------------------------------
+static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing)
+{
+       int c;
+
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+
+
+       if (timing) {
+               if(*timing == 0) {                                                                              // Measure time
+                       *timing = (GetCountMifare() + 8) & 0xfffffff8;
+               } else {
+                       PrepareDelayedTransfer(*timing & 0x00000007);           // Delay transfer (fine tuning - up to 7 MF clock ticks)
+               }
+               if(MF_DBGLEVEL >= 4 && GetCountMifare() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
+               while(GetCountMifare() < (*timing & 0xfffffff8));               // Delay transfer (multiple of 8 MF clock ticks)
+       }
+
+       for(c = 0; c < 10;) {   // standard delay for each transfer (allow tag to be ready after last transmission?)
+               if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+                       AT91C_BASE_SSC->SSC_THR = 0x00; 
+                       c++;
+               }
+       }
+       
+       c = 0;
+       for(;;) {
+               if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+                       AT91C_BASE_SSC->SSC_THR = cmd[c];
+                       c++;
+                       if(c >= len) {
+                               break;
+                       }
+               }
+       }
+
+}
+
+//-----------------------------------------------------------------------------
+// Prepare reader command (in bits, support short frames) to send to FPGA
+//-----------------------------------------------------------------------------
+void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, int bits, uint32_t dwParity)
+{
+  int i, j;
+  int last;
+  uint8_t b;
+
+  ToSendReset();
+
+  // Start of Communication (Seq. Z)
+  ToSend[++ToSendMax] = SEC_Z;
+  last = 0;
+
+  size_t bytecount = nbytes(bits);
+  // Generate send structure for the data bits
+  for (i = 0; i < bytecount; i++) {
+    // Get the current byte to send
+    b = cmd[i];
+    size_t bitsleft = MIN((bits-(i*8)),8);
+
+    for (j = 0; j < bitsleft; j++) {
+      if (b & 1) {
+        // Sequence X
+         ToSend[++ToSendMax] = SEC_X;
+        last = 1;
+      } else {
+        if (last == 0) {
+          // Sequence Z
+               ToSend[++ToSendMax] = SEC_Z;
+        } else {
+          // Sequence Y
+               ToSend[++ToSendMax] = SEC_Y;
+          last = 0;
+        }
+      }
+      b >>= 1;
+    }
+
+    // Only transmit (last) parity bit if we transmitted a complete byte
+    if (j == 8) {
+      // Get the parity bit
+      if ((dwParity >> i) & 0x01) {
+        // Sequence X
+        ToSend[++ToSendMax] = SEC_X;
+        last = 1;
+      } else {
+        if (last == 0) {
+          // Sequence Z
+          ToSend[++ToSendMax] = SEC_Z;
+        } else {
+          // Sequence Y
+          ToSend[++ToSendMax] = SEC_Y;
+          last = 0;
+        }
+      }
+    }
+  }
+
+  // End of Communication
+  if (last == 0) {
+    // Sequence Z
+         ToSend[++ToSendMax] = SEC_Z;
+  } else {
+    // Sequence Y
+         ToSend[++ToSendMax] = SEC_Y;
+    last = 0;
+  }
+  // Sequence Y
+  ToSend[++ToSendMax] = SEC_Y;
+
+  // Just to be sure!
+  ToSend[++ToSendMax] = SEC_Y;
+  ToSend[++ToSendMax] = SEC_Y;
+  ToSend[++ToSendMax] = SEC_Y;
+
+  // Convert from last character reference to length
+  ToSendMax++;
+}
+
+//-----------------------------------------------------------------------------
+// Prepare reader command to send to FPGA
+//-----------------------------------------------------------------------------
+void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity)
+{
+  CodeIso14443aBitsAsReaderPar(cmd,len*8,dwParity);
+}
+
+//-----------------------------------------------------------------------------
+// Wait for commands from reader
+// Stop when button is pressed (return 1) or field was gone (return 2)
+// Or return 0 when command is captured
+//-----------------------------------------------------------------------------
+static int EmGetCmd(uint8_t *received, int *len, int maxLen)
+{
+       *len = 0;
+
+       uint32_t timer = 0, vtime = 0;
+       int analogCnt = 0;
+       int analogAVG = 0;
+
+       // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
+       // only, since we are receiving, not transmitting).
+       // Signal field is off with the appropriate LED
+       LED_D_OFF();
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
+       // Set ADC to read field strength
+       AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
+       AT91C_BASE_ADC->ADC_MR =
+                               ADC_MODE_PRESCALE(32) |
+                               ADC_MODE_STARTUP_TIME(16) |
+                               ADC_MODE_SAMPLE_HOLD_TIME(8);
+       AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
+       // start ADC
+       AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
+       
+       // Now run a 'software UART' on the stream of incoming samples.
+       Uart.output = received;
+       Uart.byteCntMax = maxLen;
+       Uart.state = STATE_UNSYNCD;
+
+       for(;;) {
+               WDT_HIT();
+
+               if (BUTTON_PRESS()) return 1;
+
+               // test if the field exists
+               if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
+                       analogCnt++;
+                       analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
+                       AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
+                       if (analogCnt >= 32) {
+                               if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
+                                       vtime = GetTickCount();
+                                       if (!timer) timer = vtime;
+                                       // 50ms no field --> card to idle state
+                                       if (vtime - timer > 50) return 2;
+                               } else
+                                       if (timer) timer = 0;
+                               analogCnt = 0;
+                               analogAVG = 0;
+                       }
+               }
+               // transmit none
+               if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+                       AT91C_BASE_SSC->SSC_THR = 0x00;
+               }
+               // receive and test the miller decoding
+               if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+                       volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+                       if(MillerDecoding((b & 0xf0) >> 4)) {
+                               *len = Uart.byteCnt;
+                               if (tracing) LogTrace(received, *len, GetDeltaCountUS(), Uart.parityBits, TRUE);
+                               return 0;
+                       }
+                       if(MillerDecoding(b & 0x0f)) {
+                               *len = Uart.byteCnt;
+                               if (tracing) LogTrace(received, *len, GetDeltaCountUS(), Uart.parityBits, TRUE);
+                               return 0;
+                       }
+               }
+       }
+}
+
+static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded)
+{
+       int i, u = 0;
+       uint8_t b = 0;
+
+       // Modulate Manchester
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
+       AT91C_BASE_SSC->SSC_THR = 0x00;
+       FpgaSetupSsc();
+       
+       // include correction bit
+       i = 1;
+       if((Uart.parityBits & 0x01) || correctionNeeded) {
+               // 1236, so correction bit needed
+               i = 0;
+       }
+       
+       // send cycle
+       for(;;) {
+               if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+                       volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+                       (void)b;
+               }
+               if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+                       if(i > respLen) {
+                               b = 0xff; // was 0x00
+                               u++;
+                       } else {
+                               b = resp[i];
+                               i++;
+                       }
+                       AT91C_BASE_SSC->SSC_THR = b;
+
+                       if(u > 4) break;
+               }
+               if(BUTTON_PRESS()) {
+                       break;
+               }
+       }
+
+       return 0;
+}
+
+int EmSend4bitEx(uint8_t resp, int correctionNeeded){
+  Code4bitAnswerAsTag(resp);
+       int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
+  if (tracing) LogTrace(&resp, 1, GetDeltaCountUS(), GetParity(&resp, 1), FALSE);
+       return res;
+}
+
+int EmSend4bit(uint8_t resp){
+       return EmSend4bitEx(resp, 0);
+}
+
+int EmSendCmdExPar(uint8_t *resp, int respLen, int correctionNeeded, uint32_t par){
+  CodeIso14443aAsTagPar(resp, respLen, par);
+       int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
+  if (tracing) LogTrace(resp, respLen, GetDeltaCountUS(), par, FALSE);
+       return res;
+}
+
+int EmSendCmdEx(uint8_t *resp, int respLen, int correctionNeeded){
+       return EmSendCmdExPar(resp, respLen, correctionNeeded, GetParity(resp, respLen));
+}
+
+int EmSendCmd(uint8_t *resp, int respLen){
+       return EmSendCmdExPar(resp, respLen, 0, GetParity(resp, respLen));
+}
+
+int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){
+       return EmSendCmdExPar(resp, respLen, 0, par);
+}
+
+//-----------------------------------------------------------------------------
+// Wait a certain time for tag response
+//  If a response is captured return TRUE
+//  If it takes too long return FALSE
+//-----------------------------------------------------------------------------
+static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset, int maxLen, int *samples)
+{
+       int c;
+       
+       // Set FPGA mode to "reader listen mode", no modulation (listen
+       // only, since we are receiving, not transmitting).
+       // Signal field is on with the appropriate LED
+       LED_D_ON();
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
+       
+       // Now get the answer from the card
+       Demod.output = receivedResponse;
+       Demod.len = 0;
+       Demod.state = DEMOD_UNSYNCD;
+
+       uint8_t b;
+
+       c = 0;
+       for(;;) {
+               WDT_HIT();
+
+               // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+                       // AT91C_BASE_SSC->SSC_THR = 0x00;  // To make use of exact timing of next command from reader!!
+                       // if (elapsed) (*elapsed)++;
+               // }
+               if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+                       if(c < iso14a_timeout) { c++; } else { return FALSE; }
+                       b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+                       if(ManchesterDecoding(b, offset)) {
+                               *samples = Demod.samples;
+                               return TRUE;
+                       }
+               }
+       }
+}
+
+void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par, uint32_t *timing)
+{
+
+  CodeIso14443aBitsAsReaderPar(frame,bits,par);
+  
+  // Send command to tag
+  TransmitFor14443a(ToSend, ToSendMax, timing);
+  if(trigger)
+       LED_A_ON();
+  
+  // Log reader command in trace buffer
+  if (tracing) LogTrace(frame,nbytes(bits),0,par,TRUE);
+}
+
+void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par, uint32_t *timing)
+{
+  ReaderTransmitBitsPar(frame,len*8,par, timing);
+}
+
+void ReaderTransmitBits(uint8_t* frame, int len, uint32_t *timing)
+{
+  // Generate parity and redirect
+  ReaderTransmitBitsPar(frame,len,GetParity(frame,len/8), timing);
+}
+
+void ReaderTransmit(uint8_t* frame, int len, uint32_t *timing)
+{
+  // Generate parity and redirect
+  ReaderTransmitBitsPar(frame,len*8,GetParity(frame,len), timing);
+}
+
+int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset)
+{
+       int samples = 0;
+       if (!GetIso14443aAnswerFromTag(receivedAnswer,offset,160,&samples)) return FALSE;
+       if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
+       if(samples == 0) return FALSE;
+       return Demod.len;
+}
+
+int ReaderReceive(uint8_t* receivedAnswer)
+{
+       return ReaderReceiveOffset(receivedAnswer, 0);
+}
+
+int ReaderReceivePar(uint8_t *receivedAnswer, uint32_t *parptr)
+{
+       int samples = 0;
+       if (!GetIso14443aAnswerFromTag(receivedAnswer,0,160,&samples)) return FALSE;
+       if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
+       *parptr = Demod.parityBits;
+       if(samples == 0) return FALSE;
+       return Demod.len;
+}
+
+/* performs iso14443a anticollision procedure
+ * fills the uid pointer unless NULL
+ * fills resp_data unless NULL */
+int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, uint32_t* cuid_ptr) {
+  uint8_t wupa[]       = { 0x52 };  // 0x26 - REQA  0x52 - WAKE-UP
+  uint8_t sel_all[]    = { 0x93,0x20 };
+  uint8_t sel_uid[]    = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
+  uint8_t rats[]       = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
+  uint8_t* resp = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);  // was 3560 - tied to other size changes
+  byte_t uid_resp[4];
+  size_t uid_resp_len;
+
+  uint8_t sak = 0x04; // cascade uid
+  int cascade_level = 0;
+  int len;
+        
+  // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
+    ReaderTransmitBitsPar(wupa,7,0, NULL);
+  // Receive the ATQA
+  if(!ReaderReceive(resp)) return 0;
+  // Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
+
+  if(p_hi14a_card) {
+    memcpy(p_hi14a_card->atqa, resp, 2);
+    p_hi14a_card->uidlen = 0;
+    memset(p_hi14a_card->uid,0,10);
+  }
+
+  // clear uid
+  if (uid_ptr) {
+    memset(uid_ptr,0,10);
+  }
+
+  // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
+  // which case we need to make a cascade 2 request and select - this is a long UID
+  // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
+  for(; sak & 0x04; cascade_level++) {
+    // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
+    sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
+
+    // SELECT_ALL
+    ReaderTransmit(sel_all,sizeof(sel_all), NULL);
+    if (!ReaderReceive(resp)) return 0;
+
+       if (Demod.collisionPos) {                       // we had a collision and need to construct the UID bit by bit
+               memset(uid_resp, 0, 4);
+               uint16_t uid_resp_bits = 0;
+               uint16_t collision_answer_offset = 0;
+               // anti-collision-loop:
+               while (Demod.collisionPos) {
+                       Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
+                       for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) {      // add valid UID bits before collision point
+                               uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
+                               uid_resp[uid_resp_bits & 0xf8] |= UIDbit << (uid_resp_bits % 8);
+                       }
+                       uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8);                                  // next time select the card(s) with a 1 in the collision position
+                       uid_resp_bits++;
+                       // construct anticollosion command:
+                       sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07);     // length of data in bytes and bits
+                       for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
+                               sel_uid[2+i] = uid_resp[i];
+                       }
+                       collision_answer_offset = uid_resp_bits%8;
+                       ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
+                       if (!ReaderReceiveOffset(resp, collision_answer_offset)) return 0;
+               }
+               // finally, add the last bits and BCC of the UID
+               for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
+                       uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
+                       uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
+               }
+
+       } else {                // no collision, use the response to SELECT_ALL as current uid
+               memcpy(uid_resp,resp,4);
+       }
+       uid_resp_len = 4;
+    //    Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
+
+    // calculate crypto UID. Always use last 4 Bytes.
+    if(cuid_ptr) {
+        *cuid_ptr = bytes_to_num(uid_resp, 4);
+    }
+
+    // Construct SELECT UID command
+       sel_uid[1] = 0x70;                                                                                                      // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
+    memcpy(sel_uid+2,uid_resp,4);                                                                              // the UID
+       sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5];         // calculate and add BCC
+    AppendCrc14443a(sel_uid,7);                                                                                        // calculate and add CRC
+    ReaderTransmit(sel_uid,sizeof(sel_uid), NULL);
+
+    // Receive the SAK
+    if (!ReaderReceive(resp)) return 0;
+    sak = resp[0];
+
+    // Test if more parts of the uid are comming
+    if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
+      // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
+      // http://www.nxp.com/documents/application_note/AN10927.pdf
+      memcpy(uid_resp, uid_resp + 1, 3);
+      uid_resp_len = 3;
+    }
+
+    if(uid_ptr) {
+      memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
+    }
+
+    if(p_hi14a_card) {
+      memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
+      p_hi14a_card->uidlen += uid_resp_len;
+    }
+  }
+
+  if(p_hi14a_card) {
+    p_hi14a_card->sak = sak;
+    p_hi14a_card->ats_len = 0;
+  }
+
+  if( (sak & 0x20) == 0) {
+    return 2; // non iso14443a compliant tag
+  }
+
+  // Request for answer to select
+  AppendCrc14443a(rats, 2);
+  ReaderTransmit(rats, sizeof(rats), NULL);
+
+  if (!(len = ReaderReceive(resp))) return 0;
+
+  if(p_hi14a_card) {
+    memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
+    p_hi14a_card->ats_len = len;
+  }
+
+  // reset the PCB block number
+  iso14_pcb_blocknum = 0;
+  return 1;
+}
+
+void iso14443a_setup() {
+       // Set up the synchronous serial port
+       FpgaSetupSsc();
+       // Start from off (no field generated)
+       // Signal field is off with the appropriate LED
+//     LED_D_OFF();
+//     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       // SpinDelay(50);
+
+       SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+       // Now give it time to spin up.
+       // Signal field is on with the appropriate LED
+       LED_D_ON();
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+       SpinDelay(7); // iso14443-3 specifies 5ms max.
+
+       Demod.state = DEMOD_UNSYNCD;
+       iso14a_timeout = 2048; //default
+}
+
+int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) {
+       uint8_t real_cmd[cmd_len+4];
+       real_cmd[0] = 0x0a; //I-Block
+       // put block number into the PCB
+       real_cmd[0] |= iso14_pcb_blocknum;
+       real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
+       memcpy(real_cmd+2, cmd, cmd_len);
+       AppendCrc14443a(real_cmd,cmd_len+2);
+       ReaderTransmit(real_cmd, cmd_len+4, NULL);
+       size_t len = ReaderReceive(data);
+       uint8_t * data_bytes = (uint8_t *) data;
+       if (!len)
+               return 0; //DATA LINK ERROR
+       // if we received an I- or R(ACK)-Block with a block number equal to the
+       // current block number, toggle the current block number
+       else if (len >= 4 // PCB+CID+CRC = 4 bytes
+                && ((data_bytes[0] & 0xC0) == 0 // I-Block
+                    || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
+                && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
+       {
+               iso14_pcb_blocknum ^= 1;
+       }
+
+       return len;
+}
+
+//-----------------------------------------------------------------------------
+// Read an ISO 14443a tag. Send out commands and store answers.
+//
+//-----------------------------------------------------------------------------
+void ReaderIso14443a(UsbCommand * c)
+{
+       iso14a_command_t param = c->arg[0];
+       uint8_t * cmd = c->d.asBytes;
+       size_t len = c->arg[1];
+       size_t lenbits = c->arg[2];
+       uint32_t arg0 = 0;
+       byte_t buf[USB_CMD_DATA_SIZE];
+  
+       if(param & ISO14A_CONNECT) {
+               iso14a_clear_trace();
+       }
+
+       iso14a_set_tracing(true);
+
+       if(param & ISO14A_REQUEST_TRIGGER) {
+               iso14a_set_trigger(1);
+       }
+
+       if(param & ISO14A_CONNECT) {
+               iso14443a_setup();
+               if(!(param & ISO14A_NO_SELECT)) {
+                       iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
+                       arg0 = iso14443a_select_card(NULL,card,NULL);
+                       cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
+               }
+       }
+
+       if(param & ISO14A_SET_TIMEOUT) {
+               iso14a_timeout = c->arg[2];
+       }
+
+       if(param & ISO14A_SET_TIMEOUT) {
+               iso14a_timeout = c->arg[2];
+       }
+
+       if(param & ISO14A_APDU) {
+               arg0 = iso14_apdu(cmd, len, buf);
+               cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
+       }
+
+       if(param & ISO14A_RAW) {
+               if(param & ISO14A_APPEND_CRC) {
+                       AppendCrc14443a(cmd,len);
+                       len += 2;
+               }
+               if(lenbits>0) {
+                       ReaderTransmitBitsPar(cmd,lenbits,GetParity(cmd,lenbits/8), NULL);
+               } else {
+                       ReaderTransmit(cmd,len, NULL);
+               }
+               arg0 = ReaderReceive(buf);
+               cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
+       }
+
+       if(param & ISO14A_REQUEST_TRIGGER) {
+               iso14a_set_trigger(0);
+       }
+
+       if(param & ISO14A_NO_DISCONNECT) {
+               return;
+       }
+
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       LEDsoff();
+}
+
+
+// Determine the distance between two nonces.
+// Assume that the difference is small, but we don't know which is first.
+// Therefore try in alternating directions.
+int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
+
+       uint16_t i;
+       uint32_t nttmp1, nttmp2;
+
+       if (nt1 == nt2) return 0;
+
+       nttmp1 = nt1;
+       nttmp2 = nt2;
+       
+       for (i = 1; i < 32768; i++) {
+               nttmp1 = prng_successor(nttmp1, 1);
+               if (nttmp1 == nt2) return i;
+               nttmp2 = prng_successor(nttmp2, 1);
+                       if (nttmp2 == nt1) return -i;
+               }
+       
+       return(-99999); // either nt1 or nt2 are invalid nonces
+}
+
+
+//-----------------------------------------------------------------------------
+// Recover several bits of the cypher stream. This implements (first stages of)
+// the algorithm described in "The Dark Side of Security by Obscurity and
+// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
+// (article by Nicolas T. Courtois, 2009)
+//-----------------------------------------------------------------------------
+void ReaderMifare(bool first_try)
+{
+       // Mifare AUTH
+       uint8_t mf_auth[]    = { 0x60,0x00,0xf5,0x7b };
+       uint8_t mf_nr_ar[]   = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
+       static uint8_t mf_nr_ar3;
+
+       uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
+       traceLen = 0;
+       tracing = false;
+
+       byte_t nt_diff = 0;
+       byte_t par = 0;
+       //byte_t par_mask = 0xff;
+       static byte_t par_low = 0;
+       bool led_on = TRUE;
+       uint8_t uid[10];
+       uint32_t cuid;
+
+       uint32_t nt, previous_nt;
+       static uint32_t nt_attacked = 0;
+       byte_t par_list[8] = {0,0,0,0,0,0,0,0};
+       byte_t ks_list[8] = {0,0,0,0,0,0,0,0};
+
+       static uint32_t sync_time;
+       static uint32_t sync_cycles;
+       int catch_up_cycles = 0;
+       int last_catch_up = 0;
+       uint16_t consecutive_resyncs = 0;
+       int isOK = 0;
+
+
+
+       if (first_try) { 
+               StartCountMifare();
+               mf_nr_ar3 = 0;
+               iso14443a_setup();
+               while((GetCountMifare() & 0xffff0000) != 0x10000);              // wait for counter to reset and "warm up" 
+               sync_time = GetCountMifare() & 0xfffffff8;
+               sync_cycles = 65536;                                                                    // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
+               nt_attacked = 0;
+               nt = 0;
+               par = 0;
+       }
+       else {
+               // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
+               // nt_attacked = prng_successor(nt_attacked, 1);
+               mf_nr_ar3++;
+               mf_nr_ar[3] = mf_nr_ar3;
+               par = par_low;
+       }
+
+       LED_A_ON();
+       LED_B_OFF();
+       LED_C_OFF();
+       
+  
+       for(uint16_t i = 0; TRUE; i++) {
+               
+               WDT_HIT();
+
+               // Test if the action was cancelled
+               if(BUTTON_PRESS()) {
+                       break;
+               }
+               
+               LED_C_ON();
+
+               if(!iso14443a_select_card(uid, NULL, &cuid)) {
+                       if (MF_DBGLEVEL >= 1)   Dbprintf("Mifare: Can't select card");
+                       continue;
+               }
+
+               //keep the card active
+               FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+
+               sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
+               catch_up_cycles = 0;
+
+               // if we missed the sync time already, advance to the next nonce repeat
+               while(GetCountMifare() > sync_time) {
+                       sync_time = (sync_time & 0xfffffff8) + sync_cycles;
+               }
+
+               // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked) 
+               ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+
+               // Receive the (4 Byte) "random" nonce
+               if (!ReaderReceive(receivedAnswer)) {
+                       if (MF_DBGLEVEL >= 1)   Dbprintf("Mifare: Couldn't receive tag nonce");
+                       continue;
+                 }
+
+               previous_nt = nt;
+               nt = bytes_to_num(receivedAnswer, 4);
+
+               // Transmit reader nonce with fake par
+               ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
+
+               if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
+                       int nt_distance = dist_nt(previous_nt, nt);
+                       if (nt_distance == 0) {
+                               nt_attacked = nt;
+                       }
+                       else {
+                               if (nt_distance == -99999) { // invalid nonce received, try again
+                                       continue;
+                               }
+                               sync_cycles = (sync_cycles - nt_distance);
+                               if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
+                               continue;
+                       }
+               }
+
+               if ((nt != nt_attacked) && nt_attacked) {       // we somehow lost sync. Try to catch up again...
+                       catch_up_cycles = -dist_nt(nt_attacked, nt);
+                       if (catch_up_cycles == 99999) {                 // invalid nonce received. Don't resync on that one.
+                               catch_up_cycles = 0;
+                               continue;
+                       }
+                       if (catch_up_cycles == last_catch_up) {
+                               consecutive_resyncs++;
+                       }
+                       else {
+                               last_catch_up = catch_up_cycles;
+                           consecutive_resyncs = 0;
+                       }
+                       if (consecutive_resyncs < 3) {
+                               if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
+                       }
+                       else {  
+                               sync_cycles = sync_cycles + catch_up_cycles;
+                               if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
+                       }
+                       continue;
+               }
+               consecutive_resyncs = 0;
+               
+               // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
+               if (ReaderReceive(receivedAnswer))
+               {
+                       catch_up_cycles = 8;    // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
+       
+                       if (nt_diff == 0)
+                       {
+                               par_low = par & 0x07; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
+                       }
+
+                       led_on = !led_on;
+                       if(led_on) LED_B_ON(); else LED_B_OFF();
+
+                       par_list[nt_diff] = par;
+                       ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
+
+                       // Test if the information is complete
+                       if (nt_diff == 0x07) {
+                               isOK = 1;
+                               break;
+                       }
+
+                       nt_diff = (nt_diff + 1) & 0x07;
+                       mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
+                       par = par_low;
+               } else {
+                       if (nt_diff == 0 && first_try)
+                       {
+                               par++;
+                       } else {
+                               par = (((par >> 3) + 1) << 3) | par_low;
+                       }
+               }
+       }
+
+       LogTrace((const uint8_t *)&nt, 4, 0, GetParity((const uint8_t *)&nt, 4), TRUE);
+       LogTrace(par_list, 8, 0, GetParity(par_list, 8), TRUE);
+       LogTrace(ks_list, 8, 0, GetParity(ks_list, 8), TRUE);
+
+       mf_nr_ar[3] &= 0x1F;
+       
+       byte_t buf[28];
+       memcpy(buf + 0,  uid, 4);
+       num_to_bytes(nt, 4, buf + 4);
+       memcpy(buf + 8,  par_list, 8);
+       memcpy(buf + 16, ks_list, 8);
+       memcpy(buf + 24, mf_nr_ar, 4);
+               
+       cmd_send(CMD_ACK,isOK,0,0,buf,28);
+
+       // Thats it...
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       LEDsoff();
+       tracing = TRUE;
+}
+
+//-----------------------------------------------------------------------------
+// MIFARE 1K simulate. 
+// 
+//-----------------------------------------------------------------------------
+void Mifare1ksim(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
+{
+       int cardSTATE = MFEMUL_NOFIELD;
+       int _7BUID = 0;
+       int vHf = 0;    // in mV
+       //int nextCycleTimeout = 0;
+       int res;
+//     uint32_t timer = 0;
+       uint32_t selTimer = 0;
+       uint32_t authTimer = 0;
+       uint32_t par = 0;
+       int len = 0;
+       uint8_t cardWRBL = 0;
+       uint8_t cardAUTHSC = 0;
+       uint8_t cardAUTHKEY = 0xff;  // no authentication
+       //uint32_t cardRn = 0;
+       uint32_t cardRr = 0;
+       uint32_t cuid = 0;
+       //uint32_t rn_enc = 0;
+       uint32_t ans = 0;
+       uint32_t cardINTREG = 0;
+       uint8_t cardINTBLOCK = 0;
+       struct Crypto1State mpcs = {0, 0};
+       struct Crypto1State *pcs;
+       pcs = &mpcs;
+       
+       uint8_t* receivedCmd = eml_get_bigbufptr_recbuf();
+       uint8_t *response = eml_get_bigbufptr_sendbuf();
+       
+       static uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
+
+       static uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; 
+       static uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
+               
+       static uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
+       static uint8_t rSAK1[] = {0x04, 0xda, 0x17};
+
+       static uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
+//     static uint8_t rAUTH_NT[] = {0x1a, 0xac, 0xff, 0x4f};
+       static uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
+
+       // clear trace
+       traceLen = 0;
+       tracing = true;
+
+  // Authenticate response - nonce
+       uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
+       
+       // get UID from emul memory
+       emlGetMemBt(receivedCmd, 7, 1);
+       _7BUID = !(receivedCmd[0] == 0x00);
+       if (!_7BUID) {                     // ---------- 4BUID
+               rATQA[0] = 0x04;
+
+               emlGetMemBt(rUIDBCC1, 0, 4);
+               rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
+       } else {                           // ---------- 7BUID
+               rATQA[0] = 0x44;
+
+               rUIDBCC1[0] = 0x88;
+               emlGetMemBt(&rUIDBCC1[1], 0, 3);
+               rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
+               emlGetMemBt(rUIDBCC2, 3, 4);
+               rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
+       }
+
+// --------------------------------------      test area
+
+// --------------------------------------      END test area
+       // start mkseconds counter
+       StartCountUS();
+
+       // We need to listen to the high-frequency, peak-detected path.
+       SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+       FpgaSetupSsc();
+
+  FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+       SpinDelay(200);
+
+       if (MF_DBGLEVEL >= 1)   Dbprintf("Started. 7buid=%d", _7BUID);
+       // calibrate mkseconds counter
+       GetDeltaCountUS();
+       while (true) {
+               WDT_HIT();
+
+               if(BUTTON_PRESS()) {
+                       break;
+               }
+
+               // find reader field
+               // Vref = 3300mV, and an 10:1 voltage divider on the input
+               // can measure voltages up to 33000 mV
+               if (cardSTATE == MFEMUL_NOFIELD) {
+                       vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
+                       if (vHf > MF_MINFIELDV) {
+                               cardSTATE_TO_IDLE();
+                               LED_A_ON();
+                       }
+               } 
+
+               if (cardSTATE != MFEMUL_NOFIELD) {
+                       res = EmGetCmd(receivedCmd, &len, RECV_CMD_SIZE); // (+ nextCycleTimeout)
+                       if (res == 2) {
+                               cardSTATE = MFEMUL_NOFIELD;
+                               LEDsoff();
+                               continue;
+                       }
+                       if(res) break;
+               }
+               
+               //nextCycleTimeout = 0;
+               
+//             if (len) Dbprintf("len:%d cmd: %02x %02x %02x %02x", len, receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3]);
+
+               if (len != 4 && cardSTATE != MFEMUL_NOFIELD) { // len != 4 <---- speed up the code 4 authentication
+                       // REQ or WUP request in ANY state and WUP in HALTED state
+                       if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
+                               selTimer = GetTickCount();
+                               EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
+                               cardSTATE = MFEMUL_SELECT1;
+
+                               // init crypto block
+                               LED_B_OFF();
+                               LED_C_OFF();
+                               crypto1_destroy(pcs);
+                               cardAUTHKEY = 0xff;
+                       }
+               }
+               
+               switch (cardSTATE) {
+                       case MFEMUL_NOFIELD:{
+                               break;
+                       }
+                       case MFEMUL_HALTED:{
+                               break;
+                       }
+                       case MFEMUL_IDLE:{
+                               break;
+                       }
+                       case MFEMUL_SELECT1:{
+                               // select all
+                               if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
+                                       EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
+                                       break;
+                               }
+
+                               // select card
+                               if (len == 9 && 
+                                               (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
+                                       if (!_7BUID) 
+                                               EmSendCmd(rSAK, sizeof(rSAK));
+                                       else
+                                               EmSendCmd(rSAK1, sizeof(rSAK1));
+
+                                       cuid = bytes_to_num(rUIDBCC1, 4);
+                                       if (!_7BUID) {
+                                               cardSTATE = MFEMUL_WORK;
+                                               LED_B_ON();
+                                               if (MF_DBGLEVEL >= 4)   Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
+                                               break;
+                                       } else {
+                                               cardSTATE = MFEMUL_SELECT2;
+                                               break;
+                                       }
+                               }
+                               
+                               break;
+                       }
+                       case MFEMUL_SELECT2:{
+                               if (!len) break;
+                       
+                               if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
+                                       EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
+                                       break;
+                               }
+
+                               // select 2 card
+                               if (len == 9 && 
+                                               (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
+                                       EmSendCmd(rSAK, sizeof(rSAK));
+
+                                       cuid = bytes_to_num(rUIDBCC2, 4);
+                                       cardSTATE = MFEMUL_WORK;
+                                       LED_B_ON();
+                                       if (MF_DBGLEVEL >= 4)   Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
+                                       break;
+                               }
+                               
+                               // i guess there is a command). go into the work state.
+                               if (len != 4) break;
+                               cardSTATE = MFEMUL_WORK;
+                               goto lbWORK;
+                       }
+                       case MFEMUL_AUTH1:{
+                               if (len == 8) {
+                                       // --- crypto
+                                       //rn_enc = bytes_to_num(receivedCmd, 4);
+                                       //cardRn = rn_enc ^ crypto1_word(pcs, rn_enc , 1);
+                                       cardRr = bytes_to_num(&receivedCmd[4], 4) ^ crypto1_word(pcs, 0, 0);
+                                       // test if auth OK
+                                       if (cardRr != prng_successor(nonce, 64)){
+                                               if (MF_DBGLEVEL >= 4)   Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x", cardRr, prng_successor(nonce, 64));
+                                               cardSTATE_TO_IDLE();
+                                               break;
+                                       }
+                                       ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
+                                       num_to_bytes(ans, 4, rAUTH_AT);
+                                       // --- crypto
+                                       EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
+                                       cardSTATE = MFEMUL_AUTH2;
+                               } else {
+                                       cardSTATE_TO_IDLE();
+                               }
+                               if (cardSTATE != MFEMUL_AUTH2) break;
+                       }
+                       case MFEMUL_AUTH2:{
+                               LED_C_ON();
+                               cardSTATE = MFEMUL_WORK;
+                               if (MF_DBGLEVEL >= 4)   Dbprintf("AUTH COMPLETED. sec=%d, key=%d time=%d", cardAUTHSC, cardAUTHKEY, GetTickCount() - authTimer);
+                               break;
+                       }
+                       case MFEMUL_WORK:{
+lbWORK:        if (len == 0) break;
+                               
+                               if (cardAUTHKEY == 0xff) {
+                                       // first authentication
+                                       if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
+                                               authTimer = GetTickCount();
+
+                                               cardAUTHSC = receivedCmd[1] / 4;  // received block num
+                                               cardAUTHKEY = receivedCmd[0] - 0x60;
+
+                                               // --- crypto
+                                               crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
+                                               ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); 
+                                               num_to_bytes(nonce, 4, rAUTH_AT);
+                                               EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
+                                               // --- crypto
+                                               
+//   last working revision 
+//                                             EmSendCmd14443aRaw(resp1, resp1Len, 0);
+//                                             LogTrace(NULL, 0, GetDeltaCountUS(), 0, true);
+
+                                               cardSTATE = MFEMUL_AUTH1;
+                                               //nextCycleTimeout = 10;
+                                               break;
+                                       }
+                               } else {
+                                       // decrypt seqence
+                                       mf_crypto1_decrypt(pcs, receivedCmd, len);
+                                       
+                                       // nested authentication
+                                       if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
+                                               authTimer = GetTickCount();
+
+                                               cardAUTHSC = receivedCmd[1] / 4;  // received block num
+                                               cardAUTHKEY = receivedCmd[0] - 0x60;
+
+                                               // --- crypto
+                                               crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
+                                               ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); 
+                                               num_to_bytes(ans, 4, rAUTH_AT);
+                                               EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
+                                               // --- crypto
+
+                                               cardSTATE = MFEMUL_AUTH1;
+                                               //nextCycleTimeout = 10;
+                                               break;
+                                       }
+                               }
+                               
+                               // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
+                               // BUT... ACK --> NACK
+                               if (len == 1 && receivedCmd[0] == CARD_ACK) {
+                                       EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+                                       break;
+                               }
+                               
+                               // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
+                               if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
+                                       EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+                                       break;
+                               }
+                               
+                               // read block
+                               if (len == 4 && receivedCmd[0] == 0x30) {
+                                       if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) {
+                                               EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+                                               break;
+                                       }
+                                       emlGetMem(response, receivedCmd[1], 1);
+                                       AppendCrc14443a(response, 16);
+                                       mf_crypto1_encrypt(pcs, response, 18, &par);
+                                       EmSendCmdPar(response, 18, par);
+                                       break;
+                               }
+                               
+                               // write block
+                               if (len == 4 && receivedCmd[0] == 0xA0) {
+                                       if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) {
+                                               EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+                                               break;
+                                       }
+                                       EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+                                       //nextCycleTimeout = 50;
+                                       cardSTATE = MFEMUL_WRITEBL2;
+                                       cardWRBL = receivedCmd[1];
+                                       break;
+                               }
+                       
+                               // works with cardINTREG
+                               
+                               // increment, decrement, restore
+                               if (len == 4 && (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2)) {
+                                       if (receivedCmd[1] >= 16 * 4 || 
+                                                       receivedCmd[1] / 4 != cardAUTHSC || 
+                                                       emlCheckValBl(receivedCmd[1])) {
+                                               EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+                                               break;
+                                       }
+                                       EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+                                       if (receivedCmd[0] == 0xC1)
+                                               cardSTATE = MFEMUL_INTREG_INC;
+                                       if (receivedCmd[0] == 0xC0)
+                                               cardSTATE = MFEMUL_INTREG_DEC;
+                                       if (receivedCmd[0] == 0xC2)
+                                               cardSTATE = MFEMUL_INTREG_REST;
+                                       cardWRBL = receivedCmd[1];
+                                       
+                                       break;
+                               }
+                               
+
+                               // transfer
+                               if (len == 4 && receivedCmd[0] == 0xB0) {
+                                       if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) {
+                                               EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+                                               break;
+                                       }
+                                       
+                                       if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
+                                               EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+                                       else
+                                               EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+                                               
+                                       break;
+                               }
+
+                               // halt
+                               if (len == 4 && (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00)) {
+                                       LED_B_OFF();
+                                       LED_C_OFF();
+                                       cardSTATE = MFEMUL_HALTED;
+                                       if (MF_DBGLEVEL >= 4)   Dbprintf("--> HALTED. Selected time: %d ms",  GetTickCount() - selTimer);
+                                       break;
+                               }
+                               
+                               // command not allowed
+                               if (len == 4) {
+                                       EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+                                       break;
+                               }
+
+                               // case break
+                               break;
+                       }
+                       case MFEMUL_WRITEBL2:{
+                               if (len == 18){
+                                       mf_crypto1_decrypt(pcs, receivedCmd, len);
+                                       emlSetMem(receivedCmd, cardWRBL, 1);
+                                       EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+                                       cardSTATE = MFEMUL_WORK;
+                                       break;
+                               } else {
+                                       cardSTATE_TO_IDLE();
+                                       break;
+                               }
+                               break;
+                       }
+                       
+                       case MFEMUL_INTREG_INC:{
+                               mf_crypto1_decrypt(pcs, receivedCmd, len);
+                               memcpy(&ans, receivedCmd, 4);
+                               if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
+                                       EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+                                       cardSTATE_TO_IDLE();
+                                       break;
+                               }
+                               cardINTREG = cardINTREG + ans;
+                               cardSTATE = MFEMUL_WORK;
+                               break;
+                       }
+                       case MFEMUL_INTREG_DEC:{
+                               mf_crypto1_decrypt(pcs, receivedCmd, len);
+                               memcpy(&ans, receivedCmd, 4);
+                               if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
+                                       EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+                                       cardSTATE_TO_IDLE();
+                                       break;
+                               }
+                               cardINTREG = cardINTREG - ans;
+                               cardSTATE = MFEMUL_WORK;
+                               break;
+                       }
+                       case MFEMUL_INTREG_REST:{
+                               mf_crypto1_decrypt(pcs, receivedCmd, len);
+                               memcpy(&ans, receivedCmd, 4);
+                               if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
+                                       EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+                                       cardSTATE_TO_IDLE();
+                                       break;
+                               }
+                               cardSTATE = MFEMUL_WORK;
+                               break;
+                       }
+               }
+       }
+
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       LEDsoff();
+
+       // add trace trailer
+       memset(rAUTH_NT, 0x44, 4);
+       LogTrace(rAUTH_NT, 4, 0, 0, TRUE);
+
+       if (MF_DBGLEVEL >= 1)   Dbprintf("Emulator stopped. Tracing: %d  trace length: %d ",    tracing, traceLen);
+}
+
+//-----------------------------------------------------------------------------
+// MIFARE sniffer. 
+// 
+//-----------------------------------------------------------------------------
+void RAMFUNC SniffMifare(uint8_t param) {
+       // param:
+       // bit 0 - trigger from first card answer
+       // bit 1 - trigger from first reader 7-bit request
+
+       // C(red) A(yellow) B(green)
+       LEDsoff();
+       // init trace buffer
+    iso14a_clear_trace();
+
+       // The command (reader -> tag) that we're receiving.
+       // The length of a received command will in most cases be no more than 18 bytes.
+       // So 32 should be enough!
+       uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
+       // The response (tag -> reader) that we're receiving.
+       uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
+
+       // As we receive stuff, we copy it from receivedCmd or receivedResponse
+       // into trace, along with its length and other annotations.
+       //uint8_t *trace = (uint8_t *)BigBuf;
+       
+       // The DMA buffer, used to stream samples from the FPGA
+       int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+       int8_t *data = dmaBuf;
+       int maxDataLen = 0;
+       int dataLen = 0;
+
+       // Set up the demodulator for tag -> reader responses.
+       Demod.output = receivedResponse;
+       Demod.len = 0;
+       Demod.state = DEMOD_UNSYNCD;
+
+       // Set up the demodulator for the reader -> tag commands
+       memset(&Uart, 0, sizeof(Uart));
+       Uart.output = receivedCmd;
+       Uart.byteCntMax = 32; // was 100 (greg)//////////////////
+       Uart.state = STATE_UNSYNCD;
+
+       // Setup for the DMA.
+       FpgaSetupSsc();
+       FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
+
+       // And put the FPGA in the appropriate mode
+       // Signal field is off with the appropriate LED
+       LED_D_OFF();
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
+       SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+       
+       // init sniffer
+       MfSniffInit();
+       int sniffCounter = 0;
+
+       // And now we loop, receiving samples.
+       while(true) {
+               if(BUTTON_PRESS()) {
+                       DbpString("cancelled by button");
+                       goto done;
+               }
+
+               LED_A_ON();
+               WDT_HIT();
+               
+               if (++sniffCounter > 65) {
+                       if (MfSniffSend(2000)) {
+                               FpgaEnableSscDma();
+                       }
+                       sniffCounter = 0;
+               }
+
+               int register readBufDataP = data - dmaBuf;
+               int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
+               if (readBufDataP <= dmaBufDataP){
+                       dataLen = dmaBufDataP - readBufDataP;
+               } else {
+                       dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP + 1;
+               }
+               // test for length of buffer
+               if(dataLen > maxDataLen) {
+                       maxDataLen = dataLen;
+                       if(dataLen > 400) {
+                               Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
+                               goto done;
+                       }
+               }
+               if(dataLen < 1) continue;
+
+               // primary buffer was stopped( <-- we lost data!
+               if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
+                       AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
+                       AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
+                       Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
+               }
+               // secondary buffer sets as primary, secondary buffer was stopped
+               if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
+                       AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
+                       AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
+               }
+
+               LED_A_OFF();
+               
+               if(MillerDecoding((data[0] & 0xF0) >> 4)) {
+                       LED_C_INV();
+                       // check - if there is a short 7bit request from reader
+                       if (MfSniffLogic(receivedCmd, Uart.byteCnt, Uart.parityBits, Uart.bitCnt, TRUE)) break;
+
+                       /* And ready to receive another command. */
+                       Uart.state = STATE_UNSYNCD;
+                       
+                       /* And also reset the demod code */
+                       Demod.state = DEMOD_UNSYNCD;
+               }
+
+               if(ManchesterDecoding(data[0], 0)) {
+                       LED_C_INV();
+
+                       if (MfSniffLogic(receivedResponse, Demod.len, Demod.parityBits, Demod.bitCount, FALSE)) break;
+
+                       // And ready to receive another response.
+                       memset(&Demod, 0, sizeof(Demod));
+                       Demod.output = receivedResponse;
+                       Demod.state = DEMOD_UNSYNCD;
+
+                       /* And also reset the uart code */
+                       Uart.state = STATE_UNSYNCD;
+               }
+
+               data++;
+               if(data > dmaBuf + DMA_BUFFER_SIZE) {
+                       data = dmaBuf;
+               }
+       } // main cycle
+
+       DbpString("COMMAND FINISHED");
+
+done:
+       FpgaDisableSscDma();
+       MfSniffEnd();
+       
+       Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.byteCnt=%x Uart.byteCntMax=%x", maxDataLen, Uart.state, Uart.byteCnt, Uart.byteCntMax);
+       LEDsoff();
+}
Impressum, Datenschutz