}
//by marshmellow
-//get high and low with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
+//get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo)
{
*high=0;
errChk = 0;
break;
}
+ //set uint64 with ID from BitStream
for (uint8_t ii=0; ii<4; ii++){
lo = (lo << 1LL) | (BitStream[(i*5)+ii+idx]);
}
//by marshmellow
//takes 3 arguments - clock, invert and maxErr as integers
//attempts to demodulate ask only
-//prints binary found and saves in graphbuffer for further commands
int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp)
{
uint32_t i;
}
return bestErrCnt;
}
+
+// demod gProxIIDemod
+// error returns as -x
+// success returns start position in BitStream
+// BitStream must contain previously askrawdemod and biphasedemoded data
+int gProxII_Demod(uint8_t BitStream[], size_t *size)
+{
+ size_t startIdx=0;
+ uint8_t preamble[] = {1,1,1,1,1,0};
+
+ uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx);
+ if (errChk == 0) return -3; //preamble not found
+ if (*size != 96) return -2; //should have found 96 bits
+ //check first 6 spacer bits to verify format
+ if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){
+ //confirmed proper separator bits found
+ //return start position
+ return (int) startIdx;
+ }
+ return -5;
+}
+
//translate wave to 11111100000 (1 for each short wave 0 for each long wave)
size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow)
{
size_t i=1;
uint8_t lastBit=BitStream[0];
for (; i<size; i++){
- if (lastBit!=BitStream[i]){
+ if (BitStream[i]==77){
+ //ignore errors
+ } else if (lastBit!=BitStream[i]){
lastBit=BitStream[i];
BitStream[i]=1;
} else {
return;
}
+// by marshmellow
+// convert psk2 demod to psk1 demod
+// from only transition waves are 1s to phase shifts change bit
+void psk2TOpsk1(uint8_t *BitStream, size_t size)
+{
+ uint8_t phase=0;
+ for (size_t i=0; i<size; i++){
+ if (BitStream[i]==1){
+ phase ^=1;
+ }
+ BitStream[i]=phase;
+ }
+ return;
+}
+
// redesigned by marshmellow adjusted from existing decode functions
// indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
if (*size<loopCnt) loopCnt = *size;
uint8_t curPhase = *invert;
- size_t i, waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0;
+ size_t i, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
uint8_t fc=0, fullWaveLen=0, tol=1;
uint16_t errCnt=0, waveLenCnt=0;
fc = countPSK_FC(dest, *size);
*clock = DetectPSKClock(dest, *size, *clock);
if (*clock==0) return -1;
int avgWaveVal=0, lastAvgWaveVal=0;
- //find first full wave
+ //find first phase shift
for (i=0; i<loopCnt; i++){
if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
- if (waveStart == 0) {
- waveStart = i+1;
- avgWaveVal=dest[i+1];
- //PrintAndLog("DEBUG: waveStart: %d",waveStart);
- } else {
- waveEnd = i+1;
- //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
- waveLenCnt = waveEnd-waveStart;
- lastAvgWaveVal = avgWaveVal/waveLenCnt;
- if (waveLenCnt > fc){
- firstFullWave = waveStart;
- fullWaveLen=waveLenCnt;
- //if average wave value is > graph 0 then it is an up wave or a 1
- if (lastAvgWaveVal > 128) curPhase^=1;
- break;
- }
- waveStart=0;
- avgWaveVal=0;
- }
+ waveEnd = i+1;
+ //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
+ waveLenCnt = waveEnd-waveStart;
+ if (waveLenCnt > fc && waveStart > fc){ //not first peak and is a large wave
+ lastAvgWaveVal = avgWaveVal/(waveLenCnt);
+ firstFullWave = waveStart;
+ fullWaveLen=waveLenCnt;
+ //if average wave value is > graph 0 then it is an up wave or a 1
+ if (lastAvgWaveVal > 123) curPhase^=1; //fudge graph 0 a little 123 vs 128
+ break;
+ }
+ waveStart = i+1;
+ avgWaveVal = 0;
}
- avgWaveVal+=dest[i+1];
+ avgWaveVal+=dest[i+2];
}
//PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
lastClkBit = firstFullWave; //set start of wave as clock align
+ //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
waveStart = 0;
errCnt=0;
size_t numBits=0;
- //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
-
+ //set skipped bits
+ memset(dest+numBits,curPhase^1,firstFullWave / *clock);
+ numBits += (firstFullWave / *clock);
+ dest[numBits++] = curPhase; //set first read bit
for (i = firstFullWave+fullWaveLen-1; i < *size-3; i++){
//top edge of wave = start of new wave
if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
waveEnd = i+1;
waveLenCnt = waveEnd-waveStart;
lastAvgWaveVal = avgWaveVal/waveLenCnt;
- if (waveLenCnt > fc){
+ if (waveLenCnt > fc){
//PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
//if this wave is a phase shift
//PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit
curPhase^=1;
- dest[numBits] = curPhase;
- numBits++;
+ dest[numBits++] = curPhase;
lastClkBit += *clock;
- } else if (i<lastClkBit+10){
+ } else if (i<lastClkBit+10+fc){
//noise after a phase shift - ignore
} else { //phase shift before supposed to based on clock
errCnt++;
- dest[numBits] = 77;
- numBits++;
+ dest[numBits++] = 77;
}
} else if (i+1 > lastClkBit + *clock + tol + fc){
lastClkBit += *clock; //no phase shift but clock bit
- dest[numBits] = curPhase;
- numBits++;
+ dest[numBits++] = curPhase;
}
avgWaveVal=0;
waveStart=i+1;