]> cvs.zerfleddert.de Git - proxmark3-svn/blobdiff - fpga/hi_iso14443a.v
Re-submitting Midnitesnake's Mifare Ultralight Patch
[proxmark3-svn] / fpga / hi_iso14443a.v
index eb03fa2394fee7d674bb666fb5d72d5f764a8240..ec5aa75771023b75fe5b7ee0426b7aac4d5390db 100644 (file)
@@ -3,6 +3,13 @@
 // Gerhard de Koning Gans, April 2008
 //-----------------------------------------------------------------------------
 
+// constants for the different modes:
+`define SNIFFER                        3'b000
+`define TAGSIM_LISTEN  3'b001
+`define TAGSIM_MOD             3'b010
+`define READER_LISTEN  3'b011
+`define READER_MOD             3'b100
+
 module hi_iso14443a(
     pck0, ck_1356meg, ck_1356megb,
     pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,
@@ -25,26 +32,25 @@ module hi_iso14443a(
 reg ssp_clk;
 reg ssp_frame;
 
-reg fc_div_2;
-always @(posedge ck_1356meg)
-    fc_div_2 = ~fc_div_2;
-
 wire adc_clk;
 assign adc_clk = ck_1356meg;
 
-reg after_hysteresis, after_hysteresis_prev1, after_hysteresis_prev2, after_hysteresis_prev3;
+reg after_hysteresis, pre_after_hysteresis, after_hysteresis_prev1, after_hysteresis_prev2, after_hysteresis_prev3, after_hysteresis_prev4;
 reg [11:0] has_been_low_for;
 reg [8:0] saw_deep_modulation;
 reg [2:0] deep_counter;
 reg deep_modulation;
+
 always @(negedge adc_clk)
 begin
-       if(& adc_d[7:6]) after_hysteresis <= 1'b1;
-    else if(~(| adc_d[7:4])) after_hysteresis <= 1'b0;
+       if(& adc_d[7:6]) after_hysteresis <= 1'b1;                      // adc_d >= 196 (U >= 3,28V) -> after_hysteris = 1
+    else if(~(| adc_d[7:4])) after_hysteresis <= 1'b0;  // if adc_d <= 15 (U <= 1,13V) -> after_hysteresis = 0
+
+       pre_after_hysteresis <= after_hysteresis;
        
-       if(~(| adc_d[7:0]))
+       if(~(| adc_d[7:0]))                                                                     // if adc_d == 0 (U <= 0,94V)
        begin
-               if(deep_counter == 3'd7)
+               if(deep_counter == 3'd7)                                                // adc_d == 0 for 7 adc_clk ticks -> deep_modulation (by reader)
                begin
                        deep_modulation <= 1'b1;
                        saw_deep_modulation <= 8'd0;
@@ -52,10 +58,10 @@ begin
                else
                        deep_counter <= deep_counter + 1;
        end
-       else
+       else                                                    
        begin
                deep_counter <= 3'd0;
-               if(saw_deep_modulation == 8'd255)
+               if(saw_deep_modulation == 8'd255)                               // adc_d != 0 for 255 adc_clk ticks -> deep_modulation is over, now waiting for tag's response
                        deep_modulation <= 1'b0;
                else
                        saw_deep_modulation <= saw_deep_modulation + 1;
@@ -63,229 +69,309 @@ begin
        
        if(after_hysteresis)
     begin
-        has_been_low_for <= 7'b0;
+        has_been_low_for <= 12'd0;
     end
     else
     begin
         if(has_been_low_for == 12'd4095)
         begin
             has_been_low_for <= 12'd0;
-            after_hysteresis <= 1'b1;
+            after_hysteresis <= 1'b1;                                  // reset after_hysteresis to 1 if it had been 0 for 4096 cycles (no field)
         end
         else
+               begin
             has_been_low_for <= has_been_low_for + 1;
+               end     
     end
 end
 
+
+
 // Report every 4 subcarrier cycles
-// 64 periods of carrier frequency => 6-bit counter [negedge_cnt]
-reg [5:0] negedge_cnt;
-reg bit1, bit2, bit3;
-reg [3:0] count_ones;
-reg [3:0] count_zeros;
-wire [7:0] avg;
-reg [7:0] lavg;
-reg signed [12:0] step1;
-reg signed [12:0] step2;
-reg [7:0] stepsize;
+// 128 periods of carrier frequency => 7-bit counter [negedge_cnt]
+reg [6:0] negedge_cnt;
+reg bit1, bit2, bit3, bit4;
 reg curbit;
-reg [12:0] average;
-wire signed [9:0] dif;
 
-// A register to send the results to the arm
-reg signed [7:0] to_arm;
+// storage for four previous samples:
+reg [7:0] adc_d_1;
+reg [7:0] adc_d_2;
+reg [7:0] adc_d_3;
+reg [7:0] adc_d_4;
+
+// the filtered signal (filter performs noise reduction and edge detection)
+// (gaussian derivative)
+wire signed [10:0] adc_d_filtered;
+assign adc_d_filtered = (adc_d_4 << 1) + adc_d_3 - adc_d_1 - (adc_d << 1);
+
+// Registers to store steepest edges detected:
+reg [7:0] rx_mod_falling_edge_max;
+reg [7:0] rx_mod_rising_edge_max;
+
+// A register to send 8 Bit results to the arm
+reg [7:0] to_arm;
 
-assign avg[7:0] = average[11:4];
-assign dif = lavg - avg;
 
 reg bit_to_arm;
 reg fdt_indicator, fdt_elapsed;
 reg [10:0] fdt_counter;
-reg [47:0] mod_sig_buf;
-wire mod_sig_buf_empty;
-reg [5:0] mod_sig_ptr;
+//reg [47:0] mod_sig_buf;
+reg [31:0] mod_sig_buf;
+//reg [5:0] mod_sig_ptr;
+reg [4:0] mod_sig_ptr;
 reg [3:0] mod_sig_flip;
 reg mod_sig, mod_sig_coil;
 reg temp_buffer_reset;
 reg sendbit;
-
-assign mod_sig_buf_empty = ~(|mod_sig_buf[47:0]);
-reg [2:0] ssp_frame_counter;
+reg [3:0] sub_carrier_cnt;
+reg[3:0] reader_falling_edge_time;
 
 // ADC data appears on the rising edge, so sample it on the falling edge
 always @(negedge adc_clk)
 begin
-
-       // last bit = 0 then fdt = 1172, in case of 0x26 (7-bit command, LSB first!)
-       // last bit = 1 then fdt = 1236, in case of 0x52 (7-bit command, LSB first!)
-       if(fdt_counter == 11'd740) fdt_indicator = 1'b1;
+       // ------------------------------------------------------------------------------------------------------------------------------------------------------------------
+       // relevant for TAGSIM_MOD only. Timing of Tag's answer relative to a command received from a reader
+       // ISO14443-3 specifies:
+       // fdt = 1172, if last bit was 0.
+       // fdt = 1236, if last bit was 1.
+       // the FPGA takes care for the 1172 delay. To achieve the additional 1236-1172=64 ticks delay, the ARM must send an additional correction bit (before the start bit).
+       // The correction bit will be coded as 00010000, i.e. it adds 4 bits to the transmission stream, causing the required delay.
+       if(fdt_counter == 11'd547) fdt_indicator <= 1'b1;       // The ARM must not send earlier to prevent mod_sig_buf overflow.
+                                                                                                               // The mod_sig_buf can buffer 29 excess data bits, i.e. a maximum delay of 29 * 16 = 464 adc_clk ticks. fdt_indicator
+                                                                                                               // could appear at ssp_din after 1 tick, 16 ticks for the transfer, 128 ticks until response is sended.
+                                                                                                               // 1148 - 464 - 1 - 128 - 8 = 547
        
-       if(fdt_counter == 11'd1148)
+       if ((mod_type == `TAGSIM_MOD) || (mod_type == `TAGSIM_LISTEN))
        begin
-               if(fdt_elapsed)
+               if(fdt_counter == 11'd1148) // the RF part delays the rising edge by approx 5 adc_clk_ticks, the ADC needs 3 clk_ticks for A/D conversion,
+                                                                       // 16 ticks delay by mod_sig_buf
+                                                                       // 1172 - 5 - 3 - 16 = 1148.
                begin
-                       if(negedge_cnt[3:0] == mod_sig_flip[3:0]) mod_sig_coil <= mod_sig;
+                       if(fdt_elapsed)
+                       begin
+                               if(negedge_cnt[3:0] == mod_sig_flip) mod_sig_coil <= mod_sig; // start modulating (if mod_sig is already set)
+                               sub_carrier_cnt[3:0] <= sub_carrier_cnt[3:0] + 1;
+                       end
+                       else
+                       begin
+                               mod_sig_flip <= negedge_cnt[3:0];                       // start modulation at this time
+                               sub_carrier_cnt[3:0] <= 0;                                      // subcarrier phase in sync with start of modulation
+                               mod_sig_coil <= mod_sig;                                        // assign signal to coil
+                               fdt_elapsed = 1'b1;
+                               if(~(| mod_sig_ptr[4:0])) mod_sig_ptr <= 5'd9;  // if mod_sig_ptr == 0 -> didn't receive a 1 yet. Delay next 1 by n*128 ticks.
+                               else temp_buffer_reset = 1'b1;                                  // else fix the buffer size at current position
+                       end
                end
                else
                begin
-                       mod_sig_flip[3:0] <= negedge_cnt[3:0];
-                       mod_sig_coil <= mod_sig;
-                       fdt_elapsed = 1'b1;
-                       fdt_indicator = 1'b0;
-
-                       if(~(| mod_sig_ptr[5:0])) mod_sig_ptr <= 6'b001001;
-                       else temp_buffer_reset = 1'b1; // fix position of the buffer pointer
+                       fdt_counter <= fdt_counter + 1; // Count until 1155
                end
        end
-       else
+       else // other modes: don't use the delay line.
        begin
-               fdt_counter <= fdt_counter + 1;
-       end
+               mod_sig_coil <= ssp_dout;
+       end     
        
-       if(& negedge_cnt[3:0])
+       
+       //-------------------------------------------------------------------------------------------------------------------------------------------
+       // Relevant for READER_LISTEN only
+       // look for steepest falling and rising edges:
+
+       if(negedge_cnt[3:0] == 4'd1)                                    // reset modulation detector. Save current edge.
        begin
-               // When there is a dip in the signal and not in reader mode
-               if(~after_hysteresis && mod_sig_buf_empty && ~((mod_type == 3'b100) || (mod_type == 3'b011) || (mod_type == 3'b010))) // last condition to prevent reset
+               if (adc_d_filtered > 0)
                begin
-                       fdt_counter <= 11'd0;
-                       fdt_elapsed = 1'b0;
-                       fdt_indicator = 1'b0;
-                       temp_buffer_reset = 1'b0;
-                       mod_sig_ptr <= 6'b000000;
+                       rx_mod_falling_edge_max <= adc_d_filtered;
+                       rx_mod_rising_edge_max <= 0;
+               end     
+               else
+               begin
+                       rx_mod_falling_edge_max <= 0;
+                       rx_mod_rising_edge_max <= -adc_d_filtered;
                end
-               
-               lavg <= avg;
-               
-               if(stepsize<16) stepsize = 8'd16;
-
-               if(dif>0)
+       end
+       else                                                                                    // detect modulation
+       begin
+               if (adc_d_filtered > 0)
                begin
-                       step1 = dif*3;
-                       step2 = stepsize*2; // 3:2
-                       if(step1>step2)
-                       begin
-                               curbit = 1'b0;
-                               stepsize = dif;
-                       end
+                       if (adc_d_filtered > rx_mod_falling_edge_max)
+                               rx_mod_falling_edge_max <= adc_d_filtered;
                end
                else
                begin
-                       step1 = dif*3;
-                       step1 = -step1;
-                       step2 = stepsize*2;
-                       if(step1>step2)
-                       begin
-                               curbit = 1'b1;
-                               stepsize = -dif;
-                       end
+                       if (-adc_d_filtered > rx_mod_rising_edge_max)
+                               rx_mod_rising_edge_max <= -adc_d_filtered;
                end
-               
-               if(curbit)
+       end
+
+       // detect modulation signal: if modulating, there must be a falling and a rising edge
+       if (rx_mod_falling_edge_max > 6 && rx_mod_rising_edge_max > 6)
+                       curbit <= 1'b1; // modulation
+               else
+                       curbit <= 1'b0; // no modulation
+                       
+       
+       // store previous samples for filtering and edge detection:
+       adc_d_4 <= adc_d_3;
+       adc_d_3 <= adc_d_2;
+       adc_d_2 <= adc_d_1;
+       adc_d_1 <= adc_d;
+
+
+       // Relevant for TAGSIM_MOD only (timing the Tag's answer. See above)
+       // When we see end of a modulation and we are emulating a Tag, start fdt_counter.
+       // Reset fdt_counter when modulation is detected.
+       if(~after_hysteresis /* && mod_sig_buf_empty */ && mod_type == `TAGSIM_LISTEN)
+       begin
+               fdt_counter <= 11'd0;
+               fdt_elapsed = 1'b0;
+               fdt_indicator <= 1'b0;
+               temp_buffer_reset = 1'b0;
+               mod_sig_ptr <= 5'b00000;
+               mod_sig = 1'b0;
+       end     
+
+
+       if(negedge_cnt[3:0] == 4'd1)
+       begin
+               // What do we communicate to the ARM
+               if(mod_type == `TAGSIM_LISTEN) 
+                       sendbit = after_hysteresis;
+               else if(mod_type == `TAGSIM_MOD)
+                       /* if(fdt_counter > 11'd772) sendbit = mod_sig_coil; // huh?
+                       else */ 
+                       sendbit = fdt_indicator;
+               else if (mod_type == `READER_LISTEN)
+                       sendbit = curbit;
+               else
+                       sendbit = 1'b0;
+       end
+
+
+
+       // check timing of a falling edge in reader signal
+       if (pre_after_hysteresis && ~after_hysteresis)
+               reader_falling_edge_time[3:0] <= negedge_cnt[3:0];
+
+
+
+       // sync clock to external reader's clock:
+       if (negedge_cnt[3:0] == 4'd13 && (mod_type == `SNIFFER || mod_type == `TAGSIM_MOD || mod_type == `TAGSIM_LISTEN))
+       begin
+               // adjust clock if necessary:
+               if (reader_falling_edge_time < 4'd8 && reader_falling_edge_time > 4'd1)
                begin
-                       count_zeros <= 4'd0;
-                       if(& count_ones[3:2])
-                       begin
-                               curbit = 1'b0; // suppressed signal
-                               stepsize = 8'd24; // just a fine number
-                       end
-                       else
-                       begin
-                               count_ones <= count_ones + 1;
-                       end
+                       negedge_cnt <= negedge_cnt;                             // freeze time
+               end     
+               else if (reader_falling_edge_time == 4'd8)
+               begin
+                       negedge_cnt <= negedge_cnt + 1;                 // the desired state. Advance as usual;
                end
                else
                begin
-                       count_ones <= 4'd0;
-                       if(& count_zeros[3:0])
+                       negedge_cnt[3:0] <= 4'd15;                              // time warp
+               end
+               reader_falling_edge_time <= 4'd8;                       // only once per detected rising edge
+       end
+       
+
+
+       //------------------------------------------------------------------------------------------------------------------------------------------
+       // Prepare 8 Bits to communicate to ARM
+       if (negedge_cnt == 7'd63)
+       begin
+               if (mod_type == `SNIFFER)
+               begin
+                       if(deep_modulation) // a reader is sending (or there's no field at all)
                        begin
-                               stepsize = 8'd24;
+                               to_arm <= {after_hysteresis_prev1,after_hysteresis_prev2,after_hysteresis_prev3,after_hysteresis_prev4,1'b0,1'b0,1'b0,1'b0};
                        end
                        else
                        begin
-                               count_zeros <= count_zeros + 1;
-                       end
+                               to_arm <= {after_hysteresis_prev1,after_hysteresis_prev2,after_hysteresis_prev3,after_hysteresis_prev4,bit1,bit2,bit3,bit4};
+                       end                     
+                       negedge_cnt <= 0;
                end
-               
-               // What do we communicate to the ARM
-               if(mod_type == 3'b001) sendbit = after_hysteresis;
-               else if(mod_type == 3'b010)
+               else
                begin
-                       if(fdt_counter > 11'd772) sendbit = mod_sig_coil;
-                       else sendbit = fdt_indicator;
+                       negedge_cnt <= negedge_cnt + 1;
                end
-               else if(mod_type == 3'b011) sendbit = curbit;
-               else sendbit = 1'b0;
-
-       end
-
-       if(~(| negedge_cnt[3:0])) average <= adc_d;
-       else average <= average + adc_d;
-
-       if(negedge_cnt == 7'd63)
-    begin
-               if(deep_modulation)
+       end     
+       else if(negedge_cnt == 7'd127)
+       begin
+               if (mod_type == `TAGSIM_MOD)
                begin
-                       to_arm <= {after_hysteresis_prev1,after_hysteresis_prev2,after_hysteresis_prev3,after_hysteresis,1'b0,1'b0,1'b0,1'b0};
+                       to_arm[7:0] <= {mod_sig_ptr[4:0], mod_sig_flip[3:1]};
+                       negedge_cnt <= 0;
                end
                else
                begin
-                       to_arm <= {after_hysteresis_prev1,after_hysteresis_prev2,after_hysteresis_prev3,after_hysteresis,bit1,bit2,bit3,curbit};
+                       to_arm[7:0] <= 8'd0;
+                       negedge_cnt <= negedge_cnt + 1;
                end
+       end
+       else
+       begin
+               negedge_cnt <= negedge_cnt + 1;
+       end
 
-        negedge_cnt <= 0;
        
-               end
-    else
-    begin
-        negedge_cnt <= negedge_cnt + 1;
-    end
-
-    if(negedge_cnt == 6'd15)
+    if(negedge_cnt == 7'd1)
        begin
         after_hysteresis_prev1 <= after_hysteresis;
                bit1 <= curbit;
        end
-    if(negedge_cnt == 6'd31)
+    if(negedge_cnt == 7'd17)
        begin
         after_hysteresis_prev2 <= after_hysteresis;
                bit2 <= curbit;
        end
-    if(negedge_cnt == 6'd47)
+    if(negedge_cnt == 7'd33)
        begin
         after_hysteresis_prev3 <= after_hysteresis;
                bit3 <= curbit;
        end
+    if(negedge_cnt == 7'd49)
+       begin
+        after_hysteresis_prev4 <= after_hysteresis;
+               bit4 <= curbit;
+       end
        
-
-       if(mod_type != 3'b000)
+       //--------------------------------------------------------------------------------------------------------------------------------------------------------------
+       // Relevant in TAGSIM_MOD only. Delay-Line to buffer data and send it at the correct time
+       if(negedge_cnt[3:0] == 4'd0)    // at rising edge of ssp_clk - ssp_dout changes at the falling edge.
        begin
-               if(negedge_cnt[3:0] == 4'b1000)
+               mod_sig_buf[31:0] <= {mod_sig_buf[30:1], ssp_dout, 1'b0};                       // shift in new data starting at mod_sig_buf[1]. mod_sig_buf[0] = 0 always.
+               // asign the delayed signal to mod_sig, but don't modulate with the correction bit (which is sent as 00010000, all other bits will come with at least 2 consecutive 1s)
+               // side effect: when ptr = 1 it will cancel the first 1 of every block of ones. Note: this would only be the case if we received a 1 just before fdt_elapsed.
+               if((ssp_dout || (| mod_sig_ptr[4:0])) && ~fdt_elapsed)                          // buffer a 1 (and all subsequent data) until fdt_counter = 1148 adc_clk ticks.
+                       //if(mod_sig_ptr == 6'b101110)                                                                  // buffer overflow at 46 - this would mean data loss
+                       //begin
+                       //      mod_sig_ptr <= 6'b000000;
+                       //end
+                       if (mod_sig_ptr == 5'd30) mod_sig_ptr <= 5'd0;
+                       else mod_sig_ptr <= mod_sig_ptr + 1;                                                    // increase buffer (= increase delay by 16 adc_clk ticks). ptr always points to first 1.
+               else if(fdt_elapsed && ~temp_buffer_reset)                                                      
+               // fdt_elapsed. If we didn't receive a 1 yet, ptr will be at 9 and not yet fixed. Otherwise temp_buffer_reset will be 1 already.
                begin
-                       // The modulation signal of the tag
-                       mod_sig_buf[47:0] <= {mod_sig_buf[46:1], ssp_dout, 1'b0};
-                       if((ssp_dout || (| mod_sig_ptr[5:0])) && ~fdt_elapsed)
-                               if(mod_sig_ptr == 6'b101110)
-                               begin
-                                       mod_sig_ptr <= 6'b000000;
-                               end
-                               else mod_sig_ptr <= mod_sig_ptr + 1;
-                       else if(fdt_elapsed && ~temp_buffer_reset)
-                       begin
-                               if(ssp_dout) temp_buffer_reset = 1'b1;
-                               if(mod_sig_ptr == 6'b000010) mod_sig_ptr <= 6'b001001;
-                               else mod_sig_ptr <= mod_sig_ptr - 1;
-                       end
-                       else
-                       begin
-                               // side effect: when ptr = 1 it will cancel the first 1 of every block of ones
-                               if(~mod_sig_buf[mod_sig_ptr-1] && ~mod_sig_buf[mod_sig_ptr+1]) mod_sig = 1'b0;
-                               else mod_sig = mod_sig_buf[mod_sig_ptr] & fdt_elapsed; // & fdt_elapsed  was for direct relay to oe4
-                       end
+                       // wait for the next 1 after fdt_elapsed before fixing the delay and starting modulation. This ensures that the response can only happen
+                       // at intervals of 8 * 16 = 128 adc_clk ticks intervals (as defined in ISO14443-3)
+                       if(ssp_dout) temp_buffer_reset = 1'b1;                                                  
+                       if(mod_sig_ptr == 5'd2) mod_sig_ptr <= 5'd9;                                    // still nothing received, need to go for the next interval
+                       else mod_sig_ptr <= mod_sig_ptr - 1;                                                    // decrease buffer.
+               end
+               else
+               begin
+                       if(~mod_sig_buf[mod_sig_ptr-1] && ~mod_sig_buf[mod_sig_ptr+1]) mod_sig = 1'b0;
+                       // finally, assign the delayed signal:
+                       else mod_sig = mod_sig_buf[mod_sig_ptr];
                end
        end
        
-       // SSP Clock and data
-       if(mod_type == 3'b000)
+       //-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
+       // Communication to ARM (SSP Clock and data)
+       // SNIFFER mode (ssp_clk = adc_clk / 8, ssp_frame clock = adc_clk / 64)):
+       if(mod_type == `SNIFFER)
        begin
                if(negedge_cnt[2:0] == 3'b100)
                        ssp_clk <= 1'b0;
@@ -294,7 +380,7 @@ begin
                begin
                        ssp_clk <= 1'b1;
                        // Don't shift if we just loaded new data, obviously.
-                       if(negedge_cnt != 7'd0)
+                       if(negedge_cnt[5:0] != 6'd0)
                        begin
                                to_arm[7:1] <= to_arm[6:0];
                        end
@@ -308,53 +394,66 @@ begin
                bit_to_arm = to_arm[7];
        end
        else
+       //-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
+       // Communication to ARM (SSP Clock and data)
+       // all other modes (ssp_clk = adc_clk / 16, ssp_frame clock = adc_clk / 128):
        begin
                if(negedge_cnt[3:0] == 4'b1000) ssp_clk <= 1'b0;
 
                if(negedge_cnt[3:0] == 4'b0111)
                begin
-                       if(ssp_frame_counter == 3'd7) ssp_frame_counter <= 3'd0;
-                       else ssp_frame_counter <= ssp_frame_counter + 1;
+                       // if(ssp_frame_counter == 3'd7) ssp_frame_counter <= 3'd0;
+                       // else ssp_frame_counter <= ssp_frame_counter + 1;
+                       if (negedge_cnt[6:4] == 3'b000) ssp_frame = 1'b1;
+                       else ssp_frame = 1'b0;
                end
+               // ssp_frame = (ssp_frame_counter == 3'd7);
 
                if(negedge_cnt[3:0] == 4'b0000)
                begin
                        ssp_clk <= 1'b1;
+                       // Don't shift if we just loaded new data, obviously.
+                       if(negedge_cnt[6:0] != 7'd0)
+                       begin
+                               to_arm[7:1] <= to_arm[6:0];
+                       end
                end
                
-               ssp_frame = (ssp_frame_counter == 3'd7);
-       
-               bit_to_arm = sendbit;
-       end
+               if (mod_type == `TAGSIM_MOD && fdt_elapsed && temp_buffer_reset)
+                       // transmit timing information
+                       bit_to_arm = to_arm[7];
+               else
+                       // transmit data or fdt_indicator
+                       bit_to_arm = sendbit;
+               end
        
-end
+end    //always @(negedge adc_clk)
 
 assign ssp_din = bit_to_arm;
 
-// Modulating carrier frequency is fc/16
-wire modulating_carrier;
-assign modulating_carrier = (mod_sig_coil & negedge_cnt[3] & (mod_type == 3'b010));
-assign pwr_hi = (ck_1356megb & (((mod_type == 3'b100) & ~mod_sig_coil) || (mod_type == 3'b011)));
 
-// This one is all LF, so doesn't matter
-//assign pwr_oe2 = modulating_carrier;
-assign pwr_oe2 = 1'b0;
+// Subcarrier (adc_clk/16, for TAGSIM_MOD only).
+wire sub_carrier;
+assign sub_carrier = ~sub_carrier_cnt[3];
 
-// Toggle only one of these, since we are already producing much deeper
-// modulation than a real tag would.
-//assign pwr_oe1 = modulating_carrier;
-assign pwr_oe1 = 1'b0;
-assign pwr_oe4 = modulating_carrier;
-//assign pwr_oe4 = 1'b0;
+// in READER_MOD: drop carrier for mod_sig_coil==1 (pause); in READER_LISTEN: carrier always on; in other modes: carrier always off
+assign pwr_hi = (ck_1356megb & (((mod_type == `READER_MOD) & ~mod_sig_coil) || (mod_type == `READER_LISTEN))); 
 
-// This one is always on, so that we can watch the carrier.
-//assign pwr_oe3 = modulating_carrier;
-assign pwr_oe3 = 1'b0;
 
+// Enable HF antenna drivers:
+assign pwr_oe1 = 1'b0;
+assign pwr_oe3 = 1'b0;
 
-assign dbg = negedge_cnt[3];
+// TAGSIM_MOD: short circuit antenna with different resistances (modulated by sub_carrier modulated by mod_sig_coil)
+// for pwr_oe4 = 1 (tristate): antenna load = 10k || 33                        = 32,9 Ohms
+// for pwr_oe4 = 0 (active):   antenna load = 10k || 33 || 33          = 16,5 Ohms
+assign pwr_oe4 = ~(mod_sig_coil & sub_carrier & (mod_type == `TAGSIM_MOD));
 
-// Unused.
+// This is all LF, so doesn't matter.
+assign pwr_oe2 = 1'b0;
 assign pwr_lo = 1'b0;
 
+
+assign dbg = negedge_cnt[3];
+
 endmodule
Impressum, Datenschutz