reg deep_modulation;
always @(negedge adc_clk)
begin
- if(& adc_d[7:6]) after_hysteresis <= 1'b1;
- else if(~(| adc_d[7:4])) after_hysteresis <= 1'b0;
+ if(& adc_d[7:6]) after_hysteresis <= 1'b1; // if adc_d >= 196
+ else if(~(| adc_d[7:4])) after_hysteresis <= 1'b0; // if adc_d <= 15
if(~(| adc_d[7:0]))
begin
reg bit1, bit2, bit3;
reg [3:0] count_ones;
reg [3:0] count_zeros;
-wire [7:0] avg;
-reg [7:0] lavg;
-reg signed [12:0] step1;
-reg signed [12:0] step2;
-reg [7:0] stepsize;
+// wire [7:0] avg;
+// reg [7:0] lavg;
+// reg signed [12:0] step1;
+// reg signed [12:0] step2;
+// reg [7:0] stepsize;
+reg [7:0] rx_mod_edge_threshold;
reg curbit;
-reg [12:0] average;
-wire signed [9:0] dif;
+// reg [12:0] average;
+// wire signed [9:0] dif;
+
+// storage for two previous samples:
+reg [7:0] adc_d_1;
+reg [7:0] adc_d_2;
+reg [7:0] adc_d_3;
+reg [7:0] adc_d_4;
+
+// the filtered signal (filter performs noise reduction and edge detection)
+// (gaussian derivative)
+wire signed [10:0] adc_d_filtered;
+assign adc_d_filtered = (adc_d_4 << 1) + adc_d_3 - adc_d_1 - (adc_d << 1);
+
+// Registers to store steepest edges detected:
+reg [7:0] rx_mod_falling_edge_max;
+reg [7:0] rx_mod_rising_edge_max;
// A register to send the results to the arm
reg signed [7:0] to_arm;
-assign avg[7:0] = average[11:4];
-assign dif = lavg - avg;
reg bit_to_arm;
reg fdt_indicator, fdt_elapsed;
// ADC data appears on the rising edge, so sample it on the falling edge
always @(negedge adc_clk)
begin
-
- // last bit = 0 then fdt = 1172, in case of 0x26 (7-bit command, LSB first!)
- // last bit = 1 then fdt = 1236, in case of 0x52 (7-bit command, LSB first!)
- if(fdt_counter == 11'd740) fdt_indicator = 1'b1;
+ // ------------------------------------------------------------------------------------------------------------------------------------------------------------------
+ // relevant for TAGSIM_MOD only. Timing of Tag's answer to a command received from a reader
+ // ISO14443-3 specifies:
+ // fdt = 1172, if last bit was 0.
+ // fdt = 1236, if last bit was 1.
+ // the FPGA takes care for the 1172 delay. To achieve the additional 1236-1172=64 ticks delay, the ARM must send an additional correction bit (before the start bit).
+ // The correction bit will be coded as 00010000, i.e. it adds 4 bits to the transmission stream, causing the required delay.
+ if(fdt_counter == 11'd740) fdt_indicator = 1'b1; // fdt_indicator is true for 740 <= fdt_counter <= 1148. Ready to buffer data. (?)
+ // Shouldn' this be 1236 - 720 = 516? (The mod_sig_buf can buffer 46 data bits,
+ // i.e. a maximum delay of 46 * 16 = 720 adc_clk ticks)
- if(fdt_counter == 11'd1148)
+ if(fdt_counter == 11'd1148) // additional 16 (+ eventual n*128) adc_clk_ticks delay will be added by the mod_sig_buf below
+ // the remaining 8 ticks delay comes from the 8 ticks timing difference between reseting fdt_counter and the mod_sig_buf clock.
begin
if(fdt_elapsed)
begin
- if(negedge_cnt[3:0] == mod_sig_flip[3:0]) mod_sig_coil <= mod_sig;
+ if(negedge_cnt[3:0] == mod_sig_flip[3:0]) mod_sig_coil <= mod_sig; // start modulating (if mod_sig is already set)
end
else
begin
- mod_sig_flip[3:0] <= negedge_cnt[3:0];
- mod_sig_coil <= mod_sig;
+ mod_sig_flip[3:0] <= negedge_cnt[3:0]; // exact timing of modulation
+ mod_sig_coil <= mod_sig; // modulate (if mod_sig is already set)
fdt_elapsed = 1'b1;
fdt_indicator = 1'b0;
- if(~(| mod_sig_ptr[5:0])) mod_sig_ptr <= 6'b001001;
- else temp_buffer_reset = 1'b1; // fix position of the buffer pointer
+ if(~(| mod_sig_ptr[5:0])) mod_sig_ptr <= 6'b001001; // didn't receive a 1 yet. Delay next 1 by n*128 ticks.
+ else temp_buffer_reset = 1'b1; // else fix the buffer size at current position
end
end
else
begin
- fdt_counter <= fdt_counter + 1;
+ fdt_counter <= fdt_counter + 1; // Count until 1148
end
- if(& negedge_cnt[3:0])
+
+ //-------------------------------------------------------------------------------------------------------------------------------------------
+ // Relevant for READER_LISTEN only
+ // look for steepest falling and rising edges:
+ if (adc_d_filtered > 0)
+ begin
+ if (adc_d_filtered > rx_mod_falling_edge_max)
+ rx_mod_falling_edge_max <= adc_d_filtered;
+ end
+ else
+ begin
+ if (-adc_d_filtered > rx_mod_rising_edge_max)
+ rx_mod_rising_edge_max <= -adc_d_filtered;
+ end
+
+ // store previous samples for filtering and edge detection:
+ adc_d_4 <= adc_d_3;
+ adc_d_3 <= adc_d_2;
+ adc_d_2 <= adc_d_1;
+ adc_d_1 <= adc_d;
+
+
+
+ if(& negedge_cnt[3:0]) // == 0xf == 15
begin
- // When there is a dip in the signal and not in reader mode
+ // Relevant for TAGSIM_MOD only (timing Tag's answer. See above)
+ // When there is a dip in the signal and not in (READER_MOD, READER_LISTEN, TAGSIM_MOD)
if(~after_hysteresis && mod_sig_buf_empty && ~((mod_type == 3'b100) || (mod_type == 3'b011) || (mod_type == 3'b010))) // last condition to prevent reset
begin
fdt_counter <= 11'd0;
mod_sig_ptr <= 6'b000000;
end
- lavg <= avg;
-
- if(stepsize<16) stepsize = 8'd16;
-
- if(dif>0)
- begin
- step1 = dif*3;
- step2 = stepsize*2; // 3:2
- if(step1>step2)
- begin
- curbit = 1'b0;
- stepsize = dif;
- end
- end
- else
- begin
- step1 = dif*3;
- step1 = -step1;
- step2 = stepsize*2;
- if(step1>step2)
- begin
- curbit = 1'b1;
- stepsize = -dif;
- end
- end
-
- if(curbit)
- begin
- count_zeros <= 4'd0;
- if(& count_ones[3:2])
- begin
- curbit = 1'b0; // suppressed signal
- stepsize = 8'd24; // just a fine number
- end
+ // Relevant for READER_LISTEN only
+ // detect modulation signal: if modulating, there must be a falling and a rising edge ... and vice versa
+ if (rx_mod_falling_edge_max > 6 && rx_mod_rising_edge_max > 6)
+ curbit = 1'b1; // modulation
else
- begin
- count_ones <= count_ones + 1;
- end
- end
- else
- begin
- count_ones <= 4'd0;
- if(& count_zeros[3:0])
- begin
- stepsize = 8'd24;
- end
- else
- begin
- count_zeros <= count_zeros + 1;
- end
- end
-
+ curbit = 1'b0; // no modulation
+
+ // prepare next edge detection:
+ rx_mod_rising_edge_max <= 0;
+ rx_mod_falling_edge_max <= 0;
+
+
// What do we communicate to the ARM
- if(mod_type == 3'b001) sendbit = after_hysteresis;
- else if(mod_type == 3'b010)
+ if(mod_type == 3'b001) sendbit = after_hysteresis; // TAGSIM_LISTEN
+ else if(mod_type == 3'b010) // TAGSIM_MOD
begin
if(fdt_counter > 11'd772) sendbit = mod_sig_coil;
else sendbit = fdt_indicator;
end
- else if(mod_type == 3'b011) sendbit = curbit;
- else sendbit = 1'b0;
+ else if(mod_type == 3'b011) sendbit = curbit; // READER_LISTEN
+ else sendbit = 1'b0; // READER_MOD, SNIFFER
end
- if(~(| negedge_cnt[3:0])) average <= adc_d;
- else average <= average + adc_d;
-
- if(negedge_cnt == 7'd63)
+ //------------------------------------------------------------------------------------------------------------------------------------------
+ // Relevant for SNIFFER mode only. Prepare communication to ARM.
+ if(negedge_cnt == 7'd63)
begin
if(deep_modulation)
begin
negedge_cnt <= 0;
- end
+ end
else
begin
negedge_cnt <= negedge_cnt + 1;
bit3 <= curbit;
end
-
- if(mod_type != 3'b000)
+ //--------------------------------------------------------------------------------------------------------------------------------------------------------------
+ // Relevant in TAGSIM_MOD only. Delay-Line to buffer data and send it at the correct time
+ // Note: Data in READER_MOD is fed through this delay line as well.
+ if(mod_type != 3'b000) // != SNIFFER
begin
- if(negedge_cnt[3:0] == 4'b1000)
+ if(negedge_cnt[3:0] == 4'b1000) // == 0x8
begin
- // The modulation signal of the tag
- mod_sig_buf[47:0] <= {mod_sig_buf[46:1], ssp_dout, 1'b0};
- if((ssp_dout || (| mod_sig_ptr[5:0])) && ~fdt_elapsed)
- if(mod_sig_ptr == 6'b101110)
+ // The modulation signal of the tag. The delay line is only relevant for TAGSIM_MOD, but used in other modes as well.
+ // Note: this means that even in READER_MOD, there will be an arbitrary delay depending on the time of a previous reset of fdt_counter and the time and
+ // content of the next bit to be transmitted.
+ mod_sig_buf[47:0] <= {mod_sig_buf[46:1], ssp_dout, 1'b0}; // shift in new data starting at mod_sig_buf[1]. mod_sig_buf[0] = 0 always.
+ if((ssp_dout || (| mod_sig_ptr[5:0])) && ~fdt_elapsed) // buffer a 1 (and all subsequent data) until fdt_counter = 1148 adc_clk ticks.
+ if(mod_sig_ptr == 6'b101110) // buffer overflow at 46 - this would mean data loss
begin
mod_sig_ptr <= 6'b000000;
end
- else mod_sig_ptr <= mod_sig_ptr + 1;
- else if(fdt_elapsed && ~temp_buffer_reset)
+ else mod_sig_ptr <= mod_sig_ptr + 1; // increase buffer (= increase delay by 16 adc_clk ticks). ptr always points to first 1.
+ else if(fdt_elapsed && ~temp_buffer_reset)
+ // fdt_elapsed. If we didn't receive a 1 yet, ptr will be at 9 and not yet fixed. Otherwise temp_buffer_reset will be 1 already.
begin
- if(ssp_dout) temp_buffer_reset = 1'b1;
- if(mod_sig_ptr == 6'b000010) mod_sig_ptr <= 6'b001001;
- else mod_sig_ptr <= mod_sig_ptr - 1;
+ // wait for the next 1 after fdt_elapsed before fixing the delay and starting modulation. This ensures that the response can only happen
+ // at intervals of 8 * 16 = 128 adc_clk ticks intervals (as defined in ISO14443-3)
+ if(ssp_dout) temp_buffer_reset = 1'b1;
+ if(mod_sig_ptr == 6'b000010) mod_sig_ptr <= 6'b001001; // still nothing received, need to go for the next interval
+ else mod_sig_ptr <= mod_sig_ptr - 1; // decrease buffer.
end
else
+ // mod_sig_ptr and therefore the delay is now fixed until fdt_counter is reset (this can happen in SNIFFER and TAGSIM_LISTEN mode only. Note that SNIFFER
+ // mode (3'b000) is the default and is active in FPGA_MAJOR_MODE_OFF if no other minor mode is explicitly requested.
begin
- // side effect: when ptr = 1 it will cancel the first 1 of every block of ones
+ // don't modulate with the correction bit (which is sent as 00010000, all other bits will come with at least 2 consecutive 1s)
+ // side effect: when ptr = 1 it will cancel the first 1 of every block of ones. Note: this would only be the case if we received a 1 just before fdt_elapsed.
if(~mod_sig_buf[mod_sig_ptr-1] && ~mod_sig_buf[mod_sig_ptr+1]) mod_sig = 1'b0;
- else mod_sig = mod_sig_buf[mod_sig_ptr] & fdt_elapsed; // & fdt_elapsed was for direct relay to oe4
+ // finally, do the modulation:
+ else mod_sig = mod_sig_buf[mod_sig_ptr] & fdt_elapsed;
end
end
end
- // SSP Clock and data
+ //-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
+ // Communication to ARM (SSP Clock and data)
+ // SNIFFER mode (ssp_clk = adc_clk / 8, ssp_frame clock = adc_clk / 64)):
if(mod_type == 3'b000)
begin
if(negedge_cnt[2:0] == 3'b100)
bit_to_arm = to_arm[7];
end
else
+ //-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
+ // Communication to ARM (SSP Clock and data)
+ // all other modes (ssp_clk = adc_clk / 16, ssp_frame clock = adc_clk / 128):
begin
if(negedge_cnt[3:0] == 4'b1000) ssp_clk <= 1'b0;
assign ssp_din = bit_to_arm;
-// Modulating carrier frequency is fc/16
+
+// Modulating carrier (adc_clk/16, for TAGSIM_MOD only). Will be 0 for other modes.
wire modulating_carrier;
-assign modulating_carrier = (mod_sig_coil & negedge_cnt[3] & (mod_type == 3'b010));
-assign pwr_hi = (ck_1356megb & (((mod_type == 3'b100) & ~mod_sig_coil) || (mod_type == 3'b011)));
+assign modulating_carrier = (mod_sig_coil & negedge_cnt[3] & (mod_type == 3'b010)); // in TAGSIM_MOD only. Otherwise always 0.
+
+// for READER_MOD only: drop carrier for mod_sig_coil==1 (pause), READER_LISTEN: carrier always on, others: carrier always off
+assign pwr_hi = (ck_1356megb & (((mod_type == 3'b100) & ~mod_sig_coil) || (mod_type == 3'b011)));
-// This one is all LF, so doesn't matter
-//assign pwr_oe2 = modulating_carrier;
-assign pwr_oe2 = 1'b0;
-// Toggle only one of these, since we are already producing much deeper
-// modulation than a real tag would.
-//assign pwr_oe1 = modulating_carrier;
+// Enable HF antenna drivers:
assign pwr_oe1 = 1'b0;
+assign pwr_oe3 = 1'b0;
+
+// TAGSIM_MOD: short circuit antenna with different resistances (modulated by modulating_carrier)
+// for pwr_oe4 = 1 (tristate): antenna load = 10k || 33 = 32,9 Ohms
+// for pwr_oe4 = 0 (active): antenna load = 10k || 33 || 33 = 16,5 Ohms
assign pwr_oe4 = modulating_carrier;
-//assign pwr_oe4 = 1'b0;
-// This one is always on, so that we can watch the carrier.
-//assign pwr_oe3 = modulating_carrier;
-assign pwr_oe3 = 1'b0;
+// This is all LF, so doesn't matter.
+assign pwr_oe2 = 1'b0;
+assign pwr_lo = 1'b0;
assign dbg = negedge_cnt[3];
-// Unused.
-assign pwr_lo = 1'b0;
-
endmodule