-//-----------------------------------------------------------------------------\r
-// Routines to support ISO 15693. This includes both the reader software and\r
-// the `fake tag' modes, but at the moment I've implemented only the reader\r
-// stuff, and that barely.\r
-// Jonathan Westhues, split Nov 2006\r
-\r
-// Modified by Greg Jones, Jan 2009 to perform modulation onboard in arm rather than on PC\r
-// Also added additional reader commands (SELECT, READ etc.)\r
-\r
-//-----------------------------------------------------------------------------\r
-#include <proxmark3.h>\r
-#include "apps.h"\r
-#include <stdio.h>\r
-#include <stdlib.h>\r
-\r
-// FROM winsrc\prox.h //////////////////////////////////\r
-#define arraylen(x) (sizeof(x)/sizeof((x)[0]))\r
-\r
-//-----------------------------------------------------------------------------\r
-// Map a sequence of octets (~layer 2 command) into the set of bits to feed\r
-// to the FPGA, to transmit that command to the tag.\r
-//-----------------------------------------------------------------------------\r
-\r
- // The sampling rate is 106.353 ksps/s, for T = 18.8 us\r
-\r
- // SOF defined as\r
- // 1) Unmodulated time of 56.64us\r
- // 2) 24 pulses of 423.75khz\r
- // 3) logic '1' (unmodulated for 18.88us followed by 8 pulses of 423.75khz)\r
-\r
- static const int FrameSOF[] = {\r
- -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\r
- -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\r
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\r
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\r
- -1, -1, -1, -1,\r
- -1, -1, -1, -1,\r
- 1, 1, 1, 1,\r
- 1, 1, 1, 1\r
- };\r
- static const int Logic0[] = {\r
- 1, 1, 1, 1,\r
- 1, 1, 1, 1,\r
- -1, -1, -1, -1,\r
- -1, -1, -1, -1\r
- };\r
- static const int Logic1[] = {\r
- -1, -1, -1, -1,\r
- -1, -1, -1, -1,\r
- 1, 1, 1, 1,\r
- 1, 1, 1, 1\r
- };\r
-\r
- // EOF defined as\r
- // 1) logic '0' (8 pulses of 423.75khz followed by unmodulated for 18.88us)\r
- // 2) 24 pulses of 423.75khz\r
- // 3) Unmodulated time of 56.64us\r
-\r
- static const int FrameEOF[] = {\r
- 1, 1, 1, 1,\r
- 1, 1, 1, 1,\r
- -1, -1, -1, -1,\r
- -1, -1, -1, -1,\r
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\r
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\r
- -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\r
- -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1\r
- };\r
-\r
-static void CodeIso15693AsReader(BYTE *cmd, int n)\r
-{\r
- int i, j;\r
-\r
- ToSendReset();\r
-\r
- // Give it a bit of slack at the beginning\r
- for(i = 0; i < 24; i++) {\r
- ToSendStuffBit(1);\r
- }\r
-\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- for(i = 0; i < n; i++) {\r
- for(j = 0; j < 8; j += 2) {\r
- int these = (cmd[i] >> j) & 3;\r
- switch(these) {\r
- case 0:\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- break;\r
- case 1:\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- break;\r
- case 2:\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- break;\r
- case 3:\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(0);\r
- break;\r
- }\r
- }\r
- }\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(1);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(1);\r
-\r
- // And slack at the end, too.\r
- for(i = 0; i < 24; i++) {\r
- ToSendStuffBit(1);\r
- }\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// The CRC used by ISO 15693.\r
-//-----------------------------------------------------------------------------\r
-static WORD Crc(BYTE *v, int n)\r
-{\r
- DWORD reg;\r
- int i, j;\r
-\r
- reg = 0xffff;\r
- for(i = 0; i < n; i++) {\r
- reg = reg ^ ((DWORD)v[i]);\r
- for (j = 0; j < 8; j++) {\r
- if (reg & 0x0001) {\r
- reg = (reg >> 1) ^ 0x8408;\r
- } else {\r
- reg = (reg >> 1);\r
- }\r
- }\r
- }\r
-\r
- return ~reg;\r
-}\r
-\r
-char *strcat(char *dest, const char *src)\r
-{\r
- size_t dest_len = strlen(dest);\r
- size_t i;\r
- \r
- for (i = 0 ; src[i] != '\0' ; i++)\r
- dest[dest_len + i] = src[i];\r
- dest[dest_len + i] = '\0';\r
- \r
- return dest;\r
-}\r
-\r
-////////////////////////////////////////// code to do 'itoa'\r
-\r
-/* reverse: reverse string s in place */\r
-void reverse(char s[])\r
-{\r
- int c, i, j;\r
-\r
- for (i = 0, j = strlen(s)-1; i<j; i++, j--) {\r
- c = s[i];\r
- s[i] = s[j];\r
- s[j] = c;\r
- }\r
-}\r
-\r
-/* itoa: convert n to characters in s */\r
-void itoa(int n, char s[])\r
-{\r
- int i, sign;\r
-\r
- if ((sign = n) < 0) /* record sign */\r
- n = -n; /* make n positive */\r
- i = 0;\r
- do { /* generate digits in reverse order */\r
- s[i++] = n % 10 + '0'; /* get next digit */\r
- } while ((n /= 10) > 0); /* delete it */\r
- if (sign < 0)\r
- s[i++] = '-';\r
- s[i] = '\0';\r
- reverse(s);\r
-}\r
-\r
-//////////////////////////////////////// END 'itoa' CODE\r
-\r
-//-----------------------------------------------------------------------------\r
-// Encode (into the ToSend buffers) an identify request, which is the first\r
-// thing that you must send to a tag to get a response.\r
-//-----------------------------------------------------------------------------\r
-static void BuildIdentifyRequest(void)\r
-{\r
- BYTE cmd[5];\r
-\r
- WORD crc;\r
- // one sub-carrier, inventory, 1 slot, fast rate\r
- // AFI is at bit 5 (1<<4) when doing an INVENTORY\r
- cmd[0] = (1 << 2) | (1 << 5) | (1 << 1);\r
- // inventory command code\r
- cmd[1] = 0x01;\r
- // no mask\r
- cmd[2] = 0x00;\r
- //Now the CRC\r
- crc = Crc(cmd, 3);\r
- cmd[3] = crc & 0xff;\r
- cmd[4] = crc >> 8;\r
-\r
- CodeIso15693AsReader(cmd, sizeof(cmd));\r
-}\r
-\r
-static void __attribute__((unused)) BuildSysInfoRequest(BYTE *uid)\r
-{\r
- BYTE cmd[12];\r
-\r
- WORD crc;\r
- // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block\r
- // followed by teh block data\r
- // one sub-carrier, inventory, 1 slot, fast rate\r
- cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit\r
- // System Information command code\r
- cmd[1] = 0x2B;\r
- // UID may be optionally specified here\r
- // 64-bit UID\r
- cmd[2] = 0x32;\r
- cmd[3]= 0x4b;\r
- cmd[4] = 0x03;\r
- cmd[5] = 0x01;\r
- cmd[6] = 0x00;\r
- cmd[7] = 0x10;\r
- cmd[8] = 0x05;\r
- cmd[9]= 0xe0; // always e0 (not exactly unique)\r
- //Now the CRC\r
- crc = Crc(cmd, 10); // the crc needs to be calculated over 2 bytes\r
- cmd[10] = crc & 0xff;\r
- cmd[11] = crc >> 8;\r
-\r
- CodeIso15693AsReader(cmd, sizeof(cmd));\r
-}\r
-\r
-static void BuildSelectRequest( BYTE uid[])\r
-{\r
-\r
-// uid[6]=0x31; // this is getting ignored - the uid array is not happening...\r
- BYTE cmd[12];\r
-\r
- WORD crc;\r
- // one sub-carrier, inventory, 1 slot, fast rate\r
- //cmd[0] = (1 << 2) | (1 << 5) | (1 << 1); // INVENTROY FLAGS\r
- cmd[0] = (1 << 4) | (1 << 5) | (1 << 1); // Select and addressed FLAGS\r
- // SELECT command code\r
- cmd[1] = 0x25;\r
- // 64-bit UID\r
-// cmd[2] = uid[0];//0x32;\r
-// cmd[3]= uid[1];//0x4b;\r
-// cmd[4] = uid[2];//0x03;\r
-// cmd[5] = uid[3];//0x01;\r
-// cmd[6] = uid[4];//0x00;\r
-// cmd[7] = uid[5];//0x10;\r
-// cmd[8] = uid[6];//0x05;\r
- cmd[2] = 0x32;//\r
- cmd[3] = 0x4b;\r
- cmd[4] = 0x03;\r
- cmd[5] = 0x01;\r
- cmd[6] = 0x00;\r
- cmd[7] = 0x10;\r
- cmd[8] = 0x05; // infineon?\r
-\r
- cmd[9]= 0xe0; // always e0 (not exactly unique)\r
-\r
-// DbpIntegers(cmd[8],cmd[7],cmd[6]);\r
- // Now the CRC\r
- crc = Crc(cmd, 10); // the crc needs to be calculated over 10 bytes\r
- cmd[10] = crc & 0xff;\r
- cmd[11] = crc >> 8;\r
-\r
- CodeIso15693AsReader(cmd, sizeof(cmd));\r
-}\r
-\r
-static void __attribute__((unused)) BuildReadBlockRequest(BYTE *uid, BYTE blockNumber )\r
-{\r
- BYTE cmd[13];\r
-\r
- WORD crc;\r
- // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block\r
- // followed by teh block data\r
- // one sub-carrier, inventory, 1 slot, fast rate\r
- cmd[0] = (1 << 6)| (1 << 5) | (1 << 1); // no SELECT bit\r
- // READ BLOCK command code\r
- cmd[1] = 0x20;\r
- // UID may be optionally specified here\r
- // 64-bit UID\r
- cmd[2] = 0x32;\r
- cmd[3]= 0x4b;\r
- cmd[4] = 0x03;\r
- cmd[5] = 0x01;\r
- cmd[6] = 0x00;\r
- cmd[7] = 0x10;\r
- cmd[8] = 0x05;\r
- cmd[9]= 0xe0; // always e0 (not exactly unique)\r
- // Block number to read\r
- cmd[10] = blockNumber;//0x00;\r
- //Now the CRC\r
- crc = Crc(cmd, 11); // the crc needs to be calculated over 2 bytes\r
- cmd[11] = crc & 0xff;\r
- cmd[12] = crc >> 8;\r
-\r
- CodeIso15693AsReader(cmd, sizeof(cmd));\r
-}\r
-\r
-static void __attribute__((unused)) BuildReadMultiBlockRequest(BYTE *uid)\r
-{\r
- BYTE cmd[14];\r
-\r
- WORD crc;\r
- // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block\r
- // followed by teh block data\r
- // one sub-carrier, inventory, 1 slot, fast rate\r
- cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit\r
- // READ Multi BLOCK command code\r
- cmd[1] = 0x23;\r
- // UID may be optionally specified here\r
- // 64-bit UID\r
- cmd[2] = 0x32;\r
- cmd[3]= 0x4b;\r
- cmd[4] = 0x03;\r
- cmd[5] = 0x01;\r
- cmd[6] = 0x00;\r
- cmd[7] = 0x10;\r
- cmd[8] = 0x05;\r
- cmd[9]= 0xe0; // always e0 (not exactly unique)\r
- // First Block number to read\r
- cmd[10] = 0x00;\r
- // Number of Blocks to read\r
- cmd[11] = 0x2f; // read quite a few\r
- //Now the CRC\r
- crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes\r
- cmd[12] = crc & 0xff;\r
- cmd[13] = crc >> 8;\r
-\r
- CodeIso15693AsReader(cmd, sizeof(cmd));\r
-}\r
-\r
-static void __attribute__((unused)) BuildArbitraryRequest(BYTE *uid,BYTE CmdCode)\r
-{\r
- BYTE cmd[14];\r
-\r
- WORD crc;\r
- // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block\r
- // followed by teh block data\r
- // one sub-carrier, inventory, 1 slot, fast rate\r
- cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit\r
- // READ BLOCK command code\r
- cmd[1] = CmdCode;\r
- // UID may be optionally specified here\r
- // 64-bit UID\r
- cmd[2] = 0x32;\r
- cmd[3]= 0x4b;\r
- cmd[4] = 0x03;\r
- cmd[5] = 0x01;\r
- cmd[6] = 0x00;\r
- cmd[7] = 0x10;\r
- cmd[8] = 0x05;\r
- cmd[9]= 0xe0; // always e0 (not exactly unique)\r
- // Parameter\r
- cmd[10] = 0x00;\r
- cmd[11] = 0x0a;\r
-\r
-// cmd[12] = 0x00;\r
-// cmd[13] = 0x00; //Now the CRC\r
- crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes\r
- cmd[12] = crc & 0xff;\r
- cmd[13] = crc >> 8;\r
-\r
- CodeIso15693AsReader(cmd, sizeof(cmd));\r
-}\r
-\r
-static void __attribute__((unused)) BuildArbitraryCustomRequest(BYTE uid[], BYTE CmdCode)\r
-{\r
- BYTE cmd[14];\r
-\r
- WORD crc;\r
- // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block\r
- // followed by teh block data\r
- // one sub-carrier, inventory, 1 slot, fast rate\r
- cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit\r
- // READ BLOCK command code\r
- cmd[1] = CmdCode;\r
- // UID may be optionally specified here\r
- // 64-bit UID\r
- cmd[2] = 0x32;\r
- cmd[3]= 0x4b;\r
- cmd[4] = 0x03;\r
- cmd[5] = 0x01;\r
- cmd[6] = 0x00;\r
- cmd[7] = 0x10;\r
- cmd[8] = 0x05;\r
- cmd[9]= 0xe0; // always e0 (not exactly unique)\r
- // Parameter\r
- cmd[10] = 0x05; // for custom codes this must be manufcturer code\r
- cmd[11] = 0x00;\r
-\r
-// cmd[12] = 0x00;\r
-// cmd[13] = 0x00; //Now the CRC\r
- crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes\r
- cmd[12] = crc & 0xff;\r
- cmd[13] = crc >> 8;\r
-\r
- CodeIso15693AsReader(cmd, sizeof(cmd));\r
-}\r
-\r
-/////////////////////////////////////////////////////////////////////////\r
-// Now the VICC>VCD responses when we are simulating a tag\r
-////////////////////////////////////////////////////////////////////\r
-\r
- static void BuildInventoryResponse(void)\r
-{\r
- BYTE cmd[12];\r
-\r
- WORD crc;\r
- // one sub-carrier, inventory, 1 slot, fast rate\r
- // AFI is at bit 5 (1<<4) when doing an INVENTORY\r
- cmd[0] = 0; //(1 << 2) | (1 << 5) | (1 << 1);\r
- cmd[1] = 0;\r
- // 64-bit UID\r
- cmd[2] = 0x32;\r
- cmd[3]= 0x4b;\r
- cmd[4] = 0x03;\r
- cmd[5] = 0x01;\r
- cmd[6] = 0x00;\r
- cmd[7] = 0x10;\r
- cmd[8] = 0x05;\r
- cmd[9]= 0xe0;\r
- //Now the CRC\r
- crc = Crc(cmd, 10);\r
- cmd[10] = crc & 0xff;\r
- cmd[11] = crc >> 8;\r
-\r
- CodeIso15693AsReader(cmd, sizeof(cmd));\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Transmit the command (to the tag) that was placed in ToSend[].\r
-//-----------------------------------------------------------------------------\r
-static void TransmitTo15693Tag(const BYTE *cmd, int len, int *samples, int *wait)\r
-{\r
- int c;\r
-\r
-// FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);\r
- if(*wait < 10) { *wait = 10; }\r
-\r
-// for(c = 0; c < *wait;) {\r
-// if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {\r
-// AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!\r
-// c++;\r
-// }\r
-// if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {\r
-// volatile DWORD r = AT91C_BASE_SSC->SSC_RHR;\r
-// (void)r;\r
-// }\r
-// WDT_HIT();\r
-// }\r
-\r
- c = 0;\r
- for(;;) {\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {\r
- AT91C_BASE_SSC->SSC_THR = cmd[c];\r
- c++;\r
- if(c >= len) {\r
- break;\r
- }\r
- }\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {\r
- volatile DWORD r = AT91C_BASE_SSC->SSC_RHR;\r
- (void)r;\r
- }\r
- WDT_HIT();\r
- }\r
- *samples = (c + *wait) << 3;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Transmit the command (to the reader) that was placed in ToSend[].\r
-//-----------------------------------------------------------------------------\r
-static void TransmitTo15693Reader(const BYTE *cmd, int len, int *samples, int *wait)\r
-{\r
- int c;\r
-\r
-// FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR); // No requirement to energise my coils\r
- if(*wait < 10) { *wait = 10; }\r
-\r
- c = 0;\r
- for(;;) {\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {\r
- AT91C_BASE_SSC->SSC_THR = cmd[c];\r
- c++;\r
- if(c >= len) {\r
- break;\r
- }\r
- }\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {\r
- volatile DWORD r = AT91C_BASE_SSC->SSC_RHR;\r
- (void)r;\r
- }\r
- WDT_HIT();\r
- }\r
- *samples = (c + *wait) << 3;\r
-}\r
-\r
-static int GetIso15693AnswerFromTag(BYTE *receivedResponse, int maxLen, int *samples, int *elapsed)\r
-{\r
- int c = 0;\r
- BYTE *dest = (BYTE *)BigBuf;\r
- int getNext = 0;\r
-\r
- SBYTE prev = 0;\r
-\r
-// NOW READ RESPONSE\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);\r
- //spindelay(60); // greg - experiment to get rid of some of the 0 byte/failed reads\r
- c = 0;\r
- getNext = FALSE;\r
- for(;;) {\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {\r
- AT91C_BASE_SSC->SSC_THR = 0x43;\r
- }\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {\r
- SBYTE b;\r
- b = (SBYTE)AT91C_BASE_SSC->SSC_RHR;\r
-\r
- // The samples are correlations against I and Q versions of the\r
- // tone that the tag AM-modulates, so every other sample is I,\r
- // every other is Q. We just want power, so abs(I) + abs(Q) is\r
- // close to what we want.\r
- if(getNext) {\r
- SBYTE r;\r
-\r
- if(b < 0) {\r
- r = -b;\r
- } else {\r
- r = b;\r
- }\r
- if(prev < 0) {\r
- r -= prev;\r
- } else {\r
- r += prev;\r
- }\r
-\r
- dest[c++] = (BYTE)r;\r
-\r
- if(c >= 2000) {\r
- break;\r
- }\r
- } else {\r
- prev = b;\r
- }\r
-\r
- getNext = !getNext;\r
- }\r
- }\r
-\r
-//////////////////////////////////////////\r
-/////////// DEMODULATE ///////////////////\r
-//////////////////////////////////////////\r
-\r
- int i, j;\r
- int max = 0, maxPos=0;\r
-\r
- int skip = 4;\r
-\r
-// if(GraphTraceLen < 1000) return; // THIS CHECKS FOR A BUFFER TO SMALL\r
-\r
- // First, correlate for SOF\r
- for(i = 0; i < 100; i++) {\r
- int corr = 0;\r
- for(j = 0; j < arraylen(FrameSOF); j += skip) {\r
- corr += FrameSOF[j]*dest[i+(j/skip)];\r
- }\r
- if(corr > max) {\r
- max = corr;\r
- maxPos = i;\r
- }\r
- }\r
-// DbpString("SOF at %d, correlation %d", maxPos,max/(arraylen(FrameSOF)/skip));\r
-\r
- int k = 0; // this will be our return value\r
-\r
- // greg - If correlation is less than 1 then there's little point in continuing\r
- if ((max/(arraylen(FrameSOF)/skip)) >= 1)\r
- {\r
-\r
- i = maxPos + arraylen(FrameSOF)/skip;\r
-\r
- BYTE outBuf[20];\r
- memset(outBuf, 0, sizeof(outBuf));\r
- BYTE mask = 0x01;\r
- for(;;) {\r
- int corr0 = 0, corr1 = 0, corrEOF = 0;\r
- for(j = 0; j < arraylen(Logic0); j += skip) {\r
- corr0 += Logic0[j]*dest[i+(j/skip)];\r
- }\r
- for(j = 0; j < arraylen(Logic1); j += skip) {\r
- corr1 += Logic1[j]*dest[i+(j/skip)];\r
- }\r
- for(j = 0; j < arraylen(FrameEOF); j += skip) {\r
- corrEOF += FrameEOF[j]*dest[i+(j/skip)];\r
- }\r
- // Even things out by the length of the target waveform.\r
- corr0 *= 4;\r
- corr1 *= 4;\r
-\r
- if(corrEOF > corr1 && corrEOF > corr0) {\r
-// DbpString("EOF at %d", i);\r
- break;\r
- } else if(corr1 > corr0) {\r
- i += arraylen(Logic1)/skip;\r
- outBuf[k] |= mask;\r
- } else {\r
- i += arraylen(Logic0)/skip;\r
- }\r
- mask <<= 1;\r
- if(mask == 0) {\r
- k++;\r
- mask = 0x01;\r
- }\r
- if((i+(int)arraylen(FrameEOF)) >= 2000) {\r
- DbpString("ran off end!");\r
- break;\r
- }\r
- }\r
- if(mask != 0x01) {\r
- DbpString("error, uneven octet! (discard extra bits!)");\r
-/// DbpString(" mask=%02x", mask);\r
- }\r
-// BYTE str1 [8];\r
-// itoa(k,str1);\r
-// strcat(str1," octets read");\r
-\r
-// DbpString( str1); // DbpString("%d octets", k);\r
-\r
-// for(i = 0; i < k; i+=3) {\r
-// //DbpString("# %2d: %02x ", i, outBuf[i]);\r
-// DbpIntegers(outBuf[i],outBuf[i+1],outBuf[i+2]);\r
-// }\r
-\r
- for(i = 0; i < k; i++) {\r
- receivedResponse[i] = outBuf[i];\r
- }\r
- } // "end if correlation > 0" (max/(arraylen(FrameSOF)/skip))\r
- return k; // return the number of bytes demodulated\r
-\r
-/// DbpString("CRC=%04x", Iso15693Crc(outBuf, k-2));\r
-\r
-}\r
-\r
-// Now the GetISO15693 message from sniffing command\r
-static int GetIso15693AnswerFromSniff(BYTE *receivedResponse, int maxLen, int *samples, int *elapsed)\r
-{\r
- int c = 0;\r
- BYTE *dest = (BYTE *)BigBuf;\r
- int getNext = 0;\r
-\r
- SBYTE prev = 0;\r
-\r
-// NOW READ RESPONSE\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);\r
- //spindelay(60); // greg - experiment to get rid of some of the 0 byte/failed reads\r
- c = 0;\r
- getNext = FALSE;\r
- for(;;) {\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {\r
- AT91C_BASE_SSC->SSC_THR = 0x43;\r
- }\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {\r
- SBYTE b;\r
- b = (SBYTE)AT91C_BASE_SSC->SSC_RHR;\r
-\r
- // The samples are correlations against I and Q versions of the\r
- // tone that the tag AM-modulates, so every other sample is I,\r
- // every other is Q. We just want power, so abs(I) + abs(Q) is\r
- // close to what we want.\r
- if(getNext) {\r
- SBYTE r;\r
-\r
- if(b < 0) {\r
- r = -b;\r
- } else {\r
- r = b;\r
- }\r
- if(prev < 0) {\r
- r -= prev;\r
- } else {\r
- r += prev;\r
- }\r
-\r
- dest[c++] = (BYTE)r;\r
-\r
- if(c >= 20000) {\r
- break;\r
- }\r
- } else {\r
- prev = b;\r
- }\r
-\r
- getNext = !getNext;\r
- }\r
- }\r
-\r
-//////////////////////////////////////////\r
-/////////// DEMODULATE ///////////////////\r
-//////////////////////////////////////////\r
-\r
- int i, j;\r
- int max = 0, maxPos=0;\r
-\r
- int skip = 4;\r
-\r
-// if(GraphTraceLen < 1000) return; // THIS CHECKS FOR A BUFFER TO SMALL\r
-\r
- // First, correlate for SOF\r
- for(i = 0; i < 19000; i++) {\r
- int corr = 0;\r
- for(j = 0; j < arraylen(FrameSOF); j += skip) {\r
- corr += FrameSOF[j]*dest[i+(j/skip)];\r
- }\r
- if(corr > max) {\r
- max = corr;\r
- maxPos = i;\r
- }\r
- }\r
-// DbpString("SOF at %d, correlation %d", maxPos,max/(arraylen(FrameSOF)/skip));\r
-\r
- int k = 0; // this will be our return value\r
-\r
- // greg - If correlation is less than 1 then there's little point in continuing\r
- if ((max/(arraylen(FrameSOF)/skip)) >= 1) // THIS SHOULD BE 1\r
- {\r
-\r
- i = maxPos + arraylen(FrameSOF)/skip;\r
-\r
- BYTE outBuf[20];\r
- memset(outBuf, 0, sizeof(outBuf));\r
- BYTE mask = 0x01;\r
- for(;;) {\r
- int corr0 = 0, corr1 = 0, corrEOF = 0;\r
- for(j = 0; j < arraylen(Logic0); j += skip) {\r
- corr0 += Logic0[j]*dest[i+(j/skip)];\r
- }\r
- for(j = 0; j < arraylen(Logic1); j += skip) {\r
- corr1 += Logic1[j]*dest[i+(j/skip)];\r
- }\r
- for(j = 0; j < arraylen(FrameEOF); j += skip) {\r
- corrEOF += FrameEOF[j]*dest[i+(j/skip)];\r
- }\r
- // Even things out by the length of the target waveform.\r
- corr0 *= 4;\r
- corr1 *= 4;\r
-\r
- if(corrEOF > corr1 && corrEOF > corr0) {\r
-// DbpString("EOF at %d", i);\r
- break;\r
- } else if(corr1 > corr0) {\r
- i += arraylen(Logic1)/skip;\r
- outBuf[k] |= mask;\r
- } else {\r
- i += arraylen(Logic0)/skip;\r
- }\r
- mask <<= 1;\r
- if(mask == 0) {\r
- k++;\r
- mask = 0x01;\r
- }\r
- if((i+(int)arraylen(FrameEOF)) >= 2000) {\r
- DbpString("ran off end!");\r
- break;\r
- }\r
- }\r
- if(mask != 0x01) {\r
- DbpString("error, uneven octet! (discard extra bits!)");\r
-/// DbpString(" mask=%02x", mask);\r
- }\r
-// BYTE str1 [8];\r
-// itoa(k,str1);\r
-// strcat(str1," octets read");\r
-\r
-// DbpString( str1); // DbpString("%d octets", k);\r
-\r
-// for(i = 0; i < k; i+=3) {\r
-// //DbpString("# %2d: %02x ", i, outBuf[i]);\r
-// DbpIntegers(outBuf[i],outBuf[i+1],outBuf[i+2]);\r
-// }\r
-\r
- for(i = 0; i < k; i++) {\r
- receivedResponse[i] = outBuf[i];\r
- }\r
- } // "end if correlation > 0" (max/(arraylen(FrameSOF)/skip))\r
- return k; // return the number of bytes demodulated\r
-\r
-/// DbpString("CRC=%04x", Iso15693Crc(outBuf, k-2));\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Start to read an ISO 15693 tag. We send an identify request, then wait\r
-// for the response. The response is not demodulated, just left in the buffer\r
-// so that it can be downloaded to a PC and processed there.\r
-//-----------------------------------------------------------------------------\r
-void AcquireRawAdcSamplesIso15693(void)\r
-{\r
- int c = 0;\r
- BYTE *dest = (BYTE *)BigBuf;\r
- int getNext = 0;\r
-\r
- SBYTE prev = 0;\r
-\r
- BuildIdentifyRequest();\r
-\r
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
-\r
- // Give the tags time to energize\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);\r
- SpinDelay(100);\r
-\r
- // Now send the command\r
- FpgaSetupSsc();\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);\r
-\r
- c = 0;\r
- for(;;) {\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {\r
- AT91C_BASE_SSC->SSC_THR = ToSend[c];\r
- c++;\r
- if(c == ToSendMax+3) {\r
- break;\r
- }\r
- }\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {\r
- volatile DWORD r = AT91C_BASE_SSC->SSC_RHR;\r
- (void)r;\r
- }\r
- WDT_HIT();\r
- }\r
-\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);\r
-\r
- c = 0;\r
- getNext = FALSE;\r
- for(;;) {\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {\r
- AT91C_BASE_SSC->SSC_THR = 0x43;\r
- }\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {\r
- SBYTE b;\r
- b = (SBYTE)AT91C_BASE_SSC->SSC_RHR;\r
-\r
- // The samples are correlations against I and Q versions of the\r
- // tone that the tag AM-modulates, so every other sample is I,\r
- // every other is Q. We just want power, so abs(I) + abs(Q) is\r
- // close to what we want.\r
- if(getNext) {\r
- SBYTE r;\r
-\r
- if(b < 0) {\r
- r = -b;\r
- } else {\r
- r = b;\r
- }\r
- if(prev < 0) {\r
- r -= prev;\r
- } else {\r
- r += prev;\r
- }\r
-\r
- dest[c++] = (BYTE)r;\r
-\r
- if(c >= 2000) {\r
- break;\r
- }\r
- } else {\r
- prev = b;\r
- }\r
-\r
- getNext = !getNext;\r
- }\r
- }\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector\r
-// all demodulation performed in arm rather than host. - greg\r
-//-----------------------------------------------------------------------------\r
-void ReaderIso15693(DWORD parameter)\r
-{\r
- LED_A_ON();\r
- LED_B_ON();\r
- LED_C_OFF();\r
- LED_D_OFF();\r
-\r
-//DbpString(parameter);\r
-\r
- BYTE *receivedAnswer0 = (((BYTE *)BigBuf) + 3560); // allow 100 bytes per reponse (way too much)\r
- BYTE *receivedAnswer1 = (((BYTE *)BigBuf) + 3660); //\r
- BYTE *receivedAnswer2 = (((BYTE *)BigBuf) + 3760);\r
- BYTE *receivedAnswer3 = (((BYTE *)BigBuf) + 3860);\r
- //BYTE *TagUID= (((BYTE *)BigBuf) + 3960); // where we hold the uid for hi15reader\r
-// int responseLen0 = 0;\r
- int responseLen1 = 0;\r
- int responseLen2 = 0;\r
- int responseLen3 = 0;\r
-\r
- // Blank arrays\r
- int j;\r
- for(j = 0; j < 100; j++) {\r
- receivedAnswer3[j] = 0;\r
- receivedAnswer2[j] =0;\r
- receivedAnswer1[j] = 0;\r
- receivedAnswer0[j] = 0;\r
- }\r
-\r
- // Setup SSC\r
- FpgaSetupSsc();\r
-\r
- // Start from off (no field generated)\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
- SpinDelay(200);\r
-\r
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
- FpgaSetupSsc();\r
-\r
- // Give the tags time to energize\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);\r
- SpinDelay(200);\r
-\r
- LED_A_ON();\r
- LED_B_OFF();\r
- LED_C_OFF();\r
- LED_D_OFF();\r
-\r
- int samples = 0;\r
- int tsamples = 0;\r
- int wait = 0;\r
- int elapsed = 0;\r
-\r
- // FIRST WE RUN AN INVENTORY TO GET THE TAG UID\r
- // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME\r
- BYTE TagUID[7]; // where we hold the uid for hi15reader\r
-\r
-// BuildIdentifyRequest();\r
-// //TransmitTo15693Tag(ToSend,ToSendMax+3,&tsamples, &wait);\r
-// TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // No longer ToSendMax+3\r
-// // Now wait for a response\r
-// responseLen0 = GetIso15693AnswerFromTag(receivedAnswer0, 100, &samples, &elapsed) ;\r
-// if (responseLen0 >=12) // we should do a better check than this\r
-// {\r
-// // really we should check it is a valid mesg\r
-// // but for now just grab what we think is the uid\r
-// TagUID[0] = receivedAnswer0[2];\r
-// TagUID[1] = receivedAnswer0[3];\r
-// TagUID[2] = receivedAnswer0[4];\r
-// TagUID[3] = receivedAnswer0[5];\r
-// TagUID[4] = receivedAnswer0[6];\r
-// TagUID[5] = receivedAnswer0[7];\r
-// TagUID[6] = receivedAnswer0[8]; // IC Manufacturer code\r
-// DbpIntegers(TagUID[6],TagUID[5],TagUID[4]);\r
-//}\r
-\r
- // Now send the IDENTIFY command\r
- BuildIdentifyRequest();\r
- //TransmitTo15693Tag(ToSend,ToSendMax+3,&tsamples, &wait);\r
- TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // No longer ToSendMax+3\r
- // Now wait for a response\r
- responseLen1 = GetIso15693AnswerFromTag(receivedAnswer1, 100, &samples, &elapsed) ;\r
-\r
- if (responseLen1 >=12) // we should do a better check than this\r
- {\r
-\r
- TagUID[0] = receivedAnswer1[2];\r
- TagUID[1] = receivedAnswer1[3];\r
- TagUID[2] = receivedAnswer1[4];\r
- TagUID[3] = receivedAnswer1[5];\r
- TagUID[4] = receivedAnswer1[6];\r
- TagUID[5] = receivedAnswer1[7];\r
- TagUID[6] = receivedAnswer1[8]; // IC Manufacturer code\r
-\r
- // Now send the SELECT command\r
- BuildSelectRequest(TagUID);\r
- TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // No longer ToSendMax+3\r
- // Now wait for a response\r
- responseLen2 = GetIso15693AnswerFromTag(receivedAnswer2, 100, &samples, &elapsed);\r
-\r
- // Now send the MULTI READ command\r
-// BuildArbitraryRequest(*TagUID,parameter);\r
- BuildArbitraryCustomRequest(TagUID,parameter);\r
-// BuildReadBlockRequest(*TagUID,parameter);\r
-// BuildSysInfoRequest(*TagUID);\r
- //TransmitTo15693Tag(ToSend,ToSendMax+3,&tsamples, &wait);\r
- TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // No longer ToSendMax+3\r
- // Now wait for a response\r
- responseLen3 = GetIso15693AnswerFromTag(receivedAnswer3, 100, &samples, &elapsed) ;\r
-\r
- }\r
-\r
- char str1 [4];\r
- //char str2 [200];\r
- int i;\r
-\r
- itoa(responseLen1,str1);\r
- strcat(str1," octets read from IDENTIFY request");\r
- DbpString(str1);\r
- for(i = 0; i < responseLen1; i+=3) {\r
- DbpIntegers(receivedAnswer1[i],receivedAnswer1[i+1],receivedAnswer1[i+2]);\r
- }\r
-\r
- itoa(responseLen2,str1);\r
- strcat(str1," octets read from SELECT request");\r
- DbpString(str1);\r
- for(i = 0; i < responseLen2; i+=3) {\r
- DbpIntegers(receivedAnswer2[i],receivedAnswer2[i+1],receivedAnswer2[i+2]);\r
- }\r
-\r
- itoa(responseLen3,str1);\r
- strcat(str1," octets read from XXX request");\r
- DbpString(str1);\r
- for(i = 0; i < responseLen3; i+=3) {\r
- DbpIntegers(receivedAnswer3[i],receivedAnswer3[i+1],receivedAnswer3[i+2]);\r
- }\r
-\r
-// str2[0]=0;\r
-// for(i = 0; i < responseLen3; i++) {\r
-// itoa(str1,receivedAnswer3[i]);\r
-// strcat(str2,str1);\r
-// }\r
-// DbpString(str2);\r
-\r
- LED_A_OFF();\r
- LED_B_OFF();\r
- LED_C_OFF();\r
- LED_D_OFF();\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Simulate an ISO15693 TAG, perform anti-collision and then print any reader commands\r
-// all demodulation performed in arm rather than host. - greg\r
-//-----------------------------------------------------------------------------\r
-void SimTagIso15693(DWORD parameter)\r
-{\r
- LED_A_ON();\r
- LED_B_ON();\r
- LED_C_OFF();\r
- LED_D_OFF();\r
-\r
-//DbpString(parameter);\r
-\r
- BYTE *receivedAnswer0 = (((BYTE *)BigBuf) + 3560); // allow 100 bytes per reponse (way too much)\r
- BYTE *receivedAnswer1 = (((BYTE *)BigBuf) + 3660); //\r
- BYTE *receivedAnswer2 = (((BYTE *)BigBuf) + 3760);\r
- BYTE *receivedAnswer3 = (((BYTE *)BigBuf) + 3860);\r
- //BYTE *TagUID= (((BYTE *)BigBuf) + 3960); // where we hold the uid for hi15reader\r
-// int responseLen0 = 0;\r
- int responseLen1 = 0;\r
-// int responseLen2 = 0;\r
-// int responseLen3 = 0;\r
-\r
- // Blank arrays\r
- int j;\r
- for(j = 0; j < 100; j++) {\r
- receivedAnswer3[j] = 0;\r
- receivedAnswer2[j] =0;\r
- receivedAnswer1[j] = 0;\r
- receivedAnswer0[j] = 0;\r
- }\r
-\r
- // Setup SSC\r
- FpgaSetupSsc();\r
-\r
- // Start from off (no field generated)\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
- SpinDelay(200);\r
-\r
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
- FpgaSetupSsc();\r
-\r
- // Give the tags time to energize\r
-// FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); // NO GOOD FOR SIM TAG!!!!\r
- SpinDelay(200);\r
-\r
- LED_A_OFF();\r
- LED_B_OFF();\r
- LED_C_ON();\r
- LED_D_OFF();\r
-\r
- int samples = 0;\r
- int tsamples = 0;\r
- int wait = 0;\r
- int elapsed = 0;\r
-\r
- // FIRST WE RUN AN INVENTORY TO GET THE TAG UID\r
- // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME\r
- // BYTE TagUID[7]; // where we hold the uid for hi15reader\r
-\r
- // Now send the IDENTIFY command\r
- // BuildIdentifyRequest();\r
- // TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // No longer ToSendMax+3\r
-\r
- // Now wait for a command from the reader\r
- responseLen1=0;\r
- // while(responseLen1=0) {\r
- // if(BUTTON_PRESS()) break;\r
- responseLen1 = GetIso15693AnswerFromSniff(receivedAnswer1, 100, &samples, &elapsed) ;\r
- // }\r
-\r
- if (responseLen1 >=1) // we should do a better check than this\r
- {\r
- // Build a suitable reponse to the reader INVENTORY cocmmand\r
- BuildInventoryResponse();\r
- TransmitTo15693Reader(ToSend,ToSendMax,&tsamples, &wait);\r
-\r
- // Now wait for a command from the reader\r
-// responseLen2 = GetIso15693AnswerFromTag(receivedAnswer2, 100, &samples, &elapsed);\r
-\r
- // Now wait for a command from the reader\r
-// responseLen3 = GetIso15693AnswerFromTag(receivedAnswer3, 100, &samples, &elapsed) ;\r
-\r
- }\r
-\r
- char str1 [4];\r
- //char str2 [200];\r
- int i;\r
-\r
- itoa(responseLen1,str1);\r
- strcat(str1," octets read from reader command");\r
- DbpString(str1);\r
- for(i = 0; i < responseLen1; i+=3) {\r
- DbpIntegers(receivedAnswer1[i],receivedAnswer1[i+1],receivedAnswer1[i+2]);\r
- }\r
-\r
-// itoa(responseLen2,str1);\r
-// strcat(str1," octets read from SELECT request");\r
-// DbpString(str1);\r
-// for(i = 0; i < responseLen2; i+=3) {\r
-// DbpIntegers(receivedAnswer2[i],receivedAnswer2[i+1],receivedAnswer2[i+2]);\r
-// }\r
-//\r
-// itoa(responseLen3,str1);\r
-// strcat(str1," octets read from XXX request");\r
-// DbpString(str1);\r
-// for(i = 0; i < responseLen3; i+=3) {\r
-// DbpIntegers(receivedAnswer3[i],receivedAnswer3[i+1],receivedAnswer3[i+2]);\r
-// }\r
-\r
-// str2[0]=0;\r
-// for(i = 0; i < responseLen3; i++) {\r
-// itoa(str1,receivedAnswer3[i]);\r
-// strcat(str2,str1);\r
-// }\r
-// DbpString(str2);\r
-\r
- LED_A_OFF();\r
- LED_B_OFF();\r
- LED_C_OFF();\r
- LED_D_OFF();\r
-}\r
+//-----------------------------------------------------------------------------
+// Jonathan Westhues, split Nov 2006
+// Modified by Greg Jones, Jan 2009
+// Modified by Adrian Dabrowski "atrox", Mar-Sept 2010,Oct 2011
+// Modified by piwi, Oct 2018
+//
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// Routines to support ISO 15693. This includes both the reader software and
+// the `fake tag' modes.
+//-----------------------------------------------------------------------------
+
+// The ISO 15693 describes two transmission modes from reader to tag, and four
+// transmission modes from tag to reader. As of Oct 2018 this code supports
+// both reader modes and the high speed variant with one subcarrier from card to reader.
+// As long as the card fully support ISO 15693 this is no problem, since the
+// reader chooses both data rates, but some non-standard tags do not.
+// For card simulation, the code supports both high and low speed modes with one subcarrier.
+//
+// VCD (reader) -> VICC (tag)
+// 1 out of 256:
+// data rate: 1,66 kbit/s (fc/8192)
+// used for long range
+// 1 out of 4:
+// data rate: 26,48 kbit/s (fc/512)
+// used for short range, high speed
+//
+// VICC (tag) -> VCD (reader)
+// Modulation:
+// ASK / one subcarrier (423,75 khz)
+// FSK / two subcarriers (423,75 khz && 484,28 khz)
+// Data Rates / Modes:
+// low ASK: 6,62 kbit/s
+// low FSK: 6.67 kbit/s
+// high ASK: 26,48 kbit/s
+// high FSK: 26,69 kbit/s
+//-----------------------------------------------------------------------------
+
+
+// Random Remarks:
+// *) UID is always used "transmission order" (LSB), which is reverse to display order
+
+// TODO / BUGS / ISSUES:
+// *) signal decoding is unable to detect collisions.
+// *) add anti-collision support for inventory-commands
+// *) read security status of a block
+// *) sniffing and simulation do not support two subcarrier modes.
+// *) remove or refactor code under "depricated"
+// *) document all the functions
+
+
+#include "proxmark3.h"
+#include "util.h"
+#include "apps.h"
+#include "string.h"
+#include "iso15693tools.h"
+#include "protocols.h"
+#include "cmd.h"
+
+#define arraylen(x) (sizeof(x)/sizeof((x)[0]))
+
+static int DEBUG = 0;
+
+///////////////////////////////////////////////////////////////////////
+// ISO 15693 Part 2 - Air Interface
+// This section basicly contains transmission and receiving of bits
+///////////////////////////////////////////////////////////////////////
+
+#define FrameSOF Iso15693FrameSOF
+#define Logic0 Iso15693Logic0
+#define Logic1 Iso15693Logic1
+#define FrameEOF Iso15693FrameEOF
+
+#define Crc(data,datalen) Iso15693Crc(data,datalen)
+#define AddCrc(data,datalen) Iso15693AddCrc(data,datalen)
+#define sprintUID(target,uid) Iso15693sprintUID(target,uid)
+
+// approximate amplitude=sqrt(ci^2+cq^2) by amplitude = max(|ci|,|cq|) + 1/2*min(|ci|,|cq|)
+#define AMPLITUDE(ci, cq) (MAX(ABS(ci), ABS(cq)) + MIN(ABS(ci), ABS(cq))/2)
+
+// buffers
+#define ISO15693_DMA_BUFFER_SIZE 128
+#define ISO15693_MAX_RESPONSE_LENGTH 36 // allows read single block with the maximum block size of 256bits. Read multiple blocks not supported yet
+#define ISO15693_MAX_COMMAND_LENGTH 45 // allows write single block with the maximum block size of 256bits. Write multiple blocks not supported yet
+
+// timing. Delays in SSP_CLK ticks.
+#define DELAY_READER_TO_ARM 8
+#define DELAY_ARM_TO_READER 1
+#define DELAY_ISO15693_VCD_TO_VICC 132 // 132/423.75kHz = 311.5us from end of EOF to start of tag response
+
+// ---------------------------
+// Signal Processing
+// ---------------------------
+
+// prepare data using "1 out of 4" code for later transmission
+// resulting data rate is 26.48 kbit/s (fc/512)
+// cmd ... data
+// n ... length of data
+static void CodeIso15693AsReader(uint8_t *cmd, int n)
+{
+ int i, j;
+
+ ToSendReset();
+
+ // Give it a bit of slack at the beginning
+ for(i = 0; i < 24; i++) {
+ ToSendStuffBit(1);
+ }
+
+ // SOF for 1of4
+ ToSendStuffBit(0);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(0);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ for(i = 0; i < n; i++) {
+ for(j = 0; j < 8; j += 2) {
+ int these = (cmd[i] >> j) & 3;
+ switch(these) {
+ case 0:
+ ToSendStuffBit(1);
+ ToSendStuffBit(0);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ break;
+ case 1:
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(0);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ break;
+ case 2:
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(0);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ break;
+ case 3:
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(0);
+ break;
+ }
+ }
+ }
+ // EOF
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(0);
+ ToSendStuffBit(1);
+
+ // Fill remainder of last byte with 1
+ for(i = 0; i < 4; i++) {
+ ToSendStuffBit(1);
+ }
+}
+
+// encode data using "1 out of 256" scheme
+// data rate is 1,66 kbit/s (fc/8192)
+// is designed for more robust communication over longer distances
+static void CodeIso15693AsReader256(uint8_t *cmd, int n)
+{
+ int i, j;
+
+ ToSendReset();
+
+ // Give it a bit of slack at the beginning
+ for(i = 0; i < 24; i++) {
+ ToSendStuffBit(1);
+ }
+
+ // SOF for 1of256
+ ToSendStuffBit(0);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(0);
+
+ for(i = 0; i < n; i++) {
+ for (j = 0; j<=255; j++) {
+ if (cmd[i]==j) {
+ ToSendStuffBit(1);
+ ToSendStuffBit(0);
+ } else {
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ }
+ }
+ }
+ // EOF
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(0);
+ ToSendStuffBit(1);
+
+ // Fill remainder of last byte with 1
+ for(i = 0; i < 4; i++) {
+ ToSendStuffBit(1);
+ }
+
+ ToSendMax++;
+}
+
+
+static void CodeIso15693AsTag(uint8_t *cmd, int n)
+{
+ ToSendReset();
+
+ // SOF
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(0);
+ ToSendStuffBit(1);
+
+ // data
+ for(int i = 0; i < n; i++) {
+ for(int j = 0; j < 8; j++) {
+ if ((cmd[i] >> j) & 0x01) {
+ ToSendStuffBit(0);
+ ToSendStuffBit(1);
+ } else {
+ ToSendStuffBit(1);
+ ToSendStuffBit(0);
+ }
+ }
+ }
+
+ // EOF
+ ToSendStuffBit(1);
+ ToSendStuffBit(0);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(1);
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+
+ ToSendMax++;
+}
+
+
+// Transmit the command (to the tag) that was placed in cmd[].
+static void TransmitTo15693Tag(const uint8_t *cmd, int len)
+{
+ FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_TX);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
+
+ LED_B_ON();
+ for(int c = 0; c < len; ) {
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = ~cmd[c];
+ c++;
+ }
+ WDT_HIT();
+ }
+ LED_B_OFF();
+}
+
+//-----------------------------------------------------------------------------
+// Transmit the tag response (to the reader) that was placed in cmd[].
+//-----------------------------------------------------------------------------
+static void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t start_time, bool slow)
+{
+ // don't use the FPGA_HF_SIMULATOR_MODULATE_424K_8BIT minor mode. It would spoil GetCountSspClk()
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_424K);
+
+ uint8_t shift_delay = start_time & 0x00000007;
+ uint8_t bitmask = 0x00;
+ for (int i = 0; i < shift_delay; i++) {
+ bitmask |= (0x01 << i);
+ }
+
+ while (GetCountSspClk() < (start_time & 0xfffffff8)) ;
+ AT91C_BASE_SSC->SSC_THR = 0x00; // clear TXRDY
+
+ LED_C_ON();
+ uint8_t bits_to_shift = 0x00;
+ for(size_t c = 0; c <= len; c++) {
+ uint8_t bits_to_send = bits_to_shift << (8 - shift_delay) | (c==len?0x00:cmd[c]) >> shift_delay;
+ bits_to_shift = cmd[c] & bitmask;
+ for (int i = 7; i >= 0; i--) {
+ for (int j = 0; j < (slow?4:1); ) {
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+ if (bits_to_send >> i & 0x01) {
+ AT91C_BASE_SSC->SSC_THR = 0xff;
+ } else {
+ AT91C_BASE_SSC->SSC_THR = 0x00;
+ }
+ j++;
+ }
+ WDT_HIT();
+ }
+ }
+ }
+ LED_C_OFF();
+}
+
+
+//=============================================================================
+// An ISO 15693 decoder for tag responses (one subcarrier only).
+// Uses cross correlation to identify the SOF, each bit, and EOF.
+// This function is called 8 times per bit (every 2 subcarrier cycles).
+// Subcarrier frequency fs is 424kHz, 1/fs = 2,36us,
+// i.e. function is called every 4,72us
+// LED handling:
+// LED C -> ON once we have received the SOF and are expecting the rest.
+// LED C -> OFF once we have received EOF or are unsynced
+//
+// Returns: true if we received a EOF
+// false if we are still waiting for some more
+//=============================================================================
+
+#define SUBCARRIER_DETECT_THRESHOLD 2
+#define SOF_CORRELATOR_LEN (1<<5)
+
+typedef struct DecodeTag {
+ enum {
+ STATE_TAG_UNSYNCD,
+ STATE_TAG_AWAIT_SOF_1,
+ STATE_TAG_AWAIT_SOF_2,
+ STATE_TAG_RECEIVING_DATA,
+ STATE_TAG_AWAIT_EOF
+ } state;
+ int bitCount;
+ int posCount;
+ enum {
+ LOGIC0,
+ LOGIC1,
+ SOF_PART1,
+ SOF_PART2
+ } lastBit;
+ uint16_t shiftReg;
+ uint8_t *output;
+ int len;
+ int sum1, sum2;
+ uint8_t SOF_low;
+ uint8_t SOF_high;
+ uint8_t SOF_last;
+ int32_t SOF_corr;
+ int32_t SOF_corr_prev;
+ uint8_t SOF_correlator[SOF_CORRELATOR_LEN];
+} DecodeTag_t;
+
+static int Handle15693SamplesFromTag(int8_t ci, int8_t cq, DecodeTag_t *DecodeTag)
+{
+ switch(DecodeTag->state) {
+ case STATE_TAG_UNSYNCD:
+ // initialize SOF correlator. We are looking for 12 samples low and 12 samples high.
+ DecodeTag->SOF_low = 0;
+ DecodeTag->SOF_high = 12;
+ DecodeTag->SOF_last = 23;
+ memset(DecodeTag->SOF_correlator, 0x00, DecodeTag->SOF_last + 1);
+ DecodeTag->SOF_correlator[DecodeTag->SOF_last] = AMPLITUDE(ci,cq);
+ DecodeTag->SOF_corr = DecodeTag->SOF_correlator[DecodeTag->SOF_last];
+ DecodeTag->SOF_corr_prev = DecodeTag->SOF_corr;
+ // initialize Decoder
+ DecodeTag->posCount = 0;
+ DecodeTag->bitCount = 0;
+ DecodeTag->len = 0;
+ DecodeTag->state = STATE_TAG_AWAIT_SOF_1;
+ break;
+
+ case STATE_TAG_AWAIT_SOF_1:
+ // calculate the correlation in real time. Look at differences only.
+ DecodeTag->SOF_corr += DecodeTag->SOF_correlator[DecodeTag->SOF_low++];
+ DecodeTag->SOF_corr -= 2*DecodeTag->SOF_correlator[DecodeTag->SOF_high++];
+ DecodeTag->SOF_last++;
+ DecodeTag->SOF_low &= (SOF_CORRELATOR_LEN-1);
+ DecodeTag->SOF_high &= (SOF_CORRELATOR_LEN-1);
+ DecodeTag->SOF_last &= (SOF_CORRELATOR_LEN-1);
+ DecodeTag->SOF_correlator[DecodeTag->SOF_last] = AMPLITUDE(ci,cq);
+ DecodeTag->SOF_corr += DecodeTag->SOF_correlator[DecodeTag->SOF_last];
+
+ // if correlation increases for 10 consecutive samples, we are close to maximum correlation
+ if (DecodeTag->SOF_corr > DecodeTag->SOF_corr_prev + SUBCARRIER_DETECT_THRESHOLD) {
+ DecodeTag->posCount++;
+ } else {
+ DecodeTag->posCount = 0;
+ }
+
+ if (DecodeTag->posCount == 10) { // correlation increased 10 times
+ DecodeTag->state = STATE_TAG_AWAIT_SOF_2;
+ }
+
+ DecodeTag->SOF_corr_prev = DecodeTag->SOF_corr;
+
+ break;
+
+ case STATE_TAG_AWAIT_SOF_2:
+ // calculate the correlation in real time. Look at differences only.
+ DecodeTag->SOF_corr += DecodeTag->SOF_correlator[DecodeTag->SOF_low++];
+ DecodeTag->SOF_corr -= 2*DecodeTag->SOF_correlator[DecodeTag->SOF_high++];
+ DecodeTag->SOF_last++;
+ DecodeTag->SOF_low &= (SOF_CORRELATOR_LEN-1);
+ DecodeTag->SOF_high &= (SOF_CORRELATOR_LEN-1);
+ DecodeTag->SOF_last &= (SOF_CORRELATOR_LEN-1);
+ DecodeTag->SOF_correlator[DecodeTag->SOF_last] = AMPLITUDE(ci,cq);
+ DecodeTag->SOF_corr += DecodeTag->SOF_correlator[DecodeTag->SOF_last];
+
+ if (DecodeTag->SOF_corr >= DecodeTag->SOF_corr_prev) { // we are looking for the maximum correlation
+ DecodeTag->SOF_corr_prev = DecodeTag->SOF_corr;
+ } else {
+ DecodeTag->lastBit = SOF_PART1; // detected 1st part of SOF
+ DecodeTag->sum1 = DecodeTag->SOF_correlator[DecodeTag->SOF_last];
+ DecodeTag->sum2 = 0;
+ DecodeTag->posCount = 2;
+ DecodeTag->state = STATE_TAG_RECEIVING_DATA;
+ LED_C_ON();
+ }
+
+ break;
+
+ case STATE_TAG_RECEIVING_DATA:
+ if (DecodeTag->posCount == 1) {
+ DecodeTag->sum1 = 0;
+ DecodeTag->sum2 = 0;
+ }
+
+ if (DecodeTag->posCount <= 4) {
+ DecodeTag->sum1 += AMPLITUDE(ci, cq);
+ } else {
+ DecodeTag->sum2 += AMPLITUDE(ci, cq);
+ }
+
+ if (DecodeTag->posCount == 8) {
+ int16_t corr_1 = (DecodeTag->sum2 - DecodeTag->sum1) / 4;
+ int16_t corr_0 = (DecodeTag->sum1 - DecodeTag->sum2) / 4;
+ int16_t corr_EOF = (DecodeTag->sum1 + DecodeTag->sum2) / 8;
+ if (corr_EOF > corr_0 && corr_EOF > corr_1) {
+ DecodeTag->state = STATE_TAG_AWAIT_EOF;
+ } else if (corr_1 > corr_0) {
+ // logic 1
+ if (DecodeTag->lastBit == SOF_PART1) { // still part of SOF
+ DecodeTag->lastBit = SOF_PART2;
+ } else {
+ DecodeTag->lastBit = LOGIC1;
+ DecodeTag->shiftReg >>= 1;
+ DecodeTag->shiftReg |= 0x80;
+ DecodeTag->bitCount++;
+ if (DecodeTag->bitCount == 8) {
+ DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg;
+ DecodeTag->len++;
+ DecodeTag->bitCount = 0;
+ DecodeTag->shiftReg = 0;
+ }
+ }
+ } else {
+ // logic 0
+ if (DecodeTag->lastBit == SOF_PART1) { // incomplete SOF
+ DecodeTag->state = STATE_TAG_UNSYNCD;
+ LED_C_OFF();
+ } else {
+ DecodeTag->lastBit = LOGIC0;
+ DecodeTag->shiftReg >>= 1;
+ DecodeTag->bitCount++;
+ if (DecodeTag->bitCount == 8) {
+ DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg;
+ DecodeTag->len++;
+ DecodeTag->bitCount = 0;
+ DecodeTag->shiftReg = 0;
+ }
+ }
+ }
+ DecodeTag->posCount = 0;
+ }
+ DecodeTag->posCount++;
+ break;
+
+ case STATE_TAG_AWAIT_EOF:
+ if (DecodeTag->lastBit == LOGIC0) { // this was already part of EOF
+ LED_C_OFF();
+ return true;
+ } else {
+ DecodeTag->state = STATE_TAG_UNSYNCD;
+ LED_C_OFF();
+ }
+ break;
+
+ default:
+ DecodeTag->state = STATE_TAG_UNSYNCD;
+ LED_C_OFF();
+ break;
+ }
+
+ return false;
+}
+
+
+static void DecodeTagInit(DecodeTag_t *DecodeTag, uint8_t *data)
+{
+ DecodeTag->output = data;
+ DecodeTag->state = STATE_TAG_UNSYNCD;
+}
+
+/*
+ * Receive and decode the tag response, also log to tracebuffer
+ */
+static int GetIso15693AnswerFromTag(uint8_t* response, int timeout)
+{
+ int maxBehindBy = 0;
+ int lastRxCounter, samples = 0;
+ int8_t ci, cq;
+ bool gotFrame = false;
+
+ uint16_t dmaBuf[ISO15693_DMA_BUFFER_SIZE];
+
+ // the Decoder data structure
+ DecodeTag_t DecodeTag;
+ DecodeTagInit(&DecodeTag, response);
+
+ // wait for last transfer to complete
+ while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY));
+
+ // And put the FPGA in the appropriate mode
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+
+ // Setup and start DMA.
+ FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+ FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
+ uint16_t *upTo = dmaBuf;
+ lastRxCounter = ISO15693_DMA_BUFFER_SIZE;
+
+ for(;;) {
+ int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO15693_DMA_BUFFER_SIZE-1);
+ if(behindBy > maxBehindBy) {
+ maxBehindBy = behindBy;
+ }
+
+ if (behindBy < 1) continue;
+
+ ci = (int8_t)(*upTo >> 8);
+ cq = (int8_t)(*upTo & 0xff);
+
+ upTo++;
+ lastRxCounter--;
+ if(upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
+ upTo = dmaBuf; // start reading the circular buffer from the beginning
+ lastRxCounter += ISO15693_DMA_BUFFER_SIZE;
+ }
+ if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
+ AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
+ AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers
+ }
+ samples++;
+
+ if (Handle15693SamplesFromTag(ci, cq, &DecodeTag)) {
+ gotFrame = true;
+ break;
+ }
+
+ if(samples > timeout && DecodeTag.state < STATE_TAG_RECEIVING_DATA) {
+ DecodeTag.len = 0;
+ break;
+ }
+
+ }
+
+ FpgaDisableSscDma();
+
+ if (DEBUG) Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
+ maxBehindBy, samples, gotFrame, DecodeTag.state, DecodeTag.len, DecodeTag.bitCount, DecodeTag.posCount);
+
+ if (tracing && DecodeTag.len > 0) {
+ LogTrace(DecodeTag.output, DecodeTag.len, 0, 0, NULL, false);
+ }
+
+ return DecodeTag.len;
+}
+
+
+//=============================================================================
+// An ISO15693 decoder for reader commands.
+//
+// This function is called 4 times per bit (every 2 subcarrier cycles).
+// Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
+// LED handling:
+// LED B -> ON once we have received the SOF and are expecting the rest.
+// LED B -> OFF once we have received EOF or are in error state or unsynced
+//
+// Returns: true if we received a EOF
+// false if we are still waiting for some more
+//=============================================================================
+
+typedef struct DecodeReader {
+ enum {
+ STATE_READER_UNSYNCD,
+ STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF,
+ STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF,
+ STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF,
+ STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4,
+ STATE_READER_RECEIVE_DATA_1_OUT_OF_4,
+ STATE_READER_RECEIVE_DATA_1_OUT_OF_256
+ } state;
+ enum {
+ CODING_1_OUT_OF_4,
+ CODING_1_OUT_OF_256
+ } Coding;
+ uint8_t shiftReg;
+ uint8_t bitCount;
+ int byteCount;
+ int byteCountMax;
+ int posCount;
+ int sum1, sum2;
+ uint8_t *output;
+} DecodeReader_t;
+
+
+static int Handle15693SampleFromReader(uint8_t bit, DecodeReader_t* DecodeReader)
+{
+ switch(DecodeReader->state) {
+ case STATE_READER_UNSYNCD:
+ if(!bit) {
+ // we went low, so this could be the beginning of a SOF
+ DecodeReader->state = STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF;
+ DecodeReader->posCount = 1;
+ }
+ break;
+
+ case STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF:
+ DecodeReader->posCount++;
+ if(bit) { // detected rising edge
+ if(DecodeReader->posCount < 4) { // rising edge too early (nominally expected at 5)
+ DecodeReader->state = STATE_READER_UNSYNCD;
+ } else { // SOF
+ DecodeReader->state = STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF;
+ }
+ } else {
+ if(DecodeReader->posCount > 5) { // stayed low for too long
+ DecodeReader->state = STATE_READER_UNSYNCD;
+ } else {
+ // do nothing, keep waiting
+ }
+ }
+ break;
+
+ case STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF:
+ DecodeReader->posCount++;
+ if(!bit) { // detected a falling edge
+ if (DecodeReader->posCount < 20) { // falling edge too early (nominally expected at 21 earliest)
+ DecodeReader->state = STATE_READER_UNSYNCD;
+ } else if (DecodeReader->posCount < 23) { // SOF for 1 out of 4 coding
+ DecodeReader->Coding = CODING_1_OUT_OF_4;
+ DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF;
+ } else if (DecodeReader->posCount < 28) { // falling edge too early (nominally expected at 29 latest)
+ DecodeReader->state = STATE_READER_UNSYNCD;
+ } else { // SOF for 1 out of 4 coding
+ DecodeReader->Coding = CODING_1_OUT_OF_256;
+ DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF;
+ }
+ } else {
+ if(DecodeReader->posCount > 29) { // stayed high for too long
+ DecodeReader->state = STATE_READER_UNSYNCD;
+ } else {
+ // do nothing, keep waiting
+ }
+ }
+ break;
+
+ case STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF:
+ DecodeReader->posCount++;
+ if (bit) { // detected rising edge
+ if (DecodeReader->Coding == CODING_1_OUT_OF_256) {
+ if (DecodeReader->posCount < 32) { // rising edge too early (nominally expected at 33)
+ DecodeReader->state = STATE_READER_UNSYNCD;
+ } else {
+ DecodeReader->posCount = 1;
+ DecodeReader->bitCount = 0;
+ DecodeReader->byteCount = 0;
+ DecodeReader->sum1 = 1;
+ DecodeReader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_256;
+ LED_B_ON();
+ }
+ } else { // CODING_1_OUT_OF_4
+ if (DecodeReader->posCount < 24) { // rising edge too early (nominally expected at 25)
+ DecodeReader->state = STATE_READER_UNSYNCD;
+ } else {
+ DecodeReader->state = STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4;
+ }
+ }
+ } else {
+ if (DecodeReader->Coding == CODING_1_OUT_OF_256) {
+ if (DecodeReader->posCount > 34) { // signal stayed low for too long
+ DecodeReader->state = STATE_READER_UNSYNCD;
+ } else {
+ // do nothing, keep waiting
+ }
+ } else { // CODING_1_OUT_OF_4
+ if (DecodeReader->posCount > 26) { // signal stayed low for too long
+ DecodeReader->state = STATE_READER_UNSYNCD;
+ } else {
+ // do nothing, keep waiting
+ }
+ }
+ }
+ break;
+
+ case STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4:
+ DecodeReader->posCount++;
+ if (bit) {
+ if (DecodeReader->posCount == 33) {
+ DecodeReader->posCount = 1;
+ DecodeReader->bitCount = 0;
+ DecodeReader->byteCount = 0;
+ DecodeReader->sum1 = 1;
+ DecodeReader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_4;
+ LED_B_ON();
+ } else {
+ // do nothing, keep waiting
+ }
+ } else { // unexpected falling edge
+ DecodeReader->state = STATE_READER_UNSYNCD;
+ }
+ break;
+
+ case STATE_READER_RECEIVE_DATA_1_OUT_OF_4:
+ DecodeReader->posCount++;
+ if (DecodeReader->posCount == 1) {
+ DecodeReader->sum1 = bit;
+ } else if (DecodeReader->posCount <= 4) {
+ DecodeReader->sum1 += bit;
+ } else if (DecodeReader->posCount == 5) {
+ DecodeReader->sum2 = bit;
+ } else {
+ DecodeReader->sum2 += bit;
+ }
+ if (DecodeReader->posCount == 8) {
+ DecodeReader->posCount = 0;
+ int corr10 = DecodeReader->sum1 - DecodeReader->sum2;
+ int corr01 = DecodeReader->sum2 - DecodeReader->sum1;
+ int corr11 = (DecodeReader->sum1 + DecodeReader->sum2) / 2;
+ if (corr01 > corr11 && corr01 > corr10) { // EOF
+ LED_B_OFF(); // Finished receiving
+ DecodeReader->state = STATE_READER_UNSYNCD;
+ if (DecodeReader->byteCount != 0) {
+ return true;
+ }
+ }
+ if (corr10 > corr11) { // detected a 2bit position
+ DecodeReader->shiftReg >>= 2;
+ DecodeReader->shiftReg |= (DecodeReader->bitCount << 6);
+ }
+ if (DecodeReader->bitCount == 15) { // we have a full byte
+ DecodeReader->output[DecodeReader->byteCount++] = DecodeReader->shiftReg;
+ if (DecodeReader->byteCount > DecodeReader->byteCountMax) {
+ // buffer overflow, give up
+ LED_B_OFF();
+ DecodeReader->state = STATE_READER_UNSYNCD;
+ }
+ DecodeReader->bitCount = 0;
+ } else {
+ DecodeReader->bitCount++;
+ }
+ }
+ break;
+
+ case STATE_READER_RECEIVE_DATA_1_OUT_OF_256:
+ DecodeReader->posCount++;
+ if (DecodeReader->posCount == 1) {
+ DecodeReader->sum1 = bit;
+ } else if (DecodeReader->posCount <= 4) {
+ DecodeReader->sum1 += bit;
+ } else if (DecodeReader->posCount == 5) {
+ DecodeReader->sum2 = bit;
+ } else {
+ DecodeReader->sum2 += bit;
+ }
+ if (DecodeReader->posCount == 8) {
+ DecodeReader->posCount = 0;
+ int corr10 = DecodeReader->sum1 - DecodeReader->sum2;
+ int corr01 = DecodeReader->sum2 - DecodeReader->sum1;
+ int corr11 = (DecodeReader->sum1 + DecodeReader->sum2) / 2;
+ if (corr01 > corr11 && corr01 > corr10) { // EOF
+ LED_B_OFF(); // Finished receiving
+ DecodeReader->state = STATE_READER_UNSYNCD;
+ if (DecodeReader->byteCount != 0) {
+ return true;
+ }
+ }
+ if (corr10 > corr11) { // detected the bit position
+ DecodeReader->shiftReg = DecodeReader->bitCount;
+ }
+ if (DecodeReader->bitCount == 255) { // we have a full byte
+ DecodeReader->output[DecodeReader->byteCount++] = DecodeReader->shiftReg;
+ if (DecodeReader->byteCount > DecodeReader->byteCountMax) {
+ // buffer overflow, give up
+ LED_B_OFF();
+ DecodeReader->state = STATE_READER_UNSYNCD;
+ }
+ }
+ DecodeReader->bitCount++;
+ }
+ break;
+
+ default:
+ LED_B_OFF();
+ DecodeReader->state = STATE_READER_UNSYNCD;
+ break;
+ }
+
+ return false;
+}
+
+
+static void DecodeReaderInit(uint8_t *data, uint16_t max_len, DecodeReader_t* DecodeReader)
+{
+ DecodeReader->output = data;
+ DecodeReader->byteCountMax = max_len;
+ DecodeReader->state = STATE_READER_UNSYNCD;
+ DecodeReader->byteCount = 0;
+ DecodeReader->bitCount = 0;
+ DecodeReader->shiftReg = 0;
+}
+
+
+//-----------------------------------------------------------------------------
+// Receive a command (from the reader to us, where we are the simulated tag),
+// and store it in the given buffer, up to the given maximum length. Keeps
+// spinning, waiting for a well-framed command, until either we get one
+// (returns true) or someone presses the pushbutton on the board (false).
+//
+// Assume that we're called with the SSC (to the FPGA) and ADC path set
+// correctly.
+//-----------------------------------------------------------------------------
+
+static int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eof_time)
+{
+ int maxBehindBy = 0;
+ int lastRxCounter, samples = 0;
+ bool gotFrame = false;
+ uint8_t b;
+
+ uint8_t dmaBuf[ISO15693_DMA_BUFFER_SIZE];
+
+ // the decoder data structure
+ DecodeReader_t DecodeReader;
+ DecodeReaderInit(received, max_len, &DecodeReader);
+
+ // wait for last transfer to complete
+ while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY));
+
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
+
+ // clear receive register and wait for next transfer
+ uint32_t temp = AT91C_BASE_SSC->SSC_RHR;
+ (void) temp;
+ while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) ;
+
+ uint32_t bit_time = GetCountSspClk() & 0xfffffff8;
+
+ // Setup and start DMA.
+ FpgaSetupSscDma(dmaBuf, ISO15693_DMA_BUFFER_SIZE);
+ uint8_t *upTo = dmaBuf;
+ lastRxCounter = ISO15693_DMA_BUFFER_SIZE;
+
+ for(;;) {
+ int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO15693_DMA_BUFFER_SIZE-1);
+ if(behindBy > maxBehindBy) {
+ maxBehindBy = behindBy;
+ }
+
+ if (behindBy < 1) continue;
+
+ b = *upTo++;
+ lastRxCounter--;
+ if(upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
+ upTo = dmaBuf; // start reading the circular buffer from the beginning
+ lastRxCounter += ISO15693_DMA_BUFFER_SIZE;
+ }
+ if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
+ AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
+ AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers
+ }
+
+ for (int i = 7; i >= 0; i--) {
+ if (Handle15693SampleFromReader((b >> i) & 0x01, &DecodeReader)) {
+ *eof_time = bit_time + samples - DELAY_READER_TO_ARM; // end of EOF
+ gotFrame = true;
+ break;
+ }
+ samples++;
+ }
+
+ if (gotFrame) {
+ break;
+ }
+
+ if (BUTTON_PRESS()) {
+ DecodeReader.byteCount = 0;
+ break;
+ }
+
+ WDT_HIT();
+ }
+
+
+ FpgaDisableSscDma();
+
+ if (DEBUG) Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
+ maxBehindBy, samples, gotFrame, DecodeReader.state, DecodeReader.byteCount, DecodeReader.bitCount, DecodeReader.posCount);
+
+ if (tracing && DecodeReader.byteCount > 0) {
+ LogTrace(DecodeReader.output, DecodeReader.byteCount, 0, 0, NULL, true);
+ }
+
+ return DecodeReader.byteCount;
+}
+
+
+static void BuildIdentifyRequest(void);
+//-----------------------------------------------------------------------------
+// Start to read an ISO 15693 tag. We send an identify request, then wait
+// for the response. The response is not demodulated, just left in the buffer
+// so that it can be downloaded to a PC and processed there.
+//-----------------------------------------------------------------------------
+void AcquireRawAdcSamplesIso15693(void)
+{
+ LEDsoff();
+ LED_A_ON();
+
+ uint8_t *dest = BigBuf_get_addr();
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+ BuildIdentifyRequest();
+
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+ // Give the tags time to energize
+ LED_D_ON();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+ SpinDelay(100);
+
+ // Now send the command
+ FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_TX);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
+
+ LED_B_ON();
+ for(int c = 0; c < ToSendMax; ) {
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = ~ToSend[c];
+ c++;
+ }
+ WDT_HIT();
+ }
+ LED_B_OFF();
+
+ // wait for last transfer to complete
+ while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY));
+
+ FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+
+ for(int c = 0; c < 4000; ) {
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ uint16_t iq = AT91C_BASE_SSC->SSC_RHR;
+ // The samples are correlations against I and Q versions of the
+ // tone that the tag AM-modulates. We just want power,
+ // so abs(I) + abs(Q) is close to what we want.
+ int8_t i = (int8_t)(iq >> 8);
+ int8_t q = (int8_t)(iq & 0xff);
+ uint8_t r = AMPLITUDE(i, q);
+ dest[c++] = r;
+ }
+ }
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LEDsoff();
+}
+
+
+// TODO: there is no trigger condition. The 14000 samples represent a time frame of 66ms.
+// It is unlikely that we get something meaningful.
+// TODO: Currently we only record tag answers. Add tracing of reader commands.
+// TODO: would we get something at all? The carrier is switched on...
+void RecordRawAdcSamplesIso15693(void)
+{
+ LEDsoff();
+ LED_A_ON();
+
+ uint8_t *dest = BigBuf_get_addr();
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+ // Setup SSC
+ FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+
+ // Start from off (no field generated)
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(200);
+
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+ SpinDelay(100);
+
+ LED_D_ON();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+
+ for(int c = 0; c < 14000;) {
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ uint16_t iq = AT91C_BASE_SSC->SSC_RHR;
+ // The samples are correlations against I and Q versions of the
+ // tone that the tag AM-modulates. We just want power,
+ // so abs(I) + abs(Q) is close to what we want.
+ int8_t i = (int8_t)(iq >> 8);
+ int8_t q = (int8_t)(iq & 0xff);
+ uint8_t r = AMPLITUDE(i, q);
+ dest[c++] = r;
+ }
+ }
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
+ Dbprintf("finished recording");
+ LED_A_OFF();
+}
+
+
+// Initialize the proxmark as iso15k reader
+// (this might produces glitches that confuse some tags
+static void Iso15693InitReader() {
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+ // Setup SSC
+ // FpgaSetupSsc();
+
+ // Start from off (no field generated)
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(10);
+
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+ FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+
+ // Give the tags time to energize
+ LED_D_ON();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+ SpinDelay(250);
+}
+
+///////////////////////////////////////////////////////////////////////
+// ISO 15693 Part 3 - Air Interface
+// This section basically contains transmission and receiving of bits
+///////////////////////////////////////////////////////////////////////
+
+// Encode (into the ToSend buffers) an identify request, which is the first
+// thing that you must send to a tag to get a response.
+static void BuildIdentifyRequest(void)
+{
+ uint8_t cmd[5];
+
+ uint16_t crc;
+ // one sub-carrier, inventory, 1 slot, fast rate
+ // AFI is at bit 5 (1<<4) when doing an INVENTORY
+ cmd[0] = (1 << 2) | (1 << 5) | (1 << 1);
+ // inventory command code
+ cmd[1] = 0x01;
+ // no mask
+ cmd[2] = 0x00;
+ //Now the CRC
+ crc = Crc(cmd, 3);
+ cmd[3] = crc & 0xff;
+ cmd[4] = crc >> 8;
+
+ CodeIso15693AsReader(cmd, sizeof(cmd));
+}
+
+// uid is in transmission order (which is reverse of display order)
+static void BuildReadBlockRequest(uint8_t *uid, uint8_t blockNumber )
+{
+ uint8_t cmd[13];
+
+ uint16_t crc;
+ // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
+ // followed by teh block data
+ // one sub-carrier, inventory, 1 slot, fast rate
+ cmd[0] = (1 << 6)| (1 << 5) | (1 << 1); // no SELECT bit, ADDR bit, OPTION bit
+ // READ BLOCK command code
+ cmd[1] = 0x20;
+ // UID may be optionally specified here
+ // 64-bit UID
+ cmd[2] = uid[0];
+ cmd[3] = uid[1];
+ cmd[4] = uid[2];
+ cmd[5] = uid[3];
+ cmd[6] = uid[4];
+ cmd[7] = uid[5];
+ cmd[8] = uid[6];
+ cmd[9] = uid[7]; // 0xe0; // always e0 (not exactly unique)
+ // Block number to read
+ cmd[10] = blockNumber;//0x00;
+ //Now the CRC
+ crc = Crc(cmd, 11); // the crc needs to be calculated over 11 bytes
+ cmd[11] = crc & 0xff;
+ cmd[12] = crc >> 8;
+
+ CodeIso15693AsReader(cmd, sizeof(cmd));
+}
+
+
+// Now the VICC>VCD responses when we are simulating a tag
+static void BuildInventoryResponse(uint8_t *uid)
+{
+ uint8_t cmd[12];
+
+ uint16_t crc;
+
+ cmd[0] = 0; // No error, no protocol format extension
+ cmd[1] = 0; // DSFID (data storage format identifier). 0x00 = not supported
+ // 64-bit UID
+ cmd[2] = uid[7]; //0x32;
+ cmd[3] = uid[6]; //0x4b;
+ cmd[4] = uid[5]; //0x03;
+ cmd[5] = uid[4]; //0x01;
+ cmd[6] = uid[3]; //0x00;
+ cmd[7] = uid[2]; //0x10;
+ cmd[8] = uid[1]; //0x05;
+ cmd[9] = uid[0]; //0xe0;
+ //Now the CRC
+ crc = Crc(cmd, 10);
+ cmd[10] = crc & 0xff;
+ cmd[11] = crc >> 8;
+
+ CodeIso15693AsTag(cmd, sizeof(cmd));
+}
+
+// Universal Method for sending to and recv bytes from a tag
+// init ... should we initialize the reader?
+// speed ... 0 low speed, 1 hi speed
+// **recv will return you a pointer to the received data
+// If you do not need the answer use NULL for *recv[]
+// return: lenght of received data
+int SendDataTag(uint8_t *send, int sendlen, bool init, int speed, uint8_t **recv) {
+
+ LED_A_ON();
+ LED_B_OFF();
+ LED_C_OFF();
+
+ if (init) Iso15693InitReader();
+
+ int answerLen=0;
+ uint8_t *answer = BigBuf_get_addr() + 4000;
+ if (recv != NULL) memset(answer, 0, 100);
+
+ if (!speed) {
+ // low speed (1 out of 256)
+ CodeIso15693AsReader256(send, sendlen);
+ } else {
+ // high speed (1 out of 4)
+ CodeIso15693AsReader(send, sendlen);
+ }
+
+ TransmitTo15693Tag(ToSend,ToSendMax);
+ // Now wait for a response
+ if (recv!=NULL) {
+ answerLen = GetIso15693AnswerFromTag(answer, 100);
+ *recv=answer;
+ }
+
+ LED_A_OFF();
+
+ return answerLen;
+}
+
+
+// --------------------------------------------------------------------
+// Debug Functions
+// --------------------------------------------------------------------
+
+// Decodes a message from a tag and displays its metadata and content
+#define DBD15STATLEN 48
+void DbdecodeIso15693Answer(int len, uint8_t *d) {
+ char status[DBD15STATLEN+1]={0};
+ uint16_t crc;
+
+ if (len>3) {
+ if (d[0]&(1<<3))
+ strncat(status,"ProtExt ",DBD15STATLEN);
+ if (d[0]&1) {
+ // error
+ strncat(status,"Error ",DBD15STATLEN);
+ switch (d[1]) {
+ case 0x01:
+ strncat(status,"01:notSupp",DBD15STATLEN);
+ break;
+ case 0x02:
+ strncat(status,"02:notRecog",DBD15STATLEN);
+ break;
+ case 0x03:
+ strncat(status,"03:optNotSupp",DBD15STATLEN);
+ break;
+ case 0x0f:
+ strncat(status,"0f:noInfo",DBD15STATLEN);
+ break;
+ case 0x10:
+ strncat(status,"10:dontExist",DBD15STATLEN);
+ break;
+ case 0x11:
+ strncat(status,"11:lockAgain",DBD15STATLEN);
+ break;
+ case 0x12:
+ strncat(status,"12:locked",DBD15STATLEN);
+ break;
+ case 0x13:
+ strncat(status,"13:progErr",DBD15STATLEN);
+ break;
+ case 0x14:
+ strncat(status,"14:lockErr",DBD15STATLEN);
+ break;
+ default:
+ strncat(status,"unknownErr",DBD15STATLEN);
+ }
+ strncat(status," ",DBD15STATLEN);
+ } else {
+ strncat(status,"NoErr ",DBD15STATLEN);
+ }
+
+ crc=Crc(d,len-2);
+ if ( (( crc & 0xff ) == d[len-2]) && (( crc >> 8 ) == d[len-1]) )
+ strncat(status,"CrcOK",DBD15STATLEN);
+ else
+ strncat(status,"CrcFail!",DBD15STATLEN);
+
+ Dbprintf("%s",status);
+ }
+}
+
+
+
+///////////////////////////////////////////////////////////////////////
+// Functions called via USB/Client
+///////////////////////////////////////////////////////////////////////
+
+void SetDebugIso15693(uint32_t debug) {
+ DEBUG=debug;
+ Dbprintf("Iso15693 Debug is now %s",DEBUG?"on":"off");
+ return;
+}
+
+//-----------------------------------------------------------------------------
+// Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector
+// all demodulation performed in arm rather than host. - greg
+//-----------------------------------------------------------------------------
+void ReaderIso15693(uint32_t parameter)
+{
+ LEDsoff();
+ LED_A_ON();
+
+ int answerLen1 = 0;
+ uint8_t TagUID[8] = {0x00};
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+
+ uint8_t *answer1 = BigBuf_get_addr() + 4000;
+ memset(answer1, 0x00, 200);
+
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+ // Setup SSC
+ FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+
+ // Start from off (no field generated)
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(200);
+
+ // Give the tags time to energize
+ LED_D_ON();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+ SpinDelay(200);
+
+ // FIRST WE RUN AN INVENTORY TO GET THE TAG UID
+ // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME
+
+ // Now send the IDENTIFY command
+ BuildIdentifyRequest();
+
+ TransmitTo15693Tag(ToSend,ToSendMax);
+
+ // Now wait for a response
+ answerLen1 = GetIso15693AnswerFromTag(answer1, 100) ;
+
+ if (answerLen1 >=12) // we should do a better check than this
+ {
+ TagUID[0] = answer1[2];
+ TagUID[1] = answer1[3];
+ TagUID[2] = answer1[4];
+ TagUID[3] = answer1[5];
+ TagUID[4] = answer1[6];
+ TagUID[5] = answer1[7];
+ TagUID[6] = answer1[8]; // IC Manufacturer code
+ TagUID[7] = answer1[9]; // always E0
+
+ }
+
+ Dbprintf("%d octets read from IDENTIFY request:", answerLen1);
+ DbdecodeIso15693Answer(answerLen1, answer1);
+ Dbhexdump(answerLen1, answer1, false);
+
+ // UID is reverse
+ if (answerLen1 >= 12)
+ Dbprintf("UID = %02hX%02hX%02hX%02hX%02hX%02hX%02hX%02hX",
+ TagUID[7],TagUID[6],TagUID[5],TagUID[4],
+ TagUID[3],TagUID[2],TagUID[1],TagUID[0]);
+
+
+ // Dbprintf("%d octets read from SELECT request:", answerLen2);
+ // DbdecodeIso15693Answer(answerLen2,answer2);
+ // Dbhexdump(answerLen2,answer2,true);
+
+ // Dbprintf("%d octets read from XXX request:", answerLen3);
+ // DbdecodeIso15693Answer(answerLen3,answer3);
+ // Dbhexdump(answerLen3,answer3,true);
+
+ // read all pages
+ if (answerLen1 >= 12 && DEBUG) {
+ uint8_t *answer2 = BigBuf_get_addr() + 4100;
+ int i = 0;
+ while (i < 32) { // sanity check, assume max 32 pages
+ BuildReadBlockRequest(TagUID, i);
+ TransmitTo15693Tag(ToSend, ToSendMax);
+ int answerLen2 = GetIso15693AnswerFromTag(answer2, 100);
+ if (answerLen2 > 0) {
+ Dbprintf("READ SINGLE BLOCK %d returned %d octets:", i, answerLen2);
+ DbdecodeIso15693Answer(answerLen2, answer2);
+ Dbhexdump(answerLen2, answer2, false);
+ if ( *((uint32_t*) answer2) == 0x07160101 ) break; // exit on NoPageErr
+ }
+ i++;
+ }
+ }
+
+ // for the time being, switch field off to protect rdv4.0
+ // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
+
+ LED_A_OFF();
+}
+
+
+// Simulate an ISO15693 TAG.
+// For Inventory command: print command and send Inventory Response with given UID
+// TODO: interpret other reader commands and send appropriate response
+void SimTagIso15693(uint32_t parameter, uint8_t *uid)
+{
+ LEDsoff();
+ LED_A_ON();
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
+ FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
+
+ StartCountSspClk();
+
+ uint8_t cmd[ISO15693_MAX_COMMAND_LENGTH];
+
+ // Build a suitable response to the reader INVENTORY command
+ BuildInventoryResponse(uid);
+
+ // Listen to reader
+ while (!BUTTON_PRESS()) {
+ uint32_t eof_time = 0, start_time = 0;
+ int cmd_len = GetIso15693CommandFromReader(cmd, sizeof(cmd), &eof_time);
+
+ if ((cmd_len >= 5) && (cmd[0] & ISO15693_REQ_INVENTORY) && (cmd[1] == ISO15693_INVENTORY)) { // TODO: check more flags
+ bool slow = !(cmd[0] & ISO15693_REQ_DATARATE_HIGH);
+ start_time = eof_time + DELAY_ISO15693_VCD_TO_VICC - DELAY_ARM_TO_READER;
+ TransmitTo15693Reader(ToSend, ToSendMax, start_time, slow);
+ }
+
+ Dbprintf("%d bytes read from reader:", cmd_len);
+ Dbhexdump(cmd_len, cmd, false);
+ }
+
+ LEDsoff();
+}
+
+
+// Since there is no standardized way of reading the AFI out of a tag, we will brute force it
+// (some manufactures offer a way to read the AFI, though)
+void BruteforceIso15693Afi(uint32_t speed)
+{
+ LEDsoff();
+ LED_A_ON();
+
+ uint8_t data[20];
+ uint8_t *recv=data;
+ int datalen=0, recvlen=0;
+
+ Iso15693InitReader();
+
+ // first without AFI
+ // Tags should respond without AFI and with AFI=0 even when AFI is active
+
+ data[0] = ISO15693_REQ_DATARATE_HIGH | ISO15693_REQ_INVENTORY | ISO15693_REQINV_SLOT1;
+ data[1] = ISO15693_INVENTORY;
+ data[2] = 0; // mask length
+ datalen = AddCrc(data,3);
+ recvlen = SendDataTag(data, datalen, false, speed, &recv);
+ WDT_HIT();
+ if (recvlen>=12) {
+ Dbprintf("NoAFI UID=%s",sprintUID(NULL,&recv[2]));
+ }
+
+ // now with AFI
+
+ data[0] = ISO15693_REQ_DATARATE_HIGH | ISO15693_REQ_INVENTORY | ISO15693_REQINV_AFI | ISO15693_REQINV_SLOT1;
+ data[1] = ISO15693_INVENTORY;
+ data[2] = 0; // AFI
+ data[3] = 0; // mask length
+
+ for (int i=0;i<256;i++) {
+ data[2]=i & 0xFF;
+ datalen=AddCrc(data,4);
+ recvlen=SendDataTag(data, datalen, false, speed, &recv);
+ WDT_HIT();
+ if (recvlen>=12) {
+ Dbprintf("AFI=%i UID=%s", i, sprintUID(NULL,&recv[2]));
+ }
+ }
+ Dbprintf("AFI Bruteforcing done.");
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LEDsoff();
+}
+
+// Allows to directly send commands to the tag via the client
+void DirectTag15693Command(uint32_t datalen, uint32_t speed, uint32_t recv, uint8_t data[]) {
+
+ int recvlen=0;
+ uint8_t *recvbuf = BigBuf_get_addr();
+
+ LED_A_ON();
+
+ if (DEBUG) {
+ Dbprintf("SEND");
+ Dbhexdump(datalen, data, false);
+ }
+
+ recvlen = SendDataTag(data, datalen, true, speed, (recv?&recvbuf:NULL));
+
+ if (recv) {
+ cmd_send(CMD_ACK, recvlen>48?48:recvlen, 0, 0, recvbuf, 48);
+
+ if (DEBUG) {
+ Dbprintf("RECV");
+ DbdecodeIso15693Answer(recvlen,recvbuf);
+ Dbhexdump(recvlen, recvbuf, false);
+ }
+ }
+
+ // for the time being, switch field off to protect rdv4.0
+ // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
+
+ LED_A_OFF();
+}
+
+
+
+
+// --------------------------------------------------------------------
+// -- Misc & deprecated functions
+// --------------------------------------------------------------------
+
+/*
+
+// do not use; has a fix UID
+static void __attribute__((unused)) BuildSysInfoRequest(uint8_t *uid)
+{
+ uint8_t cmd[12];
+
+ uint16_t crc;
+ // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
+ // followed by teh block data
+ // one sub-carrier, inventory, 1 slot, fast rate
+ cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
+ // System Information command code
+ cmd[1] = 0x2B;
+ // UID may be optionally specified here
+ // 64-bit UID
+ cmd[2] = 0x32;
+ cmd[3]= 0x4b;
+ cmd[4] = 0x03;
+ cmd[5] = 0x01;
+ cmd[6] = 0x00;
+ cmd[7] = 0x10;
+ cmd[8] = 0x05;
+ cmd[9]= 0xe0; // always e0 (not exactly unique)
+ //Now the CRC
+ crc = Crc(cmd, 10); // the crc needs to be calculated over 2 bytes
+ cmd[10] = crc & 0xff;
+ cmd[11] = crc >> 8;
+
+ CodeIso15693AsReader(cmd, sizeof(cmd));
+}
+
+
+// do not use; has a fix UID
+static void __attribute__((unused)) BuildReadMultiBlockRequest(uint8_t *uid)
+{
+ uint8_t cmd[14];
+
+ uint16_t crc;
+ // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
+ // followed by teh block data
+ // one sub-carrier, inventory, 1 slot, fast rate
+ cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
+ // READ Multi BLOCK command code
+ cmd[1] = 0x23;
+ // UID may be optionally specified here
+ // 64-bit UID
+ cmd[2] = 0x32;
+ cmd[3]= 0x4b;
+ cmd[4] = 0x03;
+ cmd[5] = 0x01;
+ cmd[6] = 0x00;
+ cmd[7] = 0x10;
+ cmd[8] = 0x05;
+ cmd[9]= 0xe0; // always e0 (not exactly unique)
+ // First Block number to read
+ cmd[10] = 0x00;
+ // Number of Blocks to read
+ cmd[11] = 0x2f; // read quite a few
+ //Now the CRC
+ crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
+ cmd[12] = crc & 0xff;
+ cmd[13] = crc >> 8;
+
+ CodeIso15693AsReader(cmd, sizeof(cmd));
+}
+
+// do not use; has a fix UID
+static void __attribute__((unused)) BuildArbitraryRequest(uint8_t *uid,uint8_t CmdCode)
+{
+ uint8_t cmd[14];
+
+ uint16_t crc;
+ // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
+ // followed by teh block data
+ // one sub-carrier, inventory, 1 slot, fast rate
+ cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
+ // READ BLOCK command code
+ cmd[1] = CmdCode;
+ // UID may be optionally specified here
+ // 64-bit UID
+ cmd[2] = 0x32;
+ cmd[3]= 0x4b;
+ cmd[4] = 0x03;
+ cmd[5] = 0x01;
+ cmd[6] = 0x00;
+ cmd[7] = 0x10;
+ cmd[8] = 0x05;
+ cmd[9]= 0xe0; // always e0 (not exactly unique)
+ // Parameter
+ cmd[10] = 0x00;
+ cmd[11] = 0x0a;
+
+// cmd[12] = 0x00;
+// cmd[13] = 0x00; //Now the CRC
+ crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
+ cmd[12] = crc & 0xff;
+ cmd[13] = crc >> 8;
+
+ CodeIso15693AsReader(cmd, sizeof(cmd));
+}
+
+// do not use; has a fix UID
+static void __attribute__((unused)) BuildArbitraryCustomRequest(uint8_t uid[], uint8_t CmdCode)
+{
+ uint8_t cmd[14];
+
+ uint16_t crc;
+ // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
+ // followed by teh block data
+ // one sub-carrier, inventory, 1 slot, fast rate
+ cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
+ // READ BLOCK command code
+ cmd[1] = CmdCode;
+ // UID may be optionally specified here
+ // 64-bit UID
+ cmd[2] = 0x32;
+ cmd[3]= 0x4b;
+ cmd[4] = 0x03;
+ cmd[5] = 0x01;
+ cmd[6] = 0x00;
+ cmd[7] = 0x10;
+ cmd[8] = 0x05;
+ cmd[9]= 0xe0; // always e0 (not exactly unique)
+ // Parameter
+ cmd[10] = 0x05; // for custom codes this must be manufcturer code
+ cmd[11] = 0x00;
+
+// cmd[12] = 0x00;
+// cmd[13] = 0x00; //Now the CRC
+ crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
+ cmd[12] = crc & 0xff;
+ cmd[13] = crc >> 8;
+
+ CodeIso15693AsReader(cmd, sizeof(cmd));
+}
+
+
+
+
+*/
+
+