// executes.
//-----------------------------------------------------------------------------
+#include <stdarg.h>
+
#include "usb_cdc.h"
#include "cmd.h"
-
#include "proxmark3.h"
#include "apps.h"
+#include "fpga.h"
#include "util.h"
#include "printf.h"
#include "string.h"
-
-#include <stdarg.h>
-
#include "legicrf.h"
-#include <hitag2.h>
+#include "legicrfsim.h"
+#include "hitag2.h"
+#include "hitagS.h"
+#include "iso14443b.h"
+#include "iso15693.h"
#include "lfsampling.h"
#include "BigBuf.h"
+#include "mifareutil.h"
+#include "pcf7931.h"
+#include "i2c.h"
+#include "hfsnoop.h"
+#include "fpgaloader.h"
#ifdef WITH_LCD
#include "LCD.h"
#endif
+static uint32_t hw_capabilities;
+
// Craig Young - 14a stand-alone code
-#ifdef WITH_ISO14443a_StandAlone
+#ifdef WITH_ISO14443a
#include "iso14443a.h"
#endif
-#define abs(x) ( ((x)<0) ? -(x) : (x) )
-
//=============================================================================
// A buffer where we can queue things up to be sent through the FPGA, for
// any purpose (fake tag, as reader, whatever). We go MSB first, since that
// return that.
//-----------------------------------------------------------------------------
static int ReadAdc(int ch)
-{
- uint32_t d;
-
- AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
- AT91C_BASE_ADC->ADC_MR =
- ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
- ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
- ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
-
+{
// Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
- // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
- // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
+ // AMPL_HI is a high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
+ // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
//
// The maths are:
// If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
//
- // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
- //
- // Note: with the "historic" values in the comments above, the error was 34% !!!
-
- AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
+ // v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%)
- AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
+ AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
+ AT91C_BASE_ADC->ADC_MR =
+ ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
+ ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
+ ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
- while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
- ;
- d = AT91C_BASE_ADC->ADC_CDR[ch];
+ AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
+ AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
- return d;
+ while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) {};
+
+ return AT91C_BASE_ADC->ADC_CDR[ch] & 0x3ff;
}
int AvgAdc(int ch) // was static - merlok
return (a + 15) >> 5;
}
-void MeasureAntennaTuning(void)
+static int AvgAdc_Voltage_HF(void)
{
- uint8_t LF_Results[256];
- int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
- int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
+ int AvgAdc_Voltage_Low, AvgAdc_Voltage_High;
+
+ AvgAdc_Voltage_Low= (MAX_ADC_HF_VOLTAGE_LOW * AvgAdc(ADC_CHAN_HF_LOW)) >> 10;
+ // if voltage range is about to be exceeded, use high voltage ADC channel if available (RDV40 only)
+ if (AvgAdc_Voltage_Low > MAX_ADC_HF_VOLTAGE_LOW - 300) {
+ AvgAdc_Voltage_High = (MAX_ADC_HF_VOLTAGE_HIGH * AvgAdc(ADC_CHAN_HF_HIGH)) >> 10;
+ if (AvgAdc_Voltage_High >= AvgAdc_Voltage_Low) {
+ return AvgAdc_Voltage_High;
+ }
+ }
+ return AvgAdc_Voltage_Low;
+}
- LED_B_ON();
+static int AvgAdc_Voltage_LF(void)
+{
+ return (MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10;
+}
+
+void MeasureAntennaTuningLfOnly(int *vLf125, int *vLf134, int *peakf, int *peakv, uint8_t LF_Results[])
+{
+ int i, adcval = 0, peak = 0;
/*
* Sweeps the useful LF range of the proxmark from
* the resonating frequency of your LF antenna
* ( hopefully around 95 if it is tuned to 125kHz!)
*/
-
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ SpinDelay(50);
+
for (i=255; i>=19; i--) {
- WDT_HIT();
+ WDT_HIT();
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
SpinDelay(20);
- adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
- if (i==95) vLf125 = adcval; // voltage at 125Khz
- if (i==89) vLf134 = adcval; // voltage at 134Khz
+ adcval = AvgAdc_Voltage_LF();
+ if (i==95) *vLf125 = adcval; // voltage at 125Khz
+ if (i==89) *vLf134 = adcval; // voltage at 134Khz
- LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
+ LF_Results[i] = adcval >> 9; // scale int to fit in byte for graphing purposes
if(LF_Results[i] > peak) {
- peakv = adcval;
+ *peakv = adcval;
peak = LF_Results[i];
- peakf = i;
+ *peakf = i;
//ptr = i;
}
}
for (i=18; i >= 0; i--) LF_Results[i] = 0;
-
- LED_A_ON();
+
+ return;
+}
+
+void MeasureAntennaTuningHfOnly(int *vHf)
+{
// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
- FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+ LED_A_ON();
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
SpinDelay(20);
- vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
+ *vHf = AvgAdc_Voltage_HF();
+ LED_A_OFF();
+ return;
+}
+
+void MeasureAntennaTuning(int mode)
+{
+ uint8_t LF_Results[256] = {0};
+ int peakv = 0, peakf = 0;
+ int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
- cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
+ LED_B_ON();
+
+ if (((mode & FLAG_TUNE_ALL) == FLAG_TUNE_ALL) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF)) {
+ // Reverse "standard" order if HF already loaded, to avoid unnecessary swap.
+ MeasureAntennaTuningHfOnly(&vHf);
+ MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results);
+ } else {
+ if (mode & FLAG_TUNE_LF) {
+ MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results);
+ }
+ if (mode & FLAG_TUNE_HF) {
+ MeasureAntennaTuningHfOnly(&vHf);
+ }
+ }
+
+ cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125>>1 | (vLf134>>1<<16), vHf, peakf | (peakv>>1<<16), LF_Results, 256);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LED_A_OFF();
LED_B_OFF();
return;
}
// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
for (;;) {
- SpinDelay(20);
- vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
+ SpinDelay(500);
+ vHf = AvgAdc_Voltage_HF();
Dbprintf("%d mV",vHf);
if (BUTTON_PRESS()) break;
extern struct version_information version_information;
/* bootrom version information is pointed to from _bootphase1_version_pointer */
extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
+
+
+void set_hw_capabilities(void)
+{
+ if (I2C_is_available()) {
+ hw_capabilities |= HAS_SMARTCARD_SLOT;
+ }
+
+ if (false) { // TODO: implement a test
+ hw_capabilities |= HAS_EXTRA_FLASH_MEM;
+ }
+}
+
+
void SendVersion(void)
{
+ set_hw_capabilities();
+
char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
- FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
- strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
- FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
- strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
-
+ for (int i = 0; i < fpga_bitstream_num; i++) {
+ strncat(VersionString, fpga_version_information[i], sizeof(VersionString) - strlen(VersionString) - 1);
+ strncat(VersionString, "\n", sizeof(VersionString) - strlen(VersionString) - 1);
+ }
+
+ // test availability of SmartCard slot
+ if (I2C_is_available()) {
+ strncat(VersionString, "SmartCard Slot: available\n", sizeof(VersionString) - strlen(VersionString) - 1);
+ } else {
+ strncat(VersionString, "SmartCard Slot: not available\n", sizeof(VersionString) - strlen(VersionString) - 1);
+ }
+
// Send Chip ID and used flash memory
uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
uint32_t compressed_data_section_size = common_area.arg1;
- cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
+ cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, hw_capabilities, VersionString, strlen(VersionString));
}
-#if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
+// measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
+// Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
+void printUSBSpeed(void)
+{
+ Dbprintf("USB Speed:");
+ Dbprintf(" Sending USB packets to client...");
+
+ #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
+ uint8_t *test_data = BigBuf_get_addr();
+ uint32_t end_time;
+
+ uint32_t start_time = end_time = GetTickCount();
+ uint32_t bytes_transferred = 0;
+
+ LED_B_ON();
+ while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
+ cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
+ end_time = GetTickCount();
+ bytes_transferred += USB_CMD_DATA_SIZE;
+ }
+ LED_B_OFF();
+
+ Dbprintf(" Time elapsed: %dms", end_time - start_time);
+ Dbprintf(" Bytes transferred: %d", bytes_transferred);
+ Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
+ 1000 * bytes_transferred / (end_time - start_time));
+
+}
+
+/**
+ * Prints runtime information about the PM3.
+**/
+void SendStatus(void)
+{
+ BigBuf_print_status();
+ Fpga_print_status();
+#ifdef WITH_SMARTCARD
+ I2C_print_status();
+#endif
+ printConfig(); //LF Sampling config
+ printUSBSpeed();
+ Dbprintf("Various");
+ Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL);
+ Dbprintf(" ToSendMax..........%d", ToSendMax);
+ Dbprintf(" ToSendBit..........%d", ToSendBit);
+
+ cmd_send(CMD_ACK,1,0,0,0,0);
+}
+
+#if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF_StandAlone)
#define OPTS 2
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
int selected = 0;
- int playing = 0;
- int cardRead[OPTS] = {0};
+ bool playing = false, GotoRecord = false, GotoClone = false;
+ bool cardRead[OPTS] = {false};
uint8_t readUID[10] = {0};
uint32_t uid_1st[OPTS]={0};
uint32_t uid_2nd[OPTS]={0};
+ uint32_t uid_tmp1 = 0;
+ uint32_t uid_tmp2 = 0;
+ iso14a_card_select_t hi14a_card[OPTS];
LED(selected + 1, 0);
{
usb_poll();
WDT_HIT();
-
- // Was our button held down or pressed?
- int button_pressed = BUTTON_HELD(1000);
SpinDelay(300);
- // Button was held for a second, begin recording
- if (button_pressed > 0 && cardRead[selected] == 0)
+ if (GotoRecord || !cardRead[selected])
{
+ GotoRecord = false;
LEDsoff();
LED(selected + 1, 0);
LED(LED_RED2, 0);
// record
Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
-
- // wait for button to be released
- while(BUTTON_PRESS())
- WDT_HIT();
/* need this delay to prevent catching some weird data */
SpinDelay(500);
/* Code for reading from 14a tag */
for ( ; ; )
{
WDT_HIT();
- if (!iso14443a_select_card(uid, NULL, &cuid))
+ if (BUTTON_PRESS()) {
+ if (cardRead[selected]) {
+ Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
+ break;
+ }
+ else if (cardRead[(selected+1)%OPTS]) {
+ Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
+ selected = (selected+1)%OPTS;
+ break;
+ }
+ else {
+ Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
+ SpinDelay(300);
+ }
+ }
+ if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid, true, 0, true))
continue;
else
{
Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
memcpy(readUID,uid,10*sizeof(uint8_t));
- uint8_t *dst = (uint8_t *)&uid_1st[selected];
+ uint8_t *dst = (uint8_t *)&uid_tmp1;
// Set UID byte order
for (int i=0; i<4; i++)
dst[i] = uid[3-i];
- dst = (uint8_t *)&uid_2nd[selected];
+ dst = (uint8_t *)&uid_tmp2;
for (int i=0; i<4; i++)
dst[i] = uid[7-i];
- break;
+ if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
+ Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
+ }
+ else {
+ if (uid_tmp2) {
+ Dbprintf("Bank[%d] received a 7-byte UID",selected);
+ uid_1st[selected] = (uid_tmp1)>>8;
+ uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
+ }
+ else {
+ Dbprintf("Bank[%d] received a 4-byte UID",selected);
+ uid_1st[selected] = uid_tmp1;
+ uid_2nd[selected] = uid_tmp2;
+ }
+ break;
+ }
}
}
+ Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
+ Dbprintf("SAK = %02X",hi14a_card[selected].sak);
LEDsoff();
LED(LED_GREEN, 200);
LED(LED_ORANGE, 200);
LEDsoff();
LED(selected + 1, 0);
- // Finished recording
-
- // If we were previously playing, set playing off
- // so next button push begins playing what we recorded
- playing = 0;
- cardRead[selected] = 1;
+ // Next state is replay:
+ playing = true;
+ cardRead[selected] = true;
}
- /* MF UID clone */
- else if (button_pressed > 0 && cardRead[selected] == 1)
+ /* MF Classic UID clone */
+ else if (GotoClone)
{
- LEDsoff();
- LED(selected + 1, 0);
- LED(LED_ORANGE, 250);
+ GotoClone=false;
+ LEDsoff();
+ LED(selected + 1, 0);
+ LED(LED_ORANGE, 250);
- // record
- Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
-
- // wait for button to be released
- while(BUTTON_PRESS())
- {
- // Delay cloning until card is in place
- WDT_HIT();
- }
- Dbprintf("Starting clone. [Bank: %u]", selected);
- // need this delay to prevent catching some weird data
- SpinDelay(500);
- // Begin clone function here:
- /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
- UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
- memcpy(c.d.asBytes, data, 16);
- SendCommand(&c);
-
- Block read is similar:
- UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
- We need to imitate that call with blockNo 0 to set a uid.
-
- The get and set commands are handled in this file:
- // Work with "magic Chinese" card
- case CMD_MIFARE_CSETBLOCK:
- MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
- break;
- case CMD_MIFARE_CGETBLOCK:
- MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
- //
- break;
-
- mfCSetUID provides example logic for UID set workflow:
- -Read block0 from card in field with MifareCGetBlock()
- -Configure new values without replacing reserved bytes
- memcpy(block0, uid, 4); // Copy UID bytes from byte array
- // Mifare UID BCC
- block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
- Bytes 5-7 are reserved SAK and ATQA for mifare classic
- -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
- */
- uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
- // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
- MifareCGetBlock(0x1F, 1, 0, oldBlock0);
- Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
- memcpy(newBlock0,oldBlock0,16);
- // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
-
- newBlock0[0] = uid_1st[selected]>>24;
- newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
- newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
- newBlock0[3] = 0xFF & (uid_1st[selected]);
- newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
- // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
- MifareCSetBlock(0, 0xFF,0, newBlock0);
- MifareCGetBlock(0x1F, 1, 0, testBlock0);
- if (memcmp(testBlock0,newBlock0,16)==0)
- {
- DbpString("Cloned successfull!");
- cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it
- }
- LEDsoff();
- LED(selected + 1, 0);
- // Finished recording
+ // record
+ Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
- // If we were previously playing, set playing off
- // so next button push begins playing what we recorded
- playing = 0;
+ // wait for button to be released
+ while(BUTTON_PRESS())
+ {
+ // Delay cloning until card is in place
+ WDT_HIT();
+ }
+ Dbprintf("Starting clone. [Bank: %u]", selected);
+ // need this delay to prevent catching some weird data
+ SpinDelay(500);
+ // Begin clone function here:
+ /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
+ UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
+ memcpy(c.d.asBytes, data, 16);
+ SendCommand(&c);
+
+ Block read is similar:
+ UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
+ We need to imitate that call with blockNo 0 to set a uid.
+
+ The get and set commands are handled in this file:
+ // Work with "magic Chinese" card
+ case CMD_MIFARE_CSETBLOCK:
+ MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+ case CMD_MIFARE_CGETBLOCK:
+ MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+
+ mfCSetUID provides example logic for UID set workflow:
+ -Read block0 from card in field with MifareCGetBlock()
+ -Configure new values without replacing reserved bytes
+ memcpy(block0, uid, 4); // Copy UID bytes from byte array
+ // Mifare UID BCC
+ block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
+ Bytes 5-7 are reserved SAK and ATQA for mifare classic
+ -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
+ */
+ uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
+ // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
+ MifareCGetBlock(0x3F, 1, 0, oldBlock0);
+ if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
+ Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
+ playing = true;
+ }
+ else {
+ Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
+ memcpy(newBlock0,oldBlock0,16);
+ // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
+
+ newBlock0[0] = uid_1st[selected]>>24;
+ newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
+ newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
+ newBlock0[3] = 0xFF & (uid_1st[selected]);
+ newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
+ // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
+ MifareCSetBlock(0, 0xFF,0, newBlock0);
+ MifareCGetBlock(0x3F, 1, 0, testBlock0);
+ if (memcmp(testBlock0,newBlock0,16)==0)
+ {
+ DbpString("Cloned successfull!");
+ cardRead[selected] = false; // Only if the card was cloned successfully should we clear it
+ playing = false;
+ GotoRecord = true;
+ selected = (selected+1) % OPTS;
+ }
+ else {
+ Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
+ playing = true;
+ }
+ }
+ LEDsoff();
+ LED(selected + 1, 0);
}
// Change where to record (or begin playing)
- else if (button_pressed && cardRead[selected])
+ else if (playing) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
{
- // Next option if we were previously playing
- if (playing)
- selected = (selected + 1) % OPTS;
- playing = !playing;
-
LEDsoff();
LED(selected + 1, 0);
// Begin transmitting
- if (playing)
- {
- LED(LED_GREEN, 0);
- DbpString("Playing");
- while (!BUTTON_HELD(500)) { // Loop simulating tag until the button is held a half-sec
- Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
- SimulateIso14443aTag(1,uid_1st[selected],uid_2nd[selected],NULL);
+ LED(LED_GREEN, 0);
+ DbpString("Playing");
+ for ( ; ; ) {
+ WDT_HIT();
+ int button_action = BUTTON_HELD(1000);
+ if (button_action == 0) { // No button action, proceed with sim
+ uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
+ Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
+ if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
+ DbpString("Mifare Classic");
+ SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data); // Mifare Classic
}
- //cardRead[selected] = 1;
- Dbprintf("Done playing [Bank: %u]",selected);
-
- /* We pressed a button so ignore it here with a delay */
- SpinDelay(300);
-
- // when done, we're done playing, move to next option
- selected = (selected + 1) % OPTS;
- playing = !playing;
- LEDsoff();
- LED(selected + 1, 0);
+ else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
+ DbpString("Mifare Ultralight");
+ SimulateIso14443aTag(2,uid_1st[selected],uid_2nd[selected],data); // Mifare Ultralight
+ }
+ else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
+ DbpString("Mifare DESFire");
+ SimulateIso14443aTag(3,uid_1st[selected],uid_2nd[selected],data); // Mifare DESFire
+ }
+ else {
+ Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
+ SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data);
+ }
+ }
+ else if (button_action == BUTTON_SINGLE_CLICK) {
+ selected = (selected + 1) % OPTS;
+ Dbprintf("Done playing. Switching to record mode on bank %d",selected);
+ GotoRecord = true;
+ break;
+ }
+ else if (button_action == BUTTON_HOLD) {
+ Dbprintf("Playtime over. Begin cloning...");
+ GotoClone = true;
+ break;
+ }
+ WDT_HIT();
}
- else
- while(BUTTON_PRESS())
- WDT_HIT();
+
+ /* We pressed a button so ignore it here with a delay */
+ SpinDelay(300);
+ LEDsoff();
+ LED(selected + 1, 0);
}
}
}
-#elif WITH_LF
+#elif WITH_LF_StandAlone
// samy's sniff and repeat routine
void SamyRun()
{
StandAloneMode();
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- int high[OPTS], low[OPTS];
+ int tops[OPTS], high[OPTS], low[OPTS];
int selected = 0;
int playing = 0;
int cardRead = 0;
/* need this delay to prevent catching some weird data */
SpinDelay(500);
- CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
- Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
+ CmdHIDdemodFSK(1, &tops[selected], &high[selected], &low[selected], 0);
+ if (tops[selected] > 0)
+ Dbprintf("Recorded %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
+ else
+ Dbprintf("Recorded %x %x%08x", selected, high[selected], low[selected]);
LEDsoff();
LED(selected + 1, 0);
LED(LED_ORANGE, 0);
// record
- Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
+ if (tops[selected] > 0)
+ Dbprintf("Cloning %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
+ else
+ Dbprintf("Cloning %x %x%08x", selected, high[selected], low[selected]);
// wait for button to be released
while(BUTTON_PRESS())
/* need this delay to prevent catching some weird data */
SpinDelay(500);
- CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
- Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
+ CopyHIDtoT55x7(tops[selected] & 0x000FFFFF, high[selected], low[selected], (tops[selected] != 0 && ((high[selected]& 0xFFFFFFC0) != 0)), 0x1D);
+ if (tops[selected] > 0)
+ Dbprintf("Cloned %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
+ else
+ Dbprintf("Cloned %x %x%08x", selected, high[selected], low[selected]);
LEDsoff();
LED(selected + 1, 0);
// wait for button to be released
while(BUTTON_PRESS())
WDT_HIT();
- Dbprintf("%x %x %x", selected, high[selected], low[selected]);
- CmdHIDsimTAG(high[selected], low[selected], 0);
+ if (tops[selected] > 0)
+ Dbprintf("%x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
+ else
+ Dbprintf("%x %x%08x", selected, high[selected], low[selected]);
+
+ CmdHIDsimTAG(tops[selected], high[selected], low[selected], 0);
DbpString("Done playing");
if (BUTTON_HELD(1000) > 0)
{
void ListenReaderField(int limit)
{
- int lf_av, lf_av_new, lf_baseline= 0, lf_max;
- int hf_av, hf_av_new, hf_baseline= 0, hf_max;
+ int lf_av, lf_av_new=0, lf_baseline= 0, lf_max;
+ int hf_av, hf_av_new=0, hf_baseline= 0, hf_max;
int mode=1, display_val, display_max, i;
-#define LF_ONLY 1
-#define HF_ONLY 2
-#define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
+#define LF_ONLY 1
+#define HF_ONLY 2
+#define REPORT_CHANGE_PERCENT 5 // report new values only if they have changed at least by REPORT_CHANGE_PERCENT
+#define MIN_HF_FIELD 300 // in mode 1 signal HF field greater than MIN_HF_FIELD above baseline
+#define MIN_LF_FIELD 1200 // in mode 1 signal LF field greater than MIN_LF_FIELD above baseline
// switch off FPGA - we don't want to measure our own signal
LEDsoff();
- lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
+ lf_av = lf_max = AvgAdc_Voltage_LF();
if(limit != HF_ONLY) {
- Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
+ Dbprintf("LF 125/134kHz Baseline: %dmV", lf_av);
lf_baseline = lf_av;
}
- hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
-
+ hf_av = hf_max = AvgAdc_Voltage_HF();
+
if (limit != LF_ONLY) {
- Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
+ Dbprintf("HF 13.56MHz Baseline: %dmV", hf_av);
hf_baseline = hf_av;
}
for(;;) {
+ SpinDelay(500);
if (BUTTON_PRESS()) {
- SpinDelay(500);
switch (mode) {
case 1:
mode=2;
return;
break;
}
+ while (BUTTON_PRESS());
}
WDT_HIT();
if (limit != HF_ONLY) {
if(mode == 1) {
- if (abs(lf_av - lf_baseline) > REPORT_CHANGE)
+ if (lf_av - lf_baseline > MIN_LF_FIELD)
LED_D_ON();
else
LED_D_OFF();
}
- lf_av_new = AvgAdc(ADC_CHAN_LF);
+ lf_av_new = AvgAdc_Voltage_LF();
// see if there's a significant change
- if(abs(lf_av - lf_av_new) > REPORT_CHANGE) {
- Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
+ if (ABS((lf_av - lf_av_new)*100/(lf_av?lf_av:1)) > REPORT_CHANGE_PERCENT) {
+ Dbprintf("LF 125/134kHz Field Change: %5dmV", lf_av_new);
lf_av = lf_av_new;
if (lf_av > lf_max)
lf_max = lf_av;
if (limit != LF_ONLY) {
if (mode == 1){
- if (abs(hf_av - hf_baseline) > REPORT_CHANGE)
+ if (hf_av - hf_baseline > MIN_HF_FIELD)
LED_B_ON();
else
LED_B_OFF();
}
- hf_av_new = AvgAdc(ADC_CHAN_HF);
+ hf_av_new = AvgAdc_Voltage_HF();
+
// see if there's a significant change
- if(abs(hf_av - hf_av_new) > REPORT_CHANGE) {
- Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
+ if (ABS((hf_av - hf_av_new)*100/(hf_av?hf_av:1)) > REPORT_CHANGE_PERCENT) {
+ Dbprintf("HF 13.56MHz Field Change: %5dmV", hf_av_new);
hf_av = hf_av_new;
if (hf_av > hf_max)
hf_max = hf_av;
setSamplingConfig((sample_config *) c->d.asBytes);
break;
case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
- cmd_send(CMD_ACK,SampleLF(c->arg[0]),0,0,0,0);
+ cmd_send(CMD_ACK,SampleLF(c->arg[0], c->arg[1]),0,0,0,0);
break;
case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
break;
case CMD_HID_DEMOD_FSK:
- CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
+ CmdHIDdemodFSK(c->arg[0], 0, 0, 0, 1);
break;
case CMD_HID_SIM_TAG:
- CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
+ CmdHIDsimTAG(c->arg[0], c->arg[1], c->arg[2], 1);
break;
case CMD_FSK_SIM_TAG:
CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_HID_CLONE_TAG:
- CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
+ CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0], 0x1D);
+ break;
+ case CMD_PARADOX_CLONE_TAG:
+ // Paradox cards are the same as HID, with a different preamble, so we can reuse the same function
+ CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0], 0x0F);
break;
case CMD_IO_DEMOD_FSK:
CmdIOdemodFSK(c->arg[0], 0, 0, 1);
break;
case CMD_IO_CLONE_TAG:
- CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
+ CopyIOtoT55x7(c->arg[0], c->arg[1]);
break;
case CMD_EM410X_DEMOD:
CmdEM410xdemod(c->arg[0], 0, 0, 1);
CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
break;
case CMD_T55XX_READ_BLOCK:
- T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
+ T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
break;
case CMD_T55XX_WRITE_BLOCK:
T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
- cmd_send(CMD_ACK,0,0,0,0,0);
break;
- case CMD_T55XX_READ_TRACE:
- T55xxReadTrace();
+ case CMD_T55XX_WAKEUP:
+ T55xxWakeUp(c->arg[0]);
+ break;
+ case CMD_T55XX_RESET_READ:
+ T55xxResetRead();
break;
case CMD_PCF7931_READ:
ReadPCF7931();
- cmd_send(CMD_ACK,0,0,0,0,0);
+ break;
+ case CMD_PCF7931_WRITE:
+ WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
+ break;
+ case CMD_PCF7931_BRUTEFORCE:
+ BruteForcePCF7931(c->arg[0], (c->arg[1] & 0xFF), c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128);
break;
case CMD_EM4X_READ_WORD:
- EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
+ EM4xReadWord(c->arg[0], c->arg[1],c->arg[2]);
break;
case CMD_EM4X_WRITE_WORD:
- EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
+ EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2]);
break;
case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
- break;
+ break;
+ case CMD_VIKING_CLONE_TAG:
+ CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]);
+ break;
+ case CMD_COTAG:
+ Cotag(c->arg[0]);
+ break;
#endif
#ifdef WITH_HITAG
case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
break;
+ case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content
+ SimulateHitagSTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
+ break;
+ case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file
+ check_challenges_cmd((bool)c->arg[0], (byte_t*)c->d.asBytes, (uint8_t)c->arg[1]);
+ break;
+ case CMD_READ_HITAG_S://Reader for only Hitag S tags, args = key or challenge
+ ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], false);
+ break;
+ case CMD_READ_HITAG_S_BLK:
+ ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], true);
+ break;
+ case CMD_WR_HITAG_S://writer for Hitag tags args=data to write,page and key or challenge
+ if ((hitag_function)c->arg[0] < 10) {
+ WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]);
+ }
+ else if ((hitag_function)c->arg[0] >= 10) {
+ WriterHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes, c->arg[2]);
+ }
+ break;
#endif
#ifdef WITH_ISO15693
case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
AcquireRawAdcSamplesIso15693();
break;
- case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
- RecordRawAdcSamplesIso15693();
+
+ case CMD_SNOOP_ISO_15693:
+ SnoopIso15693();
break;
case CMD_ISO_15693_COMMAND:
#ifdef WITH_LEGICRF
case CMD_SIMULATE_TAG_LEGIC_RF:
- LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
+ LegicRfSimulate(c->arg[0]);
break;
case CMD_WRITER_LEGIC_RF:
case CMD_MIFAREU_WRITEBL:
MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
break;
+ case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES:
+ MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
case CMD_MIFARE_NESTED:
MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
break;
// Work with "magic Chinese" card
+ case CMD_MIFARE_CWIPE:
+ MifareCWipe(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
case CMD_MIFARE_CSETBLOCK:
MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
break;
case CMD_ICLASS_WRITEBLOCK:
- iClass_WriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
+ iClass_WriteBlock(c->arg[0], c->d.asBytes);
+ break;
+ case CMD_ICLASS_READCHECK: // auth step 1
+ iClass_ReadCheck(c->arg[0], c->arg[1]);
break;
case CMD_ICLASS_READBLOCK:
- iClass_ReadBlk(c->arg[0], c->arg[1]);
+ iClass_ReadBlk(c->arg[0]);
break;
- case CMD_ICLASS_AUTHENTICATION:
+ case CMD_ICLASS_AUTHENTICATION: //check
iClass_Authentication(c->d.asBytes);
break;
case CMD_ICLASS_DUMP:
- iClass_Dump(c->arg[0], c->arg[1], c->arg[2]);
+ iClass_Dump(c->arg[0], c->arg[1]);
break;
case CMD_ICLASS_CLONE:
- iClass_Clone(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
break;
#endif
+#ifdef WITH_HFSNOOP
+ case CMD_HF_SNIFFER:
+ HfSnoop(c->arg[0], c->arg[1]);
+ break;
+ case CMD_HF_PLOT:
+ HfPlot();
+ break;
+#endif
+
+#ifdef WITH_SMARTCARD
+ case CMD_SMART_ATR: {
+ SmartCardAtr();
+ break;
+ }
+ case CMD_SMART_SETCLOCK:{
+ SmartCardSetClock(c->arg[0]);
+ break;
+ }
+ case CMD_SMART_RAW: {
+ SmartCardRaw(c->arg[0], c->arg[1], c->d.asBytes);
+ break;
+ }
+ case CMD_SMART_UPLOAD: {
+ // upload file from client
+ uint8_t *mem = BigBuf_get_addr();
+ memcpy( mem + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
+ cmd_send(CMD_ACK,1,0,0,0,0);
+ break;
+ }
+ case CMD_SMART_UPGRADE: {
+ SmartCardUpgrade(c->arg[0]);
+ break;
+ }
+#endif
+
case CMD_BUFF_CLEAR:
BigBuf_Clear();
break;
case CMD_MEASURE_ANTENNA_TUNING:
- MeasureAntennaTuning();
+ MeasureAntennaTuning(c->arg[0]);
break;
case CMD_MEASURE_ANTENNA_TUNING_HF:
break;
case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
-
LED_B_ON();
uint8_t *BigBuf = BigBuf_get_addr();
for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
break;
case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
+ // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
+ // to be able to use this one for uploading data to device
+ // arg1 = 0 upload for LF usage
+ // 1 upload for HF usage
+ if (c->arg[1] == 0)
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ else
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+
uint8_t *b = BigBuf_get_addr();
memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
cmd_send(CMD_ACK,0,0,0,0,0);
break;
case CMD_SET_LF_DIVISOR:
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
break;
case CMD_VERSION:
SendVersion();
break;
-
+ case CMD_STATUS:
+ SendStatus();
+ break;
+ case CMD_PING:
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ break;
#ifdef WITH_LCD
case CMD_LCD_RESET:
LCDReset();
}
common_area.flags.osimage_present = 1;
- LED_D_OFF();
- LED_C_OFF();
- LED_B_OFF();
- LED_A_OFF();
-
+ LEDsoff();
+
// Init USB device
- usb_enable();
+ usb_enable();
// The FPGA gets its clock from us from PCK0 output, so set that up.
AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
// PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
- AT91C_PMC_PRES_CLK_4;
+ AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
// Reset SPI
}
WDT_HIT();
-#ifdef WITH_LF
+#ifdef WITH_LF_StandAlone
#ifndef WITH_ISO14443a_StandAlone
if (BUTTON_HELD(1000) > 0)
SamyRun();