#include "cmd.h"
#include "iso14443crc.h"
#include "iso14443a.h"
+#include "iso14443b.h"
#include "crapto1.h"
#include "mifareutil.h"
#include "BigBuf.h"
ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
}
-void AppendCrc14443b(uint8_t* data, int len)
-{
- ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1);
-}
-
-
//=============================================================================
// ISO 14443 Type A - Miller decoder
//=============================================================================
// Allocate memory from BigBuf for some buffers
// free all previous allocations first
- BigBuf_free();
+ BigBuf_free(); BigBuf_Clear_ext(false);
// init trace buffer
clear_trace();
ToSend[++ToSendMax] = SEC_F;
// Convert from last byte pos to length
- ToSendMax++;
+ ++ToSendMax;
}
static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
{
- uint8_t par[MAX_PARITY_SIZE];
-
+ uint8_t par[MAX_PARITY_SIZE] = {0};
GetParity(cmd, len, par);
CodeIso14443aAsTagPar(cmd, len, par);
}
p_response = NULL;
} else if(receivedCmd[0] == 0x3C && tagType == 7) { // Received a READ SIGNATURE --
- // ECC data, taken from a NTAG215 amiibo token. might work. LEN: 32, + 2 crc
//first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
uint16_t start = 4 * 4;
uint8_t emdata[34];
emlGetMemBt( emdata, start, 32);
AppendCrc14443a(emdata, 32);
EmSendCmdEx(emdata, sizeof(emdata), false);
- //uint8_t data[] = {0x56,0x06,0xa6,0x4f,0x43,0x32,0x53,0x6f,
- // 0x43,0xda,0x45,0xd6,0x61,0x38,0xaa,0x1e,
- // 0xcf,0xd3,0x61,0x36,0xca,0x5f,0xbb,0x05,
- // 0xce,0x21,0x24,0x5b,0xa6,0x7a,0x79,0x07,
- // 0x00,0x00};
- //AppendCrc14443a(data, sizeof(data)-2);
- //EmSendCmdEx(data,sizeof(data),false);
p_response = NULL;
} else if (receivedCmd[0] == 0x39 && tagType == 7) { // Received a READ COUNTER --
uint8_t index = receivedCmd[1];
emlGetMemBt( emdata, 10+counter, 1);
AppendCrc14443a(emdata, sizeof(emdata)-2);
EmSendCmdEx(emdata, sizeof(emdata), false);
- p_response = NULL;
- //p_response = &responses[9];
-
+ p_response = NULL;
} else if(receivedCmd[0] == 0x50) { // Received a HALT
LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
p_response = NULL;
AppendCrc14443a(emdata, sizeof(emdata)-2);
EmSendCmdEx(emdata, sizeof(emdata), false);
p_response = NULL;
- //p_response = &responses[7];
} else {
p_response = &responses[5]; order = 7;
}
AppendCrc14443a(emdata, 2);
EmSendCmdEx(emdata, sizeof(emdata), false);
p_response = NULL;
- //p_response = &responses[8]; // PACK response
uint32_t pwd = bytes_to_num(receivedCmd+1,4);
if ( MF_DBGLEVEL >= 3) Dbprintf("Auth attempt: %08x", pwd);
// of bits specified in the delay parameter.
void PrepareDelayedTransfer(uint16_t delay)
{
+ delay &= 0x07;
+ if (!delay) return;
+
uint8_t bitmask = 0;
uint8_t bits_to_shift = 0;
uint8_t bits_shifted = 0;
+ uint16_t i = 0;
- delay &= 0x07;
- if (delay) {
- for (uint16_t i = 0; i < delay; i++) {
- bitmask |= (0x01 << i);
- }
- ToSend[++ToSendMax] = 0x00;
- for (uint16_t i = 0; i < ToSendMax; i++) {
+ for (i = 0; i < delay; ++i)
+ bitmask |= (0x01 << i);
+
+ ToSend[++ToSendMax] = 0x00;
+
+ for (i = 0; i < ToSendMax; ++i) {
bits_to_shift = ToSend[i] & bitmask;
ToSend[i] = ToSend[i] >> delay;
ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
bits_shifted = bits_to_shift;
}
}
-}
//-------------------------------------------------------------------------------------
uint32_t ThisTransferTime = 0;
if (timing) {
- if(*timing == 0) { // Measure time
+
+ if (*timing != 0)
+ // Delay transfer (fine tuning - up to 7 MF clock ticks)
+ PrepareDelayedTransfer(*timing & 0x00000007);
+ else
+ // Measure time
*timing = (GetCountSspClk() + 8) & 0xfffffff8;
- } else {
- PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
- }
- if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
+
- while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
+ if (MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8))
+ Dbprintf("TransmitFor14443a: Missed timing");
+
+ // Delay transfer (multiple of 8 MF clock ticks)
+ while (GetCountSspClk() < (*timing & 0xfffffff8));
+
LastTimeProxToAirStart = *timing;
} else {
ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
+
while(GetCountSspClk() < ThisTransferTime);
+
LastTimeProxToAirStart = ThisTransferTime;
}
ToSend[++ToSendMax] = SEC_Y;
// Convert to length of command:
- ToSendMax++;
+ ++ToSendMax;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
{
- CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
+ //CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
+ CodeIso14443aBitsAsReaderPar(cmd, len<<3, parity);
}
}
// Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
- uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
+ uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3; // twich /8 ?? >>3,
for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = SEC_F;
LED_A_ON();
// Log reader command in trace buffer
- LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
+ //LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
+ LogTrace(frame, nbytes(bits), (LastTimeProxToAirStart<<4) + DELAY_ARM2AIR_AS_READER, ((LastTimeProxToAirStart + LastProxToAirDuration)<<4) + DELAY_ARM2AIR_AS_READER, par, TRUE);
}
void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
{
- ReaderTransmitBitsPar(frame, len*8, par, timing);
+ //ReaderTransmitBitsPar(frame, len*8, par, timing);
+ ReaderTransmitBitsPar(frame, len<<3, par, timing);
}
void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
{
// Generate parity and redirect
uint8_t par[MAX_PARITY_SIZE] = {0x00};
- GetParity(frame, len/8, par);
+ //GetParity(frame, len/8, par);
+ GetParity(frame, len >> 3, par);
ReaderTransmitBitsPar(frame, len, par, timing);
}
// Generate parity and redirect
uint8_t par[MAX_PARITY_SIZE] = {0x00};
GetParity(frame, len, par);
- ReaderTransmitBitsPar(frame, len*8, par, timing);
+ //ReaderTransmitBitsPar(frame, len*8, par, timing);
+ ReaderTransmitBitsPar(frame, len<<3, par, timing);
}
int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset))
return FALSE;
- LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
+ //LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
+ LogTrace(receivedAnswer, Demod.len, (Demod.startTime<<4) - DELAY_AIR2ARM_AS_READER, (Demod.endTime<<4) - DELAY_AIR2ARM_AS_READER, parity, FALSE);
return Demod.len;
}
if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0))
return FALSE;
- LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
+ //LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
+ LogTrace(receivedAnswer, Demod.len, (Demod.startTime<<4) - DELAY_AIR2ARM_AS_READER, (Demod.endTime<<4) - DELAY_AIR2ARM_AS_READER, parity, FALSE);
return Demod.len;
}
// Signal field is on with the appropriate LED
if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
- || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
+ || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN)
LED_D_ON();
- } else {
+ else
LED_D_OFF();
- }
+
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
- // Start the timer
- StartCountSspClk();
-
DemodReset();
UartReset();
- NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
+
iso14a_set_timeout(10*106); // 10ms default
+
+ // Start the timer
+ StartCountSspClk();
+
+ NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
}
int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
if (param & ISO14A_REQUEST_TRIGGER)
iso14a_set_trigger(TRUE);
-
if (param & ISO14A_CONNECT) {
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
if(!(param & ISO14A_NO_SELECT)) {
iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
arg0 = iso14443a_select_card(NULL,card,NULL, true, 0);
cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
+ // if it fails, the cmdhf14a.c client quites.. however this one still executes.
+ if ( arg0 == 0 ) return;
}
}
int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
if (nt1 == nt2) return 0;
-
+
uint16_t i;
uint32_t nttmp1 = nt1;
uint32_t nttmp2 = nt2;
- for (i = 1; i < 0xFFFF; ++i) {
- nttmp1 = prng_successor(nttmp1, 1);
- if (nttmp1 == nt2) return i;
+ for (i = 1; i < 0xFFFF; i += 8) {
+ nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i;
+ nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i;
+
+ nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+1;
+ nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-1;
+
+ nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+2;
+ nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-2;
+
+ nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+3;
+ nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-3;
+
+ nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+4;
+ nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-4;
+
+ nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+5;
+ nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-5;
+
+ nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+6;
+ nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-6;
+
+ nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+7;
+ nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-7;
+/*
+ if ( prng_successor(nttmp1, i) == nt2) return i;
+ if ( prng_successor(nttmp2, i) == nt1) return -i;
- nttmp2 = prng_successor(nttmp2, 1);
- if (nttmp2 == nt1) return -i;
+ if ( prng_successor(nttmp1, i+2) == nt2) return i+2;
+ if ( prng_successor(nttmp2, i+2) == nt1) return -(i+2);
+
+ if ( prng_successor(nttmp1, i+3) == nt2) return i+3;
+ if ( prng_successor(nttmp2, i+3) == nt1) return -(i+3);
+
+ if ( prng_successor(nttmp1, i+4) == nt2) return i+4;
+ if ( prng_successor(nttmp2, i+4) == nt1) return -(i+4);
+
+ if ( prng_successor(nttmp1, i+5) == nt2) return i+5;
+ if ( prng_successor(nttmp2, i+5) == nt1) return -(i+5);
+
+ if ( prng_successor(nttmp1, i+6) == nt2) return i+6;
+ if ( prng_successor(nttmp2, i+6) == nt1) return -(i+6);
+
+ if ( prng_successor(nttmp1, i+7) == nt2) return i+7;
+ if ( prng_successor(nttmp2, i+7) == nt1) return -(i+7);
+*/
}
return(-99999); // either nt1 or nt2 are invalid nonces
// Mifare AUTH
//uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
//uint8_t mf_auth[] = { 0x60,0x05, 0x58, 0x2c };
- uint8_t mf_auth[] = { 0x60,0x00, 0x00, 0x00 };
- uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
- static uint8_t mf_nr_ar3 = 0;
-
- mf_auth[1] = block;
- AppendCrc14443a(mf_auth, 2);
-
+ uint8_t mf_auth[] = { 0x60,0x00, 0x00, 0x00 };
+ uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
+ uint8_t uid[10] = {0,0,0,0,0,0,0,0,0,0};
+ uint8_t par_list[8] = {0,0,0,0,0,0,0,0};
+ uint8_t ks_list[8] = {0,0,0,0,0,0,0,0};
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
+ uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
+
+ mf_auth[1] = block;
+ AppendCrc14443a(mf_auth, 2);
byte_t nt_diff = 0;
- uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
- static byte_t par_low = 0;
- bool led_on = TRUE;
- uint8_t uid[10] = {0};
- uint32_t cuid = 0;
uint32_t nt = 0;
- uint32_t previous_nt = 0;
- static uint32_t nt_attacked = 0;
- byte_t par_list[8] = {0x00};
- byte_t ks_list[8] = {0x00};
-
- static uint32_t sync_time = 0;
- static int32_t sync_cycles = 0;
+ uint32_t previous_nt = 0;
+ uint32_t halt_time = 0;
+ uint32_t cuid = 0;
+
int catch_up_cycles = 0;
int last_catch_up = 0;
+ int isOK = 0;
+
uint16_t elapsed_prng_sequences = 1;
uint16_t consecutive_resyncs = 0;
- int isOK = 0;
-
- #define PRNG_SEQUENCE_LENGTH (1 << 16);
- #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
- #define MAX_SYNC_TRIES 32
- #define NUM_DEBUG_INFOS 8 // per strategy
- #define MAX_STRATEGY 3
-
uint16_t unexpected_random = 0;
uint16_t sync_tries = 0;
- int16_t debug_info_nr = -1;
uint16_t strategy = 0;
- int32_t debug_info[MAX_STRATEGY+1][NUM_DEBUG_INFOS];
- uint32_t select_time = 0;
- uint32_t halt_time = 0;
- //uint8_t caller[7] = {0};
- // init to zero.
- for (uint16_t i = 0; i < MAX_STRATEGY+1; ++i)
- for(uint16_t j = 0; j < NUM_DEBUG_INFOS; ++j)
- debug_info[i][j] = 0;
+ static uint32_t nt_attacked = 0;
+ static uint32_t sync_time = 0;
+ static int32_t sync_cycles = 0;
+ static uint8_t par_low = 0;
+ static uint8_t mf_nr_ar3 = 0;
+
+ #define PRNG_SEQUENCE_LENGTH (1 << 16)
+ #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
+ #define MAX_SYNC_TRIES 32
+ #define MAX_STRATEGY 3
+
+ // free eventually allocated BigBuf memory
+ BigBuf_free(); BigBuf_Clear_ext(false);
+
+ clear_trace();
+ set_tracing(TRUE);
LED_A_ON();
- LED_B_OFF();
- LED_C_OFF();
if (first_try)
iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
-
- // free eventually allocated BigBuf memory. We want all for tracing.
- BigBuf_free();
- clear_trace();
- set_tracing(TRUE);
if (first_try) {
sync_time = GetCountSspClk() & 0xfffffff8;
- sync_cycles = PRNG_SEQUENCE_LENGTH; //65536; //0x10000 // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
+ sync_cycles = PRNG_SEQUENCE_LENGTH + 1100; //65536; //0x10000 // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
mf_nr_ar3 = 0;
nt_attacked = 0;
- par[0] = 0;
+
} else {
- // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
- mf_nr_ar3++;
+ // we were unsuccessful on a previous call.
+ // Try another READER nonce (first 3 parity bits remain the same)
+ ++mf_nr_ar3;
mf_nr_ar[3] = mf_nr_ar3;
par[0] = par_low;
}
+ LED_A_ON();
LED_C_ON();
for(uint16_t i = 0; TRUE; ++i) {
int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time);
if (len && MF_DBGLEVEL >= 3)
- Dbprintf("Unexpected response of %d bytes to halt command (additional debugging).\n", len);
+ Dbprintf("Unexpected response of %d bytes to halt command.", len);
}
if (strategy == 3) {
WDT_HIT();
}
- if (!iso14443a_select_card(uid, NULL, &cuid, true, 0)) {
- if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card\n");
+ if (!iso14443a_select_card(uid, NULL, &cuid, true, 0)) {
+ if (MF_DBGLEVEL >= 2) Dbprintf("Mifare: Can't select card\n");
continue;
}
- select_time = GetCountSspClk() & 0xfffffff8;
- elapsed_prng_sequences = 1;
+ // Sending timeslot of ISO14443a frame
- if (debug_info_nr == -1) {
-
- sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
- catch_up_cycles = 0;
-
- // if we missed the sync time already, advance to the next nonce repeat
- WDT_HIT();
- while(GetCountSspClk() > sync_time) {
- ++elapsed_prng_sequences;
- sync_time = (sync_time & 0xfffffff8) + sync_cycles;
- //sync_time += sync_cycles;
- //sync_time &= 0xfffffff8;
- }
- WDT_HIT();
- // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
- ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
- if (MF_DBGLEVEL == 2) Dbprintf("sync_time %d \n", sync_time);
-
- } else {
- // collect some information on tag nonces for debugging:
- #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH
- if (strategy == 0) {
- // nonce distances at fixed time after card select:
- sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES;
- } else if (strategy == 1) {
- // nonce distances at fixed time between authentications:
- sync_time = sync_time + DEBUG_FIXED_SYNC_CYCLES;
- } else if (strategy == 2) {
- // nonce distances at fixed time after halt:
- sync_time = halt_time + DEBUG_FIXED_SYNC_CYCLES;
- } else {
- // nonce_distances at fixed time after power on
- sync_time = DEBUG_FIXED_SYNC_CYCLES;
- }
- ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
- }
+ sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
+ catch_up_cycles = 0;
+
+ //catch_up_cycles = 0;
+
+ // if we missed the sync time already, advance to the next nonce repeat
+ while(GetCountSspClk() > sync_time) {
+ ++elapsed_prng_sequences;
+ sync_time = (sync_time & 0xfffffff8) + sync_cycles;
+ }
+ // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
+ ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
// Receive the (4 Byte) "random" nonce
if (!ReaderReceive(receivedAnswer, receivedAnswerPar))
continue;
- previous_nt = nt;
- nt = bytes_to_num(receivedAnswer, 4);
-
// Transmit reader nonce with fake par
ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
+ previous_nt = nt;
+ nt = bytes_to_num(receivedAnswer, 4);
+
if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
int nt_distance = dist_nt(previous_nt, nt);
if (nt_distance == 0) {
if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) {
isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
break;
- } else { // continue for a while, just to collect some debug info
- ++debug_info_nr;
- debug_info[strategy][debug_info_nr] = nt_distance;
- if (debug_info_nr == NUM_DEBUG_INFOS-1) {
- ++strategy;
- debug_info_nr = 0;
- }
+ } else {
continue;
- }
+ }
}
- sync_cycles = (sync_cycles - nt_distance/elapsed_prng_sequences);
+ sync_cycles = (sync_cycles - nt_distance)/elapsed_prng_sequences;
if (sync_cycles <= 0)
sync_cycles += PRNG_SEQUENCE_LENGTH;
- if (MF_DBGLEVEL >= 2)
+ if (MF_DBGLEVEL >= 3)
Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
continue;
} else {
last_catch_up = catch_up_cycles;
consecutive_resyncs = 0;
- }
- sync_cycles += catch_up_cycles;
+ }
if (consecutive_resyncs < 3) {
if (MF_DBGLEVEL >= 3)
continue;
}
- consecutive_resyncs = 0;
-
// Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
if (nt_diff == 0)
par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
- led_on = !led_on;
- if(led_on) LED_B_ON(); else LED_B_OFF();
-
par_list[nt_diff] = SwapBits(par[0], 8);
ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
nt_diff = (nt_diff + 1) & 0x07;
mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
par[0] = par_low;
+
} else {
+ // No NACK.
if (nt_diff == 0 && first_try) {
par[0]++;
if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
break;
}
} else {
+ // Why this?
par[0] = ((par[0] & 0x1F) + 1) | par_low;
}
}
+
+ consecutive_resyncs = 0;
}
mf_nr_ar[3] &= 0x1F;
WDT_HIT();
-
- if (isOK == -4) {
- for (uint16_t i = 0; i < MAX_STRATEGY+1; ++i)
- for(uint16_t j = 0; j < NUM_DEBUG_INFOS; ++j)
- Dbprintf("info[%d][%d] = %d", i, j, debug_info[i][j]);
- }
// reset sync_time.
if ( isOK == 1) {
par[0] = 0;
}
- byte_t buf[28] = {0x00};
- memcpy(buf + 0, uid, 4);
+ uint8_t buf[28] = {0x00};
+ num_to_bytes(cuid, 4, buf);
num_to_bytes(nt, 4, buf + 4);
memcpy(buf + 8, par_list, 8);
memcpy(buf + 16, ks_list, 8);
// bit 1 - trigger from first reader 7-bit request
LEDsoff();
+ // free eventually allocated BigBuf memory
+ BigBuf_free(); BigBuf_Clear_ext(false);
+
// init trace buffer
clear_trace();
set_tracing(TRUE);
iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
- // free eventually allocated BigBuf memory
- BigBuf_free();
-
// allocate the DMA buffer, used to stream samples from the FPGA
uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
uint8_t *data = dmaBuf;