-//-----------------------------------------------------------------------------\r
-// Miscellaneous routines for low frequency tag operations.\r
-// Tags supported here so far are Texas Instruments (TI), HID\r
-// Also routines for raw mode reading/simulating of LF waveform\r
-//\r
-//-----------------------------------------------------------------------------\r
-#include <proxmark3.h>\r
-#include "apps.h"\r
-#include "hitag2.h"\r
-#include "../common/crc16.c"\r
-\r
-int sprintf(char *dest, const char *fmt, ...);\r
-\r
-void AcquireRawAdcSamples125k(BOOL at134khz)\r
-{\r
- if(at134khz) {\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
- } else {\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
- }\r
-\r
- // Connect the A/D to the peak-detected low-frequency path.\r
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);\r
-\r
- // Give it a bit of time for the resonant antenna to settle.\r
- SpinDelay(50);\r
-\r
- // Now set up the SSC to get the ADC samples that are now streaming at us.\r
- FpgaSetupSsc();\r
-\r
- // Now call the acquisition routine\r
- DoAcquisition125k(at134khz);\r
-}\r
-\r
-// split into two routines so we can avoid timing issues after sending commands //\r
-void DoAcquisition125k(BOOL at134khz)\r
-{\r
- BYTE *dest = (BYTE *)BigBuf;\r
- int n = sizeof(BigBuf);\r
- int i;\r
- char output_string[64];\r
- \r
- memset(dest,0,n);\r
- i = 0;\r
- for(;;) {\r
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {\r
- AT91C_BASE_SSC->SSC_THR = 0x43;\r
- LED_D_ON();\r
- }\r
- if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {\r
- dest[i] = (BYTE)AT91C_BASE_SSC->SSC_RHR;\r
- i++;\r
- LED_D_OFF();\r
- if (i >= n) break;\r
- }\r
- }\r
- sprintf(output_string, "read samples, dest[0]=%x dest[1]=%x at134khz=%d",\r
- dest[0], dest[1], at134khz);\r
- DbpString(output_string);\r
-}\r
-\r
-void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYTE *command)\r
-{\r
- BOOL at134khz;\r
-\r
- /* Make sure the tag is reset */\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
- SpinDelay(2500);\r
- \r
- // see if 'h' was specified\r
- if(command[strlen((char *) command) - 1] == 'h')\r
- at134khz= TRUE;\r
- else\r
- at134khz= FALSE;\r
-\r
- if(at134khz) {\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
- } else {\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
- }\r
-\r
- // Give it a bit of time for the resonant antenna to settle.\r
- SpinDelay(50);\r
- // And a little more time for the tag to fully power up\r
- SpinDelay(2000);\r
-\r
- // Now set up the SSC to get the ADC samples that are now streaming at us.\r
- FpgaSetupSsc();\r
-\r
- // now modulate the reader field\r
- while(*command != '\0' && *command != ' ')\r
- {\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
- LED_D_OFF();\r
- SpinDelayUs(delay_off);\r
- if(at134khz) {\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
- } else {\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
- }\r
- LED_D_ON();\r
- if(*(command++) == '0') {\r
- SpinDelayUs(period_0);\r
- } else {\r
- SpinDelayUs(period_1);\r
- }\r
- }\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
- LED_D_OFF();\r
- SpinDelayUs(delay_off);\r
- if(at134khz) {\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
- } else {\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
- }\r
-\r
- // now do the read\r
- DoAcquisition125k(at134khz);\r
-}\r
-\r
-/* blank r/w tag data stream\r
-...0000000000000000 01111111\r
-1010101010101010101010101010101010101010101010101010101010101010\r
-0011010010100001\r
-01111111\r
-101010101010101[0]000...\r
-\r
-[5555fe852c5555555555555555fe0000]\r
-*/\r
-void ReadTItag()\r
-{\r
- // some hardcoded initial params\r
- // when we read a TI tag we sample the zerocross line at 2Mhz\r
- // TI tags modulate a 1 as 16 cycles of 123.2Khz\r
- // TI tags modulate a 0 as 16 cycles of 134.2Khz\r
- #define FSAMPLE 2000000\r
- #define FREQLO 123200\r
- #define FREQHI 134200\r
-\r
- signed char *dest = (signed char *)BigBuf;\r
- int n = sizeof(BigBuf);\r
-// int *dest = GraphBuffer;\r
-// int n = GraphTraceLen;\r
-\r
- // 128 bit shift register [shift3:shift2:shift1:shift0]\r
- DWORD shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;\r
-\r
- int i, cycles=0, samples=0;\r
- // how many sample points fit in 16 cycles of each frequency\r
- DWORD sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;\r
- // when to tell if we're close enough to one freq or another\r
- DWORD threshold = (sampleslo - sampleshi + 1)>>1;\r
-\r
- // TI tags charge at 134.2Khz\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r
-\r
- // Place FPGA in passthrough mode, in this mode the CROSS_LO line\r
- // connects to SSP_DIN and the SSP_DOUT logic level controls\r
- // whether we're modulating the antenna (high)\r
- // or listening to the antenna (low)\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);\r
-\r
- // get TI tag data into the buffer\r
- AcquireTiType();\r
-\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
-\r
- for (i=0; i<n-1; i++) {\r
- // count cycles by looking for lo to hi zero crossings\r
- if ( (dest[i]<0) && (dest[i+1]>0) ) {\r
- cycles++;\r
- // after 16 cycles, measure the frequency\r
- if (cycles>15) {\r
- cycles=0;\r
- samples=i-samples; // number of samples in these 16 cycles\r
-\r
- // TI bits are coming to us lsb first so shift them\r
- // right through our 128 bit right shift register\r
- shift0 = (shift0>>1) | (shift1 << 31);\r
- shift1 = (shift1>>1) | (shift2 << 31);\r
- shift2 = (shift2>>1) | (shift3 << 31);\r
- shift3 >>= 1;\r
-\r
- // check if the cycles fall close to the number\r
- // expected for either the low or high frequency\r
- if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {\r
- // low frequency represents a 1\r
- shift3 |= (1<<31);\r
- } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {\r
- // high frequency represents a 0\r
- } else {\r
- // probably detected a gay waveform or noise\r
- // use this as gaydar or discard shift register and start again\r
- shift3 = shift2 = shift1 = shift0 = 0;\r
- }\r
- samples = i;\r
-\r
- // for each bit we receive, test if we've detected a valid tag\r
-\r
- // if we see 17 zeroes followed by 6 ones, we might have a tag\r
- // remember the bits are backwards\r
- if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {\r
- // if start and end bytes match, we have a tag so break out of the loop\r
- if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {\r
- cycles = 0xF0B; //use this as a flag (ugly but whatever)\r
- break;\r
- }\r
- }\r
- }\r
- }\r
- }\r
-\r
- // if flag is set we have a tag\r
- if (cycles!=0xF0B) {\r
- DbpString("Info: No valid tag detected.");\r
- } else {\r
- // put 64 bit data into shift1 and shift0\r
- shift0 = (shift0>>24) | (shift1 << 8);\r
- shift1 = (shift1>>24) | (shift2 << 8);\r
-\r
- // align 16 bit crc into lower half of shift2\r
- shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;\r
-\r
- // if r/w tag, check ident match\r
- if ( shift3&(1<<15) ) {\r
- DbpString("Info: TI tag is rewriteable");\r
- // only 15 bits compare, last bit of ident is not valid\r
- if ( ((shift3>>16)^shift0)&0x7fff ) {\r
- DbpString("Error: Ident mismatch!");\r
- } else {\r
- DbpString("Info: TI tag ident is valid");\r
- }\r
- } else {\r
- DbpString("Info: TI tag is readonly");\r
- }\r
-\r
- // WARNING the order of the bytes in which we calc crc below needs checking\r
- // i'm 99% sure the crc algorithm is correct, but it may need to eat the\r
- // bytes in reverse or something\r
- // calculate CRC\r
- DWORD crc=0;\r
-\r
- crc = update_crc16(crc, (shift0)&0xff);\r
- crc = update_crc16(crc, (shift0>>8)&0xff);\r
- crc = update_crc16(crc, (shift0>>16)&0xff);\r
- crc = update_crc16(crc, (shift0>>24)&0xff);\r
- crc = update_crc16(crc, (shift1)&0xff);\r
- crc = update_crc16(crc, (shift1>>8)&0xff);\r
- crc = update_crc16(crc, (shift1>>16)&0xff);\r
- crc = update_crc16(crc, (shift1>>24)&0xff);\r
-\r
- char output_string[64];\r
- sprintf(output_string, "Info: Tag data_hi=%x, data_lo=%x, crc=%x",\r
- (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);\r
- DbpString(output_string);\r
- if (crc != (shift2&0xffff)) {\r
- sprintf(output_string, "Error: CRC mismatch, expected %x", (unsigned int)crc);\r
- DbpString(output_string);\r
- } else {\r
- DbpString("Info: CRC is good");\r
- }\r
- }\r
-}\r
-\r
-void WriteTIbyte(BYTE b)\r
-{\r
- int i = 0;\r
-\r
- // modulate 8 bits out to the antenna\r
- for (i=0; i<8; i++)\r
- {\r
- if (b&(1<<i)) {\r
- // stop modulating antenna\r
- LOW(GPIO_SSC_DOUT);\r
- SpinDelayUs(1000);\r
- // modulate antenna\r
- HIGH(GPIO_SSC_DOUT);\r
- SpinDelayUs(1000);\r
- } else {\r
- // stop modulating antenna\r
- LOW(GPIO_SSC_DOUT);\r
- SpinDelayUs(300);\r
- // modulate antenna\r
- HIGH(GPIO_SSC_DOUT);\r
- SpinDelayUs(1700);\r
- }\r
- }\r
-}\r
-\r
-void AcquireTiType(void)\r
-{\r
- int i, j, n;\r
- // tag transmission is <20ms, sampling at 2M gives us 40K samples max\r
- // each sample is 1 bit stuffed into a DWORD so we need 1250 DWORDS\r
- #define TIBUFLEN 1250\r
-\r
- // clear buffer\r
- memset(BigBuf,0,sizeof(BigBuf));\r
-\r
- // Set up the synchronous serial port\r
- AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;\r
- AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;\r
-\r
- // steal this pin from the SSP and use it to control the modulation\r
- AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;\r
- AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;\r
-\r
- AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;\r
- AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;\r
-\r
- // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long\r
- // 48/2 = 24 MHz clock must be divided by 12\r
- AT91C_BASE_SSC->SSC_CMR = 12;\r
-\r
- AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);\r
- AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;\r
- AT91C_BASE_SSC->SSC_TCMR = 0;\r
- AT91C_BASE_SSC->SSC_TFMR = 0;\r
-\r
- LED_D_ON();\r
-\r
- // modulate antenna\r
- HIGH(GPIO_SSC_DOUT);\r
-\r
- // Charge TI tag for 50ms.\r
- SpinDelay(50);\r
-\r
- // stop modulating antenna and listen\r
- LOW(GPIO_SSC_DOUT);\r
-\r
- LED_D_OFF();\r
-\r
- i = 0;\r
- for(;;) {\r
- if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {\r
- BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer\r
- i++; if(i >= TIBUFLEN) break;\r
- }\r
- WDT_HIT();\r
- }\r
-\r
- // return stolen pin to SSP\r
- AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;\r
- AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;\r
-\r
- char *dest = (char *)BigBuf;\r
- n = TIBUFLEN*32;\r
- // unpack buffer\r
- for (i=TIBUFLEN-1; i>=0; i--) {\r
-// DbpIntegers(0, 0, BigBuf[i]);\r
- for (j=0; j<32; j++) {\r
- if(BigBuf[i] & (1 << j)) {\r
- dest[--n] = 1;\r
- } else {\r
- dest[--n] = -1;\r
- }\r
- }\r
- }\r
-}\r
-\r
-// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc\r
-// if crc provided, it will be written with the data verbatim (even if bogus)\r
-// if not provided a valid crc will be computed from the data and written.\r
-void WriteTItag(DWORD idhi, DWORD idlo, WORD crc)\r
-{\r
-\r
- // WARNING the order of the bytes in which we calc crc below needs checking\r
- // i'm 99% sure the crc algorithm is correct, but it may need to eat the\r
- // bytes in reverse or something\r
-\r
- if(crc == 0) {\r
- crc = update_crc16(crc, (idlo)&0xff);\r
- crc = update_crc16(crc, (idlo>>8)&0xff);\r
- crc = update_crc16(crc, (idlo>>16)&0xff);\r
- crc = update_crc16(crc, (idlo>>24)&0xff);\r
- crc = update_crc16(crc, (idhi)&0xff);\r
- crc = update_crc16(crc, (idhi>>8)&0xff);\r
- crc = update_crc16(crc, (idhi>>16)&0xff);\r
- crc = update_crc16(crc, (idhi>>24)&0xff);\r
- }\r
- char output_string[64];\r
- sprintf(output_string, "Writing the following data to tag: %x, %x, %x",\r
- (unsigned int) idhi, (unsigned int) idlo, crc);\r
- DbpString(output_string);\r
-\r
- // TI tags charge at 134.2Khz\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r
- // Place FPGA in passthrough mode, in this mode the CROSS_LO line\r
- // connects to SSP_DIN and the SSP_DOUT logic level controls\r
- // whether we're modulating the antenna (high)\r
- // or listening to the antenna (low)\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);\r
- LED_A_ON();\r
-\r
- // steal this pin from the SSP and use it to control the modulation\r
- AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;\r
- AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;\r
-\r
- // writing algorithm:\r
- // a high bit consists of a field off for 1ms and field on for 1ms\r
- // a low bit consists of a field off for 0.3ms and field on for 1.7ms\r
- // initiate a charge time of 50ms (field on) then immediately start writing bits\r
- // start by writing 0xBB (keyword) and 0xEB (password)\r
- // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)\r
- // finally end with 0x0300 (write frame)\r
- // all data is sent lsb firts\r
- // finish with 15ms programming time\r
-\r
- // modulate antenna\r
- HIGH(GPIO_SSC_DOUT);\r
- SpinDelay(50); // charge time\r
-\r
- WriteTIbyte(0xbb); // keyword\r
- WriteTIbyte(0xeb); // password\r
- WriteTIbyte( (idlo )&0xff );\r
- WriteTIbyte( (idlo>>8 )&0xff );\r
- WriteTIbyte( (idlo>>16)&0xff );\r
- WriteTIbyte( (idlo>>24)&0xff );\r
- WriteTIbyte( (idhi )&0xff );\r
- WriteTIbyte( (idhi>>8 )&0xff );\r
- WriteTIbyte( (idhi>>16)&0xff );\r
- WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo\r
- WriteTIbyte( (crc )&0xff ); // crc lo\r
- WriteTIbyte( (crc>>8 )&0xff ); // crc hi\r
- WriteTIbyte(0x00); // write frame lo\r
- WriteTIbyte(0x03); // write frame hi\r
- HIGH(GPIO_SSC_DOUT);\r
- SpinDelay(50); // programming time\r
-\r
- LED_A_OFF();\r
-\r
- // get TI tag data into the buffer\r
- AcquireTiType();\r
-\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
- DbpString("Now use tiread to check");\r
-}\r
-\r
-void SimulateTagLowFrequency(int period, int ledcontrol)\r
-{\r
- int i;\r
- BYTE *tab = (BYTE *)BigBuf;\r
-\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);\r
-\r
- AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;\r
-\r
- AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;\r
- AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;\r
-\r
-#define SHORT_COIL() LOW(GPIO_SSC_DOUT)\r
-#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)\r
-\r
- i = 0;\r
- for(;;) {\r
- while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {\r
- if(BUTTON_PRESS()) {\r
- DbpString("Stopped");\r
- return;\r
- }\r
- WDT_HIT();\r
- }\r
-\r
- if (ledcontrol)\r
- LED_D_ON();\r
-\r
- if(tab[i])\r
- OPEN_COIL();\r
- else\r
- SHORT_COIL();\r
-\r
- if (ledcontrol)\r
- LED_D_OFF();\r
-\r
- while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {\r
- if(BUTTON_PRESS()) {\r
- DbpString("Stopped");\r
- return;\r
- }\r
- WDT_HIT();\r
- }\r
-\r
- i++;\r
- if(i == period) i = 0;\r
- }\r
-}\r
-\r
-/* Provides a framework for bidirectional LF tag communication\r
- * Encoding is currently Hitag2, but the general idea can probably\r
- * be transferred to other encodings.\r
- * \r
- * The new FPGA code will, for the LF simulator mode, give on SSC_FRAME\r
- * (PA15) a thresholded version of the signal from the ADC. Setting the\r
- * ADC path to the low frequency peak detection signal, will enable a\r
- * somewhat reasonable receiver for modulation on the carrier signal\r
- * that is generated by the reader. The signal is low when the reader\r
- * field is switched off, and high when the reader field is active. Due\r
- * to the way that the signal looks like, mostly only the rising edge is\r
- * useful, your mileage may vary.\r
- * \r
- * Neat perk: PA15 can not only be used as a bit-banging GPIO, but is also\r
- * TIOA1, which can be used as the capture input for timer 1. This should\r
- * make it possible to measure the exact edge-to-edge time, without processor\r
- * intervention.\r
- * \r
- * Arguments: divisor is the divisor to be sent to the FPGA (e.g. 95 for 125kHz)\r
- * t0 is the carrier frequency cycle duration in terms of MCK (384 for 125kHz)\r
- * \r
- * The following defines are in carrier periods: \r
- */\r
-#define HITAG_T_0_MIN 15 /* T[0] should be 18..22 */ \r
-#define HITAG_T_1_MIN 24 /* T[1] should be 26..30 */\r
-#define HITAG_T_EOF 40 /* T_EOF should be > 36 */\r
-#define HITAG_T_WRESP 208 /* T_wresp should be 204..212 */\r
-\r
-static void hitag_handle_frame(int t0, int frame_len, char *frame);\r
-//#define DEBUG_RA_VALUES 1\r
-#define DEBUG_FRAME_CONTENTS 1\r
-void SimulateTagLowFrequencyBidir(int divisor, int t0)\r
-{\r
-#if DEBUG_RA_VALUES || DEBUG_FRAME_CONTENTS\r
- int i = 0;\r
-#endif\r
- char frame[10];\r
- int frame_pos=0;\r
- \r
- DbpString("Starting Hitag2 emulator, press button to end");\r
- hitag2_init();\r
- \r
- /* Set up simulator mode, frequency divisor which will drive the FPGA\r
- * and analog mux selection.\r
- */\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);\r
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);\r
- RELAY_OFF();\r
- \r
- /* Set up Timer 1:\r
- * Capture mode, timer source MCK/2 (TIMER_CLOCK1), TIOA is external trigger,\r
- * external trigger rising edge, load RA on rising edge of TIOA, load RB on rising\r
- * edge of TIOA. Assign PA15 to TIOA1 (peripheral B)\r
- */\r
- \r
- AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);\r
- AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;\r
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;\r
- AT91C_BASE_TC1->TC_CMR = TC_CMR_TCCLKS_TIMER_CLOCK1 |\r
- AT91C_TC_ETRGEDG_RISING |\r
- AT91C_TC_ABETRG |\r
- AT91C_TC_LDRA_RISING |\r
- AT91C_TC_LDRB_RISING;\r
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN |\r
- AT91C_TC_SWTRG;\r
- \r
- /* calculate the new value for the carrier period in terms of TC1 values */\r
- t0 = t0/2;\r
- \r
- int overflow = 0;\r
- while(!BUTTON_PRESS()) {\r
- WDT_HIT();\r
- if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {\r
- int ra = AT91C_BASE_TC1->TC_RA;\r
- if((ra > t0*HITAG_T_EOF) | overflow) ra = t0*HITAG_T_EOF+1;\r
-#if DEBUG_RA_VALUES\r
- if(ra > 255 || overflow) ra = 255;\r
- ((char*)BigBuf)[i] = ra;\r
- i = (i+1) % 8000;\r
-#endif\r
- \r
- if(overflow || (ra > t0*HITAG_T_EOF) || (ra < t0*HITAG_T_0_MIN)) {\r
- /* Ignore */\r
- } else if(ra >= t0*HITAG_T_1_MIN ) {\r
- /* '1' bit */\r
- if(frame_pos < 8*sizeof(frame)) {\r
- frame[frame_pos / 8] |= 1<<( 7-(frame_pos%8) );\r
- frame_pos++;\r
- }\r
- } else if(ra >= t0*HITAG_T_0_MIN) {\r
- /* '0' bit */\r
- if(frame_pos < 8*sizeof(frame)) {\r
- frame[frame_pos / 8] |= 0<<( 7-(frame_pos%8) );\r
- frame_pos++;\r
- }\r
- }\r
- \r
- overflow = 0;\r
- LED_D_ON();\r
- } else {\r
- if(AT91C_BASE_TC1->TC_CV > t0*HITAG_T_EOF) {\r
- /* Minor nuisance: In Capture mode, the timer can not be\r
- * stopped by a Compare C. There's no way to stop the clock\r
- * in software, so we'll just have to note the fact that an\r
- * overflow happened and the next loaded timer value might\r
- * have wrapped. Also, this marks the end of frame, and the\r
- * still running counter can be used to determine the correct\r
- * time for the start of the reply.\r
- */ \r
- overflow = 1;\r
- \r
- if(frame_pos > 0) {\r
- /* Have a frame, do something with it */\r
-#if DEBUG_FRAME_CONTENTS\r
- ((char*)BigBuf)[i++] = frame_pos;\r
- memcpy( ((char*)BigBuf)+i, frame, 7);\r
- i+=7;\r
- i = i % sizeof(BigBuf);\r
-#endif\r
- hitag_handle_frame(t0, frame_pos, frame);\r
- memset(frame, 0, sizeof(frame));\r
- }\r
- frame_pos = 0;\r
-\r
- }\r
- LED_D_OFF();\r
- }\r
- }\r
- DbpString("All done");\r
-}\r
-\r
-static void hitag_send_bit(int t0, int bit) {\r
- if(bit == 1) {\r
- /* Manchester: Loaded, then unloaded */\r
- LED_A_ON();\r
- SHORT_COIL();\r
- while(AT91C_BASE_TC1->TC_CV < t0*15);\r
- OPEN_COIL();\r
- while(AT91C_BASE_TC1->TC_CV < t0*31);\r
- LED_A_OFF();\r
- } else if(bit == 0) {\r
- /* Manchester: Unloaded, then loaded */\r
- LED_B_ON();\r
- OPEN_COIL();\r
- while(AT91C_BASE_TC1->TC_CV < t0*15);\r
- SHORT_COIL();\r
- while(AT91C_BASE_TC1->TC_CV < t0*31);\r
- LED_B_OFF();\r
- }\r
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; /* Reset clock for the next bit */\r
- \r
-}\r
-static void hitag_send_frame(int t0, int frame_len, const char const * frame, int fdt)\r
-{\r
- OPEN_COIL();\r
- AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;\r
- \r
- /* Wait for HITAG_T_WRESP carrier periods after the last reader bit,\r
- * not that since the clock counts since the rising edge, but T_wresp is\r
- * with respect to the falling edge, we need to wait actually (T_wresp - T_g)\r
- * periods. The gap time T_g varies (4..10).\r
- */\r
- while(AT91C_BASE_TC1->TC_CV < t0*(fdt-8));\r
-\r
- int saved_cmr = AT91C_BASE_TC1->TC_CMR;\r
- AT91C_BASE_TC1->TC_CMR &= ~AT91C_TC_ETRGEDG; /* Disable external trigger for the clock */\r
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; /* Reset the clock and use it for response timing */\r
- \r
- int i;\r
- for(i=0; i<5; i++)\r
- hitag_send_bit(t0, 1); /* Start of frame */\r
- \r
- for(i=0; i<frame_len; i++) {\r
- hitag_send_bit(t0, !!(frame[i/ 8] & (1<<( 7-(i%8) ))) );\r
- }\r
- \r
- OPEN_COIL();\r
- AT91C_BASE_TC1->TC_CMR = saved_cmr;\r
-}\r
-\r
-/* Callback structure to cleanly separate tag emulation code from the radio layer. */\r
-static int hitag_cb(const char* response_data, const int response_length, const int fdt, void *cb_cookie)\r
-{\r
- hitag_send_frame(*(int*)cb_cookie, response_length, response_data, fdt);\r
- return 0;\r
-}\r
-/* Frame length in bits, frame contents in MSBit first format */\r
-static void hitag_handle_frame(int t0, int frame_len, char *frame)\r
-{\r
- hitag2_handle_command(frame, frame_len, hitag_cb, &t0);\r
-}\r
-\r
-// compose fc/8 fc/10 waveform\r
-static void fc(int c, int *n) {\r
- BYTE *dest = (BYTE *)BigBuf;\r
- int idx;\r
-\r
- // for when we want an fc8 pattern every 4 logical bits\r
- if(c==0) {\r
- dest[((*n)++)]=1;\r
- dest[((*n)++)]=1;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- }\r
- // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples\r
- if(c==8) {\r
- for (idx=0; idx<6; idx++) {\r
- dest[((*n)++)]=1;\r
- dest[((*n)++)]=1;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- }\r
- }\r
-\r
- // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples\r
- if(c==10) {\r
- for (idx=0; idx<5; idx++) {\r
- dest[((*n)++)]=1;\r
- dest[((*n)++)]=1;\r
- dest[((*n)++)]=1;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- }\r
- }\r
-}\r
-\r
-// prepare a waveform pattern in the buffer based on the ID given then\r
-// simulate a HID tag until the button is pressed\r
-void CmdHIDsimTAG(int hi, int lo, int ledcontrol)\r
-{\r
- int n=0, i=0;\r
- /*\r
- HID tag bitstream format\r
- The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits\r
- A 1 bit is represented as 6 fc8 and 5 fc10 patterns\r
- A 0 bit is represented as 5 fc10 and 6 fc8 patterns\r
- A fc8 is inserted before every 4 bits\r
- A special start of frame pattern is used consisting a0b0 where a and b are neither 0\r
- nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)\r
- */\r
-\r
- if (hi>0xFFF) {\r
- DbpString("Tags can only have 44 bits.");\r
- return;\r
- }\r
- fc(0,&n);\r
- // special start of frame marker containing invalid bit sequences\r
- fc(8, &n); fc(8, &n); // invalid\r
- fc(8, &n); fc(10, &n); // logical 0\r
- fc(10, &n); fc(10, &n); // invalid\r
- fc(8, &n); fc(10, &n); // logical 0\r
-\r
- WDT_HIT();\r
- // manchester encode bits 43 to 32\r
- for (i=11; i>=0; i--) {\r
- if ((i%4)==3) fc(0,&n);\r
- if ((hi>>i)&1) {\r
- fc(10, &n); fc(8, &n); // low-high transition\r
- } else {\r
- fc(8, &n); fc(10, &n); // high-low transition\r
- }\r
- }\r
-\r
- WDT_HIT();\r
- // manchester encode bits 31 to 0\r
- for (i=31; i>=0; i--) {\r
- if ((i%4)==3) fc(0,&n);\r
- if ((lo>>i)&1) {\r
- fc(10, &n); fc(8, &n); // low-high transition\r
- } else {\r
- fc(8, &n); fc(10, &n); // high-low transition\r
- }\r
- }\r
-\r
- if (ledcontrol)\r
- LED_A_ON();\r
- SimulateTagLowFrequency(n, ledcontrol);\r
-\r
- if (ledcontrol)\r
- LED_A_OFF();\r
-}\r
-\r
-\r
-// loop to capture raw HID waveform then FSK demodulate the TAG ID from it\r
-void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)\r
-{\r
- BYTE *dest = (BYTE *)BigBuf;\r
- int m=0, n=0, i=0, idx=0, found=0, lastval=0;\r
- DWORD hi=0, lo=0;\r
-\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
-\r
- // Connect the A/D to the peak-detected low-frequency path.\r
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);\r
-\r
- // Give it a bit of time for the resonant antenna to settle.\r
- SpinDelay(50);\r
-\r
- // Now set up the SSC to get the ADC samples that are now streaming at us.\r
- FpgaSetupSsc();\r
-\r
- for(;;) {\r
- WDT_HIT();\r
- if (ledcontrol)\r
- LED_A_ON();\r
- if(BUTTON_PRESS()) {\r
- DbpString("Stopped");\r
- if (ledcontrol)\r
- LED_A_OFF();\r
- return;\r
- }\r
-\r
- i = 0;\r
- m = sizeof(BigBuf);\r
- memset(dest,128,m);\r
- for(;;) {\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {\r
- AT91C_BASE_SSC->SSC_THR = 0x43;\r
- if (ledcontrol)\r
- LED_D_ON();\r
- }\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {\r
- dest[i] = (BYTE)AT91C_BASE_SSC->SSC_RHR;\r
- // we don't care about actual value, only if it's more or less than a\r
- // threshold essentially we capture zero crossings for later analysis\r
- if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;\r
- i++;\r
- if (ledcontrol)\r
- LED_D_OFF();\r
- if(i >= m) {\r
- break;\r
- }\r
- }\r
- }\r
-\r
- // FSK demodulator\r
-\r
- // sync to first lo-hi transition\r
- for( idx=1; idx<m; idx++) {\r
- if (dest[idx-1]<dest[idx])\r
- lastval=idx;\r
- break;\r
- }\r
- WDT_HIT();\r
-\r
- // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)\r
- // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere\r
- // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10\r
- for( i=0; idx<m; idx++) {\r
- if (dest[idx-1]<dest[idx]) {\r
- dest[i]=idx-lastval;\r
- if (dest[i] <= 8) {\r
- dest[i]=1;\r
- } else {\r
- dest[i]=0;\r
- }\r
-\r
- lastval=idx;\r
- i++;\r
- }\r
- }\r
- m=i;\r
- WDT_HIT();\r
-\r
- // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns\r
- lastval=dest[0];\r
- idx=0;\r
- i=0;\r
- n=0;\r
- for( idx=0; idx<m; idx++) {\r
- if (dest[idx]==lastval) {\r
- n++;\r
- } else {\r
- // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,\r
- // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets\r
- // swallowed up by rounding\r
- // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding\r
- // special start of frame markers use invalid manchester states (no transitions) by using sequences\r
- // like 111000\r
- if (dest[idx-1]) {\r
- n=(n+1)/6; // fc/8 in sets of 6\r
- } else {\r
- n=(n+1)/5; // fc/10 in sets of 5\r
- }\r
- switch (n) { // stuff appropriate bits in buffer\r
- case 0:\r
- case 1: // one bit\r
- dest[i++]=dest[idx-1];\r
- break;\r
- case 2: // two bits\r
- dest[i++]=dest[idx-1];\r
- dest[i++]=dest[idx-1];\r
- break;\r
- case 3: // 3 bit start of frame markers\r
- dest[i++]=dest[idx-1];\r
- dest[i++]=dest[idx-1];\r
- dest[i++]=dest[idx-1];\r
- break;\r
- // When a logic 0 is immediately followed by the start of the next transmisson\r
- // (special pattern) a pattern of 4 bit duration lengths is created.\r
- case 4:\r
- dest[i++]=dest[idx-1];\r
- dest[i++]=dest[idx-1];\r
- dest[i++]=dest[idx-1];\r
- dest[i++]=dest[idx-1];\r
- break;\r
- default: // this shouldn't happen, don't stuff any bits\r
- break;\r
- }\r
- n=0;\r
- lastval=dest[idx];\r
- }\r
- }\r
- m=i;\r
- WDT_HIT();\r
-\r
- // final loop, go over previously decoded manchester data and decode into usable tag ID\r
- // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0\r
- for( idx=0; idx<m-6; idx++) {\r
- // search for a start of frame marker\r
- if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )\r
- {\r
- found=1;\r
- idx+=6;\r
- if (found && (hi|lo)) {\r
- char output_string[64];\r
- sprintf(output_string, "TAG ID: %x %x %x", \r
- (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);\r
- DbpString(output_string);\r
- /* if we're only looking for one tag */\r
- if (findone)\r
- {\r
- *high = hi;\r
- *low = lo;\r
- return;\r
- }\r
- hi=0;\r
- lo=0;\r
- found=0;\r
- }\r
- }\r
- if (found) {\r
- if (dest[idx] && (!dest[idx+1]) ) {\r
- hi=(hi<<1)|(lo>>31);\r
- lo=(lo<<1)|0;\r
- } else if ( (!dest[idx]) && dest[idx+1]) {\r
- hi=(hi<<1)|(lo>>31);\r
- lo=(lo<<1)|1;\r
- } else {\r
- found=0;\r
- hi=0;\r
- lo=0;\r
- }\r
- idx++;\r
- }\r
- if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )\r
- {\r
- found=1;\r
- idx+=6;\r
- if (found && (hi|lo)) {\r
- char output_string[64];\r
- sprintf(output_string, "TAG ID: %x %x %x", \r
- (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);\r
- DbpString(output_string);\r
- /* if we're only looking for one tag */\r
- if (findone)\r
- {\r
- *high = hi;\r
- *low = lo;\r
- return;\r
- }\r
- hi=0;\r
- lo=0;\r
- found=0;\r
- }\r
- }\r
- }\r
- WDT_HIT();\r
- }\r
-}\r
+//-----------------------------------------------------------------------------
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// Miscellaneous routines for low frequency tag operations.
+// Tags supported here so far are Texas Instruments (TI), HID
+// Also routines for raw mode reading/simulating of LF waveform
+//-----------------------------------------------------------------------------
+
+#include "../include/proxmark3.h"
+#include "apps.h"
+#include "util.h"
+#include "../include/hitag2.h"
+#include "../common/crc16.h"
+#include "string.h"
+#include "crapto1.h"
+#include "mifareutil.h"
+
+// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
+// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
+// Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
+// T0 = TIMER_CLOCK1 / 125000 = 192
+#define T0 192
+
+#define SHORT_COIL() LOW(GPIO_SSC_DOUT)
+#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
+
+void LFSetupFPGAForADC(int divisor, bool lf_field)
+{
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
+ else if (divisor == 0)
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ else
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
+
+ // Connect the A/D to the peak-detected low-frequency path.
+ SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+
+ // Give it a bit of time for the resonant antenna to settle.
+ SpinDelay(150);
+
+ // Now set up the SSC to get the ADC samples that are now streaming at us.
+ FpgaSetupSsc();
+}
+
+void AcquireRawAdcSamples125k(int divisor)
+{
+ LFSetupFPGAForADC(divisor, true);
+ DoAcquisition125k();
+}
+
+void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
+{
+ LFSetupFPGAForADC(divisor, false);
+ DoAcquisition125k_threshold(trigger_threshold);
+}
+
+// split into two routines so we can avoid timing issues after sending commands //
+void DoAcquisition125k_internal(int trigger_threshold, bool silent)
+{
+ uint8_t *dest = get_bigbufptr_recvrespbuf();
+ uint16_t i = 0;
+ memset(dest, 0x00, FREE_BUFFER_SIZE);
+
+ for(;;) {
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+ AT91C_BASE_SSC->SSC_THR = 0x43;
+ LED_D_ON();
+ }
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+ dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ LED_D_OFF();
+ if (trigger_threshold != -1 && dest[i] < trigger_threshold)
+ continue;
+ else
+ trigger_threshold = -1;
+ if (++i >= FREE_BUFFER_SIZE) break;
+ }
+ }
+ if (!silent){
+ Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
+ dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
+ }
+}
+void DoAcquisition125k_threshold(int trigger_threshold) {
+ DoAcquisition125k_internal(trigger_threshold, true);
+}
+void DoAcquisition125k() {
+ DoAcquisition125k_internal(-1, true);
+}
+
+void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
+{
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
+ /* Make sure the tag is reset */
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(2500);
+
+ int divisor = 95; // 125 KHz
+ // see if 'h' was specified
+ if (command[strlen((char *) command) - 1] == 'h')
+ divisor = 88; // 134.8 KHz
+
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ // Give it a bit of time for the resonant antenna to settle.
+ SpinDelay(2000);
+
+ // Now set up the SSC to get the ADC samples that are now streaming at us.
+ FpgaSetupSsc();
+
+ // now modulate the reader field
+ while(*command != '\0' && *command != ' ') {
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
+ SpinDelayUs(delay_off);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ LED_D_ON();
+ if(*(command++) == '0')
+ SpinDelayUs(period_0);
+ else
+ SpinDelayUs(period_1);
+ }
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
+ SpinDelayUs(delay_off);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // now do the read
+ DoAcquisition125k(-1);
+}
+
+/* blank r/w tag data stream
+...0000000000000000 01111111
+1010101010101010101010101010101010101010101010101010101010101010
+0011010010100001
+01111111
+101010101010101[0]000...
+
+[5555fe852c5555555555555555fe0000]
+*/
+void ReadTItag(void)
+{
+ // some hardcoded initial params
+ // when we read a TI tag we sample the zerocross line at 2Mhz
+ // TI tags modulate a 1 as 16 cycles of 123.2Khz
+ // TI tags modulate a 0 as 16 cycles of 134.2Khz
+ #define FSAMPLE 2000000
+ #define FREQLO 123200
+ #define FREQHI 134200
+
+ signed char *dest = (signed char *)BigBuf;
+ int n = sizeof(BigBuf);
+// int *dest = GraphBuffer;
+// int n = GraphTraceLen;
+
+ // 128 bit shift register [shift3:shift2:shift1:shift0]
+ uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
+
+ int i, cycles=0, samples=0;
+ // how many sample points fit in 16 cycles of each frequency
+ uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
+ // when to tell if we're close enough to one freq or another
+ uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
+
+ // TI tags charge at 134.2Khz
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
+
+ // Place FPGA in passthrough mode, in this mode the CROSS_LO line
+ // connects to SSP_DIN and the SSP_DOUT logic level controls
+ // whether we're modulating the antenna (high)
+ // or listening to the antenna (low)
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
+
+ // get TI tag data into the buffer
+ AcquireTiType();
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+
+ for (i=0; i<n-1; i++) {
+ // count cycles by looking for lo to hi zero crossings
+ if ( (dest[i]<0) && (dest[i+1]>0) ) {
+ cycles++;
+ // after 16 cycles, measure the frequency
+ if (cycles>15) {
+ cycles=0;
+ samples=i-samples; // number of samples in these 16 cycles
+
+ // TI bits are coming to us lsb first so shift them
+ // right through our 128 bit right shift register
+ shift0 = (shift0>>1) | (shift1 << 31);
+ shift1 = (shift1>>1) | (shift2 << 31);
+ shift2 = (shift2>>1) | (shift3 << 31);
+ shift3 >>= 1;
+
+ // check if the cycles fall close to the number
+ // expected for either the low or high frequency
+ if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
+ // low frequency represents a 1
+ shift3 |= (1<<31);
+ } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
+ // high frequency represents a 0
+ } else {
+ // probably detected a gay waveform or noise
+ // use this as gaydar or discard shift register and start again
+ shift3 = shift2 = shift1 = shift0 = 0;
+ }
+ samples = i;
+
+ // for each bit we receive, test if we've detected a valid tag
+
+ // if we see 17 zeroes followed by 6 ones, we might have a tag
+ // remember the bits are backwards
+ if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
+ // if start and end bytes match, we have a tag so break out of the loop
+ if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
+ cycles = 0xF0B; //use this as a flag (ugly but whatever)
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ // if flag is set we have a tag
+ if (cycles!=0xF0B) {
+ DbpString("Info: No valid tag detected.");
+ } else {
+ // put 64 bit data into shift1 and shift0
+ shift0 = (shift0>>24) | (shift1 << 8);
+ shift1 = (shift1>>24) | (shift2 << 8);
+
+ // align 16 bit crc into lower half of shift2
+ shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
+
+ // if r/w tag, check ident match
+ if ( shift3&(1<<15) ) {
+ DbpString("Info: TI tag is rewriteable");
+ // only 15 bits compare, last bit of ident is not valid
+ if ( ((shift3>>16)^shift0)&0x7fff ) {
+ DbpString("Error: Ident mismatch!");
+ } else {
+ DbpString("Info: TI tag ident is valid");
+ }
+ } else {
+ DbpString("Info: TI tag is readonly");
+ }
+
+ // WARNING the order of the bytes in which we calc crc below needs checking
+ // i'm 99% sure the crc algorithm is correct, but it may need to eat the
+ // bytes in reverse or something
+ // calculate CRC
+ uint32_t crc=0;
+
+ crc = update_crc16(crc, (shift0)&0xff);
+ crc = update_crc16(crc, (shift0>>8)&0xff);
+ crc = update_crc16(crc, (shift0>>16)&0xff);
+ crc = update_crc16(crc, (shift0>>24)&0xff);
+ crc = update_crc16(crc, (shift1)&0xff);
+ crc = update_crc16(crc, (shift1>>8)&0xff);
+ crc = update_crc16(crc, (shift1>>16)&0xff);
+ crc = update_crc16(crc, (shift1>>24)&0xff);
+
+ Dbprintf("Info: Tag data: %x%08x, crc=%x",
+ (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
+ if (crc != (shift2&0xffff)) {
+ Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
+ } else {
+ DbpString("Info: CRC is good");
+ }
+ }
+}
+
+void WriteTIbyte(uint8_t b)
+{
+ int i = 0;
+
+ // modulate 8 bits out to the antenna
+ for (i=0; i<8; i++)
+ {
+ if (b&(1<<i)) {
+ // stop modulating antenna
+ SHORT_COIL();
+ SpinDelayUs(1000);
+ // modulate antenna
+ OPEN_COIL();
+ SpinDelayUs(1000);
+ } else {
+ // stop modulating antenna
+ SHORT_COIL();
+ SpinDelayUs(300);
+ // modulate antenna
+ OPEN_COIL();
+ SpinDelayUs(1700);
+ }
+ }
+}
+
+void AcquireTiType(void)
+{
+ int i, j, n;
+ // tag transmission is <20ms, sampling at 2M gives us 40K samples max
+ // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
+ #define TIBUFLEN 1250
+
+ // clear buffer
+ memset(BigBuf,0,sizeof(BigBuf));
+
+ // Set up the synchronous serial port
+ AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
+ AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
+
+ // steal this pin from the SSP and use it to control the modulation
+ AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
+ AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
+
+ AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
+ AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
+
+ // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
+ // 48/2 = 24 MHz clock must be divided by 12
+ AT91C_BASE_SSC->SSC_CMR = 12;
+
+ AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
+ AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
+ AT91C_BASE_SSC->SSC_TCMR = 0;
+ AT91C_BASE_SSC->SSC_TFMR = 0;
+
+ LED_D_ON();
+
+ // modulate antenna
+ HIGH(GPIO_SSC_DOUT);
+
+ // Charge TI tag for 50ms.
+ SpinDelay(50);
+
+ // stop modulating antenna and listen
+ LOW(GPIO_SSC_DOUT);
+
+ LED_D_OFF();
+
+ i = 0;
+ for(;;) {
+ if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+ BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
+ i++; if(i >= TIBUFLEN) break;
+ }
+ WDT_HIT();
+ }
+
+ // return stolen pin to SSP
+ AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
+ AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
+
+ char *dest = (char *)BigBuf;
+ n = TIBUFLEN*32;
+ // unpack buffer
+ for (i=TIBUFLEN-1; i>=0; i--) {
+ for (j=0; j<32; j++) {
+ if(BigBuf[i] & (1 << j)) {
+ dest[--n] = 1;
+ } else {
+ dest[--n] = -1;
+ }
+ }
+ }
+}
+
+// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
+// if crc provided, it will be written with the data verbatim (even if bogus)
+// if not provided a valid crc will be computed from the data and written.
+void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
+{
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ if(crc == 0) {
+ crc = update_crc16(crc, (idlo)&0xff);
+ crc = update_crc16(crc, (idlo>>8)&0xff);
+ crc = update_crc16(crc, (idlo>>16)&0xff);
+ crc = update_crc16(crc, (idlo>>24)&0xff);
+ crc = update_crc16(crc, (idhi)&0xff);
+ crc = update_crc16(crc, (idhi>>8)&0xff);
+ crc = update_crc16(crc, (idhi>>16)&0xff);
+ crc = update_crc16(crc, (idhi>>24)&0xff);
+ }
+ Dbprintf("Writing to tag: %x%08x, crc=%x",
+ (unsigned int) idhi, (unsigned int) idlo, crc);
+
+ // TI tags charge at 134.2Khz
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
+ // Place FPGA in passthrough mode, in this mode the CROSS_LO line
+ // connects to SSP_DIN and the SSP_DOUT logic level controls
+ // whether we're modulating the antenna (high)
+ // or listening to the antenna (low)
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
+ LED_A_ON();
+
+ // steal this pin from the SSP and use it to control the modulation
+ AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
+ AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
+
+ // writing algorithm:
+ // a high bit consists of a field off for 1ms and field on for 1ms
+ // a low bit consists of a field off for 0.3ms and field on for 1.7ms
+ // initiate a charge time of 50ms (field on) then immediately start writing bits
+ // start by writing 0xBB (keyword) and 0xEB (password)
+ // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
+ // finally end with 0x0300 (write frame)
+ // all data is sent lsb firts
+ // finish with 15ms programming time
+
+ // modulate antenna
+ HIGH(GPIO_SSC_DOUT);
+ SpinDelay(50); // charge time
+
+ WriteTIbyte(0xbb); // keyword
+ WriteTIbyte(0xeb); // password
+ WriteTIbyte( (idlo )&0xff );
+ WriteTIbyte( (idlo>>8 )&0xff );
+ WriteTIbyte( (idlo>>16)&0xff );
+ WriteTIbyte( (idlo>>24)&0xff );
+ WriteTIbyte( (idhi )&0xff );
+ WriteTIbyte( (idhi>>8 )&0xff );
+ WriteTIbyte( (idhi>>16)&0xff );
+ WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
+ WriteTIbyte( (crc )&0xff ); // crc lo
+ WriteTIbyte( (crc>>8 )&0xff ); // crc hi
+ WriteTIbyte(0x00); // write frame lo
+ WriteTIbyte(0x03); // write frame hi
+ HIGH(GPIO_SSC_DOUT);
+ SpinDelay(50); // programming time
+
+ LED_A_OFF();
+
+ // get TI tag data into the buffer
+ AcquireTiType();
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ DbpString("Now use tiread to check");
+}
+
+
+
+// PIO_CODR = Clear Output Data Register
+// PIO_SODR = Set Output Data Register
+//#define LOW(x) AT91C_BASE_PIOA->PIO_CODR = (x)
+//#define HIGH(x) AT91C_BASE_PIOA->PIO_SODR = (x)
+void SimulateTagLowFrequency( uint16_t period, uint32_t gap, uint8_t ledcontrol)
+{
+ LED_D_ON();
+
+ uint16_t i = 0;
+ uint8_t send = 0;
+
+ //int overflow = 0;
+ uint8_t *buf = (uint8_t *)BigBuf;
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+ RELAY_OFF();
+
+ // Configure output pin that is connected to the FPGA (for modulating)
+ AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
+ AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
+
+ SHORT_COIL();
+
+ // Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering
+ AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0);
+
+ // Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the reader frames
+ AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
+ AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
+
+ // Disable timer during configuration
+ AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
+
+ // Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
+ // external trigger rising edge, load RA on rising edge of TIOA.
+ AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_RISING | AT91C_TC_ABETRG | AT91C_TC_LDRA_RISING;
+
+ // Enable and reset counter
+ //AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
+ AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
+
+ while(!BUTTON_PRESS()) {
+ WDT_HIT();
+
+ // Receive frame, watch for at most T0*EOF periods
+ while (AT91C_BASE_TC1->TC_CV < T0 * 55) {
+
+ // Check if rising edge in modulation is detected
+ if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
+ // Retrieve the new timing values
+ //int ra = (AT91C_BASE_TC1->TC_RA/T0) + overflow;
+ //Dbprintf("Timing value - %d %d", ra, overflow);
+ //overflow = 0;
+
+ // Reset timer every frame, we have to capture the last edge for timing
+ AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
+ send = 1;
+
+ LED_B_ON();
+ }
+ }
+
+ if ( send ) {
+ // Disable timer 1 with external trigger to avoid triggers during our own modulation
+ AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
+
+ // Wait for HITAG_T_WAIT_1 carrier periods after the last reader bit,
+ // not that since the clock counts since the rising edge, but T_Wait1 is
+ // with respect to the falling edge, we need to wait actually (T_Wait1 - T_Low)
+ // periods. The gap time T_Low varies (4..10). All timer values are in
+ // terms of T0 units
+ while(AT91C_BASE_TC0->TC_CV < T0 * 16 );
+
+ // datat kommer in som 1 bit för varje position i arrayn
+ for(i = 0; i < period; ++i) {
+
+ // Reset clock for the next bit
+ AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
+
+ if ( buf[i] > 0 )
+ HIGH(GPIO_SSC_DOUT);
+ else
+ LOW(GPIO_SSC_DOUT);
+
+ while(AT91C_BASE_TC0->TC_CV < T0 * 1 );
+ }
+ // Drop modulation
+ LOW(GPIO_SSC_DOUT);
+
+ // Enable and reset external trigger in timer for capturing future frames
+ AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
+ LED_B_OFF();
+ }
+
+ send = 0;
+
+ // Save the timer overflow, will be 0 when frame was received
+ //overflow += (AT91C_BASE_TC1->TC_CV/T0);
+
+ // Reset the timer to restart while-loop that receives frames
+ AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG;
+ }
+
+ LED_B_OFF();
+ LED_D_OFF();
+ AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
+ AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+
+ DbpString("Sim Stopped");
+}
+
+
+void SimulateTagLowFrequencyA(int len, int gap)
+{
+ //Dbprintf("LEN %d || Gap %d",len, gap);
+
+ uint8_t *buf = (uint8_t *)BigBuf;
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE); // new izsh toggle mode!
+
+ // Connect the A/D to the peak-detected low-frequency path.
+ SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+
+ // Now set up the SSC to get the ADC samples that are now streaming at us.
+ FpgaSetupSsc();
+ SpinDelay(5);
+
+ AT91C_BASE_SSC->SSC_THR = 0x00;
+
+ int i = 0;
+ while(!BUTTON_PRESS()) {
+ WDT_HIT();
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+
+ if ( buf[i] > 0 )
+ AT91C_BASE_SSC->SSC_THR = 0x43;
+ else
+ AT91C_BASE_SSC->SSC_THR = 0x00;
+
+ ++i;
+ LED_A_ON();
+ if (i >= len){
+ i = 0;
+ }
+ }
+
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+ volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
+ (void)r;
+ LED_A_OFF();
+ }
+ }
+ DbpString("lf simulate stopped");
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+}
+
+#define DEBUG_FRAME_CONTENTS 1
+void SimulateTagLowFrequencyBidir(int divisor, int t0)
+{
+}
+
+// compose fc/8 fc/10 waveform
+static void fc(int c, uint16_t *n) {
+ uint8_t *dest = (uint8_t *)BigBuf;
+ int idx;
+
+ // for when we want an fc8 pattern every 4 logical bits
+ if(c==0) {
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ }
+ // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
+ if(c==8) {
+ for (idx=0; idx<6; idx++) {
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ }
+ }
+
+ // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
+ if(c==10) {
+ for (idx=0; idx<5; idx++) {
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ }
+ }
+}
+
+// prepare a waveform pattern in the buffer based on the ID given then
+// simulate a HID tag until the button is pressed
+void CmdHIDsimTAG(int hi, int lo, uint8_t ledcontrol)
+{
+ uint16_t n=0, i=0;
+ /*
+ HID tag bitstream format
+ The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
+ A 1 bit is represented as 6 fc8 and 5 fc10 patterns
+ A 0 bit is represented as 5 fc10 and 6 fc8 patterns
+ A fc8 is inserted before every 4 bits
+ A special start of frame pattern is used consisting a0b0 where a and b are neither 0
+ nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
+ */
+
+ if (hi>0xFFF) {
+ DbpString("Tags can only have 44 bits.");
+ return;
+ }
+ fc(0,&n);
+ // special start of frame marker containing invalid bit sequences
+ fc(8, &n); fc(8, &n); // invalid
+ fc(8, &n); fc(10, &n); // logical 0
+ fc(10, &n); fc(10, &n); // invalid
+ fc(8, &n); fc(10, &n); // logical 0
+
+ WDT_HIT();
+ // manchester encode bits 43 to 32
+ for (i=11; i>=0; i--) {
+ if ((i%4)==3) fc(0,&n);
+ if ((hi>>i)&1) {
+ fc(10, &n); fc(8, &n); // low-high transition
+ } else {
+ fc(8, &n); fc(10, &n); // high-low transition
+ }
+ }
+
+ WDT_HIT();
+ // manchester encode bits 31 to 0
+ for (i=31; i>=0; i--) {
+ if ((i%4)==3) fc(0,&n);
+ if ((lo>>i)&1) {
+ fc(10, &n); fc(8, &n); // low-high transition
+ } else {
+ fc(8, &n); fc(10, &n); // high-low transition
+ }
+ }
+
+ if (ledcontrol)
+ LED_A_ON();
+
+ SimulateTagLowFrequency(n, 0, ledcontrol);
+
+ if (ledcontrol)
+ LED_A_OFF();
+}
+
+size_t fsk_demod(uint8_t * dest, size_t size)
+{
+ uint32_t last_transition = 0;
+ uint32_t idx = 1;
+
+ // we don't care about actual value, only if it's more or less than a
+ // threshold essentially we capture zero crossings for later analysis
+ uint8_t threshold_value = 127;
+
+ // sync to first lo-hi transition, and threshold
+
+ //Need to threshold first sample
+ dest[0] = (dest[0] < threshold_value) ? 0 : 1;
+
+ size_t numBits = 0;
+ // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
+ // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
+ // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
+ for(idx = 1; idx < size; idx++) {
+ // threshold current value
+ dest[idx] = (dest[idx] < threshold_value) ? 0 : 1;
+
+ // Check for 0->1 transition
+ if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
+
+ dest[numBits] = (idx-last_transition < 9) ? 1 : 0;
+ last_transition = idx;
+ numBits++;
+ }
+ }
+ return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
+}
+
+
+size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t h2l_crossing_value,uint8_t l2h_crossing_value, uint8_t maxConsequtiveBits, uint8_t invert )
+{
+ uint8_t lastval=dest[0];
+ uint32_t idx=0;
+ size_t numBits=0;
+ uint32_t n=1;
+
+ for( idx=1; idx < size; idx++) {
+
+ if (dest[idx]==lastval) {
+ n++;
+ continue;
+ }
+ //if lastval was 1, we have a 1->0 crossing
+ if ( dest[idx-1] ) {
+ n=(n+1) / h2l_crossing_value;
+ } else {// 0->1 crossing
+ n=(n+1) / l2h_crossing_value;
+ }
+ if (n == 0) n = 1;
+
+ if(n < maxConsequtiveBits)
+ {
+ if ( invert==0)
+ memset(dest+numBits, dest[idx-1] , n);
+ else
+ memset(dest+numBits, dest[idx-1]^1 , n);
+
+ numBits += n;
+ }
+ n=0;
+ lastval=dest[idx];
+ }//end for
+
+ return numBits;
+
+}
+// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
+void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
+{
+ uint8_t *dest = get_bigbufptr_recvrespbuf();
+
+ size_t size=0,idx=0; //, found=0;
+ uint32_t hi2=0, hi=0, lo=0;
+
+ // Configure to go in 125Khz listen mode
+ LFSetupFPGAForADC(0, true);
+
+ while(!BUTTON_PRESS()) {
+
+ WDT_HIT();
+ if (ledcontrol) LED_A_ON();
+
+ DoAcquisition125k_internal(-1,true);
+
+ // FSK demodulator
+ size = fsk_demod(dest, FREE_BUFFER_SIZE);
+
+ // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
+ // 1->0 : fc/8 in sets of 6 (RF/50 / 8 = 6.25)
+ // 0->1 : fc/10 in sets of 5 (RF/50 / 10= 5)
+ // do not invert
+ size = aggregate_bits(dest,size, 6,5,5,0);
+
+ WDT_HIT();
+
+ // final loop, go over previously decoded manchester data and decode into usable tag ID
+ // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
+ uint8_t frame_marker_mask[] = {1,1,1,0,0,0};
+ int numshifts = 0;
+ idx = 0;
+ while( idx + sizeof(frame_marker_mask) < size) {
+ // search for a start of frame marker
+ if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
+ { // frame marker found
+ idx+=sizeof(frame_marker_mask);
+
+ while(dest[idx] != dest[idx+1] && idx < size-2)
+ {
+ // Keep going until next frame marker (or error)
+ // Shift in a bit. Start by shifting high registers
+ hi2=(hi2<<1)|(hi>>31);
+ hi=(hi<<1)|(lo>>31);
+ //Then, shift in a 0 or one into low
+ if (dest[idx] && !dest[idx+1]) // 1 0
+ lo=(lo<<1)|0;
+ else // 0 1
+ lo=(lo<<1)|
+ 1;
+ numshifts ++;
+ idx += 2;
+ }
+ //Dbprintf("Num shifts: %d ", numshifts);
+ // Hopefully, we read a tag and hit upon the next frame marker
+ if(idx + sizeof(frame_marker_mask) < size)
+ {
+ if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
+ {
+ if (hi2 != 0){ //extra large HID tags
+ Dbprintf("TAG ID: %x%08x%08x (%d)",
+ (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+ }
+ else { //standard HID tags <38 bits
+ //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
+ uint8_t bitlen = 0;
+ uint32_t fc = 0;
+ uint32_t cardnum = 0;
+ if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used
+ uint32_t lo2=0;
+ lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
+ uint8_t idx3 = 1;
+ while(lo2>1){ //find last bit set to 1 (format len bit)
+ lo2=lo2>>1;
+ idx3++;
+ }
+ bitlen =idx3+19;
+ fc =0;
+ cardnum=0;
+ if(bitlen==26){
+ cardnum = (lo>>1)&0xFFFF;
+ fc = (lo>>17)&0xFF;
+ }
+ if(bitlen==37){
+ cardnum = (lo>>1)&0x7FFFF;
+ fc = ((hi&0xF)<<12)|(lo>>20);
+ }
+ if(bitlen==34){
+ cardnum = (lo>>1)&0xFFFF;
+ fc= ((hi&1)<<15)|(lo>>17);
+ }
+ if(bitlen==35){
+ cardnum = (lo>>1)&0xFFFFF;
+ fc = ((hi&1)<<11)|(lo>>21);
+ }
+ }
+ else { //if bit 38 is not set then 37 bit format is used
+ bitlen= 37;
+ fc =0;
+ cardnum=0;
+ if(bitlen==37){
+ cardnum = (lo>>1)&0x7FFFF;
+ fc = ((hi&0xF)<<12)|(lo>>20);
+ }
+ }
+ //Dbprintf("TAG ID: %x%08x (%d)",
+ // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+ Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
+ (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
+ (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
+ }
+ if (findone){
+ if (ledcontrol) LED_A_OFF();
+ return;
+ }
+ }
+ }
+ // reset
+ hi2 = hi = lo = 0;
+ numshifts = 0;
+ } else {
+ idx++;
+ }
+ }
+ WDT_HIT();
+
+ }
+ DbpString("Stopped");
+ if (ledcontrol) LED_A_OFF();
+}
+
+uint32_t bytebits_to_byte(uint8_t* src, int numbits)
+{
+ uint32_t num = 0;
+ for(int i = 0 ; i < numbits ; i++)
+ {
+ num = (num << 1) | (*src);
+ src++;
+ }
+ return num;
+}
+
+
+void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
+{
+ uint8_t *dest = (uint8_t *)BigBuf;
+ size_t size=0, idx=0;
+ uint32_t code=0, code2=0;
+ uint8_t isFinish = 0;
+
+ // Configure to go in 125Khz listen mode
+ LFSetupFPGAForADC(0, true);
+
+ while(!BUTTON_PRESS() & !isFinish) {
+
+ WDT_HIT();
+
+ if (ledcontrol) LED_A_ON();
+
+ DoAcquisition125k_internal(-1,true);
+ size = sizeof(BigBuf);
+
+ // FSK demodulator
+ size = fsk_demod(dest, size);
+ // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
+ // 1->0 : fc/8 in sets of 7 (RF/64 / 8 = 8)
+ // 0->1 : fc/10 in sets of 6 (RF/64 / 10 = 6.4)
+ size = aggregate_bits(dest, size, 7,6,13,1); //13 max Consecutive should be ok as most 0s in row should be 10 for init seq - invert bits
+
+ //Index map
+ //0 10 20 30 40 50 60
+ //| | | | | | |
+ //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
+ //-----------------------------------------------------------------------------
+ //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
+ //
+ //XSF(version)facility:codeone+codetwo
+ //Handle the data
+
+ uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
+
+ for( idx=0; idx < (size - 64); idx++) {
+ if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
+ //frame marker found
+ if(findone){ //only print binary if we are doing one
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
+ }
+ code = bytebits_to_byte(dest+idx,32);
+ code2 = bytebits_to_byte(dest+idx+32,32);
+ short version = bytebits_to_byte(dest+idx+28,8); //14,4
+ char facilitycode = bytebits_to_byte(dest+idx+19,8) ;
+ uint16_t number = (bytebits_to_byte(dest+idx+37,8)<<8)|(bytebits_to_byte(dest+idx+46,8)); //36,9
+
+ Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,facilitycode,number,code,code2);
+
+ // if we're only looking for one tag
+ if (findone){
+ if (ledcontrol) LED_A_OFF();
+ isFinish = 1;
+ break;
+ }
+ }
+ }
+ WDT_HIT();
+ }
+ DbpString("Stopped");
+ if (ledcontrol) LED_A_OFF();
+}
+
+/*------------------------------
+ * T5555/T5557/T5567 routines
+ *------------------------------
+ */
+
+/* T55x7 configuration register definitions */
+#define T55x7_POR_DELAY 0x00000001
+#define T55x7_ST_TERMINATOR 0x00000008
+#define T55x7_PWD 0x00000010
+#define T55x7_MAXBLOCK_SHIFT 5
+#define T55x7_AOR 0x00000200
+#define T55x7_PSKCF_RF_2 0
+#define T55x7_PSKCF_RF_4 0x00000400
+#define T55x7_PSKCF_RF_8 0x00000800
+#define T55x7_MODULATION_DIRECT 0
+#define T55x7_MODULATION_PSK1 0x00001000
+#define T55x7_MODULATION_PSK2 0x00002000
+#define T55x7_MODULATION_PSK3 0x00003000
+#define T55x7_MODULATION_FSK1 0x00004000
+#define T55x7_MODULATION_FSK2 0x00005000
+#define T55x7_MODULATION_FSK1a 0x00006000
+#define T55x7_MODULATION_FSK2a 0x00007000
+#define T55x7_MODULATION_MANCHESTER 0x00008000
+#define T55x7_MODULATION_BIPHASE 0x00010000
+#define T55x7_BITRATE_RF_8 0
+#define T55x7_BITRATE_RF_16 0x00040000
+#define T55x7_BITRATE_RF_32 0x00080000
+#define T55x7_BITRATE_RF_40 0x000C0000
+#define T55x7_BITRATE_RF_50 0x00100000
+#define T55x7_BITRATE_RF_64 0x00140000
+#define T55x7_BITRATE_RF_100 0x00180000
+#define T55x7_BITRATE_RF_128 0x001C0000
+
+/* T5555 (Q5) configuration register definitions */
+#define T5555_ST_TERMINATOR 0x00000001
+#define T5555_MAXBLOCK_SHIFT 0x00000001
+#define T5555_MODULATION_MANCHESTER 0
+#define T5555_MODULATION_PSK1 0x00000010
+#define T5555_MODULATION_PSK2 0x00000020
+#define T5555_MODULATION_PSK3 0x00000030
+#define T5555_MODULATION_FSK1 0x00000040
+#define T5555_MODULATION_FSK2 0x00000050
+#define T5555_MODULATION_BIPHASE 0x00000060
+#define T5555_MODULATION_DIRECT 0x00000070
+#define T5555_INVERT_OUTPUT 0x00000080
+#define T5555_PSK_RF_2 0
+#define T5555_PSK_RF_4 0x00000100
+#define T5555_PSK_RF_8 0x00000200
+#define T5555_USE_PWD 0x00000400
+#define T5555_USE_AOR 0x00000800
+#define T5555_BITRATE_SHIFT 12
+#define T5555_FAST_WRITE 0x00004000
+#define T5555_PAGE_SELECT 0x00008000
+
+/*
+ * Relevant times in microsecond
+ * To compensate antenna falling times shorten the write times
+ * and enlarge the gap ones.
+ */
+#define START_GAP 30*8 // 10 - 50fc 250
+#define WRITE_GAP 20*8 // 8 - 30fc
+#define WRITE_0 24*8 // 16 - 31fc 24fc 192
+#define WRITE_1 54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550
+
+// VALUES TAKEN FROM EM4x function: SendForward
+// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
+// WRITE_GAP = 128; (16*8)
+// WRITE_1 = 256 32*8; (32*8)
+
+// These timings work for 4469/4269/4305 (with the 55*8 above)
+// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
+
+#define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..)
+
+// Write one bit to card
+void T55xxWriteBit(int bit)
+{
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ if (!bit)
+ SpinDelayUs(WRITE_0);
+ else
+ SpinDelayUs(WRITE_1);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelayUs(WRITE_GAP);
+}
+
+// Write one card block in page 0, no lock
+void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
+{
+ uint32_t i = 0;
+
+ // Set up FPGA, 125kHz
+ // Wait for config.. (192+8190xPOW)x8 == 67ms
+ LFSetupFPGAForADC(0, true);
+
+ // Now start writting
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelayUs(START_GAP);
+
+ // Opcode
+ T55xxWriteBit(1);
+ T55xxWriteBit(0); //Page 0
+ if (PwdMode == 1){
+ // Pwd
+ for (i = 0x80000000; i != 0; i >>= 1)
+ T55xxWriteBit(Pwd & i);
+ }
+ // Lock bit
+ T55xxWriteBit(0);
+
+ // Data
+ for (i = 0x80000000; i != 0; i >>= 1)
+ T55xxWriteBit(Data & i);
+
+ // Block
+ for (i = 0x04; i != 0; i >>= 1)
+ T55xxWriteBit(Block & i);
+
+ // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
+ // so wait a little more)
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ SpinDelay(20);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+}
+
+// Read one card block in page 0
+void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
+{
+ uint8_t *dest = get_bigbufptr_recvrespbuf();
+ uint16_t bufferlength = T55xx_SAMPLES_SIZE;
+ uint32_t i = 0;
+
+ // Clear destination buffer before sending the command 0x80 = average.
+ memset(dest, 0x80, bufferlength);
+
+ // Set up FPGA, 125kHz
+ // Wait for config.. (192+8190xPOW)x8 == 67ms
+ LFSetupFPGAForADC(0, true);
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelayUs(START_GAP);
+
+ // Opcode
+ T55xxWriteBit(1);
+ T55xxWriteBit(0); //Page 0
+ if (PwdMode == 1){
+ // Pwd
+ for (i = 0x80000000; i != 0; i >>= 1)
+ T55xxWriteBit(Pwd & i);
+ }
+ // Lock bit
+ T55xxWriteBit(0);
+ // Block
+ for (i = 0x04; i != 0; i >>= 1)
+ T55xxWriteBit(Block & i);
+
+ // Turn field on to read the response
+ TurnReadLFOn();
+
+ // Now do the acquisition
+ i = 0;
+ for(;;) {
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+ AT91C_BASE_SSC->SSC_THR = 0x43;
+ //AT91C_BASE_SSC->SSC_THR = 0xff;
+ LED_D_ON();
+ }
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+ dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ ++i;
+ LED_D_OFF();
+ if (i > bufferlength) break;
+ }
+ }
+
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ LED_D_OFF();
+}
+
+// Read card traceability data (page 1)
+void T55xxReadTrace(void){
+ uint8_t *dest = get_bigbufptr_recvrespbuf();
+ uint16_t bufferlength = T55xx_SAMPLES_SIZE;
+ uint32_t i = 0;
+
+ // Clear destination buffer before sending the command 0x80 = average
+ memset(dest, 0x80, bufferlength);
+
+ LFSetupFPGAForADC(0, true);
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelayUs(START_GAP);
+
+ // Opcode
+ T55xxWriteBit(1);
+ T55xxWriteBit(1); //Page 1
+
+ // Turn field on to read the response
+ TurnReadLFOn();
+
+ // Now do the acquisition
+ for(;;) {
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+ AT91C_BASE_SSC->SSC_THR = 0x43;
+ LED_D_ON();
+ }
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+ dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ ++i;
+ LED_D_OFF();
+
+ if (i >= bufferlength) break;
+ }
+ }
+
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ LED_D_OFF();
+}
+
+void TurnReadLFOn(){
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ // Give it a bit of time for the resonant antenna to settle.
+ //SpinDelay(30);
+ SpinDelayUs(8*150);
+}
+
+/*-------------- Cloning routines -----------*/
+// Copy HID id to card and setup block 0 config
+void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
+{
+ int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
+ int last_block = 0;
+
+ if (longFMT){
+ // Ensure no more than 84 bits supplied
+ if (hi2>0xFFFFF) {
+ DbpString("Tags can only have 84 bits.");
+ return;
+ }
+ // Build the 6 data blocks for supplied 84bit ID
+ last_block = 6;
+ data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
+ for (int i=0;i<4;i++) {
+ if (hi2 & (1<<(19-i)))
+ data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
+ else
+ data1 |= (1<<((3-i)*2)); // 0 -> 01
+ }
+
+ data2 = 0;
+ for (int i=0;i<16;i++) {
+ if (hi2 & (1<<(15-i)))
+ data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data2 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+
+ data3 = 0;
+ for (int i=0;i<16;i++) {
+ if (hi & (1<<(31-i)))
+ data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data3 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+
+ data4 = 0;
+ for (int i=0;i<16;i++) {
+ if (hi & (1<<(15-i)))
+ data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data4 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+
+ data5 = 0;
+ for (int i=0;i<16;i++) {
+ if (lo & (1<<(31-i)))
+ data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data5 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+
+ data6 = 0;
+ for (int i=0;i<16;i++) {
+ if (lo & (1<<(15-i)))
+ data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data6 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+ }
+ else {
+ // Ensure no more than 44 bits supplied
+ if (hi>0xFFF) {
+ DbpString("Tags can only have 44 bits.");
+ return;
+ }
+
+ // Build the 3 data blocks for supplied 44bit ID
+ last_block = 3;
+
+ data1 = 0x1D000000; // load preamble
+
+ for (int i=0;i<12;i++) {
+ if (hi & (1<<(11-i)))
+ data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
+ else
+ data1 |= (1<<((11-i)*2)); // 0 -> 01
+ }
+
+ data2 = 0;
+ for (int i=0;i<16;i++) {
+ if (lo & (1<<(31-i)))
+ data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data2 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+
+ data3 = 0;
+ for (int i=0;i<16;i++) {
+ if (lo & (1<<(15-i)))
+ data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data3 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+ }
+
+ LED_D_ON();
+ // Program the data blocks for supplied ID
+ // and the block 0 for HID format
+ T55xxWriteBlock(data1,1,0,0);
+ T55xxWriteBlock(data2,2,0,0);
+ T55xxWriteBlock(data3,3,0,0);
+
+ if (longFMT) { // if long format there are 6 blocks
+ T55xxWriteBlock(data4,4,0,0);
+ T55xxWriteBlock(data5,5,0,0);
+ T55xxWriteBlock(data6,6,0,0);
+ }
+
+ // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
+ T55xxWriteBlock(T55x7_BITRATE_RF_50 |
+ T55x7_MODULATION_FSK2a |
+ last_block << T55x7_MAXBLOCK_SHIFT,
+ 0,0,0);
+
+ LED_D_OFF();
+
+ DbpString("DONE!");
+}
+
+void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
+{
+ int data1=0, data2=0; //up to six blocks for long format
+
+ data1 = hi; // load preamble
+ data2 = lo;
+
+ LED_D_ON();
+ // Program the data blocks for supplied ID
+ // and the block 0 for HID format
+ T55xxWriteBlock(data1,1,0,0);
+ T55xxWriteBlock(data2,2,0,0);
+
+ //Config Block
+ T55xxWriteBlock(0x00147040,0,0,0);
+ LED_D_OFF();
+
+ DbpString("DONE!");
+}
+
+// Define 9bit header for EM410x tags
+#define EM410X_HEADER 0x1FF
+#define EM410X_ID_LENGTH 40
+
+void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
+{
+ int i, id_bit;
+ uint64_t id = EM410X_HEADER;
+ uint64_t rev_id = 0; // reversed ID
+ int c_parity[4]; // column parity
+ int r_parity = 0; // row parity
+ uint32_t clock = 0;
+
+ // Reverse ID bits given as parameter (for simpler operations)
+ for (i = 0; i < EM410X_ID_LENGTH; ++i) {
+ if (i < 32) {
+ rev_id = (rev_id << 1) | (id_lo & 1);
+ id_lo >>= 1;
+ } else {
+ rev_id = (rev_id << 1) | (id_hi & 1);
+ id_hi >>= 1;
+ }
+ }
+
+ for (i = 0; i < EM410X_ID_LENGTH; ++i) {
+ id_bit = rev_id & 1;
+
+ if (i % 4 == 0) {
+ // Don't write row parity bit at start of parsing
+ if (i)
+ id = (id << 1) | r_parity;
+ // Start counting parity for new row
+ r_parity = id_bit;
+ } else {
+ // Count row parity
+ r_parity ^= id_bit;
+ }
+
+ // First elements in column?
+ if (i < 4)
+ // Fill out first elements
+ c_parity[i] = id_bit;
+ else
+ // Count column parity
+ c_parity[i % 4] ^= id_bit;
+
+ // Insert ID bit
+ id = (id << 1) | id_bit;
+ rev_id >>= 1;
+ }
+
+ // Insert parity bit of last row
+ id = (id << 1) | r_parity;
+
+ // Fill out column parity at the end of tag
+ for (i = 0; i < 4; ++i)
+ id = (id << 1) | c_parity[i];
+
+ // Add stop bit
+ id <<= 1;
+
+ Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
+ LED_D_ON();
+
+ // Write EM410x ID
+ T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
+ T55xxWriteBlock((uint32_t)id, 2, 0, 0);
+
+ // Config for EM410x (RF/64, Manchester, Maxblock=2)
+ if (card) {
+ // Clock rate is stored in bits 8-15 of the card value
+ clock = (card & 0xFF00) >> 8;
+ Dbprintf("Clock rate: %d", clock);
+ switch (clock)
+ {
+ case 32:
+ clock = T55x7_BITRATE_RF_32;
+ break;
+ case 16:
+ clock = T55x7_BITRATE_RF_16;
+ break;
+ case 0:
+ // A value of 0 is assumed to be 64 for backwards-compatibility
+ // Fall through...
+ case 64:
+ clock = T55x7_BITRATE_RF_64;
+ break;
+ default:
+ Dbprintf("Invalid clock rate: %d", clock);
+ return;
+ }
+
+ // Writing configuration for T55x7 tag
+ T55xxWriteBlock(clock |
+ T55x7_MODULATION_MANCHESTER |
+ 2 << T55x7_MAXBLOCK_SHIFT,
+ 0, 0, 0);
+ }
+ else
+ // Writing configuration for T5555(Q5) tag
+ T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
+ T5555_MODULATION_MANCHESTER |
+ 2 << T5555_MAXBLOCK_SHIFT,
+ 0, 0, 0);
+
+ LED_D_OFF();
+ Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
+ (uint32_t)(id >> 32), (uint32_t)id);
+}
+
+// Clone Indala 64-bit tag by UID to T55x7
+void CopyIndala64toT55x7(int hi, int lo)
+{
+ //Program the 2 data blocks for supplied 64bit UID
+ // and the block 0 for Indala64 format
+ T55xxWriteBlock(hi,1,0,0);
+ T55xxWriteBlock(lo,2,0,0);
+ //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
+ T55xxWriteBlock(T55x7_BITRATE_RF_32 |
+ T55x7_MODULATION_PSK1 |
+ 2 << T55x7_MAXBLOCK_SHIFT,
+ 0, 0, 0);
+ //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
+ // T5567WriteBlock(0x603E1042,0);
+
+ DbpString("DONE!");
+}
+
+void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
+{
+ //Program the 7 data blocks for supplied 224bit UID
+ // and the block 0 for Indala224 format
+ T55xxWriteBlock(uid1,1,0,0);
+ T55xxWriteBlock(uid2,2,0,0);
+ T55xxWriteBlock(uid3,3,0,0);
+ T55xxWriteBlock(uid4,4,0,0);
+ T55xxWriteBlock(uid5,5,0,0);
+ T55xxWriteBlock(uid6,6,0,0);
+ T55xxWriteBlock(uid7,7,0,0);
+ //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
+ T55xxWriteBlock(T55x7_BITRATE_RF_32 |
+ T55x7_MODULATION_PSK1 |
+ 7 << T55x7_MAXBLOCK_SHIFT,
+ 0,0,0);
+ //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
+ // T5567WriteBlock(0x603E10E2,0);
+
+ DbpString("DONE!");
+}
+
+
+#define abs(x) ( ((x)<0) ? -(x) : (x) )
+#define max(x,y) ( x<y ? y:x)
+
+int DemodPCF7931(uint8_t **outBlocks) {
+ uint8_t BitStream[256];
+ uint8_t Blocks[8][16];
+ uint8_t *GraphBuffer = (uint8_t *)BigBuf;
+ int GraphTraceLen = sizeof(BigBuf);
+ int i, j, lastval, bitidx, half_switch;
+ int clock = 64;
+ int tolerance = clock / 8;
+ int pmc, block_done;
+ int lc, warnings = 0;
+ int num_blocks = 0;
+ int lmin=128, lmax=128;
+ uint8_t dir;
+
+ AcquireRawAdcSamples125k(0);
+
+ lmin = 64;
+ lmax = 192;
+
+ i = 2;
+
+ /* Find first local max/min */
+ if(GraphBuffer[1] > GraphBuffer[0]) {
+ while(i < GraphTraceLen) {
+ if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
+ break;
+ i++;
+ }
+ dir = 0;
+ }
+ else {
+ while(i < GraphTraceLen) {
+ if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
+ break;
+ i++;
+ }
+ dir = 1;
+ }
+
+ lastval = i++;
+ half_switch = 0;
+ pmc = 0;
+ block_done = 0;
+
+ for (bitidx = 0; i < GraphTraceLen; i++)
+ {
+ if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
+ {
+ lc = i - lastval;
+ lastval = i;
+
+ // Switch depending on lc length:
+ // Tolerance is 1/8 of clock rate (arbitrary)
+ if (abs(lc-clock/4) < tolerance) {
+ // 16T0
+ if((i - pmc) == lc) { /* 16T0 was previous one */
+ /* It's a PMC ! */
+ i += (128+127+16+32+33+16)-1;
+ lastval = i;
+ pmc = 0;
+ block_done = 1;
+ }
+ else {
+ pmc = i;
+ }
+ } else if (abs(lc-clock/2) < tolerance) {
+ // 32TO
+ if((i - pmc) == lc) { /* 16T0 was previous one */
+ /* It's a PMC ! */
+ i += (128+127+16+32+33)-1;
+ lastval = i;
+ pmc = 0;
+ block_done = 1;
+ }
+ else if(half_switch == 1) {
+ BitStream[bitidx++] = 0;
+ half_switch = 0;
+ }
+ else
+ half_switch++;
+ } else if (abs(lc-clock) < tolerance) {
+ // 64TO
+ BitStream[bitidx++] = 1;
+ } else {
+ // Error
+ warnings++;
+ if (warnings > 10)
+ {
+ Dbprintf("Error: too many detection errors, aborting.");
+ return 0;
+ }
+ }
+
+ if(block_done == 1) {
+ if(bitidx == 128) {
+ for(j=0; j<16; j++) {
+ Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
+ 64*BitStream[j*8+6]+
+ 32*BitStream[j*8+5]+
+ 16*BitStream[j*8+4]+
+ 8*BitStream[j*8+3]+
+ 4*BitStream[j*8+2]+
+ 2*BitStream[j*8+1]+
+ BitStream[j*8];
+ }
+ num_blocks++;
+ }
+ bitidx = 0;
+ block_done = 0;
+ half_switch = 0;
+ }
+ if(i < GraphTraceLen)
+ {
+ if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
+ else dir = 1;
+ }
+ }
+ if(bitidx==255)
+ bitidx=0;
+ warnings = 0;
+ if(num_blocks == 4) break;
+ }
+ memcpy(outBlocks, Blocks, 16*num_blocks);
+ return num_blocks;
+}
+
+int IsBlock0PCF7931(uint8_t *Block) {
+ // Assume RFU means 0 :)
+ if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
+ return 1;
+ if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
+ return 1;
+ return 0;
+}
+
+int IsBlock1PCF7931(uint8_t *Block) {
+ // Assume RFU means 0 :)
+ if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
+ if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
+ return 1;
+
+ return 0;
+}
+#define ALLOC 16
+
+void ReadPCF7931() {
+ uint8_t Blocks[8][17];
+ uint8_t tmpBlocks[4][16];
+ int i, j, ind, ind2, n;
+ int num_blocks = 0;
+ int max_blocks = 8;
+ int ident = 0;
+ int error = 0;
+ int tries = 0;
+
+ memset(Blocks, 0, 8*17*sizeof(uint8_t));
+
+ do {
+ memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
+ n = DemodPCF7931((uint8_t**)tmpBlocks);
+ if(!n)
+ error++;
+ if(error==10 && num_blocks == 0) {
+ Dbprintf("Error, no tag or bad tag");
+ return;
+ }
+ else if (tries==20 || error==10) {
+ Dbprintf("Error reading the tag");
+ Dbprintf("Here is the partial content");
+ goto end;
+ }
+
+ for(i=0; i<n; i++)
+ Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
+ tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
+ tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
+ if(!ident) {
+ for(i=0; i<n; i++) {
+ if(IsBlock0PCF7931(tmpBlocks[i])) {
+ // Found block 0 ?
+ if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
+ // Found block 1!
+ // \o/
+ ident = 1;
+ memcpy(Blocks[0], tmpBlocks[i], 16);
+ Blocks[0][ALLOC] = 1;
+ memcpy(Blocks[1], tmpBlocks[i+1], 16);
+ Blocks[1][ALLOC] = 1;
+ max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
+ // Debug print
+ Dbprintf("(dbg) Max blocks: %d", max_blocks);
+ num_blocks = 2;
+ // Handle following blocks
+ for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
+ if(j==n) j=0;
+ if(j==i) break;
+ memcpy(Blocks[ind2], tmpBlocks[j], 16);
+ Blocks[ind2][ALLOC] = 1;
+ }
+ break;
+ }
+ }
+ }
+ }
+ else {
+ for(i=0; i<n; i++) { // Look for identical block in known blocks
+ if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
+ for(j=0; j<max_blocks; j++) {
+ if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
+ // Found an identical block
+ for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
+ if(ind2 < 0)
+ ind2 = max_blocks;
+ if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
+ // Dbprintf("Tmp %d -> Block %d", ind, ind2);
+ memcpy(Blocks[ind2], tmpBlocks[ind], 16);
+ Blocks[ind2][ALLOC] = 1;
+ num_blocks++;
+ if(num_blocks == max_blocks) goto end;
+ }
+ }
+ for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
+ if(ind2 > max_blocks)
+ ind2 = 0;
+ if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
+ // Dbprintf("Tmp %d -> Block %d", ind, ind2);
+ memcpy(Blocks[ind2], tmpBlocks[ind], 16);
+ Blocks[ind2][ALLOC] = 1;
+ num_blocks++;
+ if(num_blocks == max_blocks) goto end;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ tries++;
+ if (BUTTON_PRESS()) return;
+ } while (num_blocks != max_blocks);
+end:
+ Dbprintf("-----------------------------------------");
+ Dbprintf("Memory content:");
+ Dbprintf("-----------------------------------------");
+ for(i=0; i<max_blocks; i++) {
+ if(Blocks[i][ALLOC]==1)
+ Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
+ Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
+ Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
+ else
+ Dbprintf("<missing block %d>", i);
+ }
+ Dbprintf("-----------------------------------------");
+
+ return ;
+}
+
+
+//-----------------------------------
+// EM4469 / EM4305 routines
+//-----------------------------------
+#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
+#define FWD_CMD_WRITE 0xA
+#define FWD_CMD_READ 0x9
+#define FWD_CMD_DISABLE 0x5
+
+
+uint8_t forwardLink_data[64]; //array of forwarded bits
+uint8_t * forward_ptr; //ptr for forward message preparation
+uint8_t fwd_bit_sz; //forwardlink bit counter
+uint8_t * fwd_write_ptr; //forwardlink bit pointer
+
+//====================================================================
+// prepares command bits
+// see EM4469 spec
+//====================================================================
+//--------------------------------------------------------------------
+uint8_t Prepare_Cmd( uint8_t cmd ) {
+ //--------------------------------------------------------------------
+
+ *forward_ptr++ = 0; //start bit
+ *forward_ptr++ = 0; //second pause for 4050 code
+
+ *forward_ptr++ = cmd;
+ cmd >>= 1;
+ *forward_ptr++ = cmd;
+ cmd >>= 1;
+ *forward_ptr++ = cmd;
+ cmd >>= 1;
+ *forward_ptr++ = cmd;
+
+ return 6; //return number of emited bits
+}
+
+//====================================================================
+// prepares address bits
+// see EM4469 spec
+//====================================================================
+
+//--------------------------------------------------------------------
+uint8_t Prepare_Addr( uint8_t addr ) {
+ //--------------------------------------------------------------------
+
+ register uint8_t line_parity;
+
+ uint8_t i;
+ line_parity = 0;
+ for(i=0;i<6;i++) {
+ *forward_ptr++ = addr;
+ line_parity ^= addr;
+ addr >>= 1;
+ }
+
+ *forward_ptr++ = (line_parity & 1);
+
+ return 7; //return number of emited bits
+}
+
+//====================================================================
+// prepares data bits intreleaved with parity bits
+// see EM4469 spec
+//====================================================================
+
+//--------------------------------------------------------------------
+uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
+ //--------------------------------------------------------------------
+
+ register uint8_t line_parity;
+ register uint8_t column_parity;
+ register uint8_t i, j;
+ register uint16_t data;
+
+ data = data_low;
+ column_parity = 0;
+
+ for(i=0; i<4; i++) {
+ line_parity = 0;
+ for(j=0; j<8; j++) {
+ line_parity ^= data;
+ column_parity ^= (data & 1) << j;
+ *forward_ptr++ = data;
+ data >>= 1;
+ }
+ *forward_ptr++ = line_parity;
+ if(i == 1)
+ data = data_hi;
+ }
+
+ for(j=0; j<8; j++) {
+ *forward_ptr++ = column_parity;
+ column_parity >>= 1;
+ }
+ *forward_ptr = 0;
+
+ return 45; //return number of emited bits
+}
+
+//====================================================================
+// Forward Link send function
+// Requires: forwarLink_data filled with valid bits (1 bit per byte)
+// fwd_bit_count set with number of bits to be sent
+//====================================================================
+void SendForward(uint8_t fwd_bit_count) {
+
+ fwd_write_ptr = forwardLink_data;
+ fwd_bit_sz = fwd_bit_count;
+
+ LED_D_ON();
+
+ //Field on
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // Give it a bit of time for the resonant antenna to settle.
+ // And for the tag to fully power up
+ SpinDelay(150);
+
+ // force 1st mod pulse (start gap must be longer for 4305)
+ fwd_bit_sz--; //prepare next bit modulation
+ fwd_write_ptr++;
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+ SpinDelayUs(16*8); //16 cycles on (8us each)
+
+ // now start writting
+ while(fwd_bit_sz-- > 0) { //prepare next bit modulation
+ if(((*fwd_write_ptr++) & 1) == 1)
+ SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
+ else {
+ //These timings work for 4469/4269/4305 (with the 55*8 above)
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ SpinDelayUs(23*8); //16-4 cycles off (8us each)
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+ SpinDelayUs(9*8); //16 cycles on (8us each)
+ }
+ }
+}
+
+
+void EM4xLogin(uint32_t Password) {
+
+ uint8_t fwd_bit_count;
+
+ forward_ptr = forwardLink_data;
+ fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
+ fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
+
+ SendForward(fwd_bit_count);
+
+ //Wait for command to complete
+ SpinDelay(20);
+
+}
+
+void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
+
+ uint8_t *dest = get_bigbufptr_recvrespbuf();
+ uint16_t bufferlength = 12000;
+ uint32_t i = 0;
+
+ // Clear destination buffer before sending the command 0x80 = average.
+ memset(dest, 0x80, bufferlength);
+
+ uint8_t fwd_bit_count;
+
+ //If password mode do login
+ if (PwdMode == 1) EM4xLogin(Pwd);
+
+ forward_ptr = forwardLink_data;
+ fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
+ fwd_bit_count += Prepare_Addr( Address );
+
+ // Connect the A/D to the peak-detected low-frequency path.
+ SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+ // Now set up the SSC to get the ADC samples that are now streaming at us.
+ FpgaSetupSsc();
+
+ SendForward(fwd_bit_count);
+
+ // // Turn field on to read the response
+ // TurnReadLFOn();
+
+ // Now do the acquisition
+ i = 0;
+ for(;;) {
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+ AT91C_BASE_SSC->SSC_THR = 0x43;
+ }
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+ dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ ++i;
+ if (i >= bufferlength) break;
+ }
+ }
+
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ LED_D_OFF();
+}
+
+void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
+
+ uint8_t fwd_bit_count;
+
+ //If password mode do login
+ if (PwdMode == 1) EM4xLogin(Pwd);
+
+ forward_ptr = forwardLink_data;
+ fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
+ fwd_bit_count += Prepare_Addr( Address );
+ fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
+
+ SendForward(fwd_bit_count);
+
+ //Wait for write to complete
+ SpinDelay(20);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ LED_D_OFF();
+}