#include "lfdemod.h"
#include "common.h"
-/* //un_comment to allow debug print calls when used not on device
+//un_comment to allow debug print calls when used not on device
void dummy(char *fmt, ...){}
#ifndef ON_DEVICE
#include "ui.h"
+#include "cmdparser.h"
+#include "cmddata.h"
#define prnt PrintAndLog
#else
-
+ uint8_t g_debugMode=0;
#define prnt dummy
#endif
-*/
uint8_t justNoise(uint8_t *BitStream, size_t size)
{
return (ans == pType);
}
+// by marshmellow
+// takes a array of binary values, start position, length of bits per parity (includes parity bit),
+// Parity Type (1 for odd; 0 for even; 2 Always 1's), and binary Length (length to run)
+size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen)
+{
+ uint32_t parityWd = 0;
+ size_t j = 0, bitCnt = 0;
+ for (int word = 0; word < (bLen); word+=pLen){
+ for (int bit=0; bit < pLen; bit++){
+ parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
+ BitStream[j++] = (BitStream[startIdx+word+bit]);
+ }
+ j--; // overwrite parity with next data
+ // if parity fails then return 0
+ if (pType == 2) { // then marker bit which should be a 1
+ if (!BitStream[j]) return 0;
+ } else {
+ if (parityTest(parityWd, pLen, pType) == 0) return 0;
+ }
+ bitCnt+=(pLen-1);
+ parityWd = 0;
+ }
+ // if we got here then all the parities passed
+ //return ID start index and size
+ return bitCnt;
+}
+
+// by marshmellow
+// takes a array of binary values, length of bits per parity (includes parity bit),
+// Parity Type (1 for odd; 0 for even; 2 Always 1's), and binary Length (length to run)
+size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t pLen, uint8_t pType)
+{
+ uint32_t parityWd = 0;
+ size_t j = 0, bitCnt = 0;
+ for (int word = 0; word < sourceLen; word+=pLen-1) {
+ for (int bit=0; bit < pLen-1; bit++){
+ parityWd = (parityWd << 1) | BitSource[word+bit];
+ dest[j++] = (BitSource[word+bit]);
+ }
+ // if parity fails then return 0
+ if (pType == 2) { // then marker bit which should be a 1
+ dest[j++]=1;
+ } else {
+ dest[j++] = parityTest(parityWd, pLen-1, pType) ^ 1;
+ }
+ bitCnt += pLen;
+ parityWd = 0;
+ }
+ // if we got here then all the parities passed
+ //return ID start index and size
+ return bitCnt;
+}
+
+uint32_t bytebits_to_byte(uint8_t *src, size_t numbits)
+{
+ uint32_t num = 0;
+ for(int i = 0 ; i < numbits ; i++)
+ {
+ num = (num << 1) | (*src);
+ src++;
+ }
+ return num;
+}
+
+//least significant bit first
+uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits)
+{
+ uint32_t num = 0;
+ for(int i = 0 ; i < numbits ; i++)
+ {
+ num = (num << 1) | *(src + (numbits-(i+1)));
+ }
+ return num;
+}
+
//by marshmellow
//search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx)
if (*clk==0 || start < 0) return -3;
if (*invert != 1) *invert = 0;
if (amp==1) askAmp(BinStream, *size);
+ if (g_debugMode==2) prnt("DEBUG: clk %d, beststart %d", *clk, start);
uint8_t initLoopMax = 255;
if (initLoopMax > *size) initLoopMax = *size;
size_t errCnt = 0;
// if clean clipped waves detected run alternate demod
if (DetectCleanAskWave(BinStream, *size, high, low)) {
+ if (g_debugMode==2) prnt("DEBUG: Clean Wave Detected");
errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low);
if (askType) //askman
return manrawdecode(BinStream, size, 0);
uint8_t midBit = 0;
uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
if (*clk <= 32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
- size_t MaxBits = 1024;
+ size_t MaxBits = 3072;
lastBit = start - *clk;
for (i = start; i < *size; ++i) {
size_t numBits = 0;
// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
- // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
+ // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
for(idx = 161; idx < size-20; idx++) {
// threshold current value
return (int)startIdx;
}
-uint32_t bytebits_to_byte(uint8_t *src, size_t numbits)
-{
- uint32_t num = 0;
- for(int i = 0 ; i < numbits ; i++)
- {
- num = (num << 1) | (*src);
- src++;
- }
- return num;
-}
-
-//least significant bit first
-uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits)
-{
- uint32_t num = 0;
- for(int i = 0 ; i < numbits ; i++)
- {
- num = (num << 1) | *(src + (numbits-(i+1)));
- }
- return num;
-}
-
int IOdemodFSK(uint8_t *dest, size_t size)
{
if (justNoise(dest, size)) return -1;
return (int) startIdx;
}
-// by marshmellow
-// takes a array of binary values, start position, length of bits per parity (includes parity bit),
-// Parity Type (1 for odd; 0 for even; 2 Always 1's), and binary Length (length to run)
-size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen)
-{
- uint32_t parityWd = 0;
- size_t j = 0, bitCnt = 0;
- for (int word = 0; word < (bLen); word+=pLen){
- for (int bit=0; bit < pLen; bit++){
- parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
- BitStream[j++] = (BitStream[startIdx+word+bit]);
- }
- j--; // overwrite parity with next data
- // if parity fails then return 0
- if (pType == 2) { // then marker bit which should be a 1
- if (!BitStream[j]) return 0;
- } else {
- if (parityTest(parityWd, pLen, pType) == 0) return 0;
- }
- bitCnt+=(pLen-1);
- parityWd = 0;
- }
- // if we got here then all the parities passed
- //return ID start index and size
- return bitCnt;
-}
-
// Ask/Biphase Demod then try to locate an ISO 11784/85 ID
// BitStream must contain previously askrawdemod and biphasedemoded data
int FDXBdemodBI(uint8_t *dest, size_t *size)
minClk = i - startwave;
}
// set clock
- //prnt("minClk: %d",minClk);
+ if (g_debugMode==2) prnt("DEBUG ASK: detectstrongASKclk smallest wave: %d",minClk);
for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1)
return fndClk[clkCnt];
if (!clockFnd){
if (DetectCleanAskWave(dest, size, peak, low)==1){
int ans = DetectStrongAskClock(dest, size, peak, low);
+ if (g_debugMode==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d",ans);
for (i=clkEnd-1; i>0; i--){
if (clk[i] == ans) {
*clock = ans;
}
//if we found no errors then we can stop here and a low clock (common clocks)
// this is correct one - return this clock
- //prnt("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i);
+ if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d",clk[clkCnt],errCnt,ii,i);
if(errCnt==0 && clkCnt<7) {
if (!clockFnd) *clock = clk[clkCnt];
return ii;
best = iii;
}
}
+ if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d",clk[iii],bestErr[iii],clk[best],bestStart[best]);
}
- //if (bestErr[best] > maxErr) return -1;
if (!clockFnd) *clock = clk[best];
return bestStart[best];
}
uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0};
fc = countFC(dest, size, 0);
if (fc!=2 && fc!=4 && fc!=8) return -1;
- //prnt("DEBUG: FC: %d",fc);
+ if (g_debugMode==2) prnt("DEBUG PSK: FC: %d",fc);
//find first full wave
for (i=160; i<loopCnt; i++){
}
}
}
- //prnt("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
+ if (g_debugMode ==2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
//test each valid clock from greatest to smallest to see which lines up
for(clkCnt=7; clkCnt >= 1 ; clkCnt--){
waveStart = 0;
errCnt=0;
peakcnt=0;
- //prnt("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
+ if (g_debugMode == 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){
//top edge of wave = start of new wave
waveLenCnt = waveEnd-waveStart;
if (waveLenCnt > fc){
//if this wave is a phase shift
- //prnt("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc);
+ if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,fc);
if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit
peakcnt++;
lastClkBit+=clk[clkCnt];
if (peaksdet[i] > peaksdet[best]) {
best = i;
}
- //prnt("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
+ if (g_debugMode == 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[i],peaksdet[i],bestErr[i],clk[best]);
}
return clk[best];
}
transition1 = i;
}
}
- //prnt("DEBUG: LowestTrs: %d",lowestTransition);
if (lowestTransition == 255) lowestTransition = 0;
+ if (g_debugMode==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition);
return lowestTransition;
}
} else if (peaksdet[iii] > peaksdet[best]){
best = iii;
}
- //prnt("DEBUG: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],maxPeak, clk[best], lowestTransition);
+ if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],maxPeak, clk[best], lowestTransition);
}
return clk[best];
uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15;
for (i=0; i<15; i++){
- //prnt("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]);
//get highest 2 RF values (might need to get more values to compare or compare all?)
if (rfCnts[i]>rfCnts[rfHighest]){
rfHighest3=rfHighest2;
} else if(rfCnts[i]>rfCnts[rfHighest3]){
rfHighest3=i;
}
+ if (g_debugMode==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens[i], rfCnts[i]);
}
// set allowed clock remainder tolerance to be 1 large field clock length+1
// we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
uint8_t tol1 = fcHigh+1;
- //prnt("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
+ if (g_debugMode==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
// loop to find the highest clock that has a remainder less than the tolerance
// compare samples counted divided by
if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
+ if (g_debugMode==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk[ii]);
break;
}
}
uint16_t maxCnt1=0;
// go through fclens and find which ones are bigest 2
for (i=0; i<15; i++){
- //prnt("DEBUG: FC %d, Cnt %d",fcLens[i],fcCnts[i]);
// get the 3 best FC values
if (fcCnts[i]>maxCnt1) {
best3=best2;
} else if(fcCnts[i]>fcCnts[best3]){
best3=i;
}
+ if (g_debugMode==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens[i],fcCnts[i],fcLens[best1],fcLens[best2]);
}
if (fcLens[best1]==0) return 0;
uint8_t fcH=0, fcL=0;
fcH=fcLens[best2];
fcL=fcLens[best1];
}
- //prnt("DEBUG: dd %d > %d",(size-180)/fcH/3,fcCnts[best1]+fcCnts[best2]);
- if ((size-180)/fcH/3 > fcCnts[best1]+fcCnts[best2]) return 0; //lots of waves not psk or fsk
-
+ if ((size-180)/fcH/3 > fcCnts[best1]+fcCnts[best2]) {
+ if (g_debugMode==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size-180)/fcH/3,fcCnts[best1]+fcCnts[best2]);
+ return 0; //lots of waves not psk or fsk
+ }
// TODO: take top 3 answers and compare to known Field clocks to get top 2
uint16_t fcs = (((uint16_t)fcH)<<8) | fcL;
- //prnt("DEBUG: Best %d best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]);
if (fskAdj) return fcs;
return fcLens[best1];
}