]> cvs.zerfleddert.de Git - proxmark3-svn/blobdiff - client/ui.c
ADD: `analyse nuid` - generates NUID 4byte from a UID 7byte. Mifare Classic Ev1...
[proxmark3-svn] / client / ui.c
index c796d9047464db97a261726e57e2da13e70f0942..2c344b680713c747e152afb340c8236fa1d3d632 100644 (file)
@@ -9,20 +9,15 @@
 // UI utilities
 //-----------------------------------------------------------------------------
 
-#include <stdarg.h>
-#include <stdlib.h>
-#include <stdio.h>
-#include <stdbool.h>
-#include <time.h>
-#include <readline/readline.h>
-#include <pthread.h>
 #include "ui.h"
-#include "loclass/cipherutils.h"
 
+// set QT vars
 double CursorScaleFactor;
-int PlotGridX, PlotGridY, PlotGridXdefault= 64, PlotGridYdefault= 64;
+int PlotGridX, PlotGridY, PlotGridXdefault = 64, PlotGridYdefault = 64, CursorCPos = 0, CursorDPos = 0;
+int PlotClock = 0, PlockClockStartIndex = 0;
+
 int offline;
-int flushAfterWrite = 0;  //buzzy
+int flushAfterWrite = 0;
 extern pthread_mutex_t print_lock;
 
 static char *logfilename = "proxmark3.log";
@@ -33,13 +28,16 @@ void PrintAndLog(char *fmt, ...)
        int saved_point;
        va_list argptr, argptr2;
        static FILE *logfile = NULL;
-       static int logging=1;
-
+       static int logging = 1;
+       // time_t current_time;
+       // struct tm* tm_info;
+       // char buffer[26] = {0};
+               
        // lock this section to avoid interlacing prints from different threats
        pthread_mutex_lock(&print_lock);
   
        if (logging && !logfile) {
-               logfile=fopen(logfilename, "a");
+               logfile = fopen(logfilename, "a");
                if (!logfile) {
                        fprintf(stderr, "Can't open logfile, logging disabled!\n");
                        logging=0;
@@ -72,324 +70,112 @@ void PrintAndLog(char *fmt, ...)
        }
        
        if (logging && logfile) {
+
+               /*
+               // Obtain current time.
+               current_time = time(NULL);
+               // Convert to local time format.
+               tm_info = localtime(&current_time);             
+               strftime(buffer, 26, "%Y-%m-%d %H:%M:%S", tm_info);
+               fprintf(logfile, "%s  ", buffer);
+               */
+               
                vfprintf(logfile, fmt, argptr2);
                fprintf(logfile,"\n");
                fflush(logfile);
        }
        va_end(argptr2);
 
-       if (flushAfterWrite == 1)  //buzzy
-       {
+       if (flushAfterWrite == 1) {
                fflush(NULL);
        }
        //release lock
        pthread_mutex_unlock(&print_lock);  
 }
 
-void SetLogFilename(char *fn)
-{
-  logfilename = fn;
+void SetLogFilename(char *fn) {
+       logfilename = fn;
 }
-
-int manchester_decode( int * data, const size_t len, uint8_t * dataout){
-       
-       int bitlength = 0;
-       int i, clock, high, low, startindex;
-       low = startindex = 0;
-       high = 1;
-       uint8_t bitStream[len];
-       
-       memset(bitStream, 0x00, len);
-       
-       /* Detect high and lows */
-       for (i = 0; i < len; i++) {
-               if (data[i] > high)
-                       high = data[i];
-               else if (data[i] < low)
-                       low = data[i];
-       }
-       
-       /* get clock */
-       clock = GetT55x7Clock( data, len, high );       
-       startindex = DetectFirstTransition(data, len, high);
-  
-       //PrintAndLog(" Clock       : %d", clock);
-       //PrintAndLog(" startindex  : %d", startindex);
-       
-       if (high != 1)
-               bitlength = ManchesterConvertFrom255(data, len, bitStream, high, low, clock, startindex);
-       else
-               bitlength= ManchesterConvertFrom1(data, len, bitStream, clock, startindex);
-
-       //if ( bitlength > 0 )
-       //      PrintPaddedManchester(bitStream, bitlength, clock);
-
-       memcpy(dataout, bitStream, bitlength);
-       
-       free(bitStream);
-       return bitlength;
-}
-
- int GetT55x7Clock( const int * data, const size_t len, int peak ){ 
  
-       int i,lastpeak,clock;
-       clock = 0xFFFF;
-       lastpeak = 0;
-       
-       /* Detect peak if we don't have one */
-       if (!peak) {
-               for (i = 0; i < len; ++i) {
-                       if (data[i] > peak) {
-                               peak = data[i];
-                       }
-               }
-       }
-       
-       for (i = 1; i < len; ++i) {
-               /* if this is the beginning of a peak */
-               if ( data[i-1] != data[i] &&  data[i] == peak) {
-                 /* find lowest difference between peaks */
-                       if (lastpeak && i - lastpeak < clock)
-                               clock = i - lastpeak;
-                       lastpeak = i;
-               }
-       }
-       //return clock;  
-       //defaults clock to precise values.
-       switch(clock){
-               case 8:
-               case 16:
-               case 32:
-               case 40:
-               case 50:
-               case 64:
-               case 100:
-               case 128:
-               return clock;
-               break;
-               default:  break;
-       }
-       
-       //PrintAndLog(" Found Clock : %d  - trying to adjust", clock);
+void iceIIR_Butterworth(int *data, const size_t len){
+
+       int i,j;
        
-       // When detected clock is 31 or 33 then then return 
-       int clockmod = clock%8;
-       if ( clockmod == 7 ) 
-               clock += 1;
-       else if ( clockmod == 1 )
-               clock -= 1;
+       int * output =  (int* ) malloc(sizeof(int) * len);      
+       if ( !output ) return;
        
-       return clock;
- }
- int DetectFirstTransition(const int * data, const size_t len, int threshold){
-
-       int i =0;
-       /* now look for the first threshold */
-       for (; i < len; ++i) {
-               if (data[i] == threshold) {
-                       break;
-               }
-       }
-       return i;
- }
-
- int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int high, int low, int clock, int startIndex){
-
-       int i, j, z, hithigh, hitlow, bitIndex, startType;
-       i = 0;
-       bitIndex = 0;
+       // clear mem
+       memset(output, 0x00, len);
        
-       int isDamp = 0;
-       int damplimit = (int)((high / 2) * 0.3);
-       int dampHi =  (high/2)+damplimit;
-       int dampLow = (high/2)-damplimit;
-       int firstST = 0;
-
-       // i = clock frame of data
-       for (; i < (int)(len / clock); i++)
-       {
-               hithigh = 0;
-               hitlow = 0;
-               startType = -1;
-               z = startIndex + (i*clock);
-               isDamp = 0;
-                       
-               /* Find out if we hit both high and low peaks */
-               for (j = 0; j < clock; j++)
-               {               
-                       if (data[z+j] == high){
-                               hithigh = 1;
-                               if ( startType == -1)
-                                       startType = 1;
-                       }
-                       
-                       if (data[z+j] == low ){
-                               hitlow = 1;
-                               if ( startType == -1)
-                                       startType = 0;
-                       } 
+       size_t adjustedLen = len;
+       float fc = 0.1125f;          // center frequency
                
-                       if (hithigh && hitlow)
-                         break;
-               }
+    // create very simple low-pass filter to remove images (2nd-order Butterworth)
+    float complex iir_buf[3] = {0,0,0};
+    float b[3] = {0.003621681514929,  0.007243363029857, 0.003621681514929};
+    float a[3] = {1.000000000000000, -1.822694925196308, 0.837181651256023};
+    
+    float sample           = 0;      // input sample read from array
+    float complex x_prime  = 1.0f;   // save sample for estimating frequency
+    float complex x;
                
-               // No high value found, are we in a dampening field?
-               if ( !hithigh ) {
-                       //PrintAndLog(" # Entering damp test at index : %d (%d)", z+j, j);
-                       for (j = 0; j < clock; j++)
-                       {
-                               if ( 
-                                    (data[z+j] <= dampHi && data[z+j] >= dampLow)
-                                  ){
-                                  isDamp++;
-                               }
-                       }
-               }
+       for (i = 0; i < adjustedLen; ++i) {
 
-               /*  Manchester Switching..
-                       0: High -> Low   
-                       1: Low -> High  
-               */
-               if (startType == 0)
-                       dataout[bitIndex++] = 1;
-               else if (startType == 1) 
-                       dataout[bitIndex++] = 0;
-               else
-                       dataout[bitIndex++] = 2;
-                       
-               if ( isDamp > clock/2 ) {
-                       firstST++;
-               }
+               sample = data[i];
                
-               if ( firstST == 4)
-                       break;
-       }
-       return bitIndex;
- }
- int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout, int clock, int startIndex){
+        // remove DC offset and mix to complex baseband
+        x = (sample - 127.5f) * cexpf( _Complex_I * 2 * M_PI * fc * i );
+
+        // apply low-pass filter, removing spectral image (IIR using direct-form II)
+        iir_buf[2] = iir_buf[1];
+        iir_buf[1] = iir_buf[0];
+        iir_buf[0] = x - a[1]*iir_buf[1] - a[2]*iir_buf[2];
+        x          = b[0]*iir_buf[0] +
+                     b[1]*iir_buf[1] +
+                     b[2]*iir_buf[2];
+                                        
+        // compute instantaneous frequency by looking at phase difference
+        // between adjacent samples
+        float freq = cargf(x*conjf(x_prime));
+        x_prime = x;    // retain this sample for next iteration
+
+               output[i] =(freq > 0) ? 127 : -127;
+    } 
+
+       // show data
+       //memcpy(data, output, adjustedLen);
+       for (j=0; j<adjustedLen; ++j)
+               data[j] = output[j];
+       
+       free(output);
+}
 
-       PrintAndLog(" Path B");
-       int i,j, bitindex, lc, tolerance, warnings;
-       warnings = 0;
-       int upperlimit = len*2/clock+8;
-       i = startIndex;
-       j = 0;
-       tolerance = clock/4;
-       uint8_t decodedArr[len];
-       
-       /* Detect duration between 2 successive transitions */
-       for (bitindex = 1; i < len; i++) {
-       
-               if (data[i-1] != data[i]) {
-                       lc = i - startIndex;
-                       startIndex = i;
+void iceSimple_Filter(int *data, const size_t len, uint8_t k){
+// ref: http://www.edn.com/design/systems-design/4320010/A-simple-software-lowpass-filter-suits-embedded-system-applications
+// parameter K
+#define FILTER_SHIFT 4 
 
-                       // Error check: if bitindex becomes too large, we do not
-                       // have a Manchester encoded bitstream or the clock is really wrong!
-                       if (bitindex > upperlimit ) {
-                               PrintAndLog("Error: the clock you gave is probably wrong, aborting.");
-                               return 0;
-                       }
-                       // Then switch depending on lc length:
-                       // Tolerance is 1/4 of clock rate (arbitrary)
-                       if (abs((lc-clock)/2) < tolerance) {
-                               // Short pulse : either "1" or "0"
-                               decodedArr[bitindex++] = data[i-1];
-                       } else if (abs(lc-clock) < tolerance) {
-                               // Long pulse: either "11" or "00"
-                               decodedArr[bitindex++] = data[i-1];
-                               decodedArr[bitindex++] = data[i-1];
-                       } else {
-                               ++warnings;
-                               PrintAndLog("Warning: Manchester decode error for pulse width detection.");
-                               if (warnings > 10) {
-                                       PrintAndLog("Error: too many detection errors, aborting.");
-                                       return 0; 
-                               }
-                       }
-               }
-       }
-       
-       /* 
-       * We have a decodedArr of "01" ("1") or "10" ("0")
-       * parse it into final decoded dataout
-    */ 
-    for (i = 0; i < bitindex; i += 2) {
+       int32_t filter_reg = 0;
+       int16_t input, output;
+       int8_t shift = (k <=8 ) ? k : FILTER_SHIFT;
 
-           if ((decodedArr[i] == 0) && (decodedArr[i+1] == 1)) {
-                       dataout[j++] = 1;
-               } else if ((decodedArr[i] == 1) && (decodedArr[i+1] == 0)) {
-                       dataout[j++] = 0;
-               } else {
-                       i++;
-                       warnings++;
-                       PrintAndLog("Unsynchronized, resync...");
-                       PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)");
+       for (int i = 0; i < len; ++i){
 
-                       if (warnings > 10) {    
-                               PrintAndLog("Error: too many decode errors, aborting.");
-                               return 0;
-                       }
-               }
-    }
-       
-       PrintAndLog("%s", sprint_hex(dataout, j));
-       return j;
- }
- void ManchesterDiffDecodedString(const uint8_t* bitstream, size_t len, uint8_t invert){
-       /* 
-       * We have a bitstream of "01" ("1") or "10" ("0")
-       * parse it into final decoded bitstream
-    */ 
-       int i, j, warnings; 
-       uint8_t decodedArr[(len/2)+1];
-
-       j = warnings = 0;
-       
-       uint8_t lastbit = 0;
-       
-    for (i = 0; i < len; i += 2) {
-       
-               uint8_t first = bitstream[i];
-               uint8_t second = bitstream[i+1];
+               input = data[i];
+               // Update filter with current sample
+               filter_reg = filter_reg - (filter_reg >> shift) + input;
 
-               if ( first == second ) {
-                       ++i;
-                       ++warnings;
-                       if (warnings > 10) {
-                               PrintAndLog("Error: too many decode errors, aborting.");
-                               return;
-                       }
-               } 
-               else if ( lastbit != first ) {
-                       decodedArr[j++] = 0 ^ invert;
-               }
-               else {
-                       decodedArr[j++] = 1 ^ invert;
-               }
-               lastbit = second;
-    }
-       
-       PrintAndLog("%s", sprint_hex(decodedArr, j));
+               // Scale output for unity gain
+               output = filter_reg >> shift;
+               data[i] = output;
+       }
 }
-void PrintPaddedManchester( uint8_t* bitStream, size_t len, size_t blocksize){
 
-       PrintAndLog(" Manchester decoded  : %d bits", len);
-         
-       uint8_t mod = len % blocksize;
-       uint8_t div = len / blocksize;
-       int i;
-  
-       // Now output the bitstream to the scrollback by line of 16 bits
-       for (i = 0; i < div*blocksize; i+=blocksize) {
-               PrintAndLog(" %s", sprint_bin(bitStream+i,blocksize) );
-       }
-       
-       if ( mod > 0 )
-               PrintAndLog(" %s", sprint_bin(bitStream+i, mod) );      
-}
\ No newline at end of file
+float complex cexpf (float complex Z)
+{
+  float complex  Res;
+  double rho = exp (__real__ Z);
+  __real__ Res = rho * cosf(__imag__ Z);
+  __imag__ Res = rho * sinf(__imag__ Z);
+  return Res;
+}
Impressum, Datenschutz