// UI utilities
//-----------------------------------------------------------------------------
-#include <stdarg.h>
-#include <stdlib.h>
-#include <stdio.h>
-#include <stdbool.h>
-#include <time.h>
-#include <readline/readline.h>
-#include <pthread.h>
#include "ui.h"
-#include "loclass/cipherutils.h"
+// set QT vars
double CursorScaleFactor;
-int PlotGridX, PlotGridY, PlotGridXdefault= 64, PlotGridYdefault= 64;
+int PlotGridX, PlotGridY, PlotGridXdefault = 64, PlotGridYdefault = 64, CursorCPos = 0, CursorDPos = 0;
+int PlotClock = 0, PlockClockStartIndex = 0;
+
int offline;
-int flushAfterWrite = 0; //buzzy
+int flushAfterWrite = 0;
extern pthread_mutex_t print_lock;
static char *logfilename = "proxmark3.log";
int saved_point;
va_list argptr, argptr2;
static FILE *logfile = NULL;
- static int logging=1;
-
+ static int logging = 1;
+ // time_t current_time;
+ // struct tm* tm_info;
+ // char buffer[26] = {0};
+
// lock this section to avoid interlacing prints from different threats
pthread_mutex_lock(&print_lock);
if (logging && !logfile) {
- logfile=fopen(logfilename, "a");
+ logfile = fopen(logfilename, "a");
if (!logfile) {
fprintf(stderr, "Can't open logfile, logging disabled!\n");
logging=0;
}
if (logging && logfile) {
+
+ /*
+ // Obtain current time.
+ current_time = time(NULL);
+ // Convert to local time format.
+ tm_info = localtime(¤t_time);
+ strftime(buffer, 26, "%Y-%m-%d %H:%M:%S", tm_info);
+ fprintf(logfile, "%s ", buffer);
+ */
+
vfprintf(logfile, fmt, argptr2);
fprintf(logfile,"\n");
fflush(logfile);
}
va_end(argptr2);
- if (flushAfterWrite == 1) //buzzy
- {
+ if (flushAfterWrite == 1) {
fflush(NULL);
}
//release lock
pthread_mutex_unlock(&print_lock);
}
-void SetLogFilename(char *fn)
-{
- logfilename = fn;
+void SetLogFilename(char *fn) {
+ logfilename = fn;
}
-
-int manchester_decode( int * data, const size_t len, uint8_t * dataout){
-
- int bitlength = 0;
- int i, clock, high, low, startindex;
- low = startindex = 0;
- high = 1;
- uint8_t bitStream[len];
-
- memset(bitStream, 0x00, len);
-
- /* Detect high and lows */
- for (i = 0; i < len; i++) {
- if (data[i] > high)
- high = data[i];
- else if (data[i] < low)
- low = data[i];
- }
-
- /* get clock */
- clock = GetT55x7Clock( data, len, high );
- startindex = DetectFirstTransition(data, len, high);
-
- //PrintAndLog(" Clock : %d", clock);
- //PrintAndLog(" startindex : %d", startindex);
-
- if (high != 1)
- bitlength = ManchesterConvertFrom255(data, len, bitStream, high, low, clock, startindex);
- else
- bitlength= ManchesterConvertFrom1(data, len, bitStream, clock, startindex);
-
- //if ( bitlength > 0 )
- // PrintPaddedManchester(bitStream, bitlength, clock);
-
- memcpy(dataout, bitStream, bitlength);
-
- free(bitStream);
- return bitlength;
-}
-
- int GetT55x7Clock( const int * data, const size_t len, int peak ){
- int i,lastpeak,clock;
- clock = 0xFFFF;
- lastpeak = 0;
-
- /* Detect peak if we don't have one */
- if (!peak) {
- for (i = 0; i < len; ++i) {
- if (data[i] > peak) {
- peak = data[i];
- }
- }
- }
-
- for (i = 1; i < len; ++i) {
- /* if this is the beginning of a peak */
- if ( data[i-1] != data[i] && data[i] == peak) {
- /* find lowest difference between peaks */
- if (lastpeak && i - lastpeak < clock)
- clock = i - lastpeak;
- lastpeak = i;
- }
- }
- //return clock;
- //defaults clock to precise values.
- switch(clock){
- case 8:
- case 16:
- case 32:
- case 40:
- case 50:
- case 64:
- case 100:
- case 128:
- return clock;
- break;
- default: break;
- }
-
- //PrintAndLog(" Found Clock : %d - trying to adjust", clock);
+void iceIIR_Butterworth(int *data, const size_t len){
+
+ int i,j;
- // When detected clock is 31 or 33 then then return
- int clockmod = clock%8;
- if ( clockmod == 7 )
- clock += 1;
- else if ( clockmod == 1 )
- clock -= 1;
+ int * output = (int* ) malloc(sizeof(int) * len);
+ if ( !output ) return;
- return clock;
- }
-
- int DetectFirstTransition(const int * data, const size_t len, int threshold){
-
- int i =0;
- /* now look for the first threshold */
- for (; i < len; ++i) {
- if (data[i] == threshold) {
- break;
- }
- }
- return i;
- }
-
- int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int high, int low, int clock, int startIndex){
-
- int i, j, z, hithigh, hitlow, bitIndex, startType;
- i = 0;
- bitIndex = 0;
+ // clear mem
+ memset(output, 0x00, len);
- int isDamp = 0;
- int damplimit = (int)((high / 2) * 0.3);
- int dampHi = (high/2)+damplimit;
- int dampLow = (high/2)-damplimit;
- int firstST = 0;
-
- // i = clock frame of data
- for (; i < (int)(len / clock); i++)
- {
- hithigh = 0;
- hitlow = 0;
- startType = -1;
- z = startIndex + (i*clock);
- isDamp = 0;
-
- /* Find out if we hit both high and low peaks */
- for (j = 0; j < clock; j++)
- {
- if (data[z+j] == high){
- hithigh = 1;
- if ( startType == -1)
- startType = 1;
- }
-
- if (data[z+j] == low ){
- hitlow = 1;
- if ( startType == -1)
- startType = 0;
- }
+ size_t adjustedLen = len;
+ float fc = 0.1125f; // center frequency
- if (hithigh && hitlow)
- break;
- }
+ // create very simple low-pass filter to remove images (2nd-order Butterworth)
+ float complex iir_buf[3] = {0,0,0};
+ float b[3] = {0.003621681514929, 0.007243363029857, 0.003621681514929};
+ float a[3] = {1.000000000000000, -1.822694925196308, 0.837181651256023};
+
+ float sample = 0; // input sample read from array
+ float complex x_prime = 1.0f; // save sample for estimating frequency
+ float complex x;
- // No high value found, are we in a dampening field?
- if ( !hithigh ) {
- //PrintAndLog(" # Entering damp test at index : %d (%d)", z+j, j);
- for (j = 0; j < clock; j++)
- {
- if (
- (data[z+j] <= dampHi && data[z+j] >= dampLow)
- ){
- isDamp++;
- }
- }
- }
+ for (i = 0; i < adjustedLen; ++i) {
- /* Manchester Switching..
- 0: High -> Low
- 1: Low -> High
- */
- if (startType == 0)
- dataout[bitIndex++] = 1;
- else if (startType == 1)
- dataout[bitIndex++] = 0;
- else
- dataout[bitIndex++] = 2;
-
- if ( isDamp > clock/2 ) {
- firstST++;
- }
+ sample = data[i];
- if ( firstST == 4)
- break;
- }
- return bitIndex;
- }
-
- int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout, int clock, int startIndex){
+ // remove DC offset and mix to complex baseband
+ x = (sample - 127.5f) * cexpf( _Complex_I * 2 * M_PI * fc * i );
+
+ // apply low-pass filter, removing spectral image (IIR using direct-form II)
+ iir_buf[2] = iir_buf[1];
+ iir_buf[1] = iir_buf[0];
+ iir_buf[0] = x - a[1]*iir_buf[1] - a[2]*iir_buf[2];
+ x = b[0]*iir_buf[0] +
+ b[1]*iir_buf[1] +
+ b[2]*iir_buf[2];
+
+ // compute instantaneous frequency by looking at phase difference
+ // between adjacent samples
+ float freq = cargf(x*conjf(x_prime));
+ x_prime = x; // retain this sample for next iteration
+
+ output[i] =(freq > 0) ? 127 : -127;
+ }
+
+ // show data
+ //memcpy(data, output, adjustedLen);
+ for (j=0; j<adjustedLen; ++j)
+ data[j] = output[j];
+
+ free(output);
+}
- PrintAndLog(" Path B");
-
- int i,j, bitindex, lc, tolerance, warnings;
- warnings = 0;
- int upperlimit = len*2/clock+8;
- i = startIndex;
- j = 0;
- tolerance = clock/4;
- uint8_t decodedArr[len];
-
- /* Detect duration between 2 successive transitions */
- for (bitindex = 1; i < len; i++) {
-
- if (data[i-1] != data[i]) {
- lc = i - startIndex;
- startIndex = i;
+void iceSimple_Filter(int *data, const size_t len, uint8_t k){
+// ref: http://www.edn.com/design/systems-design/4320010/A-simple-software-lowpass-filter-suits-embedded-system-applications
+// parameter K
+#define FILTER_SHIFT 4
- // Error check: if bitindex becomes too large, we do not
- // have a Manchester encoded bitstream or the clock is really wrong!
- if (bitindex > upperlimit ) {
- PrintAndLog("Error: the clock you gave is probably wrong, aborting.");
- return 0;
- }
- // Then switch depending on lc length:
- // Tolerance is 1/4 of clock rate (arbitrary)
- if (abs((lc-clock)/2) < tolerance) {
- // Short pulse : either "1" or "0"
- decodedArr[bitindex++] = data[i-1];
- } else if (abs(lc-clock) < tolerance) {
- // Long pulse: either "11" or "00"
- decodedArr[bitindex++] = data[i-1];
- decodedArr[bitindex++] = data[i-1];
- } else {
- ++warnings;
- PrintAndLog("Warning: Manchester decode error for pulse width detection.");
- if (warnings > 10) {
- PrintAndLog("Error: too many detection errors, aborting.");
- return 0;
- }
- }
- }
- }
-
- /*
- * We have a decodedArr of "01" ("1") or "10" ("0")
- * parse it into final decoded dataout
- */
- for (i = 0; i < bitindex; i += 2) {
+ int32_t filter_reg = 0;
+ int16_t input, output;
+ int8_t shift = (k <=8 ) ? k : FILTER_SHIFT;
- if ((decodedArr[i] == 0) && (decodedArr[i+1] == 1)) {
- dataout[j++] = 1;
- } else if ((decodedArr[i] == 1) && (decodedArr[i+1] == 0)) {
- dataout[j++] = 0;
- } else {
- i++;
- warnings++;
- PrintAndLog("Unsynchronized, resync...");
- PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)");
+ for (int i = 0; i < len; ++i){
- if (warnings > 10) {
- PrintAndLog("Error: too many decode errors, aborting.");
- return 0;
- }
- }
- }
-
- PrintAndLog("%s", sprint_hex(dataout, j));
- return j;
- }
-
- void ManchesterDiffDecodedString(const uint8_t* bitstream, size_t len, uint8_t invert){
- /*
- * We have a bitstream of "01" ("1") or "10" ("0")
- * parse it into final decoded bitstream
- */
- int i, j, warnings;
- uint8_t decodedArr[(len/2)+1];
-
- j = warnings = 0;
-
- uint8_t lastbit = 0;
-
- for (i = 0; i < len; i += 2) {
-
- uint8_t first = bitstream[i];
- uint8_t second = bitstream[i+1];
+ input = data[i];
+ // Update filter with current sample
+ filter_reg = filter_reg - (filter_reg >> shift) + input;
- if ( first == second ) {
- ++i;
- ++warnings;
- if (warnings > 10) {
- PrintAndLog("Error: too many decode errors, aborting.");
- return;
- }
- }
- else if ( lastbit != first ) {
- decodedArr[j++] = 0 ^ invert;
- }
- else {
- decodedArr[j++] = 1 ^ invert;
- }
- lastbit = second;
- }
-
- PrintAndLog("%s", sprint_hex(decodedArr, j));
+ // Scale output for unity gain
+ output = filter_reg >> shift;
+ data[i] = output;
+ }
}
-
-void PrintPaddedManchester( uint8_t* bitStream, size_t len, size_t blocksize){
- PrintAndLog(" Manchester decoded : %d bits", len);
-
- uint8_t mod = len % blocksize;
- uint8_t div = len / blocksize;
- int i;
-
- // Now output the bitstream to the scrollback by line of 16 bits
- for (i = 0; i < div*blocksize; i+=blocksize) {
- PrintAndLog(" %s", sprint_bin(bitStream+i,blocksize) );
- }
-
- if ( mod > 0 )
- PrintAndLog(" %s", sprint_bin(bitStream+i, mod) );
-}
\ No newline at end of file
+float complex cexpf (float complex Z)
+{
+ float complex Res;
+ double rho = exp (__real__ Z);
+ __real__ Res = rho * cosf(__imag__ Z);
+ __imag__ Res = rho * sinf(__imag__ Z);
+ return Res;
+}