#include <pthread.h>
#include "loclass/cipherutils.h"
#include "ui.h"
-
+#include "cmdmain.h"
+#include "cmddata.h"
+#include "graph.h"
//#include <liquid/liquid.h>
#define M_PI 3.14159265358979323846264338327
double CursorScaleFactor;
int PlotGridX, PlotGridY, PlotGridXdefault= 64, PlotGridYdefault= 64;
int offline;
-int flushAfterWrite = 0; //buzzy
+int flushAfterWrite = 0;
extern pthread_mutex_t print_lock;
static char *logfilename = "proxmark3.log";
int saved_point;
va_list argptr, argptr2;
static FILE *logfile = NULL;
- static int logging=1;
+ static int logging = 1;
// lock this section to avoid interlacing prints from different threats
pthread_mutex_lock(&print_lock);
if (logging && !logfile) {
- logfile=fopen(logfilename, "a");
+ logfile = fopen(logfilename, "a");
if (!logfile) {
fprintf(stderr, "Can't open logfile, logging disabled!\n");
logging=0;
}
va_end(argptr2);
- if (flushAfterWrite == 1) //buzzy
- {
+ if (flushAfterWrite == 1) {
fflush(NULL);
}
//release lock
logfilename = fn;
}
-int manchester_decode( int * data, const size_t len, uint8_t * dataout){
+int manchester_decode( int * data, const size_t len, uint8_t * dataout, size_t dataoutlen){
int bitlength = 0;
- int i, clock, high, low, startindex;
+ int clock, high, low, startindex;
low = startindex = 0;
high = 1;
- uint8_t bitStream[len];
-
- memset(bitStream, 0x00, len);
+ uint8_t * bitStream = (uint8_t* ) malloc(sizeof(uint8_t) * dataoutlen);
+ memset(bitStream, 0x00, dataoutlen);
/* Detect high and lows */
- for (i = 0; i < len; i++) {
- if (data[i] > high)
- high = data[i];
- else if (data[i] < low)
- low = data[i];
- }
-
+ DetectHighLowInGraph(&high, &low, TRUE);
+
/* get clock */
- clock = GetT55x7Clock( data, len, high );
+ clock = GetAskClock("",false, false);
+
startindex = DetectFirstTransition(data, len, high);
- //PrintAndLog(" Clock : %d", clock);
- //PrintAndLog(" startindex : %d", startindex);
-
if (high != 1)
- bitlength = ManchesterConvertFrom255(data, len, bitStream, high, low, clock, startindex);
+ // decode "raw"
+ bitlength = ManchesterConvertFrom255(data, len, bitStream, dataoutlen, high, low, clock, startindex);
else
- bitlength= ManchesterConvertFrom1(data, len, bitStream, clock, startindex);
-
- //if ( bitlength > 0 )
- // PrintPaddedManchester(bitStream, bitlength, clock);
+ // decode manchester
+ bitlength = ManchesterConvertFrom1(data, len, bitStream, dataoutlen, clock, startindex);
memcpy(dataout, bitStream, bitlength);
+ free(bitStream);
return bitlength;
}
-
- int GetT55x7Clock( const int * data, const size_t len, int peak ){
-
- int i,lastpeak,clock;
- clock = 0xFFFF;
- lastpeak = 0;
-
- /* Detect peak if we don't have one */
- if (!peak) {
- for (i = 0; i < len; ++i) {
- if (data[i] > peak) {
- peak = data[i];
- }
- }
- }
-
- for (i = 1; i < len; ++i) {
- /* if this is the beginning of a peak */
- if ( data[i-1] != data[i] && data[i] == peak) {
- /* find lowest difference between peaks */
- if (lastpeak && i - lastpeak < clock)
- clock = i - lastpeak;
- lastpeak = i;
- }
- }
- //return clock;
- //defaults clock to precise values.
- switch(clock){
- case 8:
- case 16:
- case 32:
- case 40:
- case 50:
- case 64:
- case 100:
- case 128:
- return clock;
- break;
- default: break;
- }
-
- //PrintAndLog(" Found Clock : %d - trying to adjust", clock);
-
- // When detected clock is 31 or 33 then then return
- int clockmod = clock%8;
- if ( clockmod == 7 )
- clock += 1;
- else if ( clockmod == 1 )
- clock -= 1;
-
- return clock;
- }
int DetectFirstTransition(const int * data, const size_t len, int threshold){
- int i =0;
+ int i = 0;
/* now look for the first threshold */
for (; i < len; ++i) {
if (data[i] == threshold) {
return i;
}
- int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int high, int low, int clock, int startIndex){
+ int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int dataoutlen, int high, int low, int clock, int startIndex){
int i, j, z, hithigh, hitlow, bitIndex, startType;
i = 0;
int firstST = 0;
// i = clock frame of data
- for (; i < (int)(len / clock); i++)
+ for (; i < (int)(len/clock); i++)
{
hithigh = 0;
hitlow = 0;
// No high value found, are we in a dampening field?
if ( !hithigh ) {
//PrintAndLog(" # Entering damp test at index : %d (%d)", z+j, j);
- for (j = 0; j < clock; j++)
- {
+ for (j = 0; j < clock; j++) {
if (
(data[z+j] <= dampHi && data[z+j] >= dampLow)
){
if ( firstST == 4)
break;
+ if ( bitIndex >= dataoutlen-1 )
+ break;
}
return bitIndex;
}
- int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout, int clock, int startIndex){
+ int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout,int dataoutlen, int clock, int startIndex){
- PrintAndLog(" Path B");
-
int i,j, bitindex, lc, tolerance, warnings;
warnings = 0;
int upperlimit = len*2/clock+8;
PrintAndLog(" %s", sprint_bin(bitStream+i, mod) );
}
-void iceFsk(int * data, const size_t len){
-
- //34359738 == 125khz (2^32 / 125) =
-
- // parameters
- float phase_offset = 0.00f; // carrier phase offset
- float frequency_offset = 0.30f; // carrier frequency offset
- float wn = 0.01f; // pll bandwidth
- float zeta = 0.707f; // pll damping factor
- float K = 1000; // pll loop gain
- size_t n = len; // number of samples
-
- // generate loop filter parameters (active PI design)
- float t1 = K/(wn*wn); // tau_1
- float t2 = 2*zeta/wn; // tau_2
-
- // feed-forward coefficients (numerator)
- float b0 = (4*K/t1)*(1.+t2/2.0f);
- float b1 = (8*K/t1);
- float b2 = (4*K/t1)*(1.-t2/2.0f);
-
- // feed-back coefficients (denominator)
- // a0 = 1.0 is implied
- float a1 = -2.0f;
- float a2 = 1.0f;
-
- // filter buffer
- float v0=0.0f, v1=0.0f, v2=0.0f;
-
- // initialize states
- float phi = phase_offset; // input signal's initial phase
- float phi_hat = 0.0f; // PLL's initial phase
-
- unsigned int i;
- float complex x,y;
- float complex output[n];
-
- for (i=0; i<n; i++) {
- // INPUT SIGNAL
- x = data[i];
- phi += frequency_offset;
-
- // generate complex sinusoid
- y = cosf(phi_hat) + _Complex_I*sinf(phi_hat);
-
- output[i] = y;
-
- // compute error estimate
- float delta_phi = cargf( x * conjf(y) );
-
-
- // print results to standard output
- printf(" %6u %12.8f %12.8f %12.8f %12.8f %12.8f\n",
- i,
- crealf(x), cimagf(x),
- crealf(y), cimagf(y),
- delta_phi);
-
- // push result through loop filter, updating phase estimate
-
- // advance buffer
- v2 = v1; // shift center register to upper register
- v1 = v0; // shift lower register to center register
-
- // compute new lower register
- v0 = delta_phi - v1*a1 - v2*a2;
-
- // compute new output
- phi_hat = v0*b0 + v1*b1 + v2*b2;
-
- }
-
- for (i=0; i<len; ++i){
- data[i] = (int)crealf(output[i]);
- }
-}
-
/* Sliding DFT
Smooths out
*/
void iceFsk2(int * data, const size_t len){
int i, j;
- int output[len];
-
+ int * output = (int* ) malloc(sizeof(int) * len);
+ memset(output, 0x00, len);
+
// for (i=0; i<len-5; ++i){
// for ( j=1; j <=5; ++j) {
// output[i] += data[i*j];
for (j=0; j<len; ++j)
data[j] = output[j];
+
+ free(output);
}
void iceFsk3(int * data, const size_t len){
int i,j;
- int output[len];
- float fc = 0.1125f; // center frequency
-
+
+ int * output = (int* ) malloc(sizeof(int) * len);
+ memset(output, 0x00, len);
+ float fc = 0.1125f; // center frequency
+ size_t adjustedLen = len;
+
// create very simple low-pass filter to remove images (2nd-order Butterworth)
float complex iir_buf[3] = {0,0,0};
float b[3] = {0.003621681514929, 0.007243363029857, 0.003621681514929};
float a[3] = {1.000000000000000, -1.822694925196308, 0.837181651256023};
- // process entire input file one sample at a time
- float sample = 0; // input sample read from file
- float complex x_prime = 1.0f; // save sample for estimating frequency
+ float sample = 0; // input sample read from file
+ float complex x_prime = 1.0f; // save sample for estimating frequency
float complex x;
- for (i=0; i<len; ++i) {
+ for (i=0; i<adjustedLen; ++i) {
- sample = data[i];
+ sample = data[i]+128;
// remove DC offset and mix to complex baseband
x = (sample - 127.5f) * cexpf( _Complex_I * 2 * M_PI * fc * i );
}
// show data
- for (j=0; j<len; ++j)
+ for (j=0; j<adjustedLen; ++j)
data[j] = output[j];
CmdLtrim("30");
+ adjustedLen -= 30;
// zero crossings.
- for (j=0; j<len; ++j){
+ for (j=0; j<adjustedLen; ++j){
if ( data[j] == 10) break;
}
int startOne =j;
- for (;j<len; ++j){
+ for (;j<adjustedLen; ++j){
if ( data[j] == -10 ) break;
}
int stopOne = j-1;
int fieldlen = stopOne-startOne;
- printf("FIELD Length: %d \n", fieldlen);
+ fieldlen = (fieldlen == 39 || fieldlen == 41)? 40 : fieldlen;
+ fieldlen = (fieldlen == 59 || fieldlen == 51)? 50 : fieldlen;
+ if ( fieldlen != 40 && fieldlen != 50){
+ printf("Detected field Length: %d \n", fieldlen);
+ printf("Can only handle 40 or 50. Aborting...\n");
+ return;
+ }
// FSK sequence start == 000111
int startPos = 0;
- for (i =0; i<len; ++i){
+ for (i =0; i<adjustedLen; ++i){
int dec = 0;
for ( j = 0; j < 6*fieldlen; ++j){
dec += data[i + j];
printf("000111 position: %d \n", startPos);
- startPos += 6*fieldlen+1;
+ startPos += 6*fieldlen+5;
+ int bit =0;
printf("BINARY\n");
printf("R/40 : ");
- for (i =startPos ; i < len; i += 40){
- if ( data[i] > 0 )
- printf("1");
- else
- printf("0");
+ for (i =startPos ; i < adjustedLen; i += 40){
+ bit = data[i]>0 ? 1:0;
+ printf("%d", bit );
}
printf("\n");
printf("R/50 : ");
- for (i =startPos ; i < len; i += 50){
- if ( data[i] > 0 )
- printf("1");
- else
- printf("0");
- }
+ for (i =startPos ; i < adjustedLen; i += 50){
+ bit = data[i]>0 ? 1:0;
+ printf("%d", bit ); }
printf("\n");
+ free(output);
}
float complex cexpf (float complex Z)