#include "crc16.h"
#include "string.h"
#include "lfdemod.h"
+#include "lfsampling.h"
+#include "protocols.h"
+#include "usb_cdc.h" // for usb_poll_validate_length
+
+#ifndef SHORT_COIL
+# define SHORT_COIL() LOW(GPIO_SSC_DOUT)
+#endif
+#ifndef OPEN_COIL
+# define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
+#endif
-typedef struct {
- uint8_t * buffer;
- uint32_t numbits;
- uint8_t position;
-} BitstreamOut;
/**
- * @brief Pushes bit onto the stream
- * @param stream
- * @param bit
+ * Function to do a modulation and then get samples.
+ * @param delay_off
+ * @param periods 0xFFFF0000 is period_0, 0x0000FFFF is period_1
+ * @param useHighFreg
+ * @param command
*/
-void pushBit( BitstreamOut* stream, bool bit)
+void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t periods, uint32_t useHighFreq, uint8_t *command)
{
- int bytepos = stream->position >> 3; // divide by 8
- int bitpos = stream->position & 7;
- *(stream->buffer+bytepos) |= (bit & 1) << (7 - bitpos);
- stream->position++;
- stream->numbits++;
+ /* Make sure the tag is reset */
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(200);
+
+ uint16_t period_0 = periods >> 16;
+ uint16_t period_1 = periods & 0xFFFF;
+
+ // 95 == 125 KHz 88 == 124.8 KHz
+ int divisor_used = (useHighFreq) ? 88 : 95;
+ sample_config sc = { 0,0,1, divisor_used, 0};
+ setSamplingConfig(&sc);
+
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
+
+ LFSetupFPGAForADC(sc.divisor, 1);
+
+ // And a little more time for the tag to fully power up
+ SpinDelay(50);
+
+ // now modulate the reader field
+ while(*command != '\0' && *command != ' ') {
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
+ WaitUS(delay_off);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ LED_D_ON();
+ if(*(command++) == '0')
+ WaitUS(period_0);
+ else
+ WaitUS(period_1);
+ }
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
+ WaitUS(delay_off);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // now do the read
+ DoAcquisition_config(false);
}
-/**
- * @brief Does LF sample acquisition, this method implements decimation and quantization in order to
- * be able to provide longer sample traces.
- * @param decimation - how much should the signal be decimated. A decimation of 1 means every sample, 2 means
- * every other sample, etc.
- * @param bits_per_sample - bits per sample. Max 8, min 1 bit per sample.
- * @param trigger_threshold - a threshold. The sampling won't commence until this threshold has been reached. Set
- * to -1 to ignore threshold.
- * @param averaging If set to true, decimation will use averaging, so that if e.g. decimation is 3, the sample
- * value that will be used is the average value of the three samples.
- * @return the number of bits occupied by the samples.
- */
-uint8_t DoAcquisition(int decimation, int bits_per_sample, int trigger_threshold, bool averaging)
-{
- //A decimation of 2 means we keep every 2nd sample
- //A decimation of 3 means we keep 1 in 3 samples.
- //A quantization of 1 means one bit is discarded from the sample (division by 2).
- uint8_t *dest = (uint8_t *)BigBuf;
- int bufsize = BIGBUF_SIZE;
- memset(dest, 0, bufsize);
- if(bits_per_sample < 1) bits_per_sample = 1;
- if(bits_per_sample > 8) bits_per_sample = 8;
-
- // Use a bit stream to handle the output
- BitstreamOut data = { dest , 0, 0};
- int sample_counter = 0;
- uint8_t sample = 0;
- //If we want to do averaging
- uint32_t sample_sum =0 ;
- uint32_t sample_total_numbers =0 ;
- uint32_t sample_total_saved =0 ;
- for(;;) {
- WDT_HIT();
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
- AT91C_BASE_SSC->SSC_THR = 0x43;
- LED_D_ON();
- }
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
- sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- if (trigger_threshold != -1 && sample < trigger_threshold)
- continue;
- sample_total_numbers++;
-
- LED_D_OFF();
- trigger_threshold = -1;
- sample_counter++;
- sample_sum += sample;
- //Check decimation
- if(sample_counter < decimation) continue;
- //Averaging
- if(averaging) sample = sample_sum / decimation;
-
- sample_counter = 0;
- sample_sum =0;
- sample_total_saved ++;
- pushBit(&data, sample & 0x80);
- if(bits_per_sample > 1) pushBit(&data, sample & 0x40);
- if(bits_per_sample > 2) pushBit(&data, sample & 0x20);
- if(bits_per_sample > 3) pushBit(&data, sample & 0x10);
- if(bits_per_sample > 4) pushBit(&data, sample & 0x08);
- if(bits_per_sample > 5) pushBit(&data, sample & 0x04);
- if(bits_per_sample > 6) pushBit(&data, sample & 0x02);
- if(bits_per_sample > 7) pushBit(&data, sample & 0x01);
-
- if((data.numbits >> 3) +1 >= bufsize) break;
+/* blank r/w tag data stream
+...0000000000000000 01111111
+1010101010101010101010101010101010101010101010101010101010101010
+0011010010100001
+01111111
+101010101010101[0]000...
+
+[5555fe852c5555555555555555fe0000]
+*/
+void ReadTItag(void)
+{
+ StartTicks();
+ // some hardcoded initial params
+ // when we read a TI tag we sample the zerocross line at 2Mhz
+ // TI tags modulate a 1 as 16 cycles of 123.2Khz
+ // TI tags modulate a 0 as 16 cycles of 134.2Khz
+ #define FSAMPLE 2000000
+ #define FREQLO 123200
+ #define FREQHI 134200
+
+ signed char *dest = (signed char *)BigBuf_get_addr();
+ uint16_t n = BigBuf_max_traceLen();
+ // 128 bit shift register [shift3:shift2:shift1:shift0]
+ uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
+
+ int i, cycles=0, samples=0;
+ // how many sample points fit in 16 cycles of each frequency
+ uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
+ // when to tell if we're close enough to one freq or another
+ uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
+
+ // TI tags charge at 134.2Khz
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
+
+ // Place FPGA in passthrough mode, in this mode the CROSS_LO line
+ // connects to SSP_DIN and the SSP_DOUT logic level controls
+ // whether we're modulating the antenna (high)
+ // or listening to the antenna (low)
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
+
+ // get TI tag data into the buffer
+ AcquireTiType();
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+
+ for (i=0; i<n-1; i++) {
+ // count cycles by looking for lo to hi zero crossings
+ if ( (dest[i]<0) && (dest[i+1]>0) ) {
+ cycles++;
+ // after 16 cycles, measure the frequency
+ if (cycles>15) {
+ cycles=0;
+ samples=i-samples; // number of samples in these 16 cycles
+
+ // TI bits are coming to us lsb first so shift them
+ // right through our 128 bit right shift register
+ shift0 = (shift0>>1) | (shift1 << 31);
+ shift1 = (shift1>>1) | (shift2 << 31);
+ shift2 = (shift2>>1) | (shift3 << 31);
+ shift3 >>= 1;
+
+ // check if the cycles fall close to the number
+ // expected for either the low or high frequency
+ if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
+ // low frequency represents a 1
+ shift3 |= (1<<31);
+ } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
+ // high frequency represents a 0
+ } else {
+ // probably detected a gay waveform or noise
+ // use this as gaydar or discard shift register and start again
+ shift3 = shift2 = shift1 = shift0 = 0;
+ }
+ samples = i;
+
+ // for each bit we receive, test if we've detected a valid tag
+
+ // if we see 17 zeroes followed by 6 ones, we might have a tag
+ // remember the bits are backwards
+ if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
+ // if start and end bytes match, we have a tag so break out of the loop
+ if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
+ cycles = 0xF0B; //use this as a flag (ugly but whatever)
+ break;
+ }
+ }
+ }
}
}
- Dbprintf("Done, saved %l out of %l seen samples.",sample_total_saved, sample_total_numbers);
- return data.numbits;
-}
+ // if flag is set we have a tag
+ if (cycles!=0xF0B) {
+ DbpString("Info: No valid tag detected.");
+ } else {
+ // put 64 bit data into shift1 and shift0
+ shift0 = (shift0>>24) | (shift1 << 8);
+ shift1 = (shift1>>24) | (shift2 << 8);
+ // align 16 bit crc into lower half of shift2
+ shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
-/**
-* Does the sample acquisition. If threshold is specified, the actual sampling
-* is not commenced until the threshold has been reached.
-* @param trigger_threshold - the threshold
-* @param silent - is true, now outputs are made. If false, dbprints the status
-*/
-void DoAcquisition125k_internal(int trigger_threshold,bool silent)
-{
- uint8_t *dest = (uint8_t *)BigBuf;
- int n = sizeof(BigBuf);
- int i;
-
- memset(dest, 0, n);
- i = 0;
- for(;;) {
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
- AT91C_BASE_SSC->SSC_THR = 0x43;
- LED_D_ON();
- }
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
- dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- LED_D_OFF();
- if (trigger_threshold != -1 && dest[i] < trigger_threshold)
- continue;
- else
- trigger_threshold = -1;
- if (++i >= n) break;
- }
- }
- if(!silent)
- {
- Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
- dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
-
- }
-}
-/**
-* Perform sample aquisition.
-*/
-void DoAcquisition125k(int trigger_threshold)
-{
- DoAcquisition125k_internal(trigger_threshold, false);
-}
+ // if r/w tag, check ident match
+ if (shift3 & (1<<15) ) {
+ DbpString("Info: TI tag is rewriteable");
+ // only 15 bits compare, last bit of ident is not valid
+ if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
+ DbpString("Error: Ident mismatch!");
+ } else {
+ DbpString("Info: TI tag ident is valid");
+ }
+ } else {
+ DbpString("Info: TI tag is readonly");
+ }
-/**
-* Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
-* if not already loaded, sets divisor and starts up the antenna.
-* @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
-* 0 or 95 ==> 125 KHz
-*
-**/
-void LFSetupFPGAForADC(int divisor, bool lf_field)
-{
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- else if (divisor == 0)
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- else
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
-
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
-
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
- // Give it a bit of time for the resonant antenna to settle.
- SpinDelay(50);
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-}
-/**
-* Initializes the FPGA, and acquires the samples.
-**/
-void AcquireRawAdcSamples125k(int divisor)
-{
- LFSetupFPGAForADC(divisor, true);
- // Now call the acquisition routine
- DoAcquisition125k_internal(-1,false);
+ // WARNING the order of the bytes in which we calc crc below needs checking
+ // i'm 99% sure the crc algorithm is correct, but it may need to eat the
+ // bytes in reverse or something
+ // calculate CRC
+ uint32_t crc=0;
+
+ crc = update_crc16(crc, (shift0)&0xff);
+ crc = update_crc16(crc, (shift0>>8)&0xff);
+ crc = update_crc16(crc, (shift0>>16)&0xff);
+ crc = update_crc16(crc, (shift0>>24)&0xff);
+ crc = update_crc16(crc, (shift1)&0xff);
+ crc = update_crc16(crc, (shift1>>8)&0xff);
+ crc = update_crc16(crc, (shift1>>16)&0xff);
+ crc = update_crc16(crc, (shift1>>24)&0xff);
+
+ Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
+ if (crc != (shift2&0xffff)) {
+ Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
+ } else {
+ DbpString("Info: CRC is good");
+ }
+ }
+ StopTicks();
}
-/**
-* Initializes the FPGA for snoop-mode, and acquires the samples.
-**/
-void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
+void WriteTIbyte(uint8_t b)
{
- LFSetupFPGAForADC(divisor, false);
- DoAcquisition125k(trigger_threshold);
+ int i = 0;
+
+ // modulate 8 bits out to the antenna
+ for (i=0; i<8; i++)
+ {
+ if ( b & ( 1 << i ) ) {
+ // stop modulating antenna 1ms
+ LOW(GPIO_SSC_DOUT);
+ WaitUS(1000);
+ // modulate antenna 1ms
+ HIGH(GPIO_SSC_DOUT);
+ WaitUS(1000);
+ } else {
+ // stop modulating antenna 1ms
+ LOW(GPIO_SSC_DOUT);
+ WaitUS(300);
+ // modulate antenna 1m
+ HIGH(GPIO_SSC_DOUT);
+ WaitUS(1700);
+ }
+ }
}
-void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
+void AcquireTiType(void)
{
+ int i, j, n;
+ // tag transmission is <20ms, sampling at 2M gives us 40K samples max
+ // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
+ #define TIBUFLEN 1250
- /* Make sure the tag is reset */
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelay(2500);
+ // clear buffer
+ uint32_t *buf = (uint32_t *)BigBuf_get_addr();
+ //clear buffer now so it does not interfere with timing later
+ BigBuf_Clear_ext(false);
- int divisor_used = 95; // 125 KHz
- // see if 'h' was specified
+ // Set up the synchronous serial port
+ AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
+ AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
- if (command[strlen((char *) command) - 1] == 'h')
- divisor_used = 88; // 134.8 KHz
+ // steal this pin from the SSP and use it to control the modulation
+ AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
+ AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
+ AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
+ AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
- // Give it a bit of time for the resonant antenna to settle.
- SpinDelay(50);
+ // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
+ // 48/2 = 24 MHz clock must be divided by 12
+ AT91C_BASE_SSC->SSC_CMR = 12;
- // And a little more time for the tag to fully power up
- SpinDelay(2000);
+ AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
+ AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
+ AT91C_BASE_SSC->SSC_TCMR = 0;
+ AT91C_BASE_SSC->SSC_TFMR = 0;
+ // iceman, FpgaSetupSsc() ?? the code above? can it be replaced?
+ LED_D_ON();
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
+ // modulate antenna
+ HIGH(GPIO_SSC_DOUT);
- // now modulate the reader field
- while(*command != '\0' && *command != ' ') {
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LED_D_OFF();
- SpinDelayUs(delay_off);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
+ // Charge TI tag for 50ms.
+ WaitMS(50);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
- LED_D_ON();
- if(*(command++) == '0')
- SpinDelayUs(period_0);
- else
- SpinDelayUs(period_1);
- }
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LED_D_OFF();
- SpinDelayUs(delay_off);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
+ // stop modulating antenna and listen
+ LOW(GPIO_SSC_DOUT);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-
- // now do the read
- DoAcquisition125k(-1);
-}
-
-/* blank r/w tag data stream
-...0000000000000000 01111111
-1010101010101010101010101010101010101010101010101010101010101010
-0011010010100001
-01111111
-101010101010101[0]000...
-
-[5555fe852c5555555555555555fe0000]
-*/
-void ReadTItag(void)
-{
- // some hardcoded initial params
- // when we read a TI tag we sample the zerocross line at 2Mhz
- // TI tags modulate a 1 as 16 cycles of 123.2Khz
- // TI tags modulate a 0 as 16 cycles of 134.2Khz
- #define FSAMPLE 2000000
- #define FREQLO 123200
- #define FREQHI 134200
-
- signed char *dest = (signed char *)BigBuf;
- int n = sizeof(BigBuf);
- // 128 bit shift register [shift3:shift2:shift1:shift0]
- uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
-
- int i, cycles=0, samples=0;
- // how many sample points fit in 16 cycles of each frequency
- uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
- // when to tell if we're close enough to one freq or another
- uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
-
- // TI tags charge at 134.2Khz
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-
- // Place FPGA in passthrough mode, in this mode the CROSS_LO line
- // connects to SSP_DIN and the SSP_DOUT logic level controls
- // whether we're modulating the antenna (high)
- // or listening to the antenna (low)
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
-
- // get TI tag data into the buffer
- AcquireTiType();
-
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-
- for (i=0; i<n-1; i++) {
- // count cycles by looking for lo to hi zero crossings
- if ( (dest[i]<0) && (dest[i+1]>0) ) {
- cycles++;
- // after 16 cycles, measure the frequency
- if (cycles>15) {
- cycles=0;
- samples=i-samples; // number of samples in these 16 cycles
-
- // TI bits are coming to us lsb first so shift them
- // right through our 128 bit right shift register
- shift0 = (shift0>>1) | (shift1 << 31);
- shift1 = (shift1>>1) | (shift2 << 31);
- shift2 = (shift2>>1) | (shift3 << 31);
- shift3 >>= 1;
-
- // check if the cycles fall close to the number
- // expected for either the low or high frequency
- if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
- // low frequency represents a 1
- shift3 |= (1<<31);
- } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
- // high frequency represents a 0
- } else {
- // probably detected a gay waveform or noise
- // use this as gaydar or discard shift register and start again
- shift3 = shift2 = shift1 = shift0 = 0;
- }
- samples = i;
-
- // for each bit we receive, test if we've detected a valid tag
-
- // if we see 17 zeroes followed by 6 ones, we might have a tag
- // remember the bits are backwards
- if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
- // if start and end bytes match, we have a tag so break out of the loop
- if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
- cycles = 0xF0B; //use this as a flag (ugly but whatever)
- break;
- }
- }
- }
- }
- }
-
- // if flag is set we have a tag
- if (cycles!=0xF0B) {
- DbpString("Info: No valid tag detected.");
- } else {
- // put 64 bit data into shift1 and shift0
- shift0 = (shift0>>24) | (shift1 << 8);
- shift1 = (shift1>>24) | (shift2 << 8);
-
- // align 16 bit crc into lower half of shift2
- shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
-
- // if r/w tag, check ident match
- if (shift3 & (1<<15) ) {
- DbpString("Info: TI tag is rewriteable");
- // only 15 bits compare, last bit of ident is not valid
- if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
- DbpString("Error: Ident mismatch!");
- } else {
- DbpString("Info: TI tag ident is valid");
- }
- } else {
- DbpString("Info: TI tag is readonly");
- }
-
- // WARNING the order of the bytes in which we calc crc below needs checking
- // i'm 99% sure the crc algorithm is correct, but it may need to eat the
- // bytes in reverse or something
- // calculate CRC
- uint32_t crc=0;
-
- crc = update_crc16(crc, (shift0)&0xff);
- crc = update_crc16(crc, (shift0>>8)&0xff);
- crc = update_crc16(crc, (shift0>>16)&0xff);
- crc = update_crc16(crc, (shift0>>24)&0xff);
- crc = update_crc16(crc, (shift1)&0xff);
- crc = update_crc16(crc, (shift1>>8)&0xff);
- crc = update_crc16(crc, (shift1>>16)&0xff);
- crc = update_crc16(crc, (shift1>>24)&0xff);
-
- Dbprintf("Info: Tag data: %x%08x, crc=%x",
- (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
- if (crc != (shift2&0xffff)) {
- Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
- } else {
- DbpString("Info: CRC is good");
- }
- }
-}
+ LED_D_OFF();
-void WriteTIbyte(uint8_t b)
-{
- int i = 0;
-
- // modulate 8 bits out to the antenna
- for (i=0; i<8; i++)
- {
- if (b&(1<<i)) {
- // stop modulating antenna
- LOW(GPIO_SSC_DOUT);
- SpinDelayUs(1000);
- // modulate antenna
- HIGH(GPIO_SSC_DOUT);
- SpinDelayUs(1000);
- } else {
- // stop modulating antenna
- LOW(GPIO_SSC_DOUT);
- SpinDelayUs(300);
- // modulate antenna
- HIGH(GPIO_SSC_DOUT);
- SpinDelayUs(1700);
- }
- }
-}
+ i = 0;
+ for(;;) {
+ if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+ buf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
+ i++; if(i >= TIBUFLEN) break;
+ }
+ WDT_HIT();
+ }
-void AcquireTiType(void)
-{
- int i, j, n;
- // tag transmission is <20ms, sampling at 2M gives us 40K samples max
- // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
- #define TIBUFLEN 1250
-
- // clear buffer
- memset(BigBuf,0,sizeof(BigBuf));
-
- // Set up the synchronous serial port
- AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
- AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
-
- // steal this pin from the SSP and use it to control the modulation
- AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
- AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
-
- AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
- AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
-
- // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
- // 48/2 = 24 MHz clock must be divided by 12
- AT91C_BASE_SSC->SSC_CMR = 12;
-
- AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
- AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
- AT91C_BASE_SSC->SSC_TCMR = 0;
- AT91C_BASE_SSC->SSC_TFMR = 0;
-
- LED_D_ON();
-
- // modulate antenna
- HIGH(GPIO_SSC_DOUT);
-
- // Charge TI tag for 50ms.
- SpinDelay(50);
-
- // stop modulating antenna and listen
- LOW(GPIO_SSC_DOUT);
-
- LED_D_OFF();
-
- i = 0;
- for(;;) {
- if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
- BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
- i++; if(i >= TIBUFLEN) break;
- }
- WDT_HIT();
- }
-
- // return stolen pin to SSP
- AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
- AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
-
- char *dest = (char *)BigBuf;
- n = TIBUFLEN*32;
- // unpack buffer
- for (i=TIBUFLEN-1; i>=0; i--) {
- for (j=0; j<32; j++) {
- if(BigBuf[i] & (1 << j)) {
- dest[--n] = 1;
- } else {
- dest[--n] = -1;
- }
- }
- }
+ // return stolen pin to SSP
+ AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
+ AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
+
+ char *dest = (char *)BigBuf_get_addr();
+ n = TIBUFLEN * 32;
+
+ // unpack buffer
+ for (i = TIBUFLEN-1; i >= 0; i--) {
+ for (j = 0; j < 32; j++) {
+ if(buf[i] & (1 << j)) {
+ dest[--n] = 1;
+ } else {
+ dest[--n] = -1;
+ }
+ }
+ }
}
// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
// if not provided a valid crc will be computed from the data and written.
void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
{
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- if(crc == 0) {
- crc = update_crc16(crc, (idlo)&0xff);
- crc = update_crc16(crc, (idlo>>8)&0xff);
- crc = update_crc16(crc, (idlo>>16)&0xff);
- crc = update_crc16(crc, (idlo>>24)&0xff);
- crc = update_crc16(crc, (idhi)&0xff);
- crc = update_crc16(crc, (idhi>>8)&0xff);
- crc = update_crc16(crc, (idhi>>16)&0xff);
- crc = update_crc16(crc, (idhi>>24)&0xff);
- }
- Dbprintf("Writing to tag: %x%08x, crc=%x",
- (unsigned int) idhi, (unsigned int) idlo, crc);
-
- // TI tags charge at 134.2Khz
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- // Place FPGA in passthrough mode, in this mode the CROSS_LO line
- // connects to SSP_DIN and the SSP_DOUT logic level controls
- // whether we're modulating the antenna (high)
- // or listening to the antenna (low)
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
- LED_A_ON();
-
- // steal this pin from the SSP and use it to control the modulation
- AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
- AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
-
- // writing algorithm:
- // a high bit consists of a field off for 1ms and field on for 1ms
- // a low bit consists of a field off for 0.3ms and field on for 1.7ms
- // initiate a charge time of 50ms (field on) then immediately start writing bits
- // start by writing 0xBB (keyword) and 0xEB (password)
- // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
- // finally end with 0x0300 (write frame)
- // all data is sent lsb firts
- // finish with 15ms programming time
-
- // modulate antenna
- HIGH(GPIO_SSC_DOUT);
- SpinDelay(50); // charge time
-
- WriteTIbyte(0xbb); // keyword
- WriteTIbyte(0xeb); // password
- WriteTIbyte( (idlo )&0xff );
- WriteTIbyte( (idlo>>8 )&0xff );
- WriteTIbyte( (idlo>>16)&0xff );
- WriteTIbyte( (idlo>>24)&0xff );
- WriteTIbyte( (idhi )&0xff );
- WriteTIbyte( (idhi>>8 )&0xff );
- WriteTIbyte( (idhi>>16)&0xff );
- WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
- WriteTIbyte( (crc )&0xff ); // crc lo
- WriteTIbyte( (crc>>8 )&0xff ); // crc hi
- WriteTIbyte(0x00); // write frame lo
- WriteTIbyte(0x03); // write frame hi
- HIGH(GPIO_SSC_DOUT);
- SpinDelay(50); // programming time
-
- LED_A_OFF();
-
- // get TI tag data into the buffer
- AcquireTiType();
-
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- DbpString("Now use tiread to check");
+ StartTicks();
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ if(crc == 0) {
+ crc = update_crc16(crc, (idlo)&0xff);
+ crc = update_crc16(crc, (idlo>>8)&0xff);
+ crc = update_crc16(crc, (idlo>>16)&0xff);
+ crc = update_crc16(crc, (idlo>>24)&0xff);
+ crc = update_crc16(crc, (idhi)&0xff);
+ crc = update_crc16(crc, (idhi>>8)&0xff);
+ crc = update_crc16(crc, (idhi>>16)&0xff);
+ crc = update_crc16(crc, (idhi>>24)&0xff);
+ }
+ Dbprintf("Writing to tag: %x%08x, crc=%x", (unsigned int) idhi, (unsigned int) idlo, crc);
+
+ // TI tags charge at 134.2Khz
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
+ // Place FPGA in passthrough mode, in this mode the CROSS_LO line
+ // connects to SSP_DIN and the SSP_DOUT logic level controls
+ // whether we're modulating the antenna (high)
+ // or listening to the antenna (low)
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
+ LED_A_ON();
+
+ // steal this pin from the SSP and use it to control the modulation
+ AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
+ AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
+
+ // writing algorithm:
+ // a high bit consists of a field off for 1ms and field on for 1ms
+ // a low bit consists of a field off for 0.3ms and field on for 1.7ms
+ // initiate a charge time of 50ms (field on) then immediately start writing bits
+ // start by writing 0xBB (keyword) and 0xEB (password)
+ // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
+ // finally end with 0x0300 (write frame)
+ // all data is sent lsb first
+ // finish with 15ms programming time
+
+ // modulate antenna
+ HIGH(GPIO_SSC_DOUT);
+ WaitMS(50); // charge time
+
+ WriteTIbyte(0xbb); // keyword
+ WriteTIbyte(0xeb); // password
+ WriteTIbyte( (idlo )&0xff );
+ WriteTIbyte( (idlo>>8 )&0xff );
+ WriteTIbyte( (idlo>>16)&0xff );
+ WriteTIbyte( (idlo>>24)&0xff );
+ WriteTIbyte( (idhi )&0xff );
+ WriteTIbyte( (idhi>>8 )&0xff );
+ WriteTIbyte( (idhi>>16)&0xff );
+ WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
+ WriteTIbyte( (crc )&0xff ); // crc lo
+ WriteTIbyte( (crc>>8 )&0xff ); // crc hi
+ WriteTIbyte(0x00); // write frame lo
+ WriteTIbyte(0x03); // write frame hi
+ HIGH(GPIO_SSC_DOUT);
+ WaitMS(50); // programming time
+
+ LED_A_OFF();
+
+ // get TI tag data into the buffer
+ AcquireTiType();
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ DbpString("Now use `lf ti read` to check");
+ StopTicks();
}
void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
{
- int i;
- uint8_t *tab = (uint8_t *)BigBuf;
-
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
-
- AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
-
- AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
- AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
-
-#define SHORT_COIL() LOW(GPIO_SSC_DOUT)
-#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
-
- i = 0;
- for(;;) {
- while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
- if(BUTTON_PRESS()) {
- DbpString("Stopped");
- return;
- }
- WDT_HIT();
- }
-
- if (ledcontrol)
- LED_D_ON();
-
- if(tab[i])
- OPEN_COIL();
- else
- SHORT_COIL();
-
- if (ledcontrol)
- LED_D_OFF();
-
- while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
- if(BUTTON_PRESS()) {
- DbpString("Stopped");
- return;
- }
- WDT_HIT();
- }
-
- i++;
- if(i == period) {
- i = 0;
- if (gap) {
- SHORT_COIL();
- SpinDelayUs(gap);
- }
- }
- }
+ int i = 0;
+ uint8_t *buf = BigBuf_get_addr();
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
+ //FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
+ //FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE );
+ SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+
+ AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
+ AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
+ AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
+
+ // power on antenna
+ // OPEN_COIL();
+ // SpinDelay(50);
+
+ for(;;) {
+ WDT_HIT();
+
+ if (ledcontrol) LED_D_ON();
+
+ // wait until SSC_CLK goes HIGH
+ // used as a simple detection of a reader field?
+ while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
+ WDT_HIT();
+ if ( usb_poll_validate_length() || BUTTON_PRESS() )
+ goto OUT;
+ }
+
+ if(buf[i])
+ OPEN_COIL();
+ else
+ SHORT_COIL();
+
+ //wait until SSC_CLK goes LOW
+ while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
+ WDT_HIT();
+ if ( usb_poll_validate_length() || BUTTON_PRESS() )
+ goto OUT;
+ }
+
+ i++;
+ if(i == period) {
+ i = 0;
+ if (gap) {
+ WDT_HIT();
+ SHORT_COIL();
+ SpinDelayUs(gap);
+ }
+ }
+
+ if (ledcontrol) LED_D_OFF();
+ }
+OUT:
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
+ DbpString("Simulation stopped");
+ return;
}
#define DEBUG_FRAME_CONTENTS 1
{
}
-// compose fc/8 fc/10 waveform
-static void fc(int c, int *n) {
- uint8_t *dest = (uint8_t *)BigBuf;
- int idx;
-
- // for when we want an fc8 pattern every 4 logical bits
- if(c==0) {
- dest[((*n)++)]=1;
- dest[((*n)++)]=1;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- }
- // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
- if(c==8) {
- for (idx=0; idx<6; idx++) {
- dest[((*n)++)]=1;
- dest[((*n)++)]=1;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- }
- }
-
- // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
- if(c==10) {
- for (idx=0; idx<5; idx++) {
- dest[((*n)++)]=1;
- dest[((*n)++)]=1;
- dest[((*n)++)]=1;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- }
- }
+// compose fc/8 fc/10 waveform (FSK2)
+static void fc(int c, int *n)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ int idx;
+
+ // for when we want an fc8 pattern every 4 logical bits
+ if(c==0) {
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ }
+
+ // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
+ if(c==8) {
+ for (idx=0; idx<6; idx++) {
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ }
+ }
+
+ // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
+ if(c==10) {
+ for (idx=0; idx<5; idx++) {
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ }
+ }
+}
+// compose fc/X fc/Y waveform (FSKx)
+static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ uint8_t halfFC = fc/2;
+ uint8_t wavesPerClock = clock/fc;
+ uint8_t mod = clock % fc; //modifier
+ uint8_t modAdj = fc/mod; //how often to apply modifier
+ bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
+ // loop through clock - step field clock
+ for (uint8_t idx=0; idx < wavesPerClock; idx++){
+ // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
+ memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
+ memset(dest+(*n)+(fc-halfFC), 1, halfFC);
+ *n += fc;
+ }
+ if (mod>0) (*modCnt)++;
+ if ((mod>0) && modAdjOk){ //fsk2
+ if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
+ memset(dest+(*n), 0, fc-halfFC);
+ memset(dest+(*n)+(fc-halfFC), 1, halfFC);
+ *n += fc;
+ }
+ }
+ if (mod>0 && !modAdjOk){ //fsk1
+ memset(dest+(*n), 0, mod-(mod/2));
+ memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
+ *n += mod;
+ }
}
// prepare a waveform pattern in the buffer based on the ID given then
// simulate a HID tag until the button is pressed
void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
{
- int n=0, i=0;
- /*
- HID tag bitstream format
- The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
- A 1 bit is represented as 6 fc8 and 5 fc10 patterns
- A 0 bit is represented as 5 fc10 and 6 fc8 patterns
- A fc8 is inserted before every 4 bits
- A special start of frame pattern is used consisting a0b0 where a and b are neither 0
- nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
- */
-
- if (hi>0xFFF) {
- DbpString("Tags can only have 44 bits.");
- return;
- }
- fc(0,&n);
- // special start of frame marker containing invalid bit sequences
- fc(8, &n); fc(8, &n); // invalid
- fc(8, &n); fc(10, &n); // logical 0
- fc(10, &n); fc(10, &n); // invalid
- fc(8, &n); fc(10, &n); // logical 0
-
- WDT_HIT();
- // manchester encode bits 43 to 32
- for (i=11; i>=0; i--) {
- if ((i%4)==3) fc(0,&n);
- if ((hi>>i)&1) {
- fc(10, &n); fc(8, &n); // low-high transition
- } else {
- fc(8, &n); fc(10, &n); // high-low transition
- }
- }
-
- WDT_HIT();
- // manchester encode bits 31 to 0
- for (i=31; i>=0; i--) {
- if ((i%4)==3) fc(0,&n);
- if ((lo>>i)&1) {
- fc(10, &n); fc(8, &n); // low-high transition
- } else {
- fc(8, &n); fc(10, &n); // high-low transition
- }
- }
-
- if (ledcontrol)
- LED_A_ON();
- SimulateTagLowFrequency(n, 0, ledcontrol);
-
- if (ledcontrol)
- LED_A_OFF();
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ set_tracing(FALSE);
+
+ int n = 0, i = 0;
+ /*
+ HID tag bitstream format
+ The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
+ A 1 bit is represented as 6 fc8 and 5 fc10 patterns
+ A 0 bit is represented as 5 fc10 and 6 fc8 patterns
+ A fc8 is inserted before every 4 bits
+ A special start of frame pattern is used consisting a0b0 where a and b are neither 0
+ nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
+ */
+
+ if (hi > 0xFFF) {
+ DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
+ return;
+ }
+ fc(0,&n);
+ // special start of frame marker containing invalid bit sequences
+ fc(8, &n); fc(8, &n); // invalid
+ fc(8, &n); fc(10, &n); // logical 0
+ fc(10, &n); fc(10, &n); // invalid
+ fc(8, &n); fc(10, &n); // logical 0
+
+ WDT_HIT();
+ // manchester encode bits 43 to 32
+ for (i=11; i>=0; i--) {
+ if ((i%4)==3) fc(0,&n);
+ if ((hi>>i)&1) {
+ fc(10, &n); fc(8, &n); // low-high transition
+ } else {
+ fc(8, &n); fc(10, &n); // high-low transition
+ }
+ }
+
+ WDT_HIT();
+ // manchester encode bits 31 to 0
+ for (i=31; i>=0; i--) {
+ if ((i%4)==3) fc(0,&n);
+ if ((lo>>i)&1) {
+ fc(10, &n); fc(8, &n); // low-high transition
+ } else {
+ fc(8, &n); fc(10, &n); // high-low transition
+ }
+ }
+ WDT_HIT();
+
+ if (ledcontrol) LED_A_ON();
+ SimulateTagLowFrequency(n, 0, ledcontrol);
+ if (ledcontrol) LED_A_OFF();
}
-// loop to get raw HID waveform then FSK demodulate the TAG ID from it
-void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
+// prepare a waveform pattern in the buffer based on the ID given then
+// simulate a FSK tag until the button is pressed
+// arg1 contains fcHigh and fcLow, arg2 contains invert and clock
+void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
+ // free eventually allocated BigBuf memory
+ BigBuf_free(); BigBuf_Clear_ext(false);
+ clear_trace();
+ set_tracing(FALSE);
+
+ int ledcontrol = 1, n = 0, i = 0;
+ uint8_t fcHigh = arg1 >> 8;
+ uint8_t fcLow = arg1 & 0xFF;
+ uint16_t modCnt = 0;
+ uint8_t clk = arg2 & 0xFF;
+ uint8_t invert = (arg2 >> 8) & 1;
+
+ for (i=0; i<size; i++){
+
+ if (BitStream[i] == invert)
+ fcAll(fcLow, &n, clk, &modCnt);
+ else
+ fcAll(fcHigh, &n, clk, &modCnt);
+ }
+ WDT_HIT();
+
+ Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d", fcHigh, fcLow, clk, invert, n);
+
+ if (ledcontrol) LED_A_ON();
+ SimulateTagLowFrequency(n, 0, ledcontrol);
+ if (ledcontrol) LED_A_OFF();
+}
+
+// compose ask waveform for one bit(ASK)
+static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
{
- uint8_t *dest = (uint8_t *)BigBuf;
+ uint8_t *dest = BigBuf_get_addr();
+ uint8_t halfClk = clock/2;
+ // c = current bit 1 or 0
+ if (manchester==1){
+ memset(dest+(*n), c, halfClk);
+ memset(dest+(*n) + halfClk, c^1, halfClk);
+ } else {
+ memset(dest+(*n), c, clock);
+ }
+ *n += clock;
+}
- size_t size=0; //, found=0;
- uint32_t hi2=0, hi=0, lo=0;
+static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ uint8_t halfClk = clock/2;
+ if (c){
+ memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
+ memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
+ } else {
+ memset(dest+(*n), c ^ *phase, clock);
+ *phase ^= 1;
+ }
+ *n += clock;
+}
+
+static void stAskSimBit(int *n, uint8_t clock) {
+ uint8_t *dest = BigBuf_get_addr();
+ uint8_t halfClk = clock/2;
+ //ST = .5 high .5 low 1.5 high .5 low 1 high
+ memset(dest+(*n), 1, halfClk);
+ memset(dest+(*n) + halfClk, 0, halfClk);
+ memset(dest+(*n) + clock, 1, clock + halfClk);
+ memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
+ memset(dest+(*n) + clock*3, 1, clock);
+ *n += clock*4;
+}
+
+// args clock, ask/man or askraw, invert, transmission separator
+void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ set_tracing(FALSE);
+
+ int ledcontrol = 1, n = 0, i = 0;
+ uint8_t clk = (arg1 >> 8) & 0xFF;
+ uint8_t encoding = arg1 & 0xFF;
+ uint8_t separator = arg2 & 1;
+ uint8_t invert = (arg2 >> 8) & 1;
+
+ if (encoding == 2){ //biphase
+ uint8_t phase = 0;
+ for (i=0; i<size; i++){
+ biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
+ }
+ if (phase == 1) { //run a second set inverted to keep phase in check
+ for (i=0; i<size; i++){
+ biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
+ }
+ }
+ } else { // ask/manchester || ask/raw
+ for (i=0; i<size; i++){
+ askSimBit(BitStream[i]^invert, &n, clk, encoding);
+ }
+ if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase)
+ for (i=0; i<size; i++){
+ askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
+ }
+ }
+ }
+ if (separator==1 && encoding == 1)
+ stAskSimBit(&n, clk);
+ else if (separator==1)
+ Dbprintf("sorry but separator option not yet available");
+
+ WDT_HIT();
+
+ Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
+
+ if (ledcontrol) LED_A_ON();
+ SimulateTagLowFrequency(n, 0, ledcontrol);
+ if (ledcontrol) LED_A_OFF();
+}
- // Configure to go in 125Khz listen mode
- LFSetupFPGAForADC(95, true);
+//carrier can be 2,4 or 8
+static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ uint8_t halfWave = waveLen/2;
+ //uint8_t idx;
+ int i = 0;
+ if (phaseChg){
+ // write phase change
+ memset(dest+(*n), *curPhase^1, halfWave);
+ memset(dest+(*n) + halfWave, *curPhase, halfWave);
+ *n += waveLen;
+ *curPhase ^= 1;
+ i += waveLen;
+ }
+ //write each normal clock wave for the clock duration
+ for (; i < clk; i+=waveLen){
+ memset(dest+(*n), *curPhase, halfWave);
+ memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
+ *n += waveLen;
+ }
+}
- while(!BUTTON_PRESS()) {
+// args clock, carrier, invert,
+void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ set_tracing(FALSE);
+
+ int ledcontrol = 1, n = 0, i = 0;
+ uint8_t clk = arg1 >> 8;
+ uint8_t carrier = arg1 & 0xFF;
+ uint8_t invert = arg2 & 0xFF;
+ uint8_t curPhase = 0;
+ for (i=0; i<size; i++){
+ if (BitStream[i] == curPhase){
+ pskSimBit(carrier, &n, clk, &curPhase, FALSE);
+ } else {
+ pskSimBit(carrier, &n, clk, &curPhase, TRUE);
+ }
+ }
+
+ WDT_HIT();
+
+ Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
+
+ if (ledcontrol) LED_A_ON();
+ SimulateTagLowFrequency(n, 0, ledcontrol);
+ if (ledcontrol) LED_A_OFF();
+}
- WDT_HIT();
- if (ledcontrol) LED_A_ON();
+// loop to get raw HID waveform then FSK demodulate the TAG ID from it
+void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ size_t size = 0;
+ uint32_t hi2=0, hi=0, lo=0;
+ int idx=0;
+ // Configure to go in 125Khz listen mode
+ LFSetupFPGAForADC(95, true);
- DoAcquisition125k_internal(-1,true);
- // FSK demodulator
- size = HIDdemodFSK(dest, sizeof(BigBuf), &hi2, &hi, &lo);
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
- WDT_HIT();
+ while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
- if (size>0 && lo>0){
- // final loop, go over previously decoded manchester data and decode into usable tag ID
- // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
- if (hi2 != 0){ //extra large HID tags
- Dbprintf("TAG ID: %x%08x%08x (%d)",
- (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
- }else { //standard HID tags <38 bits
- //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
- uint8_t bitlen = 0;
- uint32_t fc = 0;
- uint32_t cardnum = 0;
+ WDT_HIT();
+ if (ledcontrol) LED_A_ON();
+
+ DoAcquisition_default(-1,true);
+ // FSK demodulator
+ size = 50*128*2; //big enough to catch 2 sequences of largest format
+ idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
+
+ if (idx>0 && lo>0 && (size==96 || size==192)){
+ // go over previously decoded manchester data and decode into usable tag ID
+ if (hi2 != 0){ //extra large HID tags 88/192 bits
+ Dbprintf("TAG ID: %x%08x%08x (%d)",
+ (unsigned int) hi2,
+ (unsigned int) hi,
+ (unsigned int) lo,
+ (unsigned int) (lo>>1) & 0xFFFF
+ );
+ } else { //standard HID tags 44/96 bits
+ uint8_t bitlen = 0;
+ uint32_t fc = 0;
+ uint32_t cardnum = 0;
+
if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
- uint32_t lo2=0;
- lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
- uint8_t idx3 = 1;
+ uint32_t lo2=0;
+ lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
+ uint8_t idx3 = 1;
while(lo2 > 1){ //find last bit set to 1 (format len bit)
lo2=lo2 >> 1;
- idx3++;
- }
+ idx3++;
+ }
bitlen = idx3+19;
- fc =0;
- cardnum=0;
+ fc =0;
+ cardnum=0;
if(bitlen == 26){
- cardnum = (lo>>1)&0xFFFF;
- fc = (lo>>17)&0xFF;
- }
+ cardnum = (lo>>1)&0xFFFF;
+ fc = (lo>>17)&0xFF;
+ }
if(bitlen == 37){
- cardnum = (lo>>1)&0x7FFFF;
- fc = ((hi&0xF)<<12)|(lo>>20);
- }
+ cardnum = (lo>>1)&0x7FFFF;
+ fc = ((hi&0xF)<<12)|(lo>>20);
+ }
if(bitlen == 34){
- cardnum = (lo>>1)&0xFFFF;
- fc= ((hi&1)<<15)|(lo>>17);
- }
+ cardnum = (lo>>1)&0xFFFF;
+ fc= ((hi&1)<<15)|(lo>>17);
+ }
if(bitlen == 35){
- cardnum = (lo>>1)&0xFFFFF;
- fc = ((hi&1)<<11)|(lo>>21);
- }
- }
- else { //if bit 38 is not set then 37 bit format is used
- bitlen= 37;
- fc =0;
- cardnum=0;
- if(bitlen==37){
- cardnum = (lo>>1)&0x7FFFF;
- fc = ((hi&0xF)<<12)|(lo>>20);
- }
- }
- //Dbprintf("TAG ID: %x%08x (%d)",
- // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
- Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
- (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
- (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
- }
- if (findone){
- if (ledcontrol) LED_A_OFF();
- return;
- }
- // reset
- hi2 = hi = lo = 0;
- }
- WDT_HIT();
- }
- DbpString("Stopped");
- if (ledcontrol) LED_A_OFF();
+ cardnum = (lo>>1)&0xFFFFF;
+ fc = ((hi&1)<<11)|(lo>>21);
+ }
+ }
+ else { //if bit 38 is not set then 37 bit format is used
+ bitlen= 37;
+ fc =0;
+ cardnum=0;
+ if(bitlen==37){
+ cardnum = (lo>>1)&0x7FFFF;
+ fc = ((hi&0xF)<<12)|(lo>>20);
+ }
+ }
+ Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
+ (unsigned int) hi,
+ (unsigned int) lo,
+ (unsigned int) (lo>>1) & 0xFFFF,
+ (unsigned int) bitlen,
+ (unsigned int) fc,
+ (unsigned int) cardnum);
+ }
+ if (findone){
+ if (ledcontrol) LED_A_OFF();
+ *high = hi;
+ *low = lo;
+ break;
+ }
+ // reset
+ }
+ hi2 = hi = lo = idx = 0;
+ WDT_HIT();
+ }
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ DbpString("Stopped");
+ if (ledcontrol) LED_A_OFF();
+}
+
+// loop to get raw HID waveform then FSK demodulate the TAG ID from it
+void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ size_t size;
+ int idx=0;
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
+ // Configure to go in 125Khz listen mode
+ LFSetupFPGAForADC(95, true);
+
+ while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
+
+ WDT_HIT();
+ if (ledcontrol) LED_A_ON();
+
+ DoAcquisition_default(-1,true);
+ // FSK demodulator
+ size = 50*128*2; //big enough to catch 2 sequences of largest format
+ idx = AWIDdemodFSK(dest, &size);
+
+ if (idx<=0 || size!=96) continue;
+ // Index map
+ // 0 10 20 30 40 50 60
+ // | | | | | | |
+ // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
+ // -----------------------------------------------------------------------------
+ // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
+ // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
+ // |---26 bit---| |-----117----||-------------142-------------|
+ // b = format bit len, o = odd parity of last 3 bits
+ // f = facility code, c = card number
+ // w = wiegand parity
+ // (26 bit format shown)
+
+ //get raw ID before removing parities
+ uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
+ uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
+ uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
+
+ size = removeParity(dest, idx+8, 4, 1, 88);
+ if (size != 66) continue;
+
+ // Index map
+ // 0 10 20 30 40 50 60
+ // | | | | | | |
+ // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
+ // -----------------------------------------------------------------------------
+ // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
+ // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
+ // |26 bit| |-117--| |-----142------|
+ //
+ // 00110010 0 0000011111010000000000000001000100101000100001111 0 00000000
+ // bbbbbbbb w ffffffffffffffffccccccccccccccccccccccccccccccccc w xxxxxxxx
+ // |50 bit| |----4000------||-----------2248975-------------|
+ //
+ // b = format bit len, o = odd parity of last 3 bits
+ // f = facility code, c = card number
+ // w = wiegand parity
+
+ uint32_t fc = 0;
+ uint32_t cardnum = 0;
+ uint32_t code1 = 0;
+ uint32_t code2 = 0;
+ uint8_t fmtLen = bytebits_to_byte(dest,8);
+ switch(fmtLen) {
+ case 26:
+ fc = bytebits_to_byte(dest + 9, 8);
+ cardnum = bytebits_to_byte(dest + 17, 16);
+ code1 = bytebits_to_byte(dest + 8,fmtLen);
+ Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
+ break;
+ case 50:
+ fc = bytebits_to_byte(dest + 9, 16);
+ cardnum = bytebits_to_byte(dest + 25, 32);
+ code1 = bytebits_to_byte(dest + 8, (fmtLen-32) );
+ code2 = bytebits_to_byte(dest + 8 + (fmtLen-32), 32);
+ Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, code2, rawHi2, rawHi, rawLo);
+ break;
+ default:
+ if (fmtLen > 32 ) {
+ cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
+ code1 = bytebits_to_byte(dest+8,fmtLen-32);
+ code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
+ Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
+ } else {
+ cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
+ code1 = bytebits_to_byte(dest+8,fmtLen);
+ Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
+ }
+ break;
+ }
+ if (findone)
+ break;
+
+ idx = 0;
+ WDT_HIT();
+ }
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ DbpString("Stopped");
+ if (ledcontrol) LED_A_OFF();
}
void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
{
- uint8_t *dest = (uint8_t *)BigBuf;
+ uint8_t *dest = BigBuf_get_addr();
- size_t size=0;
- int clk=0, invert=0, errCnt=0;
- uint64_t lo=0;
- // Configure to go in 125Khz listen mode
- LFSetupFPGAForADC(95, true);
+ size_t size=0, idx=0;
+ int clk=0, invert=0, errCnt=0, maxErr=20;
+ uint32_t hi=0;
+ uint64_t lo=0;
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
+ // Configure to go in 125Khz listen mode
+ LFSetupFPGAForADC(95, true);
- while(!BUTTON_PRESS()) {
+ while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
- WDT_HIT();
- if (ledcontrol) LED_A_ON();
+ WDT_HIT();
+ if (ledcontrol) LED_A_ON();
- DoAcquisition125k_internal(-1,true);
- size = sizeof(BigBuf);
- //Dbprintf("DEBUG: Buffer got");
+ DoAcquisition_default(-1,true);
+ size = BigBuf_max_traceLen();
//askdemod and manchester decode
- errCnt = askmandemod(dest, &size, &clk, &invert);
- //Dbprintf("DEBUG: ASK Got");
- WDT_HIT();
-
- if (errCnt>=0){
- lo = Em410xDecode(dest,size);
- //Dbprintf("DEBUG: EM GOT");
- if (lo>0){
- Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
- (uint32_t)(lo>>32),
- (uint32_t)lo,
- (uint32_t)(lo&0xFFFF),
- (uint32_t)((lo>>16LL) & 0xFF),
- (uint32_t)(lo & 0xFFFFFF));
- }
- if (findone){
- if (ledcontrol) LED_A_OFF();
- return;
- }
- } else{
- //Dbprintf("DEBUG: No Tag");
- }
- WDT_HIT();
- lo = 0;
- clk=0;
- invert=0;
- errCnt=0;
- size=0;
- }
- DbpString("Stopped");
- if (ledcontrol) LED_A_OFF();
+ if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
+ errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
+ WDT_HIT();
+
+ if (errCnt<0) continue;
+
+ errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
+ if (errCnt){
+ if (size>64){
+ Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
+ hi,
+ (uint32_t)(lo>>32),
+ (uint32_t)lo,
+ (uint32_t)(lo&0xFFFF),
+ (uint32_t)((lo>>16LL) & 0xFF),
+ (uint32_t)(lo & 0xFFFFFF));
+ } else {
+ Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
+ (uint32_t)(lo>>32),
+ (uint32_t)lo,
+ (uint32_t)(lo&0xFFFF),
+ (uint32_t)((lo>>16LL) & 0xFF),
+ (uint32_t)(lo & 0xFFFFFF));
+ }
+
+ if (findone){
+ if (ledcontrol) LED_A_OFF();
+ *high=lo>>32;
+ *low=lo & 0xFFFFFFFF;
+ break;
+ }
+ }
+ WDT_HIT();
+ hi = lo = size = idx = 0;
+ clk = invert = errCnt = 0;
+ }
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ DbpString("Stopped");
+ if (ledcontrol) LED_A_OFF();
}
void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
{
- uint8_t *dest = (uint8_t *)BigBuf;
- int idx=0;
- uint32_t code=0, code2=0;
- uint8_t version=0;
- uint8_t facilitycode=0;
- uint16_t number=0;
- // Configure to go in 125Khz listen mode
- LFSetupFPGAForADC(95, true);
-
- while(!BUTTON_PRESS()) {
- WDT_HIT();
- if (ledcontrol) LED_A_ON();
- DoAcquisition125k_internal(-1,true);
- //fskdemod and get start index
- WDT_HIT();
- idx = IOdemodFSK(dest,sizeof(BigBuf));
- if (idx>0){
- //valid tag found
-
- //Index map
- //0 10 20 30 40 50 60
- //| | | | | | |
- //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
- //-----------------------------------------------------------------------------
- //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
- //
- //XSF(version)facility:codeone+codetwo
- //Handle the data
- if(findone){ //only print binary if we are doing one
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
- Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
- }
- code = bytebits_to_byte(dest+idx,32);
- code2 = bytebits_to_byte(dest+idx+32,32);
- version = bytebits_to_byte(dest+idx+27,8); //14,4
- facilitycode = bytebits_to_byte(dest+idx+18,8) ;
- number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
-
- Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
- // if we're only looking for one tag
- if (findone){
- if (ledcontrol) LED_A_OFF();
- //LED_A_OFF();
- return;
- }
- code=code2=0;
- version=facilitycode=0;
- number=0;
- idx=0;
- }
- WDT_HIT();
- }
- DbpString("Stopped");
- if (ledcontrol) LED_A_OFF();
+ uint8_t *dest = BigBuf_get_addr();
+ int idx=0;
+ uint32_t code=0, code2=0;
+ uint8_t version=0;
+ uint8_t facilitycode=0;
+ uint16_t number=0;
+ uint8_t crc = 0;
+ uint16_t calccrc = 0;
+
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
+
+ // Configure to go in 125Khz listen mode
+ LFSetupFPGAForADC(95, true);
+
+ while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
+ WDT_HIT();
+ if (ledcontrol) LED_A_ON();
+ DoAcquisition_default(-1,true);
+ //fskdemod and get start index
+ WDT_HIT();
+ idx = IOdemodFSK(dest, BigBuf_max_traceLen());
+ if (idx<0) continue;
+ //valid tag found
+
+ //Index map
+ //0 10 20 30 40 50 60
+ //| | | | | | |
+ //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
+ //-----------------------------------------------------------------------------
+ //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
+ //
+ //Checksum:
+ //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
+ //preamble F0 E0 01 03 B6 75
+ // How to calc checksum,
+ // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
+ // F0 + E0 + 01 + 03 + B6 = 28A
+ // 28A & FF = 8A
+ // FF - 8A = 75
+ // Checksum: 0x75
+ //XSF(version)facility:codeone+codetwo
+ //Handle the data
+ // if(findone){ //only print binary if we are doing one
+ // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
+ // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
+ // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
+ // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
+ // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
+ // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
+ // Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
+ // }
+ code = bytebits_to_byte(dest+idx,32);
+ code2 = bytebits_to_byte(dest+idx+32,32);
+ version = bytebits_to_byte(dest+idx+27,8); //14,4
+ facilitycode = bytebits_to_byte(dest+idx+18,8);
+ number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
+
+ crc = bytebits_to_byte(dest+idx+54,8);
+ for (uint8_t i=1; i<6; ++i)
+ calccrc += bytebits_to_byte(dest+idx+9*i,8);
+ calccrc &= 0xff;
+ calccrc = 0xff - calccrc;
+
+ char *crcStr = (crc == calccrc) ? "ok":"!crc";
+
+ Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version,facilitycode,number,code,code2, crc, crcStr);
+ // if we're only looking for one tag
+ if (findone){
+ if (ledcontrol) LED_A_OFF();
+ *high=code;
+ *low=code2;
+ break;
+ }
+ code=code2=0;
+ version=facilitycode=0;
+ number=0;
+ idx=0;
+
+ WDT_HIT();
+ }
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ DbpString("Stopped");
+ if (ledcontrol) LED_A_OFF();
}
/*------------------------------
- * T5555/T5557/T5567 routines
+ * T5555/T5557/T5567/T5577 routines
*------------------------------
- */
-
-/* T55x7 configuration register definitions */
-#define T55x7_POR_DELAY 0x00000001
-#define T55x7_ST_TERMINATOR 0x00000008
-#define T55x7_PWD 0x00000010
-#define T55x7_MAXBLOCK_SHIFT 5
-#define T55x7_AOR 0x00000200
-#define T55x7_PSKCF_RF_2 0
-#define T55x7_PSKCF_RF_4 0x00000400
-#define T55x7_PSKCF_RF_8 0x00000800
-#define T55x7_MODULATION_DIRECT 0
-#define T55x7_MODULATION_PSK1 0x00001000
-#define T55x7_MODULATION_PSK2 0x00002000
-#define T55x7_MODULATION_PSK3 0x00003000
-#define T55x7_MODULATION_FSK1 0x00004000
-#define T55x7_MODULATION_FSK2 0x00005000
-#define T55x7_MODULATION_FSK1a 0x00006000
-#define T55x7_MODULATION_FSK2a 0x00007000
-#define T55x7_MODULATION_MANCHESTER 0x00008000
-#define T55x7_MODULATION_BIPHASE 0x00010000
-#define T55x7_BITRATE_RF_8 0
-#define T55x7_BITRATE_RF_16 0x00040000
-#define T55x7_BITRATE_RF_32 0x00080000
-#define T55x7_BITRATE_RF_40 0x000C0000
-#define T55x7_BITRATE_RF_50 0x00100000
-#define T55x7_BITRATE_RF_64 0x00140000
-#define T55x7_BITRATE_RF_100 0x00180000
-#define T55x7_BITRATE_RF_128 0x001C0000
-
-/* T5555 (Q5) configuration register definitions */
-#define T5555_ST_TERMINATOR 0x00000001
-#define T5555_MAXBLOCK_SHIFT 0x00000001
-#define T5555_MODULATION_MANCHESTER 0
-#define T5555_MODULATION_PSK1 0x00000010
-#define T5555_MODULATION_PSK2 0x00000020
-#define T5555_MODULATION_PSK3 0x00000030
-#define T5555_MODULATION_FSK1 0x00000040
-#define T5555_MODULATION_FSK2 0x00000050
-#define T5555_MODULATION_BIPHASE 0x00000060
-#define T5555_MODULATION_DIRECT 0x00000070
-#define T5555_INVERT_OUTPUT 0x00000080
-#define T5555_PSK_RF_2 0
-#define T5555_PSK_RF_4 0x00000100
-#define T5555_PSK_RF_8 0x00000200
-#define T5555_USE_PWD 0x00000400
-#define T5555_USE_AOR 0x00000800
-#define T5555_BITRATE_SHIFT 12
-#define T5555_FAST_WRITE 0x00004000
-#define T5555_PAGE_SELECT 0x00008000
-
-/*
- * Relevant times in microsecond
+ * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
+ *
+ * Relevant communication times in microsecond
* To compensate antenna falling times shorten the write times
* and enlarge the gap ones.
+ * Q5 tags seems to have issues when these values changes.
*/
-#define START_GAP 250
-#define WRITE_GAP 160
-#define WRITE_0 144 // 192
-#define WRITE_1 400 // 432 for T55x7; 448 for E5550
+
+#define START_GAP 50*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (15fc)
+#define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (10fc)
+#define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (24fc)
+#define WRITE_1 54*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (56fc) 432 for T55x7; 448 for E5550
+#define READ_GAP 15*8
+
+// VALUES TAKEN FROM EM4x function: SendForward
+// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
+// WRITE_GAP = 128; (16*8)
+// WRITE_1 = 256 32*8; (32*8)
+
+// These timings work for 4469/4269/4305 (with the 55*8 above)
+// WRITE_0 = 23*8 , 9*8
+
+// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
+// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
+// Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
+// T0 = TIMER_CLOCK1 / 125000 = 192
+// 1 Cycle = 8 microseconds(us) == 1 field clock
+
+// new timer:
+// = 1us = 1.5ticks
+// 1fc = 8us = 12ticks
+void TurnReadLFOn(uint32_t delay) {
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // measure antenna strength.
+ //int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
+
+ // Give it a bit of time for the resonant antenna to settle.
+ WaitUS(delay);
+}
// Write one bit to card
-void T55xxWriteBit(int bit)
-{
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
- if (bit == 0)
- SpinDelayUs(WRITE_0);
- else
- SpinDelayUs(WRITE_1);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelayUs(WRITE_GAP);
+void T55xxWriteBit(int bit) {
+ if (!bit)
+ TurnReadLFOn(WRITE_0);
+ else
+ TurnReadLFOn(WRITE_1);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ WaitUS(WRITE_GAP);
+}
+
+// Send T5577 reset command then read stream (see if we can identify the start of the stream)
+void T55xxResetRead(void) {
+ LED_A_ON();
+ //clear buffer now so it does not interfere with timing later
+ BigBuf_Clear_keep_EM();
+
+ // Set up FPGA, 125kHz
+ LFSetupFPGAForADC(95, true);
+
+ // Trigger T55x7 in mode.
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ WaitUS(START_GAP);
+
+ // reset tag - op code 00
+ T55xxWriteBit(0);
+ T55xxWriteBit(0);
+
+ // Turn field on to read the response
+ TurnReadLFOn(READ_GAP);
+
+ // Acquisition
+ doT55x7Acquisition(BigBuf_max_traceLen());
+
+ // Turn the field off
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ LED_A_OFF();
}
// Write one card block in page 0, no lock
-void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
-{
- //unsigned int i; //enio adjustment 12/10/14
- uint32_t i;
-
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-
- // Give it a bit of time for the resonant antenna to settle.
- // And for the tag to fully power up
- SpinDelay(150);
-
- // Now start writting
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelayUs(START_GAP);
-
- // Opcode
- T55xxWriteBit(1);
- T55xxWriteBit(0); //Page 0
- if (PwdMode == 1){
- // Pwd
- for (i = 0x80000000; i != 0; i >>= 1)
- T55xxWriteBit(Pwd & i);
- }
- // Lock bit
- T55xxWriteBit(0);
-
- // Data
- for (i = 0x80000000; i != 0; i >>= 1)
- T55xxWriteBit(Data & i);
-
- // Block
- for (i = 0x04; i != 0; i >>= 1)
- T55xxWriteBit(Block & i);
-
- // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
- // so wait a little more)
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
- SpinDelay(20);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+void T55xxWriteBlockExt(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
+ LED_A_ON();
+ bool PwdMode = arg & 0x1;
+ uint8_t Page = (arg & 0x2)>>1;
+ uint32_t i = 0;
+
+ // Set up FPGA, 125kHz
+ LFSetupFPGAForADC(95, true);
+
+ // Trigger T55x7 in mode.
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ WaitUS(START_GAP);
+
+ // Opcode 10
+ T55xxWriteBit(1);
+ T55xxWriteBit(Page); //Page 0
+ if (PwdMode){
+ // Send Pwd
+ for (i = 0x80000000; i != 0; i >>= 1)
+ T55xxWriteBit(Pwd & i);
+ }
+ // Send Lock bit
+ T55xxWriteBit(0);
+
+ // Send Data
+ for (i = 0x80000000; i != 0; i >>= 1)
+ T55xxWriteBit(Data & i);
+
+ // Send Block number
+ for (i = 0x04; i != 0; i >>= 1)
+ T55xxWriteBit(Block & i);
+
+ // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
+ // so wait a little more)
+ TurnReadLFOn(20 * 1000);
+
+ //could attempt to do a read to confirm write took
+ // as the tag should repeat back the new block
+ // until it is reset, but to confirm it we would
+ // need to know the current block 0 config mode
+
+ // turn field off
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_A_OFF();
}
-// Read one card block in page 0
-void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
-{
- uint8_t *dest = (uint8_t *)BigBuf;
- //int m=0, i=0; //enio adjustment 12/10/14
- uint32_t m=0, i=0;
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- m = sizeof(BigBuf);
- // Clear destination buffer before sending the command
- memset(dest, 128, m);
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-
- LED_D_ON();
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-
- // Give it a bit of time for the resonant antenna to settle.
- // And for the tag to fully power up
- SpinDelay(150);
-
- // Now start writting
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelayUs(START_GAP);
-
- // Opcode
- T55xxWriteBit(1);
- T55xxWriteBit(0); //Page 0
- if (PwdMode == 1){
- // Pwd
- for (i = 0x80000000; i != 0; i >>= 1)
- T55xxWriteBit(Pwd & i);
- }
- // Lock bit
- T55xxWriteBit(0);
- // Block
- for (i = 0x04; i != 0; i >>= 1)
- T55xxWriteBit(Block & i);
-
- // Turn field on to read the response
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-
- // Now do the acquisition
- i = 0;
- for(;;) {
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
- AT91C_BASE_SSC->SSC_THR = 0x43;
- }
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
- dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- // we don't care about actual value, only if it's more or less than a
- // threshold essentially we capture zero crossings for later analysis
- // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
- i++;
- if (i >= m) break;
- }
- }
-
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- LED_D_OFF();
- DbpString("DONE!");
+// Write one card block in page 0, no lock
+void T55xxWriteBlock(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
+ T55xxWriteBlockExt(Data, Block, Pwd, arg);
+ cmd_send(CMD_ACK,0,0,0,0,0);
}
-// Read card traceability data (page 1)
-void T55xxReadTrace(void){
- uint8_t *dest = (uint8_t *)BigBuf;
- int m=0, i=0;
-
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- m = sizeof(BigBuf);
- // Clear destination buffer before sending the command
- memset(dest, 128, m);
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-
- LED_D_ON();
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-
- // Give it a bit of time for the resonant antenna to settle.
- // And for the tag to fully power up
- SpinDelay(150);
-
- // Now start writting
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelayUs(START_GAP);
-
- // Opcode
- T55xxWriteBit(1);
- T55xxWriteBit(1); //Page 1
-
- // Turn field on to read the response
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-
- // Now do the acquisition
- i = 0;
- for(;;) {
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
- AT91C_BASE_SSC->SSC_THR = 0x43;
- }
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
- dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- i++;
- if (i >= m) break;
- }
- }
-
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- LED_D_OFF();
- DbpString("DONE!");
+// Read one card block in page [page]
+void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
+ LED_A_ON();
+ bool PwdMode = arg0 & 0x1;
+ uint8_t Page = (arg0 & 0x2) >> 1;
+ uint32_t i = 0;
+ bool RegReadMode = (Block == 0xFF);
+
+ //clear buffer now so it does not interfere with timing later
+ BigBuf_Clear_keep_EM();
+
+ //make sure block is at max 7
+ Block &= 0x7;
+
+ // Set up FPGA, 125kHz to power up the tag
+ LFSetupFPGAForADC(95, true);
+ SpinDelay(3);
+
+ // Trigger T55x7 Direct Access Mode with start gap
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ WaitUS(START_GAP);
+
+ // Opcode 1[page]
+ T55xxWriteBit(1);
+ T55xxWriteBit(Page); //Page 0
+
+ if (PwdMode){
+ // Send Pwd
+ for (i = 0x80000000; i != 0; i >>= 1)
+ T55xxWriteBit(Pwd & i);
+ }
+ // Send a zero bit separation
+ T55xxWriteBit(0);
+
+ // Send Block number (if direct access mode)
+ if (!RegReadMode)
+ for (i = 0x04; i != 0; i >>= 1)
+ T55xxWriteBit(Block & i);
+
+ // Turn field on to read the response
+ TurnReadLFOn(READ_GAP);
+
+ // Acquisition
+ doT55x7Acquisition(12000);
+
+ // Turn the field off
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ LED_A_OFF();
+}
+
+void T55xxWakeUp(uint32_t Pwd){
+ LED_B_ON();
+ uint32_t i = 0;
+
+ // Set up FPGA, 125kHz
+ LFSetupFPGAForADC(95, true);
+
+ // Trigger T55x7 Direct Access Mode
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ WaitUS(START_GAP);
+
+ // Opcode 10
+ T55xxWriteBit(1);
+ T55xxWriteBit(0); //Page 0
+
+ // Send Pwd
+ for (i = 0x80000000; i != 0; i >>= 1)
+ T55xxWriteBit(Pwd & i);
+
+ // Turn and leave field on to let the begin repeating transmission
+ TurnReadLFOn(20*1000);
}
/*-------------- Cloning routines -----------*/
-// Copy HID id to card and setup block 0 config
-void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
-{
- int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
- int last_block = 0;
-
- if (longFMT){
- // Ensure no more than 84 bits supplied
- if (hi2>0xFFFFF) {
- DbpString("Tags can only have 84 bits.");
- return;
- }
- // Build the 6 data blocks for supplied 84bit ID
- last_block = 6;
- data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
- for (int i=0;i<4;i++) {
- if (hi2 & (1<<(19-i)))
- data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
- else
- data1 |= (1<<((3-i)*2)); // 0 -> 01
- }
-
- data2 = 0;
- for (int i=0;i<16;i++) {
- if (hi2 & (1<<(15-i)))
- data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data2 |= (1<<((15-i)*2)); // 0 -> 01
- }
-
- data3 = 0;
- for (int i=0;i<16;i++) {
- if (hi & (1<<(31-i)))
- data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data3 |= (1<<((15-i)*2)); // 0 -> 01
- }
-
- data4 = 0;
- for (int i=0;i<16;i++) {
- if (hi & (1<<(15-i)))
- data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data4 |= (1<<((15-i)*2)); // 0 -> 01
- }
-
- data5 = 0;
- for (int i=0;i<16;i++) {
- if (lo & (1<<(31-i)))
- data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data5 |= (1<<((15-i)*2)); // 0 -> 01
- }
-
- data6 = 0;
- for (int i=0;i<16;i++) {
- if (lo & (1<<(15-i)))
- data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data6 |= (1<<((15-i)*2)); // 0 -> 01
- }
- }
- else {
- // Ensure no more than 44 bits supplied
- if (hi>0xFFF) {
- DbpString("Tags can only have 44 bits.");
- return;
- }
-
- // Build the 3 data blocks for supplied 44bit ID
- last_block = 3;
-
- data1 = 0x1D000000; // load preamble
-
- for (int i=0;i<12;i++) {
- if (hi & (1<<(11-i)))
- data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
- else
- data1 |= (1<<((11-i)*2)); // 0 -> 01
- }
-
- data2 = 0;
- for (int i=0;i<16;i++) {
- if (lo & (1<<(31-i)))
- data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data2 |= (1<<((15-i)*2)); // 0 -> 01
- }
-
- data3 = 0;
- for (int i=0;i<16;i++) {
- if (lo & (1<<(15-i)))
- data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data3 |= (1<<((15-i)*2)); // 0 -> 01
- }
- }
-
- LED_D_ON();
- // Program the data blocks for supplied ID
- // and the block 0 for HID format
- T55xxWriteBlock(data1,1,0,0);
- T55xxWriteBlock(data2,2,0,0);
- T55xxWriteBlock(data3,3,0,0);
-
- if (longFMT) { // if long format there are 6 blocks
- T55xxWriteBlock(data4,4,0,0);
- T55xxWriteBlock(data5,5,0,0);
- T55xxWriteBlock(data6,6,0,0);
- }
-
- // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
- T55xxWriteBlock(T55x7_BITRATE_RF_50 |
- T55x7_MODULATION_FSK2a |
- last_block << T55x7_MAXBLOCK_SHIFT,
- 0,0,0);
-
- LED_D_OFF();
-
- DbpString("DONE!");
+void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
+ // write last block first and config block last (if included)
+ for (uint8_t i = numblocks+startblock; i > startblock; i--)
+ T55xxWriteBlockExt(blockdata[i-1], i-1, 0, 0);
}
-void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
-{
- int data1=0, data2=0; //up to six blocks for long format
+// Copy HID id to card and setup block 0 config
+void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
+ uint32_t data[] = {0,0,0,0,0,0,0};
+ uint8_t last_block = 0;
+
+ if (longFMT){
+ // Ensure no more than 84 bits supplied
+ if (hi2 > 0xFFFFF) {
+ DbpString("Tags can only have 84 bits.");
+ return;
+ }
+ // Build the 6 data blocks for supplied 84bit ID
+ last_block = 6;
+ // load preamble (1D) & long format identifier (9E manchester encoded)
+ data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
+ // load raw id from hi2, hi, lo to data blocks (manchester encoded)
+ data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
+ data[3] = manchesterEncode2Bytes(hi >> 16);
+ data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
+ data[5] = manchesterEncode2Bytes(lo >> 16);
+ data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
+ } else {
+ // Ensure no more than 44 bits supplied
+ if (hi > 0xFFF) {
+ DbpString("Tags can only have 44 bits.");
+ return;
+ }
+ // Build the 3 data blocks for supplied 44bit ID
+ last_block = 3;
+ // load preamble
+ data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
+ data[2] = manchesterEncode2Bytes(lo >> 16);
+ data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
+ }
+ // load chip config block
+ data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
- data1 = hi; // load preamble
- data2 = lo;
+ //TODO add selection of chip for Q5 or T55x7
+ // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
- LED_D_ON();
- // Program the data blocks for supplied ID
- // and the block 0 for HID format
- T55xxWriteBlock(data1,1,0,0);
- T55xxWriteBlock(data2,2,0,0);
+ LED_D_ON();
+ // Program the data blocks for supplied ID
+ // and the block 0 for HID format
+ WriteT55xx(data, 0, last_block+1);
- //Config Block
- T55xxWriteBlock(0x00147040,0,0,0);
- LED_D_OFF();
+ LED_D_OFF();
- DbpString("DONE!");
+ DbpString("DONE!");
}
-// Define 9bit header for EM410x tags
-#define EM410X_HEADER 0x1FF
-#define EM410X_ID_LENGTH 40
-
-void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
-{
- int i, id_bit;
- uint64_t id = EM410X_HEADER;
- uint64_t rev_id = 0; // reversed ID
- int c_parity[4]; // column parity
- int r_parity = 0; // row parity
- uint32_t clock = 0;
-
- // Reverse ID bits given as parameter (for simpler operations)
- for (i = 0; i < EM410X_ID_LENGTH; ++i) {
- if (i < 32) {
- rev_id = (rev_id << 1) | (id_lo & 1);
- id_lo >>= 1;
- } else {
- rev_id = (rev_id << 1) | (id_hi & 1);
- id_hi >>= 1;
- }
- }
-
- for (i = 0; i < EM410X_ID_LENGTH; ++i) {
- id_bit = rev_id & 1;
-
- if (i % 4 == 0) {
- // Don't write row parity bit at start of parsing
- if (i)
- id = (id << 1) | r_parity;
- // Start counting parity for new row
- r_parity = id_bit;
- } else {
- // Count row parity
- r_parity ^= id_bit;
- }
-
- // First elements in column?
- if (i < 4)
- // Fill out first elements
- c_parity[i] = id_bit;
- else
- // Count column parity
- c_parity[i % 4] ^= id_bit;
-
- // Insert ID bit
- id = (id << 1) | id_bit;
- rev_id >>= 1;
- }
-
- // Insert parity bit of last row
- id = (id << 1) | r_parity;
-
- // Fill out column parity at the end of tag
- for (i = 0; i < 4; ++i)
- id = (id << 1) | c_parity[i];
-
- // Add stop bit
- id <<= 1;
-
- Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
- LED_D_ON();
-
- // Write EM410x ID
- T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
- T55xxWriteBlock((uint32_t)id, 2, 0, 0);
-
- // Config for EM410x (RF/64, Manchester, Maxblock=2)
- if (card) {
- // Clock rate is stored in bits 8-15 of the card value
- clock = (card & 0xFF00) >> 8;
- Dbprintf("Clock rate: %d", clock);
- switch (clock)
- {
- case 32:
- clock = T55x7_BITRATE_RF_32;
- break;
- case 16:
- clock = T55x7_BITRATE_RF_16;
- break;
- case 0:
- // A value of 0 is assumed to be 64 for backwards-compatibility
- // Fall through...
- case 64:
- clock = T55x7_BITRATE_RF_64;
- break;
- default:
- Dbprintf("Invalid clock rate: %d", clock);
- return;
- }
-
- // Writing configuration for T55x7 tag
- T55xxWriteBlock(clock |
- T55x7_MODULATION_MANCHESTER |
- 2 << T55x7_MAXBLOCK_SHIFT,
- 0, 0, 0);
- }
- else
- // Writing configuration for T5555(Q5) tag
- T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
- T5555_MODULATION_MANCHESTER |
- 2 << T5555_MAXBLOCK_SHIFT,
- 0, 0, 0);
-
- LED_D_OFF();
- Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
- (uint32_t)(id >> 32), (uint32_t)id);
+void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
+ uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
+ //TODO add selection of chip for Q5 or T55x7
+ //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
+ // data[0] = (64 << T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
+
+ LED_D_ON();
+ // Program the data blocks for supplied ID
+ // and the block 0 config
+ WriteT55xx(data, 0, 3);
+ LED_D_OFF();
+ DbpString("DONE!");
}
// Clone Indala 64-bit tag by UID to T55x7
-void CopyIndala64toT55x7(int hi, int lo)
-{
-
- //Program the 2 data blocks for supplied 64bit UID
- // and the block 0 for Indala64 format
- T55xxWriteBlock(hi,1,0,0);
- T55xxWriteBlock(lo,2,0,0);
- //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
- T55xxWriteBlock(T55x7_BITRATE_RF_32 |
- T55x7_MODULATION_PSK1 |
- 2 << T55x7_MAXBLOCK_SHIFT,
- 0, 0, 0);
- //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
- // T5567WriteBlock(0x603E1042,0);
-
- DbpString("DONE!");
-
+void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
+ //Program the 2 data blocks for supplied 64bit UID
+ // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
+ uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
+ //TODO add selection of chip for Q5 or T55x7
+ // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
+
+ WriteT55xx(data, 0, 3);
+ //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
+ // T5567WriteBlock(0x603E1042,0);
+ DbpString("DONE!");
+}
+// Clone Indala 224-bit tag by UID to T55x7
+void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
+ //Program the 7 data blocks for supplied 224bit UID
+ uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
+ // and the block 0 for Indala224 format
+ //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
+ data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT);
+ //TODO add selection of chip for Q5 or T55x7
+ // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
+ WriteT55xx(data, 0, 8);
+ //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
+ // T5567WriteBlock(0x603E10E2,0);
+ DbpString("DONE!");
+}
+// clone viking tag to T55xx
+void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
+ uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
+ //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
+ if (Q5) data[0] = (32 << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
+ // Program the data blocks for supplied ID and the block 0 config
+ WriteT55xx(data, 0, 3);
+ LED_D_OFF();
+ cmd_send(CMD_ACK,0,0,0,0,0);
}
-void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
-{
+// Define 9bit header for EM410x tags
+#define EM410X_HEADER 0x1FF
+#define EM410X_ID_LENGTH 40
- //Program the 7 data blocks for supplied 224bit UID
- // and the block 0 for Indala224 format
- T55xxWriteBlock(uid1,1,0,0);
- T55xxWriteBlock(uid2,2,0,0);
- T55xxWriteBlock(uid3,3,0,0);
- T55xxWriteBlock(uid4,4,0,0);
- T55xxWriteBlock(uid5,5,0,0);
- T55xxWriteBlock(uid6,6,0,0);
- T55xxWriteBlock(uid7,7,0,0);
- //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
- T55xxWriteBlock(T55x7_BITRATE_RF_32 |
- T55x7_MODULATION_PSK1 |
- 7 << T55x7_MAXBLOCK_SHIFT,
- 0,0,0);
- //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
- // T5567WriteBlock(0x603E10E2,0);
-
- DbpString("DONE!");
+void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
+ int i, id_bit;
+ uint64_t id = EM410X_HEADER;
+ uint64_t rev_id = 0; // reversed ID
+ int c_parity[4]; // column parity
+ int r_parity = 0; // row parity
+ uint32_t clock = 0;
+
+ // Reverse ID bits given as parameter (for simpler operations)
+ for (i = 0; i < EM410X_ID_LENGTH; ++i) {
+ if (i < 32) {
+ rev_id = (rev_id << 1) | (id_lo & 1);
+ id_lo >>= 1;
+ } else {
+ rev_id = (rev_id << 1) | (id_hi & 1);
+ id_hi >>= 1;
+ }
+ }
-}
+ for (i = 0; i < EM410X_ID_LENGTH; ++i) {
+ id_bit = rev_id & 1;
+
+ if (i % 4 == 0) {
+ // Don't write row parity bit at start of parsing
+ if (i)
+ id = (id << 1) | r_parity;
+ // Start counting parity for new row
+ r_parity = id_bit;
+ } else {
+ // Count row parity
+ r_parity ^= id_bit;
+ }
+ // First elements in column?
+ if (i < 4)
+ // Fill out first elements
+ c_parity[i] = id_bit;
+ else
+ // Count column parity
+ c_parity[i % 4] ^= id_bit;
+
+ // Insert ID bit
+ id = (id << 1) | id_bit;
+ rev_id >>= 1;
+ }
-#define abs(x) ( ((x)<0) ? -(x) : (x) )
-#define max(x,y) ( x<y ? y:x)
-
-int DemodPCF7931(uint8_t **outBlocks) {
- uint8_t BitStream[256];
- uint8_t Blocks[8][16];
- uint8_t *GraphBuffer = (uint8_t *)BigBuf;
- int GraphTraceLen = sizeof(BigBuf);
- int i, j, lastval, bitidx, half_switch;
- int clock = 64;
- int tolerance = clock / 8;
- int pmc, block_done;
- int lc, warnings = 0;
- int num_blocks = 0;
- int lmin=128, lmax=128;
- uint8_t dir;
-
- AcquireRawAdcSamples125k(0);
-
- lmin = 64;
- lmax = 192;
-
- i = 2;
-
- /* Find first local max/min */
- if(GraphBuffer[1] > GraphBuffer[0]) {
- while(i < GraphTraceLen) {
- if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
- break;
- i++;
- }
- dir = 0;
- }
- else {
- while(i < GraphTraceLen) {
- if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
- break;
- i++;
- }
- dir = 1;
- }
-
- lastval = i++;
- half_switch = 0;
- pmc = 0;
- block_done = 0;
-
- for (bitidx = 0; i < GraphTraceLen; i++)
- {
- if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
- {
- lc = i - lastval;
- lastval = i;
-
- // Switch depending on lc length:
- // Tolerance is 1/8 of clock rate (arbitrary)
- if (abs(lc-clock/4) < tolerance) {
- // 16T0
- if((i - pmc) == lc) { /* 16T0 was previous one */
- /* It's a PMC ! */
- i += (128+127+16+32+33+16)-1;
- lastval = i;
- pmc = 0;
- block_done = 1;
- }
- else {
- pmc = i;
- }
- } else if (abs(lc-clock/2) < tolerance) {
- // 32TO
- if((i - pmc) == lc) { /* 16T0 was previous one */
- /* It's a PMC ! */
- i += (128+127+16+32+33)-1;
- lastval = i;
- pmc = 0;
- block_done = 1;
- }
- else if(half_switch == 1) {
- BitStream[bitidx++] = 0;
- half_switch = 0;
- }
- else
- half_switch++;
- } else if (abs(lc-clock) < tolerance) {
- // 64TO
- BitStream[bitidx++] = 1;
- } else {
- // Error
- warnings++;
- if (warnings > 10)
- {
- Dbprintf("Error: too many detection errors, aborting.");
- return 0;
- }
- }
-
- if(block_done == 1) {
- if(bitidx == 128) {
- for(j=0; j<16; j++) {
- Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
- 64*BitStream[j*8+6]+
- 32*BitStream[j*8+5]+
- 16*BitStream[j*8+4]+
- 8*BitStream[j*8+3]+
- 4*BitStream[j*8+2]+
- 2*BitStream[j*8+1]+
- BitStream[j*8];
- }
- num_blocks++;
- }
- bitidx = 0;
- block_done = 0;
- half_switch = 0;
- }
- if(i < GraphTraceLen)
- {
- if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
- else dir = 1;
- }
- }
- if(bitidx==255)
- bitidx=0;
- warnings = 0;
- if(num_blocks == 4) break;
- }
- memcpy(outBlocks, Blocks, 16*num_blocks);
- return num_blocks;
-}
+ // Insert parity bit of last row
+ id = (id << 1) | r_parity;
-int IsBlock0PCF7931(uint8_t *Block) {
- // Assume RFU means 0 :)
- if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
- return 1;
- if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
- return 1;
- return 0;
-}
+ // Fill out column parity at the end of tag
+ for (i = 0; i < 4; ++i)
+ id = (id << 1) | c_parity[i];
-int IsBlock1PCF7931(uint8_t *Block) {
- // Assume RFU means 0 :)
- if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
- if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
- return 1;
+ // Add stop bit
+ id <<= 1;
- return 0;
-}
+ Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
+ LED_D_ON();
-#define ALLOC 16
-
-void ReadPCF7931() {
- uint8_t Blocks[8][17];
- uint8_t tmpBlocks[4][16];
- int i, j, ind, ind2, n;
- int num_blocks = 0;
- int max_blocks = 8;
- int ident = 0;
- int error = 0;
- int tries = 0;
-
- memset(Blocks, 0, 8*17*sizeof(uint8_t));
-
- do {
- memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
- n = DemodPCF7931((uint8_t**)tmpBlocks);
- if(!n)
- error++;
- if(error==10 && num_blocks == 0) {
- Dbprintf("Error, no tag or bad tag");
- return;
- }
- else if (tries==20 || error==10) {
- Dbprintf("Error reading the tag");
- Dbprintf("Here is the partial content");
- goto end;
- }
-
- for(i=0; i<n; i++)
- Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
- tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
- tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
- if(!ident) {
- for(i=0; i<n; i++) {
- if(IsBlock0PCF7931(tmpBlocks[i])) {
- // Found block 0 ?
- if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
- // Found block 1!
- // \o/
- ident = 1;
- memcpy(Blocks[0], tmpBlocks[i], 16);
- Blocks[0][ALLOC] = 1;
- memcpy(Blocks[1], tmpBlocks[i+1], 16);
- Blocks[1][ALLOC] = 1;
- max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
- // Debug print
- Dbprintf("(dbg) Max blocks: %d", max_blocks);
- num_blocks = 2;
- // Handle following blocks
- for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
- if(j==n) j=0;
- if(j==i) break;
- memcpy(Blocks[ind2], tmpBlocks[j], 16);
- Blocks[ind2][ALLOC] = 1;
- }
- break;
- }
- }
- }
- }
- else {
- for(i=0; i<n; i++) { // Look for identical block in known blocks
- if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
- for(j=0; j<max_blocks; j++) {
- if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
- // Found an identical block
- for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
- if(ind2 < 0)
- ind2 = max_blocks;
- if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
- // Dbprintf("Tmp %d -> Block %d", ind, ind2);
- memcpy(Blocks[ind2], tmpBlocks[ind], 16);
- Blocks[ind2][ALLOC] = 1;
- num_blocks++;
- if(num_blocks == max_blocks) goto end;
- }
- }
- for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
- if(ind2 > max_blocks)
- ind2 = 0;
- if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
- // Dbprintf("Tmp %d -> Block %d", ind, ind2);
- memcpy(Blocks[ind2], tmpBlocks[ind], 16);
- Blocks[ind2][ALLOC] = 1;
- num_blocks++;
- if(num_blocks == max_blocks) goto end;
- }
- }
- }
- }
- }
- }
- }
- tries++;
- if (BUTTON_PRESS()) return;
- } while (num_blocks != max_blocks);
-end:
- Dbprintf("-----------------------------------------");
- Dbprintf("Memory content:");
- Dbprintf("-----------------------------------------");
- for(i=0; i<max_blocks; i++) {
- if(Blocks[i][ALLOC]==1)
- Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
- Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
- Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
- else
- Dbprintf("<missing block %d>", i);
- }
- Dbprintf("-----------------------------------------");
-
- return ;
-}
+ // Write EM410x ID
+ uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
+ clock = (card & 0xFF00) >> 8;
+ clock = (clock == 0) ? 64 : clock;
+ Dbprintf("Clock rate: %d", clock);
+ if (card & 0xFF) { //t55x7
+ clock = GetT55xxClockBit(clock);
+ if (clock == 0) {
+ Dbprintf("Invalid clock rate: %d", clock);
+ return;
+ }
+ data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
+ } else { //t5555 (Q5)
+ clock = (clock-2)>>1; //n = (RF-2)/2
+ data[0] = (clock << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
+ }
+
+ WriteT55xx(data, 0, 3);
+
+ LED_D_OFF();
+ Dbprintf("Tag %s written with 0x%08x%08x\n",
+ card ? "T55x7":"T5555",
+ (uint32_t)(id >> 32),
+ (uint32_t)id);
+}
//-----------------------------------
// EM4469 / EM4305 routines
//-----------------------------------
-#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
-#define FWD_CMD_WRITE 0xA
-#define FWD_CMD_READ 0x9
+#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
+#define FWD_CMD_WRITE 0xA
+#define FWD_CMD_READ 0x9
#define FWD_CMD_DISABLE 0x5
-
uint8_t forwardLink_data[64]; //array of forwarded bits
uint8_t * forward_ptr; //ptr for forward message preparation
uint8_t fwd_bit_sz; //forwardlink bit counter
// see EM4469 spec
//====================================================================
//--------------------------------------------------------------------
+// VALUES TAKEN FROM EM4x function: SendForward
+// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
+// WRITE_GAP = 128; (16*8)
+// WRITE_1 = 256 32*8; (32*8)
+
+// These timings work for 4469/4269/4305 (with the 55*8 above)
+// WRITE_0 = 23*8 , 9*8
+
uint8_t Prepare_Cmd( uint8_t cmd ) {
- //--------------------------------------------------------------------
- *forward_ptr++ = 0; //start bit
- *forward_ptr++ = 0; //second pause for 4050 code
+ *forward_ptr++ = 0; //start bit
+ *forward_ptr++ = 0; //second pause for 4050 code
- *forward_ptr++ = cmd;
- cmd >>= 1;
- *forward_ptr++ = cmd;
- cmd >>= 1;
- *forward_ptr++ = cmd;
- cmd >>= 1;
- *forward_ptr++ = cmd;
+ *forward_ptr++ = cmd;
+ cmd >>= 1;
+ *forward_ptr++ = cmd;
+ cmd >>= 1;
+ *forward_ptr++ = cmd;
+ cmd >>= 1;
+ *forward_ptr++ = cmd;
- return 6; //return number of emited bits
+ return 6; //return number of emited bits
}
//====================================================================
// prepares address bits
// see EM4469 spec
//====================================================================
-
-//--------------------------------------------------------------------
uint8_t Prepare_Addr( uint8_t addr ) {
- //--------------------------------------------------------------------
- register uint8_t line_parity;
+ register uint8_t line_parity;
- uint8_t i;
- line_parity = 0;
- for(i=0;i<6;i++) {
- *forward_ptr++ = addr;
- line_parity ^= addr;
- addr >>= 1;
- }
+ uint8_t i;
+ line_parity = 0;
+ for(i=0;i<6;i++) {
+ *forward_ptr++ = addr;
+ line_parity ^= addr;
+ addr >>= 1;
+ }
- *forward_ptr++ = (line_parity & 1);
+ *forward_ptr++ = (line_parity & 1);
- return 7; //return number of emited bits
+ return 7; //return number of emited bits
}
//====================================================================
// prepares data bits intreleaved with parity bits
// see EM4469 spec
//====================================================================
-
-//--------------------------------------------------------------------
uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
- //--------------------------------------------------------------------
-
- register uint8_t line_parity;
- register uint8_t column_parity;
- register uint8_t i, j;
- register uint16_t data;
-
- data = data_low;
- column_parity = 0;
-
- for(i=0; i<4; i++) {
- line_parity = 0;
- for(j=0; j<8; j++) {
- line_parity ^= data;
- column_parity ^= (data & 1) << j;
- *forward_ptr++ = data;
- data >>= 1;
- }
- *forward_ptr++ = line_parity;
- if(i == 1)
- data = data_hi;
- }
-
- for(j=0; j<8; j++) {
- *forward_ptr++ = column_parity;
- column_parity >>= 1;
- }
- *forward_ptr = 0;
-
- return 45; //return number of emited bits
+
+ register uint8_t line_parity;
+ register uint8_t column_parity;
+ register uint8_t i, j;
+ register uint16_t data;
+
+ data = data_low;
+ column_parity = 0;
+
+ for(i=0; i<4; i++) {
+ line_parity = 0;
+ for(j=0; j<8; j++) {
+ line_parity ^= data;
+ column_parity ^= (data & 1) << j;
+ *forward_ptr++ = data;
+ data >>= 1;
+ }
+ *forward_ptr++ = line_parity;
+ if(i == 1)
+ data = data_hi;
+ }
+
+ for(j=0; j<8; j++) {
+ *forward_ptr++ = column_parity;
+ column_parity >>= 1;
+ }
+ *forward_ptr = 0;
+
+ return 45; //return number of emited bits
}
//====================================================================
//====================================================================
void SendForward(uint8_t fwd_bit_count) {
- fwd_write_ptr = forwardLink_data;
- fwd_bit_sz = fwd_bit_count;
-
- LED_D_ON();
-
- //Field on
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-
- // Give it a bit of time for the resonant antenna to settle.
- // And for the tag to fully power up
- SpinDelay(150);
-
- // force 1st mod pulse (start gap must be longer for 4305)
- fwd_bit_sz--; //prepare next bit modulation
- fwd_write_ptr++;
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
- SpinDelayUs(16*8); //16 cycles on (8us each)
-
- // now start writting
- while(fwd_bit_sz-- > 0) { //prepare next bit modulation
- if(((*fwd_write_ptr++) & 1) == 1)
- SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
- else {
- //These timings work for 4469/4269/4305 (with the 55*8 above)
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- SpinDelayUs(23*8); //16-4 cycles off (8us each)
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
- SpinDelayUs(9*8); //16 cycles on (8us each)
- }
- }
+ fwd_write_ptr = forwardLink_data;
+ fwd_bit_sz = fwd_bit_count;
+
+ LED_D_ON();
+
+ // Set up FPGA, 125kHz
+ LFSetupFPGAForADC(95, true);
+
+ // force 1st mod pulse (start gap must be longer for 4305)
+ fwd_bit_sz--; //prepare next bit modulation
+ fwd_write_ptr++;
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ WaitUS(55*8); //55 cycles off (8us each)for 4305 // ICEMAN: problem with (us) clock is 21.3us increments
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+ WaitUS(16*8); //16 cycles on (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
+
+ // now start writting
+ while(fwd_bit_sz-- > 0) { //prepare next bit modulation
+ if(((*fwd_write_ptr++) & 1) == 1)
+ WaitUS(32*8); //32 cycles at 125Khz (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
+ else {
+ //These timings work for 4469/4269/4305 (with the 55*8 above)
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ WaitUS(16*8); //16-4 cycles off (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+ WaitUS(16*8); //16 cycles on (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
+ }
+ }
}
void EM4xLogin(uint32_t Password) {
- uint8_t fwd_bit_count;
+ uint8_t fwd_bit_count;
+ forward_ptr = forwardLink_data;
+ fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
+ fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
+ SendForward(fwd_bit_count);
+
+ //Wait for command to complete
+ WaitMS(20);
+}
+
+void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
- forward_ptr = forwardLink_data;
- fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
- fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
+ uint8_t fwd_bit_count;
+ uint8_t *dest = BigBuf_get_addr();
+ uint16_t bufsize = BigBuf_max_traceLen(); // ICEMAN: this tries to fill up all tracelog space
+ uint32_t i = 0;
- SendForward(fwd_bit_count);
+ // Clear destination buffer before sending the command
+ BigBuf_Clear_ext(false);
+
+ //If password mode do login
+ if (PwdMode == 1) EM4xLogin(Pwd);
- //Wait for command to complete
- SpinDelay(20);
+ forward_ptr = forwardLink_data;
+ fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
+ fwd_bit_count += Prepare_Addr( Address );
-}
+ SendForward(fwd_bit_count);
-void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
+ // Now do the acquisition
+ // ICEMAN, change to the one in lfsampling.c
+ i = 0;
+ for(;;) {
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+ AT91C_BASE_SSC->SSC_THR = 0x43;
+ }
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+ dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ ++i;
+ if (i >= bufsize) break;
+ }
+ }
- uint8_t fwd_bit_count;
- uint8_t *dest = (uint8_t *)BigBuf;
- int m=0, i=0;
-
- //If password mode do login
- if (PwdMode == 1) EM4xLogin(Pwd);
-
- forward_ptr = forwardLink_data;
- fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
- fwd_bit_count += Prepare_Addr( Address );
-
- m = sizeof(BigBuf);
- // Clear destination buffer before sending the command
- memset(dest, 128, m);
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-
- SendForward(fwd_bit_count);
-
- // Now do the acquisition
- i = 0;
- for(;;) {
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
- AT91C_BASE_SSC->SSC_THR = 0x43;
- }
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
- dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- i++;
- if (i >= m) break;
- }
- }
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ LED_D_OFF();
}
void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
- uint8_t fwd_bit_count;
+ uint8_t fwd_bit_count;
- //If password mode do login
- if (PwdMode == 1) EM4xLogin(Pwd);
+ //If password mode do login
+ if (PwdMode == 1) EM4xLogin(Pwd);
- forward_ptr = forwardLink_data;
- fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
- fwd_bit_count += Prepare_Addr( Address );
- fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
+ forward_ptr = forwardLink_data;
+ fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
+ fwd_bit_count += Prepare_Addr( Address );
+ fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
- SendForward(fwd_bit_count);
+ SendForward(fwd_bit_count);
- //Wait for write to complete
- SpinDelay(20);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- LED_D_OFF();
+ //Wait for write to complete
+ WaitMS(20);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ LED_D_OFF();
}