]> cvs.zerfleddert.de Git - proxmark3-svn/blobdiff - fpga/hi_read_rx_xcorr.v
Legic TagSim: increased reader timeout (#771)
[proxmark3-svn] / fpga / hi_read_rx_xcorr.v
index 433d6736f1814c0f3cc529e807f8cfb70ed3c1eb..503c8d67bebe4c5db583d2e976586ae784e3945a 100644 (file)
@@ -10,7 +10,7 @@ module hi_read_rx_xcorr(
     ssp_frame, ssp_din, ssp_dout, ssp_clk,
     cross_hi, cross_lo,
     dbg,
-    xcorr_is_848, snoop, xcorr_quarter_freq
+    xcorr_is_848, snoop, xcorr_quarter_freq, hi_read_rx_xcorr_amplitude
 );
     input pck0, ck_1356meg, ck_1356megb;
     output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;
@@ -20,29 +20,19 @@ module hi_read_rx_xcorr(
     output ssp_frame, ssp_din, ssp_clk;
     input cross_hi, cross_lo;
     output dbg;
-    input xcorr_is_848, snoop, xcorr_quarter_freq;
+    input xcorr_is_848, snoop, xcorr_quarter_freq, hi_read_rx_xcorr_amplitude;
 
 // Carrier is steady on through this, unless we're snooping.
 assign pwr_hi = ck_1356megb & (~snoop);
 assign pwr_oe1 = 1'b0;
 assign pwr_oe3 = 1'b0;
 assign pwr_oe4 = 1'b0;
+// Unused.
+assign pwr_lo = 1'b0;
+assign pwr_oe2 = 1'b0;
+
+assign adc_clk = ck_1356megb;  // sample frequency is 13,56 MHz
 
-reg [2:0] fc_div;
-always @(negedge ck_1356megb)
-    fc_div <= fc_div + 1;
-
-(* clock_signal = "yes" *) reg adc_clk;                                // sample frequency, always 16 * fc
-always @(ck_1356megb, xcorr_is_848, xcorr_quarter_freq, fc_div)
-       if (xcorr_is_848 & ~xcorr_quarter_freq)                 // fc = 847.5 kHz, standard ISO14443B
-               adc_clk <= ck_1356megb;
-       else if (~xcorr_is_848 & ~xcorr_quarter_freq)   // fc = 423.75 kHz 
-               adc_clk <= fc_div[0];
-       else if (xcorr_is_848 & xcorr_quarter_freq)             // fc = 211.875 kHz
-               adc_clk <= fc_div[1];
-       else                                                                                    // fc = 105.9375 kHz
-               adc_clk <= fc_div[2];
-               
 // When we're a reader, we just need to do the BPSK demod; but when we're an
 // eavesdropper, we also need to pick out the commands sent by the reader,
 // using AM. Do this the same way that we do it for the simulated tag.
@@ -69,76 +59,187 @@ begin
     end
 end
 
-// Let us report a correlation every 4 subcarrier cycles, or 4*16=64 samples,
-// so we need a 6-bit counter.
+
+// Let us report a correlation every 64 samples. I.e.
+// one Q/I pair after 4 subcarrier cycles for the 848kHz subcarrier,
+// one Q/I pair after 2 subcarrier cycles for the 424kHz subcarriers,
+// one Q/I pair for each subcarrier cyle for the 212kHz subcarrier.
+// We need a 6-bit counter for the timing.
 reg [5:0] corr_i_cnt;
-// And a couple of registers in which to accumulate the correlations.
-// We would add at most 32 times the difference between unmodulated and modulated signal. It should
+always @(negedge adc_clk)
+begin
+       corr_i_cnt <= corr_i_cnt + 1;
+end            
+
+// And a couple of registers in which to accumulate the correlations. From the 64 samples
+// we would add at most 32 times the difference between unmodulated and modulated signal. It should
 // be safe to assume that a tag will not be able to modulate the carrier signal by more than 25%.
 // 32 * 255 * 0,25 = 2040, which can be held in 11 bits. Add 1 bit for sign.
-reg signed [11:0] corr_i_accum;
-reg signed [11:0] corr_q_accum;
+// Temporary we might need more bits. For the 212kHz subcarrier we could possible add 32 times the
+// maximum signal value before a first subtraction would occur. 32 * 255 = 8160 can be held in 13 bits. 
+// Add one bit for sign -> need 14 bit registers but final result will fit into 12 bits.
+reg signed [13:0] corr_i_accum;
+reg signed [13:0] corr_q_accum;
 // we will report maximum 8 significant bits
 reg signed [7:0] corr_i_out;
 reg signed [7:0] corr_q_out;
+
 // clock and frame signal for communication to ARM
 reg ssp_clk;
 reg ssp_frame;
 
 
-always @(negedge adc_clk)
+
+// the amplitude of the subcarrier is sqrt(ci^2 + cq^2).
+// approximate by amplitude = max(|ci|,|cq|) + 1/2*min(|ci|,|cq|)
+reg [13:0] corr_amplitude, abs_ci, abs_cq, max_ci_cq, min_ci_cq;
+
+
+always @(corr_i_accum or corr_q_accum)
 begin
-       corr_i_cnt <= corr_i_cnt + 1;
-end            
-               
+       if (corr_i_accum[13] == 1'b0)
+               abs_ci <= corr_i_accum;
+       else
+               abs_ci <= -corr_i_accum;
+       
+       if (corr_q_accum[13] == 1'b0)
+               abs_cq <= corr_q_accum;
+       else
+               abs_cq <= -corr_q_accum;
+       
+       if (abs_ci > abs_cq)
+       begin
+               max_ci_cq <= abs_ci;
+               min_ci_cq <= abs_cq;
+       end
+       else
+       begin
+               max_ci_cq <= abs_cq;
+               min_ci_cq <= abs_ci;
+       end
+
+       corr_amplitude <= max_ci_cq + min_ci_cq/2;
+
+end
+
+
+// The subcarrier reference signals
+reg subcarrier_I;
+reg subcarrier_Q;
+
+always @(corr_i_cnt or xcorr_is_848 or xcorr_quarter_freq)
+begin
+       if (xcorr_is_848 & ~xcorr_quarter_freq)                         // 848 kHz
+               begin
+                       subcarrier_I = ~corr_i_cnt[3];
+                       subcarrier_Q = ~(corr_i_cnt[3] ^ corr_i_cnt[2]);
+               end
+       else if (xcorr_is_848 & xcorr_quarter_freq)                     // 212 kHz      
+               begin
+                       subcarrier_I = ~corr_i_cnt[5];
+                       subcarrier_Q = ~(corr_i_cnt[5] ^ corr_i_cnt[4]);
+               end
+       else
+               begin                                                                                   // 424 kHz
+                       subcarrier_I = ~corr_i_cnt[4];
+                       subcarrier_Q = ~(corr_i_cnt[4] ^ corr_i_cnt[3]);
+               end
+end
+
 
 // ADC data appears on the rising edge, so sample it on the falling edge
 always @(negedge adc_clk)
 begin
     // These are the correlators: we correlate against in-phase and quadrature
-    // versions of our reference signal, and keep the (signed) result to
-    // send out later over the SSP.
+    // versions of our reference signal, and keep the (signed) results or the
+    // resulting amplitude to send out later over the SSP.
     if(corr_i_cnt == 6'd0)
     begin
         if(snoop)
         begin
-                       // Send 7 most significant bits of tag signal (signed), plus 1 bit reader signal
-            corr_i_out <= {corr_i_accum[11:5], after_hysteresis_prev_prev};
-            corr_q_out <= {corr_q_accum[11:5], after_hysteresis_prev};
-                       after_hysteresis_prev_prev <= after_hysteresis;
+                       if (hi_read_rx_xcorr_amplitude)
+                       begin
+                               // send amplitude plus 2 bits reader signal
+                               corr_i_out <= corr_amplitude[13:6];
+                               corr_q_out <= {corr_amplitude[5:0], after_hysteresis_prev_prev, after_hysteresis_prev};
+                       end     
+                       else
+                       begin
+                               // Send 7 most significant bits of in phase tag signal (signed), plus 1 bit reader signal
+                               if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111) 
+                                       corr_i_out <= {corr_i_accum[11:5], after_hysteresis_prev_prev};
+                               else // truncate to maximum value
+                                       if (corr_i_accum[13] == 1'b0)
+                                               corr_i_out <= {7'b0111111, after_hysteresis_prev_prev};
+                                       else
+                                               corr_i_out <= {7'b1000000, after_hysteresis_prev_prev};
+                               // Send 7 most significant bits of quadrature phase tag signal (signed), plus 1 bit reader signal
+                               if (corr_q_accum[13:11] == 3'b000 || corr_q_accum[13:11] == 3'b111) 
+                                       corr_q_out <= {corr_q_accum[11:5], after_hysteresis_prev};
+                               else // truncate to maximum value
+                                       if (corr_q_accum[13] == 1'b0)
+                                               corr_q_out <= {7'b0111111, after_hysteresis_prev};
+                                       else
+                                               corr_q_out <= {7'b1000000, after_hysteresis_prev};
+                       end
         end
         else
         begin
-            // 8 bits of tag signal
-            corr_i_out <= corr_i_accum[11:4];
-            corr_q_out <= corr_q_accum[11:4];
+                       if (hi_read_rx_xcorr_amplitude)
+                       begin
+                               // send amplitude
+                               corr_i_out <= {2'b00, corr_amplitude[13:8]};
+                               corr_q_out <= corr_amplitude[7:0];
+                       end     
+                       else
+                       begin
+                               // Send 8 bits of in phase tag signal
+                               if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111) 
+                                       corr_i_out <= corr_i_accum[11:4];
+                               else // truncate to maximum value
+                                       if (corr_i_accum[13] == 1'b0)
+                                               corr_i_out <= 8'b01111111;
+                                       else
+                                               corr_i_out <= 8'b10000000;
+                               // Send 8 bits of quadrature phase tag signal
+                               if (corr_q_accum[13:11] == 3'b000 || corr_q_accum[13:11] == 3'b111) 
+                                       corr_q_out <= corr_q_accum[11:4];
+                               else // truncate to maximum value
+                                       if (corr_q_accum[13] == 1'b0)
+                                               corr_q_out <= 8'b01111111;
+                                       else
+                                               corr_q_out <= 8'b10000000;
+                       end
         end
 
-        corr_i_accum <= adc_d;
-        corr_q_accum <= adc_d;
+               // for each Q/I pair report two reader signal samples when sniffing. Store the 1st.
+               after_hysteresis_prev_prev <= after_hysteresis;
+               // Initialize next correlation. 
+               // Both I and Q reference signals are high when corr_i_nct == 0. Therefore need to accumulate.
+        corr_i_accum <= $signed({1'b0,adc_d});
+        corr_q_accum <= $signed({1'b0,adc_d});
     end
     else
     begin
-        if(corr_i_cnt[3])
-            corr_i_accum <= corr_i_accum - adc_d;
+        if (subcarrier_I)
+            corr_i_accum <= corr_i_accum + $signed({1'b0,adc_d});
         else
-            corr_i_accum <= corr_i_accum + adc_d;
+            corr_i_accum <= corr_i_accum - $signed({1'b0,adc_d});
 
-        if(corr_i_cnt[3] == corr_i_cnt[2])                     // phase shifted by pi/2
-            corr_q_accum <= corr_q_accum + adc_d;
+        if (subcarrier_Q)
+            corr_q_accum <= corr_q_accum + $signed({1'b0,adc_d});
         else
-            corr_q_accum <= corr_q_accum - adc_d;
-
+            corr_q_accum <= corr_q_accum - $signed({1'b0,adc_d});
     end
 
-    // The logic in hi_simulate.v reports 4 samples per bit. We report two
-    // (I, Q) pairs per bit, so we should do 2 samples per pair.
+       // for each Q/I pair report two reader signal samples when sniffing. Store the 2nd.
     if(corr_i_cnt == 6'd32)
         after_hysteresis_prev <= after_hysteresis;
 
     // Then the result from last time is serialized and send out to the ARM.
     // We get one report each cycle, and each report is 16 bits, so the
-    // ssp_clk should be the adc_clk divided by 64/16 = 4.
+    // ssp_clk should be the adc_clk divided by 64/16 = 4. 
+       // ssp_clk frequency = 13,56MHz / 4 = 3.39MHz
 
     if(corr_i_cnt[1:0] == 2'b10)
         ssp_clk <= 1'b0;
@@ -154,9 +255,9 @@ begin
         end
     end
 
-       // set ssp_frame signal for corr_i_cnt = 0..3 and corr_i_cnt = 32..35
-       // (send two frames with 8 Bits each)
-    if(corr_i_cnt[5:2] == 4'b0000 || corr_i_cnt[5:2] == 4'b1000)
+    // set ssp_frame signal for corr_i_cnt = 0..3
+    // (send one frame with 16 Bits)
+    if(corr_i_cnt[5:2] == 4'b0000)
         ssp_frame = 1'b1;
     else
         ssp_frame = 1'b0;
@@ -167,8 +268,4 @@ assign ssp_din = corr_i_out[7];
 
 assign dbg = corr_i_cnt[3];
 
-// Unused.
-assign pwr_lo = 1'b0;
-assign pwr_oe2 = 1'b0;
-
 endmodule
Impressum, Datenschutz