// Hagen Fritsch - June 2010
// Gerhard de Koning Gans - May 2011
// Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
+// piwi - 2019
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
//-----------------------------------------------------------------------------
// Routines to support iClass.
//-----------------------------------------------------------------------------
-// Based on ISO14443a implementation. Still in experimental phase.
// Contribution made during a security research at Radboud University Nijmegen
//
// Please feel free to contribute and extend iClass support!!
//-----------------------------------------------------------------------------
-//
-// FIX:
-// ====
-// We still have sometimes a demodulation error when snooping iClass communication.
-// The resulting trace of a read-block-03 command may look something like this:
-//
-// + 22279: : 0c 03 e8 01
-//
-// ...with an incorrect answer...
-//
-// + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
-//
-// We still left the error signalling bytes in the traces like 0xbb
-//
-// A correct trace should look like this:
-//
-// + 21112: : 0c 03 e8 01
-// + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
-//
-//-----------------------------------------------------------------------------
#include "iclass.h"
#include "string.h"
#include "printf.h"
#include "common.h"
-#include "cmd.h"
+#include "usb_cdc.h"
#include "iso14443a.h"
#include "iso15693.h"
// Needed for CRC in emulation mode;
#include "iso15693tools.h"
#include "protocols.h"
#include "optimized_cipher.h"
-#include "usb_cdc.h" // for usb_poll_validate_length
#include "fpgaloader.h"
-static int timeout = 4096;
-
-//-----------------------------------------------------------------------------
-// The software UART that receives commands from the reader, and its state
-// variables.
-//-----------------------------------------------------------------------------
-static struct {
- enum {
- STATE_UNSYNCD,
- STATE_START_OF_COMMUNICATION,
- STATE_RECEIVING
- } state;
- uint16_t shiftReg;
- int bitCnt;
- int byteCnt;
- int byteCntMax;
- int posCnt;
- int nOutOfCnt;
- int OutOfCnt;
- int syncBit;
- int samples;
- int highCnt;
- int swapper;
- int counter;
- int bitBuffer;
- int dropPosition;
- uint8_t *output;
-} Uart;
-
-static RAMFUNC int OutOfNDecoding(int bit) {
- //int error = 0;
- int bitright;
-
- if (!Uart.bitBuffer) {
- Uart.bitBuffer = bit ^ 0xFF0;
- return false;
- } else {
- Uart.bitBuffer <<= 4;
- Uart.bitBuffer ^= bit;
- }
-
- /*if (Uart.swapper) {
- Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
- Uart.byteCnt++;
- Uart.swapper = 0;
- if (Uart.byteCnt > 15) { return true; }
- }
- else {
- Uart.swapper = 1;
- }*/
-
- if (Uart.state != STATE_UNSYNCD) {
- Uart.posCnt++;
-
- if ((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
- bit = 0x00;
- } else {
- bit = 0x01;
- }
- if (((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
- bitright = 0x00;
- } else {
- bitright = 0x01;
- }
- if (bit != bitright) {
- bit = bitright;
- }
-
-
- // So, now we only have to deal with *bit*, lets see...
- if (Uart.posCnt == 1) {
- // measurement first half bitperiod
- if (!bit) {
- // Drop in first half means that we are either seeing
- // an SOF or an EOF.
-
- if (Uart.nOutOfCnt == 1) {
- // End of Communication
- Uart.state = STATE_UNSYNCD;
- Uart.highCnt = 0;
- if (Uart.byteCnt == 0) {
- // Its not straightforward to show single EOFs
- // So just leave it and do not return true
- Uart.output[0] = 0xf0;
- Uart.byteCnt++;
- } else {
- return true;
- }
- } else if (Uart.state != STATE_START_OF_COMMUNICATION) {
- // When not part of SOF or EOF, it is an error
- Uart.state = STATE_UNSYNCD;
- Uart.highCnt = 0;
- //error = 4;
- }
- }
- } else {
- // measurement second half bitperiod
- // Count the bitslot we are in... (ISO 15693)
- Uart.nOutOfCnt++;
-
- if (!bit) {
- if (Uart.dropPosition) {
- if (Uart.state == STATE_START_OF_COMMUNICATION) {
- //error = 1;
- } else {
- //error = 7;
- }
- // It is an error if we already have seen a drop in current frame
- Uart.state = STATE_UNSYNCD;
- Uart.highCnt = 0;
- } else {
- Uart.dropPosition = Uart.nOutOfCnt;
- }
- }
-
- Uart.posCnt = 0;
-
-
- if (Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) {
- Uart.nOutOfCnt = 0;
-
- if (Uart.state == STATE_START_OF_COMMUNICATION) {
- if (Uart.dropPosition == 4) {
- Uart.state = STATE_RECEIVING;
- Uart.OutOfCnt = 256;
- } else if (Uart.dropPosition == 3) {
- Uart.state = STATE_RECEIVING;
- Uart.OutOfCnt = 4;
- //Uart.output[Uart.byteCnt] = 0xdd;
- //Uart.byteCnt++;
- } else {
- Uart.state = STATE_UNSYNCD;
- Uart.highCnt = 0;
- }
- Uart.dropPosition = 0;
- } else {
- // RECEIVING DATA
- // 1 out of 4
- if (!Uart.dropPosition) {
- Uart.state = STATE_UNSYNCD;
- Uart.highCnt = 0;
- //error = 9;
- } else {
- Uart.shiftReg >>= 2;
-
- // Swap bit order
- Uart.dropPosition--;
- //if (Uart.dropPosition == 1) { Uart.dropPosition = 2; }
- //else if (Uart.dropPosition == 2) { Uart.dropPosition = 1; }
-
- Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6);
- Uart.bitCnt += 2;
- Uart.dropPosition = 0;
-
- if (Uart.bitCnt == 8) {
- Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
- Uart.byteCnt++;
- Uart.bitCnt = 0;
- Uart.shiftReg = 0;
- }
- }
- }
- } else if (Uart.nOutOfCnt == Uart.OutOfCnt) {
- // RECEIVING DATA
- // 1 out of 256
- if (!Uart.dropPosition) {
- Uart.state = STATE_UNSYNCD;
- Uart.highCnt = 0;
- //error = 3;
- } else {
- Uart.dropPosition--;
- Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff);
- Uart.byteCnt++;
- Uart.bitCnt = 0;
- Uart.shiftReg = 0;
- Uart.nOutOfCnt = 0;
- Uart.dropPosition = 0;
- }
- }
-
- /*if (error) {
- Uart.output[Uart.byteCnt] = 0xAA;
- Uart.byteCnt++;
- Uart.output[Uart.byteCnt] = error & 0xFF;
- Uart.byteCnt++;
- Uart.output[Uart.byteCnt] = 0xAA;
- Uart.byteCnt++;
- Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
- Uart.byteCnt++;
- Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
- Uart.byteCnt++;
- Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
- Uart.byteCnt++;
- Uart.output[Uart.byteCnt] = 0xAA;
- Uart.byteCnt++;
- return true;
- }*/
- }
-
- } else {
- bit = Uart.bitBuffer & 0xf0;
- bit >>= 4;
- bit ^= 0x0F; // drops become 1s ;-)
- if (bit) {
- // should have been high or at least (4 * 128) / fc
- // according to ISO this should be at least (9 * 128 + 20) / fc
- if (Uart.highCnt == 8) {
- // we went low, so this could be start of communication
- // it turns out to be safer to choose a less significant
- // syncbit... so we check whether the neighbour also represents the drop
- Uart.posCnt = 1; // apparently we are busy with our first half bit period
- Uart.syncBit = bit & 8;
- Uart.samples = 3;
- if (!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
- else if (bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
- if (!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
- else if (bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
- if (!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
- if (Uart.syncBit && (Uart.bitBuffer & 8)) {
- Uart.syncBit = 8;
-
- // the first half bit period is expected in next sample
- Uart.posCnt = 0;
- Uart.samples = 3;
- }
- } else if (bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
-
- Uart.syncBit <<= 4;
- Uart.state = STATE_START_OF_COMMUNICATION;
- Uart.bitCnt = 0;
- Uart.byteCnt = 0;
- Uart.nOutOfCnt = 0;
- Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256
- Uart.dropPosition = 0;
- Uart.shiftReg = 0;
- //error = 0;
- } else {
- Uart.highCnt = 0;
- }
- } else if (Uart.highCnt < 8) {
- Uart.highCnt++;
- }
- }
-
- return false;
-}
-
-
-//=============================================================================
-// Manchester
-//=============================================================================
-
-static struct {
- enum {
- DEMOD_UNSYNCD,
- DEMOD_START_OF_COMMUNICATION,
- DEMOD_START_OF_COMMUNICATION2,
- DEMOD_START_OF_COMMUNICATION3,
- DEMOD_SOF_COMPLETE,
- DEMOD_MANCHESTER_D,
- DEMOD_MANCHESTER_E,
- DEMOD_END_OF_COMMUNICATION,
- DEMOD_END_OF_COMMUNICATION2,
- DEMOD_MANCHESTER_F,
- DEMOD_ERROR_WAIT
- } state;
- int bitCount;
- int posCount;
- int syncBit;
- uint16_t shiftReg;
- int buffer;
- int buffer2;
- int buffer3;
- int buff;
- int samples;
- int len;
- enum {
- SUB_NONE,
- SUB_FIRST_HALF,
- SUB_SECOND_HALF,
- SUB_BOTH
- } sub;
- uint8_t *output;
-} Demod;
-
-static RAMFUNC int ManchesterDecoding(int v) {
- int bit;
- int modulation;
- int error = 0;
-
- bit = Demod.buffer;
- Demod.buffer = Demod.buffer2;
- Demod.buffer2 = Demod.buffer3;
- Demod.buffer3 = v;
-
- if (Demod.buff < 3) {
- Demod.buff++;
- return false;
- }
-
- if (Demod.state==DEMOD_UNSYNCD) {
- Demod.output[Demod.len] = 0xfa;
- Demod.syncBit = 0;
- //Demod.samples = 0;
- Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
-
- if (bit & 0x08) {
- Demod.syncBit = 0x08;
- }
-
- if (bit & 0x04) {
- if (Demod.syncBit) {
- bit <<= 4;
- }
- Demod.syncBit = 0x04;
- }
-
- if (bit & 0x02) {
- if (Demod.syncBit) {
- bit <<= 2;
- }
- Demod.syncBit = 0x02;
- }
-
- if (bit & 0x01 && Demod.syncBit) {
- Demod.syncBit = 0x01;
- }
-
- if (Demod.syncBit) {
- Demod.len = 0;
- Demod.state = DEMOD_START_OF_COMMUNICATION;
- Demod.sub = SUB_FIRST_HALF;
- Demod.bitCount = 0;
- Demod.shiftReg = 0;
- Demod.samples = 0;
- if (Demod.posCount) {
- switch (Demod.syncBit) {
- case 0x08: Demod.samples = 3; break;
- case 0x04: Demod.samples = 2; break;
- case 0x02: Demod.samples = 1; break;
- case 0x01: Demod.samples = 0; break;
- }
- // SOF must be long burst... otherwise stay unsynced!!!
- if (!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) {
- Demod.state = DEMOD_UNSYNCD;
- }
- } else {
- // SOF must be long burst... otherwise stay unsynced!!!
- if (!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) {
- Demod.state = DEMOD_UNSYNCD;
- error = 0x88;
- }
-
- }
- error = 0;
-
- }
- } else {
- // state is DEMOD is in SYNC from here on.
- modulation = bit & Demod.syncBit;
- modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
-
- Demod.samples += 4;
-
- if (Demod.posCount == 0) {
- Demod.posCount = 1;
- if (modulation) {
- Demod.sub = SUB_FIRST_HALF;
- } else {
- Demod.sub = SUB_NONE;
- }
- } else {
- Demod.posCount = 0;
- if (modulation) {
- if (Demod.sub == SUB_FIRST_HALF) {
- Demod.sub = SUB_BOTH;
- } else {
- Demod.sub = SUB_SECOND_HALF;
- }
- } else if (Demod.sub == SUB_NONE) {
- if (Demod.state == DEMOD_SOF_COMPLETE) {
- Demod.output[Demod.len] = 0x0f;
- Demod.len++;
- Demod.state = DEMOD_UNSYNCD;
- return true;
- } else {
- Demod.state = DEMOD_ERROR_WAIT;
- error = 0x33;
- }
- }
-
- switch(Demod.state) {
- case DEMOD_START_OF_COMMUNICATION:
- if (Demod.sub == SUB_BOTH) {
- Demod.state = DEMOD_START_OF_COMMUNICATION2;
- Demod.posCount = 1;
- Demod.sub = SUB_NONE;
- } else {
- Demod.output[Demod.len] = 0xab;
- Demod.state = DEMOD_ERROR_WAIT;
- error = 0xd2;
- }
- break;
- case DEMOD_START_OF_COMMUNICATION2:
- if (Demod.sub == SUB_SECOND_HALF) {
- Demod.state = DEMOD_START_OF_COMMUNICATION3;
- } else {
- Demod.output[Demod.len] = 0xab;
- Demod.state = DEMOD_ERROR_WAIT;
- error = 0xd3;
- }
- break;
- case DEMOD_START_OF_COMMUNICATION3:
- if (Demod.sub == SUB_SECOND_HALF) {
- Demod.state = DEMOD_SOF_COMPLETE;
- } else {
- Demod.output[Demod.len] = 0xab;
- Demod.state = DEMOD_ERROR_WAIT;
- error = 0xd4;
- }
- break;
- case DEMOD_SOF_COMPLETE:
- case DEMOD_MANCHESTER_D:
- case DEMOD_MANCHESTER_E:
- // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
- // 00001111 = 1 (0 in 14443)
- if (Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF
- Demod.bitCount++;
- Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
- Demod.state = DEMOD_MANCHESTER_D;
- } else if (Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF
- Demod.bitCount++;
- Demod.shiftReg >>= 1;
- Demod.state = DEMOD_MANCHESTER_E;
- } else if (Demod.sub == SUB_BOTH) {
- Demod.state = DEMOD_MANCHESTER_F;
- } else {
- Demod.state = DEMOD_ERROR_WAIT;
- error = 0x55;
- }
- break;
-
- case DEMOD_MANCHESTER_F:
- // Tag response does not need to be a complete byte!
- if (Demod.len > 0 || Demod.bitCount > 0) {
- if (Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF
- Demod.shiftReg >>= (9 - Demod.bitCount); // right align data
- Demod.output[Demod.len] = Demod.shiftReg & 0xff;
- Demod.len++;
- }
-
- Demod.state = DEMOD_UNSYNCD;
- return true;
- } else {
- Demod.output[Demod.len] = 0xad;
- Demod.state = DEMOD_ERROR_WAIT;
- error = 0x03;
- }
- break;
+// iCLASS has a slightly different timing compared to ISO15693. According to the picopass data sheet the tag response is expected 330us after
+// the reader command. This is measured from end of reader EOF to first modulation of the tag's SOF which starts with a 56,64us unmodulated period.
+// 330us = 140 ssp_clk cycles @ 423,75kHz when simulating.
+// 56,64us = 24 ssp_clk_cycles
+#define DELAY_ICLASS_VCD_TO_VICC_SIM (140 - 24)
+// times in ssp_clk_cycles @ 3,3625MHz when acting as reader
+#define DELAY_ICLASS_VICC_TO_VCD_READER DELAY_ISO15693_VICC_TO_VCD_READER
+// times in samples @ 212kHz when acting as reader
+#define ICLASS_READER_TIMEOUT_ACTALL 330 // 1558us, nominal 330us + 7slots*160us = 1450us
+#define ICLASS_READER_TIMEOUT_UPDATE 3390 // 16000us, nominal 4-15ms
+#define ICLASS_READER_TIMEOUT_OTHERS 80 // 380us, nominal 330us
- case DEMOD_ERROR_WAIT:
- Demod.state = DEMOD_UNSYNCD;
- break;
+#define ICLASS_BUFFER_SIZE 34 // we expect max 34 bytes as tag answer (response to READ4)
- default:
- Demod.output[Demod.len] = 0xdd;
- Demod.state = DEMOD_UNSYNCD;
- break;
- }
-
- if (Demod.bitCount >= 8) {
- Demod.shiftReg >>= 1;
- Demod.output[Demod.len] = (Demod.shiftReg & 0xff);
- Demod.len++;
- Demod.bitCount = 0;
- Demod.shiftReg = 0;
- }
-
- if (error) {
- Demod.output[Demod.len] = 0xBB;
- Demod.len++;
- Demod.output[Demod.len] = error & 0xFF;
- Demod.len++;
- Demod.output[Demod.len] = 0xBB;
- Demod.len++;
- Demod.output[Demod.len] = bit & 0xFF;
- Demod.len++;
- Demod.output[Demod.len] = Demod.buffer & 0xFF;
- Demod.len++;
- // Look harder ;-)
- Demod.output[Demod.len] = Demod.buffer2 & 0xFF;
- Demod.len++;
- Demod.output[Demod.len] = Demod.syncBit & 0xFF;
- Demod.len++;
- Demod.output[Demod.len] = 0xBB;
- Demod.len++;
- return true;
- }
-
- }
-
- } // end (state != UNSYNCED)
-
- return false;
-}
//=============================================================================
-// Finally, a `sniffer' for iClass communication
+// A `sniffer' for iClass communication
// Both sides of communication!
//=============================================================================
-
-//-----------------------------------------------------------------------------
-// Record the sequence of commands sent by the reader to the tag, with
-// triggering so that we start recording at the point that the tag is moved
-// near the reader.
-//-----------------------------------------------------------------------------
-void RAMFUNC SnoopIClass(void) {
-
- // We won't start recording the frames that we acquire until we trigger;
- // a good trigger condition to get started is probably when we see a
- // response from the tag.
- //int triggered = false; // false to wait first for card
-
- // The command (reader -> tag) that we're receiving.
- // The length of a received command will in most cases be no more than 18 bytes.
- // So 32 should be enough!
- #define ICLASS_BUFFER_SIZE 32
- uint8_t readerToTagCmd[ICLASS_BUFFER_SIZE];
- // The response (tag -> reader) that we're receiving.
- uint8_t tagToReaderResponse[ICLASS_BUFFER_SIZE];
-
- FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
-
- // free all BigBuf memory
- BigBuf_free();
- // The DMA buffer, used to stream samples from the FPGA
- uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
-
- set_tracing(true);
- clear_trace();
- iso14a_set_trigger(false);
-
- int lastRxCounter;
- uint8_t *upTo;
- int smpl;
- int maxBehindBy = 0;
-
- // Count of samples received so far, so that we can include timing
- // information in the trace buffer.
- int samples = 0;
- rsamples = 0;
-
- // Set up the demodulator for tag -> reader responses.
- Demod.output = tagToReaderResponse;
- Demod.len = 0;
- Demod.state = DEMOD_UNSYNCD;
-
- // Setup for the DMA.
- FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
- upTo = dmaBuf;
- lastRxCounter = DMA_BUFFER_SIZE;
- FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
-
- // And the reader -> tag commands
- memset(&Uart, 0, sizeof(Uart));
- Uart.output = readerToTagCmd;
- Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
- Uart.state = STATE_UNSYNCD;
-
- // And put the FPGA in the appropriate mode
- // Signal field is off with the appropriate LED
- LED_D_OFF();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
-
- uint32_t time_0 = GetCountSspClk();
- uint32_t time_start = 0;
- uint32_t time_stop = 0;
-
- int div = 0;
- //int div2 = 0;
- int decbyte = 0;
- int decbyter = 0;
-
- // And now we loop, receiving samples.
- for (;;) {
- LED_A_ON();
- WDT_HIT();
- int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (DMA_BUFFER_SIZE-1);
- if (behindBy > maxBehindBy) {
- maxBehindBy = behindBy;
- if (behindBy > (9 * DMA_BUFFER_SIZE / 10)) {
- Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
- goto done;
- }
- }
- if (behindBy < 1) continue;
-
- LED_A_OFF();
- smpl = upTo[0];
- upTo++;
- lastRxCounter -= 1;
- if (upTo - dmaBuf > DMA_BUFFER_SIZE) {
- upTo -= DMA_BUFFER_SIZE;
- lastRxCounter += DMA_BUFFER_SIZE;
- AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
- AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
- }
-
- //samples += 4;
- samples += 1;
-
- if (smpl & 0xF) {
- decbyte ^= (1 << (3 - div));
- }
-
- // FOR READER SIDE COMMUMICATION...
-
- decbyter <<= 2;
- decbyter ^= (smpl & 0x30);
-
- div++;
-
- if ((div + 1) % 2 == 0) {
- smpl = decbyter;
- if (OutOfNDecoding((smpl & 0xF0) >> 4)) {
- rsamples = samples - Uart.samples;
- time_stop = (GetCountSspClk()-time_0) << 4;
- LED_C_ON();
-
- //if (!LogTrace(Uart.output, Uart.byteCnt, rsamples, Uart.parityBits,true)) break;
- //if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break;
- uint8_t parity[MAX_PARITY_SIZE];
- GetParity(Uart.output, Uart.byteCnt, parity);
- LogTrace(Uart.output, Uart.byteCnt, time_start, time_stop, parity, true);
-
- /* And ready to receive another command. */
- Uart.state = STATE_UNSYNCD;
- /* And also reset the demod code, which might have been */
- /* false-triggered by the commands from the reader. */
- Demod.state = DEMOD_UNSYNCD;
- LED_B_OFF();
- Uart.byteCnt = 0;
- } else {
- time_start = (GetCountSspClk()-time_0) << 4;
- }
- decbyter = 0;
- }
-
- if (div > 3) {
- smpl = decbyte;
- if (ManchesterDecoding(smpl & 0x0F)) {
- time_stop = (GetCountSspClk()-time_0) << 4;
-
- rsamples = samples - Demod.samples;
- LED_B_ON();
-
- uint8_t parity[MAX_PARITY_SIZE];
- GetParity(Demod.output, Demod.len, parity);
- LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, false);
-
- // And ready to receive another response.
- memset(&Demod, 0, sizeof(Demod));
- Demod.output = tagToReaderResponse;
- Demod.state = DEMOD_UNSYNCD;
- LED_C_OFF();
- } else {
- time_start = (GetCountSspClk()-time_0) << 4;
- }
-
- div = 0;
- decbyte = 0x00;
- }
-
- if (BUTTON_PRESS()) {
- DbpString("cancelled_a");
- goto done;
- }
- }
-
- DbpString("COMMAND FINISHED");
-
- Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
- Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
-
-done:
- AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
- Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
- Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
- LEDsoff();
+void SnoopIClass(uint8_t jam_search_len, uint8_t *jam_search_string) {
+ SnoopIso15693(jam_search_len, jam_search_string);
}
+
void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) {
int i;
for (i = 0; i < 8; i++) {
}
}
+
// Encode SOF only
static void CodeIClassTagSOF() {
- //So far a dummy implementation, not used
- //int lastProxToAirDuration =0;
-
ToSendReset();
- // Send SOF
ToSend[++ToSendMax] = 0x1D;
-// lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
-
- // Convert from last byte pos to length
ToSendMax++;
}
+
static void AppendCrc(uint8_t *data, int len) {
ComputeCrc14443(CRC_ICLASS, data, len, data+len, data+len+1);
}
// free eventually allocated BigBuf memory
BigBuf_free_keep_EM();
- State cipher_state_KC;
- State cipher_state_KD;
+ uint16_t page_size = 32 * 8;
+ uint8_t current_page = 0;
+
+ // maintain cipher states for both credit and debit key for each page
+ State cipher_state_KC[8];
+ State cipher_state_KD[8];
+ State *cipher_state = &cipher_state_KD[0];
uint8_t *emulator = BigBuf_get_EM_addr();
uint8_t *csn = emulator;
- uint8_t sof_data[] = { 0x0F } ;
// CSN followed by two CRC bytes
- uint8_t anticoll_data[10] = { 0 };
- uint8_t csn_data[10] = { 0 };
+ uint8_t anticoll_data[10];
+ uint8_t csn_data[10];
memcpy(csn_data, csn, sizeof(csn_data));
Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x", csn[0], csn[1], csn[2], csn[3], csn[4], csn[5], csn[6], csn[7]);
AppendCrc(anticoll_data, 8);
AppendCrc(csn_data, 8);
- uint8_t diversified_key_d[8] = { 0 };
- uint8_t diversified_key_c[8] = { 0 };
+ uint8_t diversified_key_d[8] = { 0x00 };
+ uint8_t diversified_key_c[8] = { 0x00 };
+ uint8_t *diversified_key = diversified_key_d;
+
+ // configuration block
+ uint8_t conf_block[10] = {0x12, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0xFF, 0x3C, 0x00, 0x00};
+
// e-Purse
uint8_t card_challenge_data[8] = { 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
- //uint8_t card_challenge_data[8] = { 0 };
+
if (simulationMode == ICLASS_SIM_MODE_FULL) {
- // Get the diversified keys from emulator memory
- memcpy(diversified_key_d, emulator + (8 * 3), 8);
- memcpy(diversified_key_c, emulator + (8 * 4), 8);
- // Card challenge, a.k.a e-purse is on block 2
- memcpy(card_challenge_data, emulator + (8 * 2), 8);
- // Precalculate the cipher states, feeding it the CC
- cipher_state_KD = opt_doTagMAC_1(card_challenge_data, diversified_key_d);
- cipher_state_KC = opt_doTagMAC_1(card_challenge_data, diversified_key_c);
+ // initialize from page 0
+ memcpy(conf_block, emulator + 8 * 1, 8);
+ memcpy(card_challenge_data, emulator + 8 * 2, 8); // e-purse
+ memcpy(diversified_key_d, emulator + 8 * 3, 8); // Kd
+ memcpy(diversified_key_c, emulator + 8 * 4, 8); // Kc
}
+
+ AppendCrc(conf_block, 8);
+
// save card challenge for sim2,4 attack
if (reader_mac_buf != NULL) {
memcpy(reader_mac_buf, card_challenge_data, 8);
}
+ if (conf_block[5] & 0x80) {
+ page_size = 256 * 8;
+ }
+
+ // From PicoPass DS:
+ // When the page is in personalization mode this bit is equal to 1.
+ // Once the application issuer has personalized and coded its dedicated areas, this bit must be set to 0:
+ // the page is then "in application mode".
+ bool personalization_mode = conf_block[7] & 0x80;
+
+ // chip memory may be divided in 8 pages
+ uint8_t max_page = conf_block[4] & 0x10 ? 0 : 7;
+
+ // Precalculate the cipher states, feeding it the CC
+ cipher_state_KD[0] = opt_doTagMAC_1(card_challenge_data, diversified_key_d);
+ cipher_state_KC[0] = opt_doTagMAC_1(card_challenge_data, diversified_key_c);
+ if (simulationMode == ICLASS_SIM_MODE_FULL) {
+ for (int i = 1; i < max_page; i++) {
+ uint8_t *epurse = emulator + i*page_size + 8*2;
+ uint8_t *Kd = emulator + i*page_size + 8*3;
+ uint8_t *Kc = emulator + i*page_size + 8*4;
+ cipher_state_KD[i] = opt_doTagMAC_1(epurse, Kd);
+ cipher_state_KC[i] = opt_doTagMAC_1(epurse, Kc);
+ }
+ }
+
int exitLoop = 0;
// Reader 0a
// Tag 0f
int trace_data_size = 0;
// Respond SOF -- takes 1 bytes
- uint8_t *resp_sof = BigBuf_malloc(2);
+ uint8_t *resp_sof = BigBuf_malloc(1);
int resp_sof_Len;
// Anticollision CSN (rotated CSN)
// configuration (block 1) picopass 2ks
uint8_t *resp_conf = BigBuf_malloc(22);
int resp_conf_len;
- uint8_t conf_data[10] = {0x12, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0xFF, 0x3C, 0x00, 0x00};
- AppendCrc(conf_data, 8);
// e-Purse (block 2)
// 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
int len;
// Prepare card messages
- ToSendMax = 0;
// First card answer: SOF only
CodeIClassTagSOF();
resp_csn_len = ToSendMax;
// Configuration (block 1)
- CodeIso15693AsTag(conf_data, sizeof(conf_data));
+ CodeIso15693AsTag(conf_block, sizeof(conf_block));
memcpy(resp_conf, ToSend, ToSendMax);
resp_conf_len = ToSendMax;
uint8_t *data_generic_trace = BigBuf_malloc(32 + 2); // 32 bytes data + 2byte CRC is max tag answer
uint8_t *data_response = BigBuf_malloc( (32 + 2) * 2 + 2);
- LED_A_ON();
bool buttonPressed = false;
enum { IDLE, ACTIVATED, SELECTED, HALTED } chip_state = IDLE;
while (!exitLoop) {
WDT_HIT();
- LED_B_OFF();
- //Signal tracer
- // Can be used to get a trigger for an oscilloscope..
- LED_C_OFF();
uint32_t reader_eof_time = 0;
len = GetIso15693CommandFromReader(receivedCmd, MAX_FRAME_SIZE, &reader_eof_time);
break;
}
- //Signal tracer
- LED_C_ON();
-
// Now look at the reader command and provide appropriate responses
// default is no response:
modulated_response = NULL;
if (chip_state != HALTED) {
modulated_response = resp_sof;
modulated_response_size = resp_sof_Len;
- trace_data = sof_data;
- trace_data_size = sizeof(sof_data);
chip_state = ACTIVATED;
}
case 1: // configuration (block 01)
modulated_response = resp_conf;
modulated_response_size = resp_conf_len;
- trace_data = conf_data;
- trace_data_size = sizeof(conf_data);
+ trace_data = conf_block;
+ trace_data_size = sizeof(conf_block);
break;
case 2: // e-purse (block 02)
modulated_response = resp_cc;
trace_data = ff_data;
trace_data_size = sizeof(ff_data);
} else { // use data from emulator memory
- memcpy(data_generic_trace, emulator + 8*blockNo, 8);
+ memcpy(data_generic_trace, emulator + current_page*page_size + 8*blockNo, 8);
AppendCrc(data_generic_trace, 8);
trace_data = data_generic_trace;
trace_data_size = 10;
|| receivedCmd[0] == ICLASS_CMD_READCHECK_KC) && receivedCmd[1] == 0x02 && len == 2) {
// Read e-purse (88 02 || 18 02)
if (chip_state == SELECTED) {
+ if(receivedCmd[0] == ICLASS_CMD_READCHECK_KD){
+ cipher_state = &cipher_state_KD[current_page];
+ diversified_key = diversified_key_d;
+ } else {
+ cipher_state = &cipher_state_KC[current_page];
+ diversified_key = diversified_key_c;
+ }
modulated_response = resp_cc;
modulated_response_size = resp_cc_len;
trace_data = card_challenge_data;
trace_data_size = sizeof(card_challenge_data);
- LED_B_ON();
}
- } else if ((receivedCmd[0] == ICLASS_CMD_CHECK_KC
+ } else if ((receivedCmd[0] == ICLASS_CMD_CHECK_KC
|| receivedCmd[0] == ICLASS_CMD_CHECK_KD) && len == 9) {
// Reader random and reader MAC!!!
if (chip_state == SELECTED) {
if (simulationMode == ICLASS_SIM_MODE_FULL) {
//NR, from reader, is in receivedCmd+1
- if (receivedCmd[0] == ICLASS_CMD_CHECK_KC) {
- opt_doTagMAC_2(cipher_state_KC, receivedCmd+1, data_generic_trace, diversified_key_c);
- } else {
- opt_doTagMAC_2(cipher_state_KD, receivedCmd+1, data_generic_trace, diversified_key_d);
- }
+ opt_doTagMAC_2(*cipher_state, receivedCmd+1, data_generic_trace, diversified_key);
trace_data = data_generic_trace;
trace_data_size = 4;
CodeIso15693AsTag(trace_data, trace_data_size);
} else if (receivedCmd[0] == ICLASS_CMD_HALT && len == 1) {
if (chip_state == SELECTED) {
// Reader ends the session
+ modulated_response = resp_sof;
+ modulated_response_size = resp_sof_Len;
chip_state = HALTED;
}
} else if (simulationMode == ICLASS_SIM_MODE_FULL && receivedCmd[0] == ICLASS_CMD_READ4 && len == 4) { // 0x06
//Read 4 blocks
if (chip_state == SELECTED) {
- memcpy(data_generic_trace, emulator + receivedCmd[1]*8, 8 * 4);
+ uint8_t blockNo = receivedCmd[1];
+ memcpy(data_generic_trace, emulator + current_page*page_size + blockNo*8, 8 * 4);
AppendCrc(data_generic_trace, 8 * 4);
trace_data = data_generic_trace;
trace_data_size = 8 * 4 + 2;
CodeIso15693AsTag(card_challenge_data, sizeof(card_challenge_data));
memcpy(resp_cc, ToSend, ToSendMax);
resp_cc_len = ToSendMax;
- cipher_state_KD = opt_doTagMAC_1(card_challenge_data, diversified_key_d);
- cipher_state_KC = opt_doTagMAC_1(card_challenge_data, diversified_key_c);
+ cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_d);
+ cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_c);
if (simulationMode == ICLASS_SIM_MODE_FULL) {
- memcpy(emulator + 8*2, card_challenge_data, 8);
+ memcpy(emulator + current_page*page_size + 8*2, card_challenge_data, 8);
}
} else if (blockNo == 3) { // update Kd
- for (int i = 0; i < 8; i++){
- diversified_key_d[i] = diversified_key_d[i] ^ receivedCmd[2 + i];
+ for (int i = 0; i < 8; i++) {
+ if (personalization_mode) {
+ diversified_key_d[i] = receivedCmd[2 + i];
+ } else {
+ diversified_key_d[i] ^= receivedCmd[2 + i];
+ }
}
- cipher_state_KD = opt_doTagMAC_1(card_challenge_data, diversified_key_d);
+ cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_d);
if (simulationMode == ICLASS_SIM_MODE_FULL) {
- memcpy(emulator + 8*3, diversified_key_d, 8);
+ memcpy(emulator + current_page*page_size + 8*3, diversified_key_d, 8);
}
- } else if (blockNo == 4) { // update Kc
- for(int i = 0; i < 8; i++){
- diversified_key_c[i] = diversified_key_c[i] ^ receivedCmd[2 + i];
+ } else if (blockNo == 4) { // update Kc
+ for (int i = 0; i < 8; i++) {
+ if (personalization_mode) {
+ diversified_key_c[i] = receivedCmd[2 + i];
+ } else {
+ diversified_key_c[i] ^= receivedCmd[2 + i];
+ }
}
- cipher_state_KC = opt_doTagMAC_1(card_challenge_data, diversified_key_c);
+ cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_c);
if (simulationMode == ICLASS_SIM_MODE_FULL) {
- memcpy(emulator + 8*4, diversified_key_c, 8);
+ memcpy(emulator + current_page*page_size + 8*4, diversified_key_c, 8);
}
} else if (simulationMode == ICLASS_SIM_MODE_FULL) { // update any other data block
- memcpy(emulator + 8*blockNo, receivedCmd+2, 8);
- }
+ memcpy(emulator + current_page*page_size + 8*blockNo, receivedCmd+2, 8);
+ }
memcpy(data_generic_trace, receivedCmd + 2, 8);
AppendCrc(data_generic_trace, 8);
trace_data = data_generic_trace;
} else if (receivedCmd[0] == ICLASS_CMD_PAGESEL && len == 4) {
// Pagesel
+ // Chips with a single page will not answer to this command
+ // Otherwise, we should answer 8bytes (conf block 1) + 2bytes CRC
if (chip_state == SELECTED) {
- // Pagesel enables to select a page in the selected chip memory and return its configuration block
- // Chips with a single page will not answer to this command
- // It appears we're fine ignoring this.
- // Otherwise, we should answer 8bytes (block) + 2bytes CRC
+ if (simulationMode == ICLASS_SIM_MODE_FULL && max_page > 0) {
+ current_page = receivedCmd[1];
+ memcpy(data_generic_trace, emulator + current_page*page_size + 8*1, 8);
+ memcpy(diversified_key_d, emulator + current_page*page_size + 8*3, 8);
+ memcpy(diversified_key_c, emulator + current_page*page_size + 8*4, 8);
+ cipher_state = &cipher_state_KD[current_page];
+ personalization_mode = data_generic_trace[7] & 0x80;
+ AppendCrc(data_generic_trace, 8);
+ trace_data = data_generic_trace;
+ trace_data_size = 10;
+ CodeIso15693AsTag(trace_data, trace_data_size);
+ memcpy(data_response, ToSend, ToSendMax);
+ modulated_response = data_response;
+ modulated_response_size = ToSendMax;
+ }
}
} else if (receivedCmd[0] == 0x26 && len == 5) {
}
/**
- A legit tag has about 311,5us delay between reader EOT and tag SOF.
+ A legit tag has about 273,4us delay between reader EOT and tag SOF.
**/
if (modulated_response_size > 0) {
- uint32_t response_time = reader_eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM - DELAY_ARM_TO_READER_SIM;
- TransmitTo15693Reader(modulated_response, modulated_response_size, response_time, false);
- LogTrace(trace_data, trace_data_size, response_time + DELAY_ARM_TO_READER_SIM, response_time + (modulated_response_size << 6) + DELAY_ARM_TO_READER_SIM, NULL, false);
+ uint32_t response_time = reader_eof_time + DELAY_ICLASS_VCD_TO_VICC_SIM;
+ TransmitTo15693Reader(modulated_response, modulated_response_size, &response_time, 0, false);
+ LogTrace_ISO15693(trace_data, trace_data_size, response_time*32, response_time*32 + modulated_response_size*32*64, NULL, false);
}
}
- LED_A_OFF();
- LED_B_OFF();
- LED_C_OFF();
-
if (buttonPressed)
{
DbpString("Button pressed");
* @param datain
*/
void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) {
+
+ LED_A_ON();
+
+ Iso15693InitTag();
+
uint32_t simType = arg0;
uint32_t numberOfCSNS = arg1;
- // setup hardware for simulation:
- FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
- FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
- StartCountSspClk();
-
// Enable and clear the trace
set_tracing(true);
clear_trace();
doIClassSimulation(ICLASS_SIM_MODE_CSN, NULL);
} else if (simType == ICLASS_SIM_MODE_CSN_DEFAULT) {
//Default CSN
- uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
- // Use the CSN from commandline
- memcpy(emulator, csn_crc, 8);
+ uint8_t csn[] = {0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0};
+ memcpy(emulator, csn, 8);
doIClassSimulation(ICLASS_SIM_MODE_CSN, NULL);
} else if (simType == ICLASS_SIM_MODE_READER_ATTACK) {
uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 };
// That will speed things up a little, but not required just yet.
Dbprintf("The mode is not implemented, reserved for future use");
}
+
Dbprintf("Done...");
+ LED_A_OFF();
}
/// THE READER CODE
-//-----------------------------------------------------------------------------
-// Transmit the command (to the tag) that was placed in ToSend[].
-//-----------------------------------------------------------------------------
-static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait) {
- int c;
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
- AT91C_BASE_SSC->SSC_THR = 0x00;
- FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
-
- if (wait) {
- if (*wait < 10) *wait = 10;
-
- for (c = 0; c < *wait;) {
- if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
- c++;
- }
- if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
- (void)r;
- }
- WDT_HIT();
- }
- }
-
- uint8_t sendbyte;
- bool firstpart = true;
- c = 0;
- for (;;) {
- if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+static void ReaderTransmitIClass(uint8_t *frame, int len, uint32_t *start_time) {
- // DOUBLE THE SAMPLES!
- if (firstpart) {
- sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4);
- } else {
- sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4);
- c++;
- }
- if (sendbyte == 0xff) {
- sendbyte = 0xfe;
- }
- AT91C_BASE_SSC->SSC_THR = sendbyte;
- firstpart = !firstpart;
-
- if (c >= len) {
- break;
- }
- }
- if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
- (void)r;
- }
- WDT_HIT();
- }
- if (samples && wait) *samples = (c + *wait) << 3;
+ CodeIso15693AsReader(frame, len);
+ TransmitTo15693Tag(ToSend, ToSendMax, start_time);
+ uint32_t end_time = *start_time + 32*(8*ToSendMax-4); // substract the 4 padding bits after EOF
+ LogTrace_ISO15693(frame, len, *start_time*4, end_time*4, NULL, true);
}
-//-----------------------------------------------------------------------------
-// Prepare iClass reader command to send to FPGA
-//-----------------------------------------------------------------------------
-void CodeIClassCommand(const uint8_t *cmd, int len) {
- int i, j, k;
-
- ToSendReset();
-
- // Start of Communication: 1 out of 4
- ToSend[++ToSendMax] = 0xf0;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0x0f;
- ToSend[++ToSendMax] = 0x00;
-
- // Modulate the bytes
- for (i = 0; i < len; i++) {
- uint8_t b = cmd[i];
- for (j = 0; j < 4; j++) {
- for (k = 0; k < 4; k++) {
- if (k == (b & 3)) {
- ToSend[++ToSendMax] = 0xf0;
- } else {
- ToSend[++ToSendMax] = 0x00;
- }
- }
- b >>= 2;
- }
- }
-
- // End of Communication
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0xf0;
- ToSend[++ToSendMax] = 0x00;
-
- // Convert from last character reference to length
- ToSendMax++;
-}
-
-static void ReaderTransmitIClass(uint8_t *frame, int len) {
- int wait = 0;
- int samples = 0;
-
- // This is tied to other size changes
- CodeIClassCommand(frame, len);
-
- // Select the card
- TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait);
- if (trigger)
- LED_A_ON();
-
- // Store reader command in buffer
- uint8_t par[MAX_PARITY_SIZE];
- GetParity(frame, len, par);
- LogTrace(frame, len, rsamples, rsamples, par, true);
-}
-
-//-----------------------------------------------------------------------------
-// Wait a certain time for tag response
-// If a response is captured return true
-// If it takes too long return false
-//-----------------------------------------------------------------------------
-static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) {
- //uint8_t *buffer
- // buffer needs to be 512 bytes
- int c;
-
- // Set FPGA mode to "reader listen mode", no modulation (listen
- // only, since we are receiving, not transmitting).
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
-
- // Now get the answer from the card
- Demod.output = receivedResponse;
- Demod.len = 0;
- Demod.state = DEMOD_UNSYNCD;
-
- uint8_t b;
- if (elapsed) *elapsed = 0;
-
- bool skip = false;
-
- c = 0;
- for (;;) {
- WDT_HIT();
-
- if (BUTTON_PRESS()) return false;
-
- if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
- if (elapsed) (*elapsed)++;
- }
- if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- if (c < timeout) {
- c++;
- } else {
- return false;
- }
- b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- skip = !skip;
- if (skip) continue;
-
- if (ManchesterDecoding(b & 0x0f)) {
- *samples = c << 3;
- return true;
- }
- }
- }
-}
-
-static int ReaderReceiveIClass(uint8_t *receivedAnswer) {
- int samples = 0;
- if (!GetIClassAnswer(receivedAnswer, 160, &samples, 0)) {
- return false;
- }
- rsamples += samples;
- uint8_t parity[MAX_PARITY_SIZE];
- GetParity(receivedAnswer, Demod.len, parity);
- LogTrace(receivedAnswer, Demod.len, rsamples, rsamples, parity, false);
- if (samples == 0) return false;
- return Demod.len;
-}
-
-static void setupIclassReader() {
- FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- // Reset trace buffer
- set_tracing(true);
- clear_trace();
-
- // Setup SSC
- FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
- // Start from off (no field generated)
- // Signal field is off with the appropriate LED
- LED_D_OFF();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelay(200);
-
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
-
- // Now give it time to spin up.
- // Signal field is on with the appropriate LED
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
- SpinDelay(200);
- LED_A_ON();
-
-}
-
-static bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries) {
- while (retries-- > 0) {
- ReaderTransmitIClass(command, cmdsize);
- if (expected_size == ReaderReceiveIClass(resp)) {
+static bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, size_t max_resp_size,
+ uint8_t expected_size, uint8_t tries, uint32_t start_time, uint32_t timeout, uint32_t *eof_time) {
+ while (tries-- > 0) {
+ ReaderTransmitIClass(command, cmdsize, &start_time);
+ if (expected_size == GetIso15693AnswerFromTag(resp, max_resp_size, timeout, eof_time)) {
return true;
}
}
return false;//Error
}
+
/**
- * @brief Talks to an iclass tag, sends the commands to get CSN and CC.
- * @param card_data where the CSN and CC are stored for return
- * @return 0 = fail
- * 1 = Got CSN
- * 2 = Got CSN and CC
+ * @brief Selects an iclass tag
+ * @param card_data where the CSN is stored for return
+ * @return false = fail
+ * true = success
*/
-static uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key) {
- static uint8_t act_all[] = { 0x0a };
- //static uint8_t identify[] = { 0x0c };
- static uint8_t identify[] = { 0x0c, 0x00, 0x73, 0x33 };
- static uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
- static uint8_t readcheck_cc[]= { 0x88, 0x02 };
- if (use_credit_key)
- readcheck_cc[0] = 0x18;
- else
- readcheck_cc[0] = 0x88;
+static bool selectIclassTag(uint8_t *card_data, uint32_t *eof_time) {
+ uint8_t act_all[] = { 0x0a };
+ uint8_t identify[] = { 0x0c };
+ uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
uint8_t resp[ICLASS_BUFFER_SIZE];
- uint8_t read_status = 0;
+ uint32_t start_time = GetCountSspClk();
// Send act_all
- ReaderTransmitIClass(act_all, 1);
+ ReaderTransmitIClass(act_all, 1, &start_time);
// Card present?
- if (!ReaderReceiveIClass(resp)) return read_status;//Fail
+ if (GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_ACTALL, eof_time) < 0) return false; //Fail
+
//Send Identify
- ReaderTransmitIClass(identify, 1);
+ start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
+ ReaderTransmitIClass(identify, 1, &start_time);
//We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
- uint8_t len = ReaderReceiveIClass(resp);
- if (len != 10) return read_status;//Fail
+ uint8_t len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time);
+ if (len != 10) return false; //Fail
//Copy the Anti-collision CSN to our select-packet
memcpy(&select[1], resp, 8);
//Select the card
- ReaderTransmitIClass(select, sizeof(select));
+ start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
+ ReaderTransmitIClass(select, sizeof(select), &start_time);
//We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
- len = ReaderReceiveIClass(resp);
- if (len != 10) return read_status;//Fail
+ len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time);
+ if (len != 10) return false; //Fail
- //Success - level 1, we got CSN
+ //Success - we got CSN
//Save CSN in response data
memcpy(card_data, resp, 8);
- //Flag that we got to at least stage 1, read CSN
- read_status = 1;
-
- // Card selected, now read e-purse (cc) (only 8 bytes no CRC)
- ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
- if (ReaderReceiveIClass(resp) == 8) {
- //Save CC (e-purse) in response data
- memcpy(card_data+8, resp, 8);
- read_status++;
- }
-
- return read_status;
+ return true;
}
-static uint8_t handshakeIclassTag(uint8_t *card_data) {
- return handshakeIclassTag_ext(card_data, false);
-}
+// Select an iClass tag and read all blocks which are always readable without authentication
+void ReaderIClass(uint8_t flags) {
-// Reader iClass Anticollission
-void ReaderIClass(uint8_t arg0) {
+ LED_A_ON();
uint8_t card_data[6 * 8] = {0};
memset(card_data, 0xFF, sizeof(card_data));
- uint8_t last_csn[8] = {0,0,0,0,0,0,0,0};
uint8_t resp[ICLASS_BUFFER_SIZE];
- memset(resp, 0xFF, sizeof(resp));
//Read conf block CRC(0x01) => 0xfa 0x22
- uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x01, 0xfa, 0x22};
+ uint8_t readConf[] = {ICLASS_CMD_READ_OR_IDENTIFY, 0x01, 0xfa, 0x22};
+ //Read e-purse block CRC(0x02) => 0x61 0x10
+ uint8_t readEpurse[] = {ICLASS_CMD_READ_OR_IDENTIFY, 0x02, 0x61, 0x10};
//Read App Issuer Area block CRC(0x05) => 0xde 0x64
- uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x05, 0xde, 0x64};
+ uint8_t readAA[] = {ICLASS_CMD_READ_OR_IDENTIFY, 0x05, 0xde, 0x64};
- int read_status= 0;
uint8_t result_status = 0;
- // flag to read until one tag is found successfully
- bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE;
- // flag to only try 5 times to find one tag then return
- bool try_once = arg0 & FLAG_ICLASS_READER_ONE_TRY;
- // if neither abort_after_read nor try_once then continue reading until button pressed.
-
- bool use_credit_key = arg0 & FLAG_ICLASS_READER_CEDITKEY;
- // test flags for what blocks to be sure to read
- uint8_t flagReadConfig = arg0 & FLAG_ICLASS_READER_CONF;
- uint8_t flagReadCC = arg0 & FLAG_ICLASS_READER_CC;
- uint8_t flagReadAA = arg0 & FLAG_ICLASS_READER_AA;
- set_tracing(true);
- setupIclassReader();
+ if (flags & FLAG_ICLASS_READER_INIT) {
+ Iso15693InitReader();
+ }
- uint16_t tryCnt = 0;
- bool userCancelled = BUTTON_PRESS() || usb_poll_validate_length();
- while (!userCancelled) {
- // if only looking for one card try 2 times if we missed it the first time
- if (try_once && tryCnt > 2) {
- break;
- }
- tryCnt++;
- if (!get_tracing()) {
- DbpString("Trace full");
- break;
- }
- WDT_HIT();
+ if (flags & FLAG_ICLASS_READER_CLEARTRACE) {
+ set_tracing(true);
+ clear_trace();
+ StartCountSspClk();
+ }
+
+ uint32_t start_time = 0;
+ uint32_t eof_time = 0;
- read_status = handshakeIclassTag_ext(card_data, use_credit_key);
+ if (selectIclassTag(resp, &eof_time)) {
+ result_status = FLAG_ICLASS_READER_CSN;
+ memcpy(card_data, resp, 8);
- if (read_status == 0) continue;
- if (read_status == 1) result_status = FLAG_ICLASS_READER_CSN;
- if (read_status == 2) result_status = FLAG_ICLASS_READER_CSN | FLAG_ICLASS_READER_CC;
+ start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
- // handshakeIclass returns CSN|CC, but the actual block
- // layout is CSN|CONFIG|CC, so here we reorder the data,
- // moving CC forward 8 bytes
- memcpy(card_data+16, card_data+8, 8);
//Read block 1, config
- if (flagReadConfig) {
- if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, 10, 10)) {
+ if (flags & FLAG_ICLASS_READER_CONF) {
+ if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) {
result_status |= FLAG_ICLASS_READER_CONF;
memcpy(card_data+8, resp, 8);
} else {
- Dbprintf("Failed to dump config block");
+ Dbprintf("Failed to read config block");
}
+ start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
}
- //Read block 5, AA
- if (flagReadAA) {
- if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, 10, 10)) {
- result_status |= FLAG_ICLASS_READER_AA;
- memcpy(card_data + (8*5), resp, 8);
+ //Read block 2, e-purse
+ if (flags & FLAG_ICLASS_READER_CC) {
+ if (sendCmdGetResponseWithRetries(readEpurse, sizeof(readEpurse), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) {
+ result_status |= FLAG_ICLASS_READER_CC;
+ memcpy(card_data + (8*2), resp, 8);
} else {
- //Dbprintf("Failed to dump AA block");
+ Dbprintf("Failed to read e-purse");
}
+ start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
}
- // 0 : CSN
- // 1 : Configuration
- // 2 : e-purse
- // 3 : kd / debit / aa2 (write-only)
- // 4 : kc / credit / aa1 (write-only)
- // 5 : AIA, Application issuer area
- //Then we can 'ship' back the 6 * 8 bytes of data,
- // with 0xFF:s in block 3 and 4.
-
- LED_B_ON();
- //Send back to client, but don't bother if we already sent this -
- // only useful if looping in arm (not try_once && not abort_after_read)
- if (memcmp(last_csn, card_data, 8) != 0) {
- // If caller requires that we get Conf, CC, AA, continue until we got it
- if ( (result_status ^ FLAG_ICLASS_READER_CSN ^ flagReadConfig ^ flagReadCC ^ flagReadAA) == 0) {
- cmd_send(CMD_ACK, result_status, 0, 0, card_data, sizeof(card_data));
- if (abort_after_read) {
- LED_A_OFF();
- LED_B_OFF();
- return;
- }
- //Save that we already sent this....
- memcpy(last_csn, card_data, 8);
+ //Read block 5, AA
+ if (flags & FLAG_ICLASS_READER_AA) {
+ if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) {
+ result_status |= FLAG_ICLASS_READER_AA;
+ memcpy(card_data + (8*5), resp, 8);
+ } else {
+ Dbprintf("Failed to read AA block");
}
-
}
- LED_B_OFF();
- userCancelled = BUTTON_PRESS() || usb_poll_validate_length();
- }
- if (userCancelled) {
- cmd_send(CMD_ACK, 0xFF, 0, 0, card_data, 0);
- } else {
- cmd_send(CMD_ACK, 0, 0, 0, card_data, 0);
}
+
+ cmd_send(CMD_ACK, result_status, 0, 0, card_data, sizeof(card_data));
+
LED_A_OFF();
}
-void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) {
-
- uint8_t card_data[USB_CMD_DATA_SIZE]={0};
- uint16_t block_crc_LUT[255] = {0};
-
- //Generate a lookup table for block crc
- for (int block = 0; block < 255; block++){
- char bl = block;
- block_crc_LUT[block] = iclass_crc16(&bl ,1);
- }
- //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
-
- uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
- uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
-
- uint16_t crc = 0;
- uint8_t cardsize = 0;
- uint8_t mem = 0;
-
- static struct memory_t {
- int k16;
- int book;
- int k2;
- int lockauth;
- int keyaccess;
- } memory;
-
- uint8_t resp[ICLASS_BUFFER_SIZE];
-
- setupIclassReader();
- set_tracing(true);
-
- while (!BUTTON_PRESS()) {
-
- WDT_HIT();
-
- if (!get_tracing()) {
- DbpString("Trace full");
- break;
- }
-
- uint8_t read_status = handshakeIclassTag(card_data);
- if (read_status < 2) continue;
-
- //for now replay captured auth (as cc not updated)
- memcpy(check+5, MAC, 4);
-
- if (!sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 5)) {
- Dbprintf("Error: Authentication Fail!");
- continue;
- }
- //first get configuration block (block 1)
- crc = block_crc_LUT[1];
- read[1] = 1;
- read[2] = crc >> 8;
- read[3] = crc & 0xff;
-
- if (!sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10)) {
- Dbprintf("Dump config (block 1) failed");
- continue;
- }
-
- mem = resp[5];
- memory.k16 = (mem & 0x80);
- memory.book = (mem & 0x20);
- memory.k2 = (mem & 0x8);
- memory.lockauth = (mem & 0x2);
- memory.keyaccess = (mem & 0x1);
-
- cardsize = memory.k16 ? 255 : 32;
- WDT_HIT();
- //Set card_data to all zeroes, we'll fill it with data
- memset(card_data, 0x0, USB_CMD_DATA_SIZE);
- uint8_t failedRead = 0;
- uint32_t stored_data_length = 0;
- //then loop around remaining blocks
- for (int block = 0; block < cardsize; block++) {
- read[1] = block;
- crc = block_crc_LUT[block];
- read[2] = crc >> 8;
- read[3] = crc & 0xff;
-
- if (sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10)) {
- Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
- block, resp[0], resp[1], resp[2],
- resp[3], resp[4], resp[5],
- resp[6], resp[7]);
-
- //Fill up the buffer
- memcpy(card_data+stored_data_length, resp, 8);
- stored_data_length += 8;
- if (stored_data_length +8 > USB_CMD_DATA_SIZE) {
- //Time to send this off and start afresh
- cmd_send(CMD_ACK,
- stored_data_length,//data length
- failedRead,//Failed blocks?
- 0,//Not used ATM
- card_data, stored_data_length);
- //reset
- stored_data_length = 0;
- failedRead = 0;
- }
+void iClass_Check(uint8_t *NRMAC) {
+ uint8_t check[9] = {ICLASS_CMD_CHECK_KD, 0x00};
+ uint8_t resp[4];
+ memcpy(check+1, NRMAC, 8);
+ uint32_t eof_time;
+ bool isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, sizeof(resp), 4, 3, 0, ICLASS_READER_TIMEOUT_OTHERS, &eof_time);
+ cmd_send(CMD_ACK, isOK, 0, 0, resp, sizeof(resp));
+}
- } else {
- failedRead = 1;
- stored_data_length += 8;//Otherwise, data becomes misaligned
- Dbprintf("Failed to dump block %d", block);
- }
- }
- //Send off any remaining data
- if (stored_data_length > 0) {
- cmd_send(CMD_ACK,
- stored_data_length,//data length
- failedRead,//Failed blocks?
- 0,//Not used ATM
- card_data,
- stored_data_length);
- }
- //If we got here, let's break
- break;
+void iClass_Readcheck(uint8_t block, bool use_credit_key) {
+ uint8_t readcheck[2] = {ICLASS_CMD_READCHECK_KD, block};
+ if (use_credit_key) {
+ readcheck[0] = ICLASS_CMD_READCHECK_KC;
}
- //Signal end of transmission
- cmd_send(CMD_ACK,
- 0,//data length
- 0,//Failed blocks?
- 0,//Not used ATM
- card_data,
- 0);
-
- LED_A_OFF();
-}
-
-void iClass_ReadCheck(uint8_t blockNo, uint8_t keyType) {
- uint8_t readcheck[] = { keyType, blockNo };
- uint8_t resp[] = {0,0,0,0,0,0,0,0};
- size_t isOK = 0;
- isOK = sendCmdGetResponseWithRetries(readcheck, sizeof(readcheck), resp, sizeof(resp), 6);
- cmd_send(CMD_ACK,isOK, 0, 0, 0, 0);
+ uint8_t resp[8];
+ uint32_t eof_time;
+ bool isOK = sendCmdGetResponseWithRetries(readcheck, sizeof(readcheck), resp, sizeof(resp), 8, 3, 0, ICLASS_READER_TIMEOUT_OTHERS, &eof_time);
+ cmd_send(CMD_ACK, isOK, 0, 0, resp, sizeof(resp));
}
-void iClass_Authentication(uint8_t *MAC) {
- uint8_t check[] = { ICLASS_CMD_CHECK_KD, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
- uint8_t resp[ICLASS_BUFFER_SIZE];
- memcpy(check+5, MAC, 4);
- bool isOK;
- isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 6);
- cmd_send(CMD_ACK,isOK, 0, 0, 0, 0);
-}
-bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata) {
+static bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata) {
uint8_t readcmd[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockNo, 0x00, 0x00}; //0x88, 0x00 // can i use 0C?
- char bl = blockNo;
+ uint8_t bl = blockNo;
uint16_t rdCrc = iclass_crc16(&bl, 1);
readcmd[2] = rdCrc >> 8;
readcmd[3] = rdCrc & 0xff;
- uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0};
- bool isOK = false;
+ uint8_t resp[10];
+ uint32_t eof_time;
- //readcmd[1] = blockNo;
- isOK = sendCmdGetResponseWithRetries(readcmd, sizeof(readcmd), resp, 10, 10);
+ bool isOK = sendCmdGetResponseWithRetries(readcmd, sizeof(readcmd), resp, sizeof(resp), 10, 10, 0, ICLASS_READER_TIMEOUT_OTHERS, &eof_time);
memcpy(readdata, resp, sizeof(resp));
return isOK;
}
+
void iClass_ReadBlk(uint8_t blockno) {
- uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0};
- bool isOK = false;
- isOK = iClass_ReadBlock(blockno, readblockdata);
+
+ LED_A_ON();
+
+ uint8_t readblockdata[10];
+ bool isOK = iClass_ReadBlock(blockno, readblockdata);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
cmd_send(CMD_ACK, isOK, 0, 0, readblockdata, 8);
+
+ LED_A_OFF();
}
-void iClass_Dump(uint8_t blockno, uint8_t numblks) {
- uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0};
+
+void iClass_Dump(uint8_t startblock, uint8_t numblks) {
+
+ LED_A_ON();
+
+ uint8_t readblockdata[USB_CMD_DATA_SIZE+2] = {0};
bool isOK = false;
- uint8_t blkCnt = 0;
-
- BigBuf_free();
- uint8_t *dataout = BigBuf_malloc(255*8);
- if (dataout == NULL) {
- Dbprintf("out of memory");
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LED_D_OFF();
- cmd_send(CMD_ACK, 0, 1, 0, 0, 0);
- LED_A_OFF();
- return;
+ uint16_t blkCnt = 0;
+
+ if (numblks > USB_CMD_DATA_SIZE / 8) {
+ numblks = USB_CMD_DATA_SIZE / 8;
}
- memset(dataout, 0xFF, 255*8);
-
- for ( ; blkCnt < numblks; blkCnt++) {
- isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata);
- if (!isOK || (readblockdata[0] == 0xBB || readblockdata[7] == 0xBB || readblockdata[2] == 0xBB)) { //try again
- isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata);
- if (!isOK) {
- Dbprintf("Block %02X failed to read", blkCnt+blockno);
- break;
- }
+
+ for (blkCnt = 0; blkCnt < numblks; blkCnt++) {
+ isOK = iClass_ReadBlock(startblock+blkCnt, readblockdata+8*blkCnt);
+ if (!isOK) {
+ Dbprintf("Block %02X failed to read", startblock+blkCnt);
+ break;
}
- memcpy(dataout + (blkCnt*8), readblockdata, 8);
}
- //return pointer to dump memory in arg3
- cmd_send(CMD_ACK, isOK, blkCnt, BigBuf_max_traceLen(), 0, 0);
+
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LEDsoff();
- BigBuf_free();
+ LED_D_OFF();
+
+ cmd_send(CMD_ACK, isOK, blkCnt, 0, readblockdata, blkCnt*8);
+
+ LED_A_OFF();
}
+
static bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) {
- uint8_t write[] = { ICLASS_CMD_UPDATE, blockNo, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
- //uint8_t readblockdata[10];
- //write[1] = blockNo;
+
+ uint8_t write[16] = {ICLASS_CMD_UPDATE, blockNo};
memcpy(write+2, data, 12); // data + mac
- char *wrCmd = (char *)(write+1);
- uint16_t wrCrc = iclass_crc16(wrCmd, 13);
- write[14] = wrCrc >> 8;
- write[15] = wrCrc & 0xff;
- uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0};
+ AppendCrc(write+1, 13);
+ uint8_t resp[10];
bool isOK = false;
+ uint32_t eof_time = 0;
- isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10);
- if (isOK) { //if reader responded correctly
- //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]);
- if (memcmp(write+2, resp, 8)) { //if response is not equal to write values
- if (blockNo != 3 && blockNo != 4) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data)
- //error try again
- isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10);
- }
+ isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10, 3, 0, ICLASS_READER_TIMEOUT_UPDATE, &eof_time);
+ if (!isOK) {
+ return false;
+ }
+
+ uint8_t all_ff[8] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
+ if (blockNo == 2) {
+ if (memcmp(data+4, resp, 4) || memcmp(data, resp+4, 4)) { // check response. e-purse update swaps first and second half
+ return false;
+ }
+ } else if (blockNo == 3 || blockNo == 4) {
+ if (memcmp(all_ff, resp, 8)) { // check response. Key updates always return 0xffffffffffffffff
+ return false;
+ }
+ } else {
+ if (memcmp(data, resp, 8)) { // check response. All other updates return unchanged data
+ return false;
}
}
- return isOK;
+
+ return true;
}
+
void iClass_WriteBlock(uint8_t blockNo, uint8_t *data) {
+
+ LED_A_ON();
+
bool isOK = iClass_WriteBlock_ext(blockNo, data);
- if (isOK){
+ if (isOK) {
Dbprintf("Write block [%02x] successful", blockNo);
} else {
Dbprintf("Write block [%02x] failed", blockNo);
}
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
+
cmd_send(CMD_ACK, isOK, 0, 0, 0, 0);
+ LED_A_OFF();
}
+
void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) {
- int i;
+
+ LED_A_ON();
+
int written = 0;
- int total_block = (endblock - startblock) + 1;
- for (i = 0; i < total_block; i++) {
+ int total_blocks = (endblock - startblock) + 1;
+
+ for (uint8_t block = startblock; block <= endblock; block++) {
// block number
- if (iClass_WriteBlock_ext(i+startblock, data + (i*12))){
- Dbprintf("Write block [%02x] successful", i + startblock);
+ if (iClass_WriteBlock_ext(block, data + (block-startblock)*12)) {
+ Dbprintf("Write block [%02x] successful", block);
written++;
} else {
- if (iClass_WriteBlock_ext(i+startblock, data + (i*12))){
- Dbprintf("Write block [%02x] successful", i + startblock);
- written++;
- } else {
- Dbprintf("Write block [%02x] failed", i + startblock);
- }
+ Dbprintf("Write block [%02x] failed", block);
}
}
- if (written == total_block)
+
+ if (written == total_blocks)
Dbprintf("Clone complete");
else
Dbprintf("Clone incomplete");
- cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LEDsoff();
+ LED_D_OFF();
+
+ cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
+ LED_A_OFF();
}